599 lines
15 KiB
C++

/************************************************
* @file DataProcessor.cpp
* @short creates data processor thread that
* pulls pointers to memory addresses from fifos
* and processes data stored in them & writes them to file
***********************************************/
#include "DataProcessor.h"
#include "GeneralData.h"
#include "Fifo.h"
#include "BinaryFile.h"
#ifdef HDF5C
#include "HDF5File.h"
#endif
#include "DataStreamer.h"
#include <iostream>
#include <errno.h>
#include <cstring>
const std::string DataProcessor::TypeName = "DataProcessor";
DataProcessor::DataProcessor(int ind, detectorType dtype, Fifo*& f,
fileFormat* ftype, bool fwenable,
bool* dsEnable, bool* gpEnable, uint32_t* dr,
uint32_t* freq, uint32_t* timer,
bool* fp, bool* act, bool* depaden, bool* sm,
void (*dataReadycb)(char*, char*, uint32_t, void*),
void (*dataModifyReadycb)(char*, char*, uint32_t &, void*),
void *pDataReadycb) :
ThreadObject(ind),
runningFlag(0),
generalData(0),
fifo(f),
myDetectorType(dtype),
file(0),
dataStreamEnable(dsEnable),
fileFormatType(ftype),
fileWriteEnable(fwenable),
gapPixelsEnable(gpEnable),
dynamicRange(dr),
streamingFrequency(freq),
streamingTimerInMs(timer),
currentFreqCount(0),
tempBuffer(0),
activated(act),
deactivatedPaddingEnable(depaden),
silentMode(sm),
framePadding(fp),
acquisitionStartedFlag(false),
measurementStartedFlag(false),
firstAcquisitionIndex(0),
firstMeasurementIndex(0),
numTotalFramesCaught(0),
numFramesCaught(0),
currentFrameIndex(0),
rawDataReadyCallBack(dataReadycb),
rawDataModifyReadyCallBack(dataModifyReadycb),
pRawDataReady(pDataReadycb)
{
if(ThreadObject::CreateThread() == FAIL)
throw std::exception();
FILE_LOG(logDEBUG) << "DataProcessor " << ind << " created";
memset((void*)&timerBegin, 0, sizeof(timespec));
}
DataProcessor::~DataProcessor() {
if (file) delete file;
if (tempBuffer) delete [] tempBuffer;
ThreadObject::DestroyThread();
}
/** getters */
std::string DataProcessor::GetType(){
return TypeName;
}
bool DataProcessor::IsRunning() {
return runningFlag;
}
bool DataProcessor::GetAcquisitionStartedFlag(){
return acquisitionStartedFlag;
}
bool DataProcessor::GetMeasurementStartedFlag(){
return measurementStartedFlag;
}
uint64_t DataProcessor::GetNumTotalFramesCaught() {
return numTotalFramesCaught;
}
uint64_t DataProcessor::GetNumFramesCaught() {
return numFramesCaught;
}
uint64_t DataProcessor::GetActualProcessedAcquisitionIndex() {
return currentFrameIndex;
}
uint64_t DataProcessor::GetProcessedAcquisitionIndex() {
return currentFrameIndex - firstAcquisitionIndex;
}
uint64_t DataProcessor::GetProcessedMeasurementIndex() {
return currentFrameIndex - firstMeasurementIndex;
}
/** setters */
void DataProcessor::StartRunning() {
runningFlag = true;
}
void DataProcessor::StopRunning() {
runningFlag = false;
}
void DataProcessor::SetFifo(Fifo*& f) {
fifo = f;
}
void DataProcessor::ResetParametersforNewAcquisition() {
numTotalFramesCaught = 0;
