Dhanya Thattil d3d98db7e9
1. Ctb powerindices (#767)
* power and sense returning dac indices instead of int in Detector class
2023-06-19 15:19:50 +02:00

2075 lines
72 KiB
C++

// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include "DetectorImpl.h"
#include "Module.h"
#include "SharedMemory.h"
#include "sls/ZmqSocket.h"
#include "sls/detectorData.h"
#include "sls/file_utils.h"
#include "sls/logger.h"
#include "sls/sls_detector_exceptions.h"
#include "sls/versionAPI.h"
#include "sls/ToString.h"
#include "sls/container_utils.h"
#include "sls/file_utils.h"
#include "sls/network_utils.h"
#include "sls/string_utils.h"
#include <cstring>
#include <iomanip>
#include <iostream>
#include <rapidjson/document.h> //json header in zmq stream
#include <sstream>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/types.h>
#include <chrono>
#include <future>
#include <vector>
namespace sls {
DetectorImpl::DetectorImpl(int detector_index, bool verify, bool update)
: detectorIndex(detector_index), shm(detector_index, -1),
ctb_shm(detector_index, -1, CtbConfig::shm_tag()) {
setupDetector(verify, update);
}
DetectorImpl::~DetectorImpl() = default;
void DetectorImpl::setupDetector(bool verify, bool update) {
initSharedMemory(verify);
initializeMembers(verify);
if (update) {
updateUserdetails();
}
if (ctb_shm.exists())
ctb_shm.openSharedMemory(verify);
}
bool DetectorImpl::isAllPositions(Positions pos) const {
return (pos.empty() || (pos.size() == 1 && pos[0] == -1) ||
(pos.size() == modules.size()));
}
void DetectorImpl::setAcquiringFlag(bool flag) { shm()->acquiringFlag = flag; }
int DetectorImpl::getDetectorIndex() const { return detectorIndex; }
void DetectorImpl::freeSharedMemory(int detectorIndex, int detPos) {
// single
if (detPos >= 0) {
SharedMemory<sharedModule> moduleShm(detectorIndex, detPos);
if (moduleShm.exists()) {
moduleShm.removeSharedMemory();
}
return;
}
// multi - get number of modules from shm
SharedMemory<sharedDetector> detectorShm(detectorIndex, -1);
int numModules = 0;
if (detectorShm.exists()) {
detectorShm.openSharedMemory(false);
numModules = detectorShm()->totalNumberOfModules;
detectorShm.removeSharedMemory();
}
for (int i = 0; i < numModules; ++i) {
SharedMemory<sharedModule> moduleShm(detectorIndex, i);
moduleShm.removeSharedMemory();
}
SharedMemory<CtbConfig> ctbShm(detectorIndex, -1, CtbConfig::shm_tag());
if (ctbShm.exists())
ctbShm.removeSharedMemory();
}
void DetectorImpl::freeSharedMemory() {
zmqSocket.clear();
for (auto &module : modules) {
module->freeSharedMemory();
}
modules.clear();
// clear detector shm
shm.removeSharedMemory();
client_downstream = false;
if (ctb_shm.exists())
ctb_shm.removeSharedMemory();
}
std::string DetectorImpl::getUserDetails() {
if (modules.empty()) {
return std::string("none");
}
std::ostringstream sstream;
sstream << "\nHostname: ";
for (auto &module : modules) {
sstream << (module->isFixedPatternSharedMemoryCompatible()
? module->getHostname()
: "Unknown")
<< "+";
}
sstream << "\nType: ";
// get type from detector version shm
if (shm()->shmversion >= DETECTOR_SHMAPIVERSION) {
sstream << ToString(shm()->detType);
}
// get type from module shm
else {
for (auto &module : modules) {
sstream << (module->isFixedPatternSharedMemoryCompatible()
? ToString(module->getDetectorType())
: "Unknown")
<< "+";
}
}
sstream << "\nPID: " << shm()->lastPID << "\nUser: " << shm()->lastUser
<< "\nDate: " << shm()->lastDate << std::endl;
return sstream.str();
}
bool DetectorImpl::getInitialChecks() const { return shm()->initialChecks; }
void DetectorImpl::setInitialChecks(const bool value) {
shm()->initialChecks = value;
}
void DetectorImpl::initSharedMemory(bool verify) {
if (!shm.exists()) {
shm.createSharedMemory();
initializeDetectorStructure();
} else {
shm.openSharedMemory(verify);
if (verify && shm()->shmversion != DETECTOR_SHMVERSION) {
LOG(logERROR) << "Detector shared memory (" << detectorIndex
<< ") version mismatch "
"(expected 0x"
<< std::hex << DETECTOR_SHMVERSION << " but got 0x"
<< shm()->shmversion << std::dec
<< ". Clear Shared memory to continue.";
throw SharedMemoryError("Shared memory version mismatch!");
}
}
// std::cout <<
}
void DetectorImpl::initializeDetectorStructure() {
shm()->shmversion = DETECTOR_SHMVERSION;
shm()->totalNumberOfModules = 0;
shm()->detType = GENERIC;
shm()->numberOfModules.x = 0;
shm()->numberOfModules.y = 0;
shm()->numberOfChannels.x = 0;
shm()->numberOfChannels.y = 0;
shm()->acquiringFlag = false;
shm()->initialChecks = true;
shm()->gapPixels = false;
// zmqlib default
shm()->zmqHwm = -1;
shm()->rx_roi.xmin = -1;
shm()->rx_roi.xmax = -1;
shm()->rx_roi.ymin = -1;
shm()->rx_roi.ymax = -1;
}
void DetectorImpl::initializeMembers(bool verify) {
// DetectorImpl
zmqSocket.clear();
// get objects from single det shared memory (open)
for (int i = 0; i < shm()->totalNumberOfModules; i++) {
try {
modules.push_back(make_unique<Module>(detectorIndex, i, verify));
} catch (...) {
modules.clear();
throw;
}
}
}
void DetectorImpl::updateUserdetails() {
shm()->lastPID = getpid();
memset(shm()->lastUser, 0, sizeof(shm()->lastUser));
memset(shm()->lastDate, 0, sizeof(shm()->lastDate));
try {
strcpy_safe(shm()->lastUser, exec("whoami").c_str());
strcpy_safe(shm()->lastDate, exec("date").c_str());
} catch (...) {
strcpy_safe(shm()->lastUser, "errorreading");
strcpy_safe(shm()->lastDate, "errorreading");
}
}
bool DetectorImpl::isAcquireReady() {
if (shm()->acquiringFlag) {
LOG(logWARNING)
<< "Acquire has already started. "
"If previous acquisition terminated unexpectedly, "
"reset busy flag to restart.(sls_detector_put clearbusy)";
return false;
}
shm()->acquiringFlag = true;
return true;
}
std::string DetectorImpl::exec(const char *cmd) {
char buffer[128];
std::string result;
FILE *pipe = popen(cmd, "r");
if (pipe == nullptr) {
throw RuntimeError("Could not open pipe");
}
while (feof(pipe) == 0) {
if (fgets(buffer, sizeof(buffer), pipe) != nullptr) {
result += buffer;
}
}
pclose(pipe);
result.erase(result.find_last_not_of(" \t\n\r") + 1);
return result;
}
void DetectorImpl::setVirtualDetectorServers(const int numdet, const int port) {
std::vector<std::string> hostnames;
for (int i = 0; i < numdet; ++i) {
// * 2 is for control and stop port
hostnames.push_back(std::string("localhost:") +
std::to_string(port + i * 2));
}
setHostname(hostnames);
}
void DetectorImpl::setHostname(const std::vector<std::string> &name) {
// do not free always to allow the previous detsize/ initialchecks command
if (shm.exists() && shm()->totalNumberOfModules != 0) {
LOG(logWARNING) << "There are already module(s) in shared memory."
"Freeing Shared memory now.";
freeSharedMemory();
}
// could be called after freeing shm from API
if (!shm.exists()) {
setupDetector();
}
for (const auto &hostname : name) {
addModule(hostname);
}
updateDetectorSize();
// Here we know the detector type and can add ctb shared memory
// if needed, CTB dac names are only on detector level
if (shm()->detType == defs::CHIPTESTBOARD) {
if (ctb_shm.exists())
ctb_shm.openSharedMemory(true);
else
ctb_shm.createSharedMemory();
}
}
void DetectorImpl::addModule(const std::string &name) {
LOG(logINFO) << "Adding module " << name;
auto host = verifyUniqueDetHost(name);
std::string hostname = host.first;
int port = host.second;
// get type by connecting
detectorType type = Module::getTypeFromDetector(hostname, port);
// gotthard cannot have more than 2 modules (50um=1, 25um=2
if ((type == GOTTHARD || type == GOTTHARD2) && modules.size() > 2) {
freeSharedMemory();
throw RuntimeError("Gotthard cannot have more than 2 modules");
}
auto pos = modules.size();
modules.emplace_back(make_unique<Module>(type, detectorIndex, pos, false));
shm()->totalNumberOfModules = modules.size();
modules[pos]->setControlPort(port);
modules[pos]->setStopPort(port + 1);
modules[pos]->setHostname(hostname, shm()->initialChecks);
// module type updated by now
shm()->detType = Parallel(&Module::getDetectorType, {})
.tsquash("Inconsistent detector types.");
// for ctb
modules[pos]->updateNumberOfChannels();
// for eiger, jungfrau, moench, gotthard2
modules[pos]->updateNumberofUDPInterfaces();
// update zmq port in case numudpinterfaces changed
int numInterfaces = modules[pos]->getNumberofUDPInterfacesFromShm();
modules[pos]->setClientStreamingPort(DEFAULT_ZMQ_CL_PORTNO +
pos * numInterfaces);
}
void DetectorImpl::updateDetectorSize() {
LOG(logDEBUG) << "Updating Detector Size: " << size();
const slsDetectorDefs::xy modSize = modules[0]->getNumberOfChannels();
if (modSize.x == 0 || modSize.y == 0) {
throw RuntimeError(
"Module size for x or y dimensions is 0. Unable to proceed in "
"updating detector size. ");
}
int nModx = 0, nMody = 0;
// 1d, add modules along x axis
if (modSize.y == 1) {
int detSizeX = shm()->numberOfChannels.x;
int maxChanX = modSize.x * size();
// user given detsizex used only within max value
if (detSizeX > 1 && detSizeX <= maxChanX) {
maxChanX = detSizeX;
}
nModx = maxChanX / modSize.x;
nMody = size() / nModx;
if ((maxChanX % modSize.x) > 0) {
++nMody;
}
}
// 2d, add modules along y axis (due to eiger top/bottom)
else {
int detSizeY = shm()->numberOfChannels.y;
int maxChanY = modSize.y * size();
// user given detsizey used only within max value
if (detSizeY > 1 && detSizeY <= maxChanY) {
maxChanY = detSizeY;
}
nMody = maxChanY / modSize.y;
nModx = size() / nMody;
if ((maxChanY % modSize.y) > 0) {
++nModx;
}
}
shm()->numberOfModules.x = nModx;
shm()->numberOfModules.y = nMody;
shm()->numberOfChannels.x = modSize.x * nModx;
shm()->numberOfChannels.y = modSize.y * nMody;
LOG(logDEBUG) << "\n\tNumber of Modules in X direction:"
<< shm()->numberOfModules.x
<< "\n\tNumber of Modules in Y direction:"
<< shm()->numberOfModules.y
<< "\n\tNumber of Channels in X direction:"
<< shm()->numberOfChannels.x
<< "\n\tNumber of Channels in Y direction:"
<< shm()->numberOfChannels.y;
for (auto &module : modules) {
if (module->getUpdateMode() == 0) {
module->updateNumberOfModule(shm()->numberOfModules);
}
}
}
int DetectorImpl::size() const { return modules.size(); }
slsDetectorDefs::xy DetectorImpl::getNumberOfModules() const {
return shm()->numberOfModules;
}
slsDetectorDefs::xy DetectorImpl::getNumberOfChannels() const {
return shm()->numberOfChannels;
}
void DetectorImpl::setNumberOfChannels(const slsDetectorDefs::xy c) {
if (size() > 1) {
throw RuntimeError(
"Set the number of channels before setting hostname.");
}
shm()->numberOfChannels = c;
}
bool DetectorImpl::getGapPixelsinCallback() const { return shm()->gapPixels; }
void DetectorImpl::setGapPixelsinCallback(const bool enable) {
if (enable) {
switch (shm()->detType) {
case JUNGFRAU:
case MOENCH:
break;
case EIGER:
if (size() && modules[0]->getQuad()) {
break;
}
if (shm()->numberOfModules.y % 2 != 0) {
throw RuntimeError("Gap pixels can only be used "
"for full modules.");
}
break;
default:
throw RuntimeError("Gap Pixels is not implemented for " +
ToString(shm()->detType));
}
}
shm()->gapPixels = enable;
}
int DetectorImpl::getTransmissionDelay() const {
bool eiger = false;
switch (shm()->detType) {
case JUNGFRAU:
case MOENCH:
case MYTHEN3:
break;
case EIGER:
eiger = true;
break;
default:
throw RuntimeError(
"Transmission delay is not implemented for the this detector.");
}
if (!eiger && size() <= 1) {
throw RuntimeError(
"Cannot get intermodule transmission delays with just one module");
}
int step = 0;
if (eiger) {
// between left and right
step = modules[0]->getTransmissionDelayRight();
} else {
// between first and second
step = modules[1]->getTransmissionDelayFrame();
}
for (int i = 0; i != size(); ++i) {
if (eiger) {
if ((modules[i]->getTransmissionDelayLeft() != (2 * i * step)) ||
(modules[i]->getTransmissionDelayRight() !=
((2 * i + 1) * step)) ||
(modules[i]->getTransmissionDelayFrame() !=
(2 * size() * step))) {
return -1;
}
} else {
if (modules[i]->getTransmissionDelayFrame() != (i * step)) {
return -1;
}
}
}
return step;
}
void DetectorImpl::setTransmissionDelay(int step) {
bool eiger = false;
switch (shm()->detType) {
case JUNGFRAU:
case MOENCH:
case MYTHEN3:
break;
case EIGER:
eiger = true;
break;
default:
throw RuntimeError(
"Transmission delay is not implemented for the this detector.");
}
// using a asyc+future directly (instead of Parallel) to pass different
// values
std::vector<std::future<void>> futures;
for (int i = 0; i != size(); ++i) {
if (eiger) {
futures.push_back(std::async(std::launch::async,
&Module::setTransmissionDelayLeft,
modules[i].get(), 2 * i * step));
futures.push_back(std::async(std::launch::async,
&Module::setTransmissionDelayRight,
modules[i].get(), (2 * i + 1) * step));
futures.push_back(std::async(std::launch::async,
&Module::setTransmissionDelayFrame,
modules[i].get(), 2 * size() * step));
} else {
futures.push_back(std::async(std::launch::async,
&Module::setTransmissionDelayFrame,
modules[i].get(), i * step));
}
}
// wait for calls to complete
for (auto &f : futures)
f.get();
}
void DetectorImpl::destroyReceivingDataSockets() {
LOG(logINFO) << "Going to destroy data sockets";
// close socket
zmqSocket.clear();
client_downstream = false;
LOG(logINFO) << "Destroyed Receiving Data Socket(s)";
}