firstAcquisitionIndex = 0;
currentFrameIndex = 0;
acquisitionStartedFlag = false;
}
void DataProcessor::ResetParametersforNewMeasurement(){
runningFlag = false;
numFramesCaught = 0;
firstMeasurementIndex = 0;
measurementStartedFlag = false;
if (tempBuffer) {
delete [] tempBuffer;
tempBuffer = 0;
}
if (*gapPixelsEnable >= 0) {
tempBuffer = new char[generalData->imageSize];
memset(tempBuffer, 0, generalData->imageSize);
}
}
void DataProcessor::RecordFirstIndices(uint64_t fnum) {
//listen to this fnum, later +1
currentFrameIndex = fnum;
measurementStartedFlag = true;
firstMeasurementIndex = fnum;
//start of entire acquisition
if (!acquisitionStartedFlag) {
acquisitionStartedFlag = true;
firstAcquisitionIndex = fnum;
}
#ifdef VERBOSE
cprintf(BLUE,"%d First Acquisition Index:%lld\tFirst Measurement Index:%lld\n",
index, (long long int)firstAcquisitionIndex, (long long int)firstMeasurementIndex);
#endif
}
void DataProcessor::SetGeneralData(GeneralData* g) {
generalData = g;
#ifdef VERY_VERBOSE
generalData->Print();
#endif
if (file) {
if (file->GetFileType() == HDF5) {
file->SetNumberofPixels(generalData->nPixelsX, generalData->nPixelsY);
}
}
}
int DataProcessor::SetThreadPriority(int priority) {
struct sched_param param;
param.sched_priority = priority;
if (pthread_setschedparam(thread, SCHED_FIFO, &param) == EPERM)
return FAIL;
FILE_LOG(logINFO) << "Processor Thread Priority set to " << priority;
return OK;
}
void DataProcessor::SetFileFormat(const fileFormat f) {
if (file && file->GetFileType() != f) {
//remember the pointer values before they are destroyed
int nd[MAX_DIMENSIONS];nd[0] = 0; nd[1] = 0;
uint32_t* maxf = 0;
char* fname=0; char* fpath=0; uint64_t* findex=0;
bool* owenable=0; int* dindex=0; int* nunits=0; uint64_t* nf = 0;
uint32_t* dr = 0; uint32_t* port = 0;
file->GetMemberPointerValues(nd, maxf, fname, fpath, findex,
owenable, dindex, nunits, nf, dr, port);
//create file writer with same pointers
SetupFileWriter(fileWriteEnable, nd, maxf, fname, fpath, findex,
owenable, dindex, nunits, nf, dr, port);
}
}
void DataProcessor::SetupFileWriter(bool fwe, int* nd, uint32_t* maxf,
char* fname, char* fpath, uint64_t* findex,
bool* owenable, int* dindex, int* nunits, uint64_t* nf, uint32_t* dr,
uint32_t* portno,
GeneralData* g)
{
fileWriteEnable = fwe;
if (g)
generalData = g;
if (file) {
delete file; file = 0;
}
if (fileWriteEnable) {
switch(*fileFormatType){
#ifdef HDF5C
case HDF5:
file = new HDF5File(index, maxf,
nd, fname, fpath, findex, owenable,
dindex, nunits, nf, dr, portno,
generalData->nPixelsX, generalData->nPixelsY, silentMode);
break;
#endif
default:
file = new BinaryFile(index, maxf,
nd, fname, fpath, findex, owenable,
dindex, nunits, nf, dr, portno, silentMode);
break;
}
}
}
// only the first file
int DataProcessor::CreateNewFile(bool en, uint64_t nf, uint64_t at, uint64_t st,
uint64_t sp, uint64_t ap) {
if (file == NULL)
return FAIL;
file->CloseAllFiles();