void DetectorImpl::createReceivingDataSockets() {
if (client_downstream) {
return;
}
LOG(logINFO) << "Going to create data sockets";
size_t numUDPInterfaces =
Parallel(&Module::getNumberofUDPInterfacesFromShm, {}).squash(1);
// gotthard2 second interface is only for veto debugging (not in gui)
if (shm()->detType == GOTTHARD2) {
numUDPInterfaces = 1;
}
size_t numSockets = modules.size() * numUDPInterfaces;
for (size_t iSocket = 0; iSocket < numSockets; ++iSocket) {
uint32_t portnum =
(modules[iSocket / numUDPInterfaces]->getClientStreamingPort());
portnum += (iSocket % numUDPInterfaces);
try {
zmqSocket.push_back(
make_unique<ZmqSocket>(modules[iSocket / numUDPInterfaces]
->getClientStreamingIP()
.str()
.c_str(),
portnum));
// set high water mark
int hwm = shm()->zmqHwm;
if (hwm >= 0) {
zmqSocket[iSocket]->SetReceiveHighWaterMark(hwm);
// need not reconnect. cannot be connected (detector idle)
}
LOG(logINFO) << "Zmq Client[" << iSocket << "] at "
<< zmqSocket.back()->GetZmqServerAddress() << "[hwm: "
<< zmqSocket.back()->GetReceiveHighWaterMark() << "]";
} catch (std::exception &e) {
destroyReceivingDataSockets();
std::ostringstream oss;
oss << "Could not create zmq sub socket on port " << portnum;
oss << " [" << e.what() << ']';
throw RuntimeError(oss.str());
}
}
client_downstream = true;
LOG(logINFO) << "Receiving Data Socket(s) created";
}
void DetectorImpl::readFrameFromReceiver() {
bool gapPixels = shm()->gapPixels;
LOG(logDEBUG) << "Gap pixels: " << gapPixels;
int nX = 0;
int nY = 0;
int nDetPixelsX = 0;
int nDetPixelsY = 0;
bool quadEnable = false;
// to flip image
bool eiger = false;
std::array<int, 4> rxRoi = shm()->rx_roi.getIntArray();
std::vector<bool> runningList(zmqSocket.size());
std::vector<bool> connectList(zmqSocket.size());
numZmqRunning = 0;
for (size_t i = 0; i < zmqSocket.size(); ++i) {
if (zmqSocket[i]->Connect() == 0) {
connectList[i] = true;
runningList[i] = true;
++numZmqRunning;
} else {
// to remember the list it connected to, to disconnect later
connectList[i] = false;
LOG(logERROR) << "Could not connect to socket "
<< zmqSocket[i]->GetZmqServerAddress();
runningList[i] = false;
}
}
bool data = false;
bool completeImage = false;
std::unique_ptr<char[]> image{nullptr};
std::unique_ptr<char[]> multiframe{nullptr};
char *multigappixels = nullptr;
int multisize = 0;
// only first message header
uint32_t size = 0, nPixelsX = 0, nPixelsY = 0, dynamicRange = 0;
float bytesPerPixel = 0;
// header info every header
std::string currentFileName;
uint64_t currentAcquisitionIndex = -1, currentFrameIndex = -1,
currentFileIndex = -1;
double currentProgress = 0.00;
uint32_t currentSubFrameIndex = -1, coordX = -1, coordY = -1, flipRows = -1;
while (numZmqRunning != 0) {
// reset data
data = false;
if (multiframe != nullptr) {
memset(multiframe.get(), 0xFF, multisize);
}
completeImage = (numZmqRunning == (int)zmqSocket.size());
// get each frame
for (unsigned int isocket = 0; isocket < zmqSocket.size(); ++isocket) {
// if running
if (runningList[isocket]) {
// HEADER
{
zmqHeader zHeader;
if (zmqSocket[isocket]->ReceiveHeader(
isocket, zHeader,
SLS_DETECTOR_JSON_HEADER_VERSION) == 0) {
// parse error, version error or end of acquisition for
// socket
runningList[isocket] = false;
completeImage = false;
--numZmqRunning;
continue;
}
// if first message, allocate (all one time stuff)
if (image == nullptr) {
// allocate
size = zHeader.imageSize;
multisize = size * zmqSocket.size();
image = make_unique<char[]>(size);
multiframe = make_unique<char[]>(multisize);
memset(multiframe.get(), 0xFF, multisize);
// dynamic range
dynamicRange = zHeader.dynamicRange;
bytesPerPixel = (float)dynamicRange / 8;
// shape
nPixelsX = zHeader.npixelsx;
nPixelsY = zHeader.npixelsy;
// port geometry
nX = zHeader.ndetx;
nY = zHeader.ndety;
nDetPixelsX = nX * nPixelsX;
nDetPixelsY = nY * nPixelsY;
// det type
eiger = (zHeader.detType == EIGER)
? true
: false; // to be changed to EIGER when
// firmware updates its header data
quadEnable = (zHeader.quad == 0) ? false : true;
LOG(logDEBUG1)
<< "One Time Header Info:"
"\n\tsize: "
<< size << "\n\tmultisize: " << multisize
<< "\n\tdynamicRange: " << dynamicRange
<< "\n\tbytesPerPixel: " << bytesPerPixel
<< "\n\tnPixelsX: " << nPixelsX
<< "\n\tnPixelsY: " << nPixelsY << "\n\tnX: " << nX
<< "\n\tnY: " << nY << "\n\teiger: " << eiger
<< "\n\tquadEnable: " << quadEnable;
}
// each time, parse rest of header
currentFileName = zHeader.fname;
currentAcquisitionIndex = zHeader.acqIndex;
currentFrameIndex = zHeader.frameIndex;
currentProgress = zHeader.progress;
currentFileIndex = zHeader.fileIndex;
currentSubFrameIndex = zHeader.expLength;
coordY = zHeader.row;
coordX = zHeader.column;
flipRows = zHeader.flipRows;
if (zHeader.completeImage == 0) {
completeImage = false;
}
LOG(logDEBUG1)
<< zmqSocket[isocket]->GetPortNumber() << " "
<< "Header Info:"
"\n\tcurrentFileName: "
<< currentFileName << "\n\tcurrentAcquisitionIndex: "
<< currentAcquisitionIndex
<< "\n\tcurrentFrameIndex: " << currentFrameIndex
<< "\n\tcurrentFileIndex: " << currentFileIndex
<< "\n\tcurrentSubFrameIndex: " << currentSubFrameIndex
<< "\n\tcurrentProgress: " << currentProgress
<< "\n\tcoordX: " << coordX << "\n\tcoordY: " << coordY
<< "\n\tflipRows: " << flipRows
<< "\n\tcompleteImage: " << completeImage;
}
// DATA
data = true;
zmqSocket[isocket]->ReceiveData(isocket, image.get(), size);
// creating multi image
{
uint32_t xoffset = coordX * nPixelsX * bytesPerPixel;
uint32_t yoffset = coordY * nPixelsY;
uint32_t singledetrowoffset = nPixelsX * bytesPerPixel;
uint32_t rowoffset = nX * singledetrowoffset;
if (shm()->detType == CHIPTESTBOARD) {
singledetrowoffset = size;
}
LOG(logDEBUG1)
<< "Multi Image Info:"
"\n\txoffset: "
<< xoffset << "\n\tyoffset: " << yoffset
<< "\n\tsingledetrowoffset: " << singledetrowoffset
<< "\n\trowoffset: " << rowoffset;
if (eiger && (flipRows != 0U)) {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy((multiframe.get()) +
((yoffset + (nPixelsY - 1 - i)) *
rowoffset) +
xoffset,
image.get() + (i * singledetrowoffset),
singledetrowoffset);
}
} else {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy((multiframe.get()) +
((yoffset + i) * rowoffset) + xoffset,
image.get() + (i * singledetrowoffset),
singledetrowoffset);
}
}
}
}
}
LOG(logDEBUG) << "Call Back Info:"
<< "\n\t nDetPixelsX: " << nDetPixelsX
<< "\n\t nDetPixelsY: " << nDetPixelsY
<< "\n\t databytes: " << multisize
<< "\n\t dynamicRange: " << dynamicRange;
// send data to callback
if (data) {
char *callbackImage = multiframe.get();