if (file->CreateMasterFile(en, generalData->imageSize,
generalData->nPixelsX, generalData->nPixelsY,
at, st, sp, ap) == FAIL)
return FAIL;
if (file->CreateFile(currentFrameIndex) == FAIL)
return FAIL;
return OK;
}
void DataProcessor::CloseFiles() {
if (file)
file->CloseAllFiles();
}
void DataProcessor::EndofAcquisition(bool anyPacketsCaught, uint64_t numf) {
if (file && file->GetFileType() == HDF5) {
file->EndofAcquisition(anyPacketsCaught, numf);
}
}
void DataProcessor::ThreadExecution() {
char* buffer=0;
fifo->PopAddress(buffer);
#ifdef FIFODEBUG
if (!index) cprintf(BLUE,"DataProcessor %d, pop 0x%p buffer:%s\n",
index,(void*)(buffer),buffer);
#endif
//check dummy
uint32_t numBytes = (uint32_t)(*((uint32_t*)buffer));
#ifdef VERBOSE
if (!index) cprintf(BLUE,"DataProcessor %d, Numbytes:%u\n", index,numBytes);
#endif
if (numBytes == DUMMY_PACKET_VALUE) {
StopProcessing(buffer);
return;
}
ProcessAnImage(buffer);
//stream (if time/freq to stream) or free
if (*dataStreamEnable && SendToStreamer())
fifo->PushAddressToStream(buffer);
else
fifo->FreeAddress(buffer);
}
void DataProcessor::StopProcessing(char* buf) {
#ifdef VERBOSE
if (!index)
cprintf(RED,"DataProcessing %d: Dummy\n", index);
#endif
//stream or free
if (*dataStreamEnable)
fifo->PushAddressToStream(buf);
else
fifo->FreeAddress(buf);
if (file)
file->CloseCurrentFile();
StopRunning();
#ifdef VERBOSE
FILE_LOG(logINFO) << index << ": Processing Completed";
#endif
}
void DataProcessor::ProcessAnImage(char* buf) {
sls_receiver_header* rheader = (sls_receiver_header*) (buf + FIFO_HEADER_NUMBYTES);
sls_detector_header header = rheader->detHeader;
uint64_t fnum = header.frameNumber;
currentFrameIndex = fnum;
uint32_t nump = header.packetNumber;
if (nump == generalData->packetsPerFrame) {
numFramesCaught++;
numTotalFramesCaught++;
}
#ifdef VERBOSE
if (!index)
cprintf(BLUE,"DataProcessing %d: fnum:%lu\n", index, fnum);
#endif
if (!measurementStartedFlag) {
#ifdef VERBOSE
if (!index) cprintf(BLUE,"DataProcessing %d: fnum:%lu\n", index, fnum);
#endif
RecordFirstIndices(fnum);
if (*dataStreamEnable) {
//restart timer
clock_gettime(CLOCK_REALTIME, &timerBegin);
timerBegin.tv_sec -= (*streamingTimerInMs) / 1000;
timerBegin.tv_nsec -= ((*streamingTimerInMs) % 1000) * 1000000;
//to send first image
currentFreqCount = *streamingFrequency;
}
}
if (*gapPixelsEnable && (*dynamicRange!=4))
InsertGapPixels(buf + FIFO_HEADER_NUMBYTES + sizeof(sls_receiver_header),
*dynamicRange);
// frame padding
if (*activated && *framePadding && nump < generalData->packetsPerFrame)
PadMissingPackets(buf);
// deactivated and padding enabled
else if (!(*activated) && *deactivatedPaddingEnable)
PadMissingPackets(buf);
// normal call back
if (rawDataReadyCallBack) {
rawDataReadyCallBack(
(char*)rheader,
buf + FIFO_HEADER_NUMBYTES + sizeof(sls_receiver_header),
(uint32_t)(*((uint32_t*)buf)),
pRawDataReady);
}
// call back with modified size
else if (rawDataModifyReadyCallBack) {
uint32_t revsize = (uint32_t)(*((uint32_t*)buf));