int imagesize = multisize;
int nDetActualPixelsX = nDetPixelsX;
int nDetActualPixelsY = nDetPixelsY;
if (gapPixels) {
int n = insertGapPixels(multiframe.get(), multigappixels,
quadEnable, dynamicRange,
nDetActualPixelsX, nDetActualPixelsY);
callbackImage = multigappixels;
imagesize = n;
}
LOG(logDEBUG) << "Image Info:"
<< "\n\tnDetActualPixelsX: " << nDetActualPixelsX
<< "\n\tnDetActualPixelsY: " << nDetActualPixelsY
<< "\n\timagesize: " << imagesize
<< "\n\tdynamicRange: " << dynamicRange;
thisData = new detectorData(currentProgress, currentFileName,
nDetActualPixelsX, nDetActualPixelsY,
callbackImage, imagesize, dynamicRange,
currentFileIndex, completeImage, rxRoi);
try {
dataReady(
thisData, currentFrameIndex,
((dynamicRange == 32 && eiger) ? currentSubFrameIndex : -1),
pCallbackArg);
} catch (const std::exception &e) {
LOG(logERROR) << "Exception caught from callback: " << e.what();
}
delete thisData;
}
}
// Disconnect resources
for (size_t i = 0; i < zmqSocket.size(); ++i) {
if (connectList[i]) {
zmqSocket[i]->Disconnect();
}
}
// free resources
delete[] multigappixels;
}
int DetectorImpl::insertGapPixels(char *image, char *&gpImage, bool quadEnable,
int dr, int &nPixelsx, int &nPixelsy) {
LOG(logDEBUG) << "Insert Gap pixels:"
<< "\n\t nPixelsx: " << nPixelsx
<< "\n\t nPixelsy: " << nPixelsy
<< "\n\t quadEnable: " << quadEnable << "\n\t dr: " << dr;
// inter module gap pixels
int modGapPixelsx = 8;
int modGapPixelsy = 36;
// inter chip gap pixels
int chipGapPixelsx = 2;
int chipGapPixelsy = 2;
// number of pixels in a chip
int nChipPixelsx = 256;
int nChipPixelsy = 256;
// 1 module
// number of chips in a module
int nMod1Chipx = 4;
int nMod1Chipy = 2;
if (quadEnable) {
nMod1Chipx = 2;
}
// number of pixels in a module
int nMod1Pixelsx = nChipPixelsx * nMod1Chipx;
int nMod1Pixelsy = nChipPixelsy * nMod1Chipy;
// number of gap pixels in a module
int nMod1GapPixelsx = (nMod1Chipx - 1) * chipGapPixelsx;
int nMod1GapPixelsy = (nMod1Chipy - 1) * chipGapPixelsy;
// total number of modules
int nModx = nPixelsx / nMod1Pixelsx;
int nMody = nPixelsy / nMod1Pixelsy;
// check if not full modules
// (setting gap pixels and then adding half module or disabling quad)
if (nPixelsy / nMod1Pixelsy == 0) {
LOG(logERROR) << "Gap pixels can only be enabled with full modules. "
"Sending dummy data without gap pixels.\n";
double bytesPerPixel = (double)dr / 8.00;
int imagesize = nPixelsy * nPixelsx * bytesPerPixel;
if (gpImage == nullptr) {
gpImage = new char[imagesize];
}
memset(gpImage, 0xFF, imagesize);
return imagesize;
}
// total number of pixels
int nTotx =
nPixelsx + (nMod1GapPixelsx * nModx) + (modGapPixelsx * (nModx - 1));
int nToty =
nPixelsy + (nMod1GapPixelsy * nMody) + (modGapPixelsy * (nMody - 1));
// total number of chips
int nChipx = nPixelsx / nChipPixelsx;
int nChipy = nPixelsy / nChipPixelsy;
double bytesPerPixel = (double)dr / 8.00;
int imagesize = nTotx * nToty * bytesPerPixel;
int nChipBytesx = nChipPixelsx * bytesPerPixel; // 1 chip bytes in x
int nChipGapBytesx = chipGapPixelsx * bytesPerPixel; // 2 pixel bytes
int nModGapBytesx = modGapPixelsx * bytesPerPixel; // 8 pixel bytes
int nChipBytesy = nChipPixelsy * nTotx * bytesPerPixel; // 1 chip bytes in y
int nChipGapBytesy = chipGapPixelsy * nTotx * bytesPerPixel; // 2 lines
int nModGapBytesy = modGapPixelsy * nTotx *
bytesPerPixel; // 36 lines
// 4 bit mode, its 1 byte (because for 4
// bit mode, we handle 1 byte at a time)
int pixel1 = (int)(ceil(bytesPerPixel));
int row1Bytes = nTotx * bytesPerPixel;
int nMod1TotPixelsx = nMod1Pixelsx + nMod1GapPixelsx;
if (dr == 4) {
nMod1TotPixelsx /= 2;
}
// eiger requires inter chip gap pixels are halved
// jungfrau/moench prefers same inter chip gap pixels as the boundary pixels
int divisionValue = 2;
slsDetectorDefs::detectorType detType = shm()->detType;
if (detType == JUNGFRAU || detType == MOENCH) {
divisionValue = 1;
}
LOG(logDEBUG) << "Insert Gap pixels Calculations:\n\t"
<< "nPixelsx: " << nPixelsx << "\n\t"
<< "nPixelsy: " << nPixelsy << "\n\t"
<< "nMod1Pixelsx: " << nMod1Pixelsx << "\n\t"
<< "nMod1Pixelsy: " << nMod1Pixelsy << "\n\t"
<< "nMod1GapPixelsx: " << nMod1GapPixelsx << "\n\t"
<< "nMod1GapPixelsy: " << nMod1GapPixelsy << "\n\t"
<< "nChipy: " << nChipy << "\n\t"
<< "nChipx: " << nChipx << "\n\t"
<< "nModx: " << nModx << "\n\t"
<< "nMody: " << nMody << "\n\t"
<< "nTotx: " << nTotx << "\n\t"
<< "nToty: " << nToty << "\n\t"
<< "bytesPerPixel: " << bytesPerPixel << "\n\t"
<< "imagesize: " << imagesize << "\n\t"
<< "nChipBytesx: " << nChipBytesx << "\n\t"
<< "nChipGapBytesx: " << nChipGapBytesx << "\n\t"
<< "nModGapBytesx: " << nModGapBytesx << "\n\t"
<< "nChipBytesy: " << nChipBytesy << "\n\t"
<< "nChipGapBytesy: " << nChipGapBytesy << "\n\t"
<< "nModGapBytesy: " << nModGapBytesy << "\n\t"
<< "pixel1: " << pixel1 << "\n\t"
<< "row1Bytes: " << row1Bytes << "\n\t"
<< "nMod1TotPixelsx: " << nMod1TotPixelsx << "\n\t"
<< "divisionValue: " << divisionValue << "\n\n";
if (gpImage == nullptr) {
gpImage = new char[imagesize];
}
memset(gpImage, 0xFF, imagesize);
// memcpy(gpImage, image, imagesize);
char *src = nullptr;
char *dst = nullptr;
// copying line by line
src = image;
dst = gpImage;
// for each chip row in y
for (int iChipy = 0; iChipy < nChipy; ++iChipy) {
// for each row
for (int iy = 0; iy < nChipPixelsy; ++iy) {
// in each row, for every chip
for (int iChipx = 0; iChipx < nChipx; ++iChipx) {
// copy 1 chip line
memcpy(dst, src, nChipBytesx);
src += nChipBytesx;
dst += nChipBytesx;
// skip inter chip gap pixels in x
if (((iChipx + 1) % nMod1Chipx) != 0) {
dst += nChipGapBytesx;
}
// skip inter module gap pixels in x
else if (iChipx + 1 != nChipx) {
dst += nModGapBytesx;
}
}
}
// skip inter chip gap pixels in y
if (((iChipy + 1) % nMod1Chipy) != 0) {
dst += nChipGapBytesy;
}
// skip inter module gap pixels in y
else if (iChipy + 1 != nChipy) {
dst += nModGapBytesy;
}
}
// iner chip gap pixel values is half of neighboring one
// (corners becomes divide by 4 automatically after horizontal filling)
// vertical filling of inter chip gap pixels
dst = gpImage;
// for each chip row in y
for (int iChipy = 0; iChipy < nChipy; ++iChipy) {
// for each row
for (int iy = 0; iy < nChipPixelsy; ++iy) {
// in each row, for every chip
for (int iChipx = 0; iChipx < nChipx; ++iChipx) {
// go to gap pixels
dst += nChipBytesx;
// fix inter chip gap pixels in x
if (((iChipx + 1) % nMod1Chipx) != 0) {
uint8_t temp8 = 0;
uint16_t temp16 = 0;
uint32_t temp32 = 0;
uint8_t g1 = 0;
uint8_t g2 = 0;
switch (dr) {
case 4:
// neighbouring gap pixels to left
temp8 = (*((uint8_t *)(dst - 1)));
g1 = ((temp8 & 0xF) / 2);
(*((uint8_t *)(dst - 1))) = (temp8 & 0xF0) + g1;
// neighbouring gap pixels to right
temp8 = (*((uint8_t *)(dst + 1)));
g2 = ((temp8 >> 4) / 2);
(*((uint8_t *)(dst + 1))) = (g2 << 4) + (temp8 & 0x0F);
// gap pixels
(*((uint8_t *)dst)) = (g1 << 4) + g2;
break;
case 8:
// neighbouring gap pixels to left
temp8 = (*((uint8_t *)(dst - pixel1))) / 2;
(*((uint8_t *)dst)) = temp8;
(*((uint8_t *)(dst - pixel1))) = temp8;
// neighbouring gap pixels to right
temp8 = (*((uint8_t *)(dst + 2 * pixel1))) / 2;
(*((uint8_t *)(dst + pixel1))) = temp8;
(*((uint8_t *)(dst + 2 * pixel1))) = temp8;
break;
case 16:
// neighbouring gap pixels to left
temp16 =
(*((uint16_t *)(dst - pixel1))) / divisionValue;
(*((uint16_t *)dst)) = temp16;
(*((uint16_t *)(dst - pixel1))) = temp16;
// neighbouring gap pixels to right
temp16 =
(*((uint16_t *)(dst + 2 * pixel1))) / divisionValue;
(*((uint16_t *)(dst + pixel1))) = temp16;
(*((uint16_t *)(dst + 2 * pixel1))) = temp16;
break;
default:
// neighbouring gap pixels to left
temp32 = (*((uint32_t *)(dst - pixel1))) / 2;
(*((uint32_t *)dst)) = temp32;
(*((uint32_t *)(dst - pixel1))) = temp32;
// neighbouring gap pixels to right
temp32 = (*((uint32_t *)(dst + 2 * pixel1))) / 2;
(*((uint32_t *)(dst + pixel1))) = temp32;
(*((uint32_t *)(dst + 2 * pixel1))) = temp32;
break;
}
dst += nChipGapBytesx;
}
// skip inter module gap pixels in x
else if (iChipx + 1 != nChipx) {
dst += nModGapBytesx;
}
}
}
// skip inter chip gap pixels in y
if (((iChipy + 1) % nMod1Chipy) != 0) {
dst += nChipGapBytesy;
}
// skip inter module gap pixels in y
else if (iChipy + 1 != nChipy) {
dst += nModGapBytesy;
}
}
// horizontal filling of inter chip gap pixels
// starting at bottom part (1 line below to copy from)
src = gpImage + (nChipBytesy - row1Bytes);
dst = gpImage + nChipBytesy;
// for each chip row in y
for (int iChipy = 0; iChipy < nChipy; ++iChipy) {
// for each module in x
for (int iModx = 0; iModx < nModx; ++iModx) {
// in each module, for every pixel in x
for (int iPixel = 0; iPixel < nMod1TotPixelsx; ++iPixel) {
uint8_t temp8 = 0, g1 = 0, g2 = 0;
uint16_t temp16 = 0;
uint32_t temp32 = 0;
switch (dr) {
case 4:
temp8 = (*((uint8_t *)src));
g1 = ((temp8 >> 4) / 2);
g2 = ((temp8 & 0xF) / 2);
temp8 = (g1 << 4) + g2;
(*((uint8_t *)dst)) = temp8;
(*((uint8_t *)src)) = temp8;
break;
case 8:
temp8 = (*((uint8_t *)src)) / divisionValue;
(*((uint8_t *)dst)) = temp8;
(*((uint8_t *)src)) = temp8;
break;
case 16:
temp16 = (*((uint16_t *)src)) / divisionValue;
(*((uint16_t *)dst)) = temp16;
(*((uint16_t *)src)) = temp16;
break;
default:
temp32 = (*((uint32_t *)src)) / 2;
(*((uint32_t *)dst)) = temp32;
(*((uint32_t *)src)) = temp32;
break;
}
// every pixel (but 4 bit mode, every byte)
src += pixel1;
dst += pixel1;
}
// skip inter module gap pixels in x
if (iModx + 1 < nModx) {
src += nModGapBytesx;
dst += nModGapBytesx;
}
}
// bottom parts, skip inter chip gap pixels
if ((iChipy % nMod1Chipy) == 0) {
src += nChipGapBytesy;
}
// top parts, skip inter module gap pixels and two chips
else {
src += (nModGapBytesy + 2 * nChipBytesy - 2 * row1Bytes);
dst += (nModGapBytesy + 2 * nChipBytesy);
}
}
nPixelsx = nTotx;
nPixelsy = nToty;
return imagesize;
}
bool DetectorImpl::getDataStreamingToClient() { return client_downstream; }
void DetectorImpl::setDataStreamingToClient(bool enable) {
// destroy data threads
if (!enable) {
destroyReceivingDataSockets();
// create data threads
} else {
createReceivingDataSockets();
}
}
int DetectorImpl::getClientStreamingHwm() const {
// disabled
if (!client_downstream) {
return shm()->zmqHwm;
}
// enabled
Result<int> result;
result.reserve(zmqSocket.size());
for (auto &it : zmqSocket) {
result.push_back(it->GetReceiveHighWaterMark());
}
int res = result.tsquash("Inconsistent zmq receive hwm values");
return res;
}
void DetectorImpl::setClientStreamingHwm(const int limit) {
if (limit < -1) {
throw RuntimeError(
"Cannot set hwm to less than -1 (-1 is lib default).");
}
// update shm
shm()->zmqHwm = limit;
// streaming enabled
if (client_downstream) {
// custom limit, set it directly
if (limit >= 0) {
for (auto &it : zmqSocket) {
it->SetReceiveHighWaterMark(limit);
// need not reconnect. cannot be connected (detector idle)
}
LOG(logINFO) << "Setting Client Zmq socket rcv hwm to " << limit;
}
// default, disable and enable to get default
else {
setDataStreamingToClient(false);
setDataStreamingToClient(true);
}
}
}
void DetectorImpl::registerAcquisitionFinishedCallback(void (*func)(double, int,
void *),
void *pArg) {
acquisition_finished = func;
acqFinished_p = pArg;
}
void DetectorImpl::registerDataCallback(void (*userCallback)(detectorData *,
uint64_t, uint32_t,
void *),
void *pArg) {
dataReady = userCallback;
pCallbackArg = pArg;
setDataStreamingToClient(dataReady == nullptr ? false : true);
}
int DetectorImpl::acquire() {
// ensure acquire isnt started multiple times by same client
if (!isAcquireReady()) {
return FAIL;
}
try {
struct timespec begin, end;
clock_gettime(CLOCK_REALTIME, &begin);
bool receiver = Parallel(&Module::getUseReceiverFlag, {}).squash(false);
if (dataReady == nullptr) {
setJoinThreadFlag(false);
}
// verify receiver is idle
if (receiver) {
if (Parallel(&Module::getReceiverStatus, {}).squash(ERROR) !=
IDLE) {
Parallel(&Module::stopReceiver, {});
}
}
// start receiver
if (receiver) {
Parallel(&Module::startReceiver, {});
}
startProcessingThread(receiver);
// start and read all
try {
startAcquisition(true, {});
} catch (...) {
if (receiver)
Parallel(&Module::stopReceiver, {});
throw;
}
// stop receiver
if (receiver) {
Parallel(&Module::stopReceiver, {});
Parallel(&Module::incrementFileIndex, {});
}
// let the progress thread (no callback) know acquisition is done
if (dataReady == nullptr) {
setJoinThreadFlag(true);
} else if (receiver) {
while (numZmqRunning != 0) {
Parallel(&Module::restreamStopFromReceiver, {});
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
}
dataProcessingThread.join();
if (acquisition_finished != nullptr) {
int status = Parallel(&Module::getRunStatus, {}).squash(ERROR);
auto a = Parallel(&Module::getReceiverProgress, {});
double progress = (*std::max_element(a.begin(), a.end()));
acquisition_finished(progress, status, acqFinished_p);
}
clock_gettime(CLOCK_REALTIME, &end);
LOG(logDEBUG1) << "Elapsed time for acquisition:"
<< ((end.tv_sec - begin.tv_sec) +
(end.tv_nsec - begin.tv_nsec) / 1000000000.0)
<< " seconds";
} catch (...) {
if (dataProcessingThread.joinable()) {
setJoinThreadFlag(true);
dataProcessingThread.join();
}
setAcquiringFlag(false);
throw;
}
setAcquiringFlag(false);
return OK;
}
bool DetectorImpl::handleSynchronization(Positions pos) {
bool handleSync = false;
// multi module m3 or multi module sync enabled jungfrau
if (size() > 1) {
switch (shm()->detType) {
case defs::MYTHEN3:
case defs::GOTTHARD2:
case defs::GOTTHARD:
handleSync = true;
break;
case defs::JUNGFRAU:
case defs::MOENCH:
if (Parallel(&Module::getSynchronizationFromStopServer, pos)
.tsquash("Inconsistent synchronization among modules")) {
handleSync = true;
}
break;
default:
break;
}
}
return handleSync;
}
void DetectorImpl::getMasterSlaveList(std::vector<int> positions,
std::vector<int> &masters,
std::vector<int> &slaves) {
// expand positions list
if (positions.empty() || (positions.size() == 1 && positions[0] == -1)) {
positions.resize(modules.size());
std::iota(begin(positions), end(positions), 0);
}
// could be all slaves in positions
slaves.reserve(positions.size());
auto is_master = Parallel(&Module::isMaster, positions);
for (size_t i : positions) {
if (is_master[i])
masters.push_back(i);
else
slaves.push_back(i);
}
}
void DetectorImpl::startAcquisition(const bool blocking, Positions pos) {
// slaves first
if (handleSynchronization(pos)) {
std::vector<int> masters;
std::vector<int> slaves;
getMasterSlaveList(pos, masters, slaves);
if (!slaves.empty()) {
Parallel(&Module::startAcquisition, slaves);
}
if (!masters.empty()) {
Parallel((blocking ? &Module::startAndReadAll
: &Module::startAcquisition),
masters);
}
}
// all in parallel
else {
Parallel(
(blocking ? &Module::startAndReadAll : &Module::startAcquisition),
pos);
}
}
void DetectorImpl::sendSoftwareTrigger(const bool block, Positions pos) {
// slaves first
if (handleSynchronization(pos)) {
std::vector<int> masters;
std::vector<int> slaves;
getMasterSlaveList(pos, masters, slaves);
if (!slaves.empty())
Parallel(&Module::sendSoftwareTrigger, slaves, false);
if (!masters.empty())
Parallel(&Module::sendSoftwareTrigger, masters, block);
}
// all in parallel
else {
Parallel(&Module::sendSoftwareTrigger, pos, block);
}
}
void DetectorImpl::stopDetector(Positions pos) {
// masters first
if (handleSynchronization(pos)) {
std::vector<int> masters;
std::vector<int> slaves;
getMasterSlaveList(pos, masters, slaves);
if (!masters.empty())
Parallel(&Module::stopAcquisition, masters);
if (!slaves.empty())
Parallel(&Module::stopAcquisition, slaves);
}
// all in parallel
else {
Parallel(&Module::stopAcquisition, pos);
}
}
void DetectorImpl::printProgress(double progress) {
// spaces for python printout
std::cout << " " << std::fixed << std::setprecision(2) << std::setw(6)
<< progress << " \%";
std::cout << '\r' << std::flush;
}
void DetectorImpl::startProcessingThread(bool receiver) {
dataProcessingThread =
std::thread(&DetectorImpl::processData, this, receiver);
}
void DetectorImpl::processData(bool receiver) {
if (receiver) {
if (dataReady != nullptr) {
readFrameFromReceiver();
}
// only update progress
else {
LOG(logINFO) << "Type 'q' and hit enter to stop acquisition";
double progress = 0;
printProgress(progress);
while (true) {
// to exit acquire by typing q
if (kbhit() != 0) {
if (fgetc(stdin) == 'q') {
LOG(logINFO)
<< "Caught the command to stop acquisition";
stopDetector({});
}
}
// get and print progress
double temp =
(double)Parallel(&Module::getReceiverProgress, {0})
.squash();
if (temp != progress) {
printProgress(progress);
progress = temp;
}
// exiting loop
if (getJoinThreadFlag()) {
// print progress one final time before exiting
progress =
(double)Parallel(&Module::getReceiverProgress, {0})
.squash();
printProgress(progress);
break;
}
// otherwise error when connecting to the receiver too fast
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
}
}
bool DetectorImpl::getJoinThreadFlag() const {
std::lock_guard<std::mutex> lock(mp);
return jointhread;
}
void DetectorImpl::setJoinThreadFlag(bool value) {
std::lock_guard<std::mutex> lock(mp);
jointhread = value;
}
int DetectorImpl::kbhit() {
struct timeval tv;
fd_set fds;
tv.tv_sec = 0;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(STDIN_FILENO, &fds); // STDIN_FILENO is 0
select(STDIN_FILENO + 1, &fds, nullptr, nullptr, &tv);
return FD_ISSET(STDIN_FILENO, &fds);
}
std::vector<char> DetectorImpl::readProgrammingFile(const std::string &fname) {
// validate type of file
bool isPof = false;
switch (shm()->detType) {
case JUNGFRAU:
case MOENCH:
case CHIPTESTBOARD:
if (fname.find(".pof") == std::string::npos) {
throw RuntimeError("Programming file must be a pof file.");
}
isPof = true;
break;
case MYTHEN3:
case GOTTHARD2:
if (fname.find(".rbf") == std::string::npos) {
throw RuntimeError("Programming file must be an rbf file.");
}
break;
case EIGER:
case GOTTHARD:
throw RuntimeError("programfpga not implemented for this detector");
default:
throw RuntimeError(
"Unknown detector type. Did the 'hostname' command execute "
"successfully? Or use update mode in the detector server "
"side.");
}
LOG(logINFO) << "This can take awhile. Please be patient.";
LOG(logDEBUG1) << "Programming FPGA with file name:" << fname;
// check if it exists
struct stat st;
if (stat(fname.c_str(), &st) != 0) {
throw RuntimeError("Program FPGA: Programming file does not exist");
}
// open src
FILE *src = fopen(fname.c_str(), "rb");
if (src == nullptr) {
throw RuntimeError(
"Program FPGA: Could not open source file for programming: " +
fname);
}
// get srcSize to print progress
ssize_t srcSize = getFileSize(src, "Program FPGA");
// create temp destination file
char destfname[] = "/tmp/SLS_DET_MCB.XXXXXX";
int dst = mkstemp(destfname); // create temporary file and open it in r/w
if (dst == -1) {
fclose(src);
throw RuntimeError(std::string("Could not create destination file "
"in /tmp for programming: ") +
destfname);
}
// convert src to dst rawbin
LOG(logDEBUG1) << "Converting " << fname << " to " << destfname;
LOG(logINFO) << "Converting program to rawbin";
{
constexpr int pofNumHeaderBytes = 0x11C;
constexpr int pofFooterOfst = 0x1000000;
int dstFilePos = 0;
if (isPof) {
// Read header and discard
for (int i = 0; i < pofNumHeaderBytes; ++i) {
fgetc(src);
}
// Write 0xFF to destination 0x80 times (padding)
constexpr int pofNumPadding{0x80};
constexpr uint8_t c{0xFF};
while (dstFilePos < pofNumPadding) {
write(dst, &c, sizeof(c));
++dstFilePos;
}
}
// Swap bits from source and write to dest
int oldProgress = 0;
while (!feof(src)) {
// print progress
int progress = (int)(((double)(dstFilePos) / srcSize) * 100);