rawDataModifyReadyCallBack(
(char*)rheader,
buf + FIFO_HEADER_NUMBYTES + sizeof(sls_receiver_header),
revsize,
pRawDataReady);
(*((uint32_t*)buf)) = revsize;
}
// write to file
if (file)
file->WriteToFile(buf + FIFO_HEADER_NUMBYTES,
sizeof(sls_receiver_header) + (uint32_t)(*((uint32_t*)buf)), //+ size of data (resizable from previous call back
fnum-firstMeasurementIndex, nump);
}
bool DataProcessor::SendToStreamer() {
//skip
if (!(*streamingFrequency)) {
if (!CheckTimer())
return false;
} else {
if (!CheckCount())
return false;
}
return true;
}
bool DataProcessor::CheckTimer() {
struct timespec end;
clock_gettime(CLOCK_REALTIME, &end);
#ifdef VERBOSE
cprintf(BLUE,"%d Timer elapsed time:%f seconds\n", index,
( end.tv_sec - timerBegin.tv_sec ) + ( end.tv_nsec - timerBegin.tv_nsec )
/ 1000000000.0);
#endif
//still less than streaming timer, keep waiting
if((( end.tv_sec - timerBegin.tv_sec ) + ( end.tv_nsec - timerBegin.tv_nsec )
/ 1000000000.0) < ((double)*streamingTimerInMs/1000.00))
return false;
//restart timer
clock_gettime(CLOCK_REALTIME, &timerBegin);
return true;
}
bool DataProcessor::CheckCount() {
if (currentFreqCount == *streamingFrequency ) {
currentFreqCount = 1;
return true;
}
currentFreqCount++;
return false;
}
void DataProcessor::SetPixelDimension() {
if (file) {
if (file->GetFileType() == HDF5) {
file->SetNumberofPixels(generalData->nPixelsX, generalData->nPixelsY);
}
}
}
void DataProcessor::PadMissingPackets(char* buf) {
FILE_LOG(logDEBUG) << index << ": Padding Missing Packets";
uint32_t pperFrame = generalData->packetsPerFrame;
sls_receiver_header* header = (sls_receiver_header*) (buf + FIFO_HEADER_NUMBYTES);
uint32_t nmissing = pperFrame - header->detHeader.packetNumber;
sls_bitset pmask = header->packetsMask;
uint32_t dsize = generalData->dataSize;
uint32_t fifohsize = generalData->fifoBufferHeaderSize;
uint32_t corrected_dsize = dsize - ((pperFrame * dsize) - generalData->imageSize);
#ifdef VERBOSE
cprintf(RED,"bitmask:%s\n", pmask.to_string().c_str());
#endif
for (unsigned int pnum = 0; pnum < pperFrame; ++pnum) {
// not missing packet
if (pmask[pnum])
continue;
// done with padding, exit loop earlier
if (!nmissing)
break;
FILE_LOG(logDEBUG) << "padding for " << index << " for pnum: " << pnum << std::endl;
// missing packet
switch(myDetectorType) {
//for gotthard, 1st packet: 4 bytes fnum, CACA + CACA, 639*2 bytes data
// 2nd packet: 4 bytes fnum, previous 1*2 bytes data + 640*2 bytes data !!
case GOTTHARD:
if(!pnum)
memset(buf + fifohsize + (pnum * dsize), 0xFF, dsize-2);
else
memset(buf + fifohsize + (pnum * dsize), 0xFF, dsize+2);
break;
case JUNGFRAUCTB:
if (pnum == (pperFrame-1))
memset(buf + fifohsize + (pnum * dsize), 0xFF, corrected_dsize);
else
memset(buf + fifohsize + (pnum * dsize), 0xFF, dsize);
break;
default:
memset(buf + fifohsize + (pnum * dsize), 0xFF, dsize);
break;
}
--nmissing;
}
}
/** eiger specific */
void DataProcessor::InsertGapPixels(char* buf, uint32_t dr) {