if (oldProgress != progress) {
printf("%d%%\r", progress);
fflush(stdout);
oldProgress = progress;
}
// pof: exit early to discard footer
if (isPof && dstFilePos >= pofFooterOfst) {
break;
}
// read source
int s = fgetc(src);
if (s < 0) {
break;
}
// swap bits
int d = 0;
for (int i = 0; i < 8; ++i) {
d = d | (((s & (1 << i)) >> i) << (7 - i));
}
write(dst, &d, 1);
++dstFilePos;
}
// validate pof: read less than footer offset
if (isPof && dstFilePos < pofFooterOfst) {
throw RuntimeError("Could not convert programming file. EOF "
"before end of flash");
}
}
if (fclose(src) != 0) {
throw RuntimeError("Program FPGA: Could not close source file");
}
if (close(dst) != 0) {
throw RuntimeError("Program FPGA: Could not close destination file");
}
LOG(logINFO) << "File has been converted to " << destfname;
// load converted file to memory
std::vector<char> buffer = readBinaryFile(destfname, "Program FPGA");
// delete temporary
unlink(destfname);
return buffer;
}
Result<int> DetectorImpl::getDefaultDac(defs::dacIndex index,
defs::detectorSettings sett,
Positions pos) {
return Parallel(&Module::getDefaultDac, pos, index, sett);
}
void DetectorImpl::setDefaultDac(defs::dacIndex index, int defaultValue,
defs::detectorSettings sett, Positions pos) {
Parallel(&Module::setDefaultDac, pos, index, defaultValue, sett);
}
defs::xy DetectorImpl::getPortGeometry() const {
defs::xy portGeometry(1, 1);
switch (shm()->detType) {
case EIGER:
portGeometry.x = modules[0]->getNumberofUDPInterfacesFromShm();
break;
case JUNGFRAU:
case MOENCH:
portGeometry.y = modules[0]->getNumberofUDPInterfacesFromShm();
break;
default:
break;
}
return portGeometry;
}
defs::xy DetectorImpl::calculatePosition(int moduleIndex,
defs::xy geometry) const {
defs::xy pos{};
int maxYMods = shm()->numberOfModules.y;
pos.y = (moduleIndex % maxYMods) * geometry.y;
pos.x = (moduleIndex / maxYMods) * geometry.x;
return pos;
}
void DetectorImpl::verifyUniqueDetHost(const int port,
std::vector<int> positions) const {
// port for given positions
if (positions.empty() || (positions.size() == 1 && positions[0] == -1)) {
positions.resize(modules.size());
std::iota(begin(positions), end(positions), 0);
}
std::vector<std::pair<std::string, int>> hosts(size());
for (auto it : positions) {
hosts[it].second = port;
}
verifyUniqueHost(true, hosts);
}
void DetectorImpl::verifyUniqueRxHost(const int port,
const int moduleId) const {
std::vector<std::pair<std::string, int>> hosts(size());
hosts[moduleId].second = port;
verifyUniqueHost(false, hosts);
}
std::pair<std::string, int>
DetectorImpl::verifyUniqueDetHost(const std::string &name) {
// extract port
// C++17 could be auto [hostname, port] = ParseHostPort(name);
auto res = ParseHostPort(name);
std::string hostname = res.first;
int port = res.second;
if (port == 0) {
port = DEFAULT_TCP_CNTRL_PORTNO;
}
int detSize = size();
// mod not yet added
std::vector<std::pair<std::string, int>> hosts(detSize + 1);
hosts[detSize].first = hostname;
hosts[detSize].second = port;
verifyUniqueHost(true, hosts);
return std::make_pair(hostname, port);
}
std::pair<std::string, int>
DetectorImpl::verifyUniqueRxHost(const std::string &name,
std::vector<int> positions) const {
// no checks if setting to none
if (name == "none" || name.empty()) {
return make_pair(name, 0);
}
// extract port
// C++17 could be auto [hostname, port] = ParseHostPort(name);
auto res = ParseHostPort(name);
std::string hostname = res.first;
int port = res.second;
// hostname and port for given positions
if (positions.empty() || (positions.size() == 1 && positions[0] == -1)) {
positions.resize(modules.size());
std::iota(begin(positions), end(positions), 0);
}
std::vector<std::pair<std::string, int>> hosts(size());
for (auto it : positions) {
hosts[it].first = hostname;
hosts[it].second = port;
}
verifyUniqueHost(false, hosts);
return std::make_pair(hostname, port);
}
std::vector<std::pair<std::string, int>>
DetectorImpl::verifyUniqueRxHost(const std::vector<std::string> &names) const {
if ((int)names.size() != size()) {
throw RuntimeError(
"Receiver hostnames size " + std::to_string(names.size()) +
" does not match detector size " + std::to_string(size()));
}
// extract ports
std::vector<std::pair<std::string, int>> hosts;
for (const auto &name : names) {
hosts.push_back(ParseHostPort(name));
}
verifyUniqueHost(false, hosts);
return hosts;
}
void DetectorImpl::verifyUniqueHost(
bool isDet, std::vector<std::pair<std::string, int>> &hosts) const {
// fill from shm if not provided
for (int i = 0; i != size(); ++i) {
if (hosts[i].first.empty()) {
hosts[i].first = (isDet ? modules[i]->getHostname()
: modules[i]->getReceiverHostname());
}
if (hosts[i].second == 0) {
hosts[i].second = (isDet ? modules[i]->getControlPort()
: modules[i]->getReceiverPort());
}
}
// remove the ones without a hostname
hosts.erase(std::remove_if(hosts.begin(), hosts.end(),
[](const std::pair<std::string, int> &x) {
return (x.first == "none" ||
x.first.empty());
}),
hosts.end());
// must be unique
if (hasDuplicates(hosts)) {
throw RuntimeError(
"Cannot set due to duplicate hostname-port number pairs.");
}
for (auto it : hosts) {
LOG(logDEBUG) << it.first << " " << it.second << std::endl;
}
}
defs::ROI DetectorImpl::getRxROI() const {
if (shm()->detType == CHIPTESTBOARD) {
throw RuntimeError("RxRoi not implemented for this Detector");
}
if (modules.size() == 0) {
throw RuntimeError("No Modules added");
}
// complete detector in roi
auto t = Parallel(&Module::getRxROI, {});
if (t.equal() && t.front().completeRoi()) {
LOG(logDEBUG) << "no roi";
return defs::ROI(0, shm()->numberOfChannels.x - 1, 0,
shm()->numberOfChannels.y - 1);
}
defs::xy numChansPerMod = modules[0]->getNumberOfChannels();
bool is2D = (numChansPerMod.y > 1 ? true : false);
defs::xy geometry = getPortGeometry();
defs::ROI retval{};
for (size_t iModule = 0; iModule != modules.size(); ++iModule) {
defs::ROI moduleRoi = modules[iModule]->getRxROI();
if (moduleRoi.noRoi()) {
LOG(logDEBUG) << iModule << ": no roi";
} else {
// expand complete roi
if (moduleRoi.completeRoi()) {
moduleRoi.xmin = 0;
moduleRoi.xmax = numChansPerMod.x;
if (is2D) {
moduleRoi.ymin = 0;
moduleRoi.ymax = numChansPerMod.y;
}
}
LOG(logDEBUG) << iModule << ": " << moduleRoi;
// get roi at detector level
defs::xy pos = calculatePosition(iModule, geometry);
defs::ROI moduleFullRoi{};
moduleFullRoi.xmin = numChansPerMod.x * pos.x + moduleRoi.xmin;
moduleFullRoi.xmax = numChansPerMod.x * pos.x + moduleRoi.xmax;
if (is2D) {
moduleFullRoi.ymin = numChansPerMod.y * pos.y + moduleRoi.ymin;