memset(tempBuffer, 0xFF, generalData->imageSize);
const uint32_t nx = generalData->nPixelsX;
const uint32_t ny = generalData->nPixelsY;
const uint32_t npx = nx * ny;
char* srcptr = 0;
char* dstptr = 0;
const uint32_t b1px = generalData->imageSize / (npx); // not double as not dealing with 4 bit mode
const uint32_t b2px = 2 * b1px;
const uint32_t b1pxofst = (index ? b1px : 0); // left fpga (index 0) has no extra 1px offset, but right fpga has
const uint32_t b1chip = 256 * b1px;
const uint32_t b1line = (nx * b1px);
// copying line by line
srcptr = buf;
dstptr = tempBuffer + b1line + b1pxofst; // left fpga (index 0) has no extra 1px offset, but right fpga has
for (uint32_t i = 0; i < (ny-1); ++i) {
memcpy(dstptr, srcptr, b1chip);
srcptr += b1chip;
dstptr += (b1chip + b2px);
memcpy(dstptr, srcptr, b1chip);
srcptr += b1chip;
dstptr += (b1chip + b1px);
}
// vertical filling of values
{
char* srcgp1 = 0; char* srcgp2 = 0; char* srcgp3 = 0;
char* dstgp1 = 0; char* dstgp2 = 0; char* dstgp3 = 0;
const uint32_t b3px = 3 * b1px;
srcptr = tempBuffer + b1line;
dstptr = tempBuffer + b1line;
for (uint32_t i = 0; i < (ny-1); ++i) {
srcgp1 = srcptr + b1pxofst + b1chip - b1px;
dstgp1 = srcgp1 + b1px;
srcgp2 = srcgp1 + b3px;
dstgp2 = dstgp1 + b1px;
if (!index) {
srcgp3 = srcptr + b1line - b2px;
dstgp3 = srcgp3 + b1px;
} else {
srcgp3 = srcptr + b1px;
dstgp3 = srcptr;
}
switch (dr) {
case 8:
(*((uint8_t*)srcgp1)) = (*((uint8_t*)srcgp1))/2; (*((uint8_t*)dstgp1)) = (*((uint8_t*)srcgp1));
(*((uint8_t*)srcgp2)) = (*((uint8_t*)srcgp2))/2; (*((uint8_t*)dstgp2)) = (*((uint8_t*)srcgp2));
(*((uint8_t*)srcgp3)) = (*((uint8_t*)srcgp3))/2; (*((uint8_t*)dstgp3)) = (*((uint8_t*)srcgp3));
break;
case 16:
(*((uint16_t*)srcgp1)) = (*((uint16_t*)srcgp1))/2; (*((uint16_t*)dstgp1)) = (*((uint16_t*)srcgp1));
(*((uint16_t*)srcgp2)) = (*((uint16_t*)srcgp2))/2; (*((uint16_t*)dstgp2)) = (*((uint16_t*)srcgp2));
(*((uint16_t*)srcgp3)) = (*((uint16_t*)srcgp3))/2; (*((uint16_t*)dstgp3)) = (*((uint16_t*)srcgp3));
break;
default:
(*((uint32_t*)srcgp1)) = (*((uint32_t*)srcgp1))/2; (*((uint32_t*)dstgp1)) = (*((uint32_t*)srcgp1));
(*((uint32_t*)srcgp2)) = (*((uint32_t*)srcgp2))/2; (*((uint32_t*)dstgp2)) = (*((uint32_t*)srcgp2));
(*((uint32_t*)srcgp3)) = (*((uint32_t*)srcgp3))/2; (*((uint32_t*)dstgp3)) = (*((uint32_t*)srcgp3));
break;
}
srcptr += b1line;
dstptr += b1line;
}
}
// horizontal filling of values
srcptr = tempBuffer + b1line;
dstptr = tempBuffer;
for (uint32_t i = 0; i < nx; ++i) {
switch (dr) {
case 8: (*((uint8_t*)srcptr)) = (*((uint8_t*)srcptr))/2; (*((uint8_t*)dstptr)) = (*((uint8_t*)srcptr)); break;
case 16:(*((uint16_t*)srcptr)) = (*((uint16_t*)srcptr))/2; (*((uint16_t*)dstptr)) = (*((uint16_t*)srcptr)); break;
default:(*((uint32_t*)srcptr)) = (*((uint32_t*)srcptr))/2; (*((uint32_t*)dstptr)) = (*((uint32_t*)srcptr)); break;
}
srcptr += b1px;
dstptr += b1px;
}
memcpy(buf, tempBuffer, generalData->imageSize);
return;
}