moduleFullRoi.ymax = numChansPerMod.y * pos.y + moduleRoi.ymax;
}
LOG(logDEBUG) << iModule << ": (full roi)" << moduleFullRoi;
// get min and max
if (retval.xmin == -1 || moduleFullRoi.xmin < retval.xmin) {
LOG(logDEBUG) << iModule << ": xmin updated";
retval.xmin = moduleFullRoi.xmin;
}
if (retval.xmax == -1 || moduleFullRoi.xmax > retval.xmax) {
LOG(logDEBUG) << iModule << ": xmax updated";
retval.xmax = moduleFullRoi.xmax;
}
if (retval.ymin == -1 || moduleFullRoi.ymin < retval.ymin) {
LOG(logDEBUG) << iModule << ": ymin updated";
retval.ymin = moduleFullRoi.ymin;
}
if (retval.ymax == -1 || moduleFullRoi.ymax > retval.ymax) {
LOG(logDEBUG) << iModule << ": ymax updated";
retval.ymax = moduleFullRoi.ymax;
}
}
LOG(logDEBUG) << iModule << ": (retval): " << retval;
}
if (retval.ymin == -1) {
retval.ymin = 0;
retval.ymax = 0;
}
return retval;
}
void DetectorImpl::setRxROI(const defs::ROI arg) {
if (shm()->detType == CHIPTESTBOARD) {
throw RuntimeError("RxRoi not implemented for this Detector");
}
if (modules.size() == 0) {
throw RuntimeError("No Modules added");
}
if (arg.noRoi()) {
throw RuntimeError("Invalid Roi of size 0.");
}
if (arg.completeRoi()) {
throw RuntimeError("Did you mean the clear roi command (API: "
"clearRxROI, cmd: rx_clearroi)?");
}
if (arg.xmin > arg.xmax || arg.ymin > arg.ymax) {
throw RuntimeError(
"Invalid Receiver Roi. xmin/ymin exceeds xmax/ymax.");
}
defs::xy numChansPerMod = modules[0]->getNumberOfChannels();
bool is2D = (numChansPerMod.y > 1 ? true : false);
defs::xy geometry = getPortGeometry();
if (!is2D && ((arg.ymin != -1 && arg.ymin != 0) ||
(arg.ymax != -1 && arg.ymax != 0))) {
throw RuntimeError(
"Invalid Receiver roi. Cannot set 2d roi for a 1d detector.");
}
if (arg.xmin < 0 || arg.xmax >= shm()->numberOfChannels.x ||
(is2D && (arg.ymin < 0 || arg.ymax >= shm()->numberOfChannels.y))) {
throw RuntimeError("Invalid Receiver Roi. Outside detector range.");
}
for (size_t iModule = 0; iModule != modules.size(); ++iModule) {
// default init = complete roi
defs::ROI moduleRoi{};
// incomplete roi
if (!arg.completeRoi()) {
// multi module Gotthard2
if (shm()->detType == GOTTHARD2 && size() > 1) {
moduleRoi.xmin = arg.xmin / 2;
moduleRoi.xmax = arg.xmax / 2;
if (iModule == 0) {
// all should be even
if (arg.xmin % 2 != 0) {
++moduleRoi.xmin;
}
} else if (iModule == 1) {
// all should be odd
if (arg.xmax % 2 == 0) {
--moduleRoi.xmax;
}
} else {
throw RuntimeError("Cannot have more than 2 modules for a "
"Gotthard2 detector");
}
} else {
// get module limits
defs::xy pos = calculatePosition(iModule, geometry);
defs::ROI moduleFullRoi{};
moduleFullRoi.xmin = numChansPerMod.x * pos.x;
moduleFullRoi.xmax = numChansPerMod.x * (pos.x + 1) - 1;
if (is2D) {
moduleFullRoi.ymin = numChansPerMod.y * pos.y;
moduleFullRoi.ymax = numChansPerMod.y * (pos.y + 1) - 1;
}
// no roi
if (arg.xmin > moduleFullRoi.xmax ||
arg.xmax < moduleFullRoi.xmin ||
(is2D && (arg.ymin > moduleFullRoi.ymax ||
arg.ymax < moduleFullRoi.ymin))) {
moduleRoi.setNoRoi();
}
// incomplete module roi
else if (arg.xmin > moduleFullRoi.xmin ||
arg.xmax < moduleFullRoi.xmax ||
(is2D && (arg.ymin > moduleFullRoi.ymin ||
arg.ymax < moduleFullRoi.ymax))) {
moduleRoi.xmin = (arg.xmin <= moduleFullRoi.xmin)
? 0
: (arg.xmin % numChansPerMod.x);
moduleRoi.xmax = (arg.xmax >= moduleFullRoi.xmax)
? numChansPerMod.x - 1
: (arg.xmax % numChansPerMod.x);
if (is2D) {
moduleRoi.ymin = (arg.ymin <= moduleFullRoi.ymin)
? 0
: (arg.ymin % numChansPerMod.y);
moduleRoi.ymax = (arg.ymax >= moduleFullRoi.ymax)
? numChansPerMod.y - 1
: (arg.ymax % numChansPerMod.y);
}
}
}
}
modules[iModule]->setRxROI(moduleRoi);
}
// updating shm rx_roi for gui purposes
shm()->rx_roi = arg;
// metadata
if (arg.completeRoi()) {
modules[0]->setRxROIMetadata(defs::ROI(0, shm()->numberOfChannels.x - 1,
0,
shm()->numberOfChannels.y - 1));
} else {
modules[0]->setRxROIMetadata(arg);
}
}
void DetectorImpl::clearRxROI() {
Parallel(&Module::setRxROI, {}, defs::ROI{});
shm()->rx_roi.xmin = -1;
shm()->rx_roi.ymin = -1;
shm()->rx_roi.xmax = -1;
shm()->rx_roi.ymax = -1;
}
void DetectorImpl::getBadChannels(const std::string &fname,
Positions pos) const {
auto res = Parallel(&Module::getBadChannels, pos);
std::vector<int> badchannels(res[0]);
// update to multi values if multi modules
if (isAllPositions(pos)) {
badchannels.clear();
int nchan = modules[0]->getNumberOfChannels().x;
if (shm()->detType == MYTHEN3) {
// assuming single counter
nchan /= MAX_NUM_COUNTERS;
}
int imod = 0;
for (auto vec : res) {
for (auto badch : vec) {
badchannels.push_back(imod * nchan + badch);
}
++imod;
}
} else if (pos.size() != 1) {
throw RuntimeError("Can get bad channels only for 1 or all modules.\n");
}
// save to file
LOG(logDEBUG1) << "Getting bad channels to " << fname;
std::ofstream outfile(fname);
if (!outfile) {
throw RuntimeError("Could not create file to save bad channels");
}
for (auto ch : badchannels)
outfile << ch << '\n';
LOG(logDEBUG1) << badchannels.size() << " bad channels saved to file";
}
void DetectorImpl::setBadChannels(const std::string &fname, Positions pos) {
std::vector<int> list = sls::getChannelsFromFile(fname);
if (list.empty()) {
throw RuntimeError("Bad channel file is empty.");
}
setBadChannels(list, pos);
}
void DetectorImpl::setBadChannels(const std::vector<int> list, Positions pos) {
// update to multi values if multi modules
if (isAllPositions(pos)) {
std::vector<std::vector<int>> badchannels;
int nchan = modules[0]->getNumberOfChannels().x;
if (shm()->detType == MYTHEN3) {
// assuming single counter
nchan /= MAX_NUM_COUNTERS;
}
for (auto badchannel : list) {
if (badchannel < 0) {
throw RuntimeError("Invalid bad channel list. " +
std::to_string(badchannel) +
" out of bounds.");
}
int ch = badchannel % nchan;
size_t imod = badchannel / nchan;
if (imod >= modules.size()) {
throw RuntimeError("Invalid bad channel list. " +
std::to_string(badchannel) +
" out of bounds.");
}
if (badchannels.size() != imod + 1) {
badchannels.push_back(std::vector<int>{});
}
badchannels[imod].push_back(ch);
}
for (size_t imod = 0; imod != modules.size(); ++imod) {
// add empty vector if no bad channels in this module
if (badchannels.size() != imod + 1) {
badchannels.push_back(std::vector<int>{});
}
Parallel(&Module::setBadChannels, {static_cast<int>(imod)},
badchannels[imod]);
}
} else if (pos.size() != 1) {
throw RuntimeError("Can set bad channels only for 1 or all modules.\n");
} else {
Parallel(&Module::setBadChannels, pos, list);
}
}
std::vector<std::string> DetectorImpl::getCtbDacNames() const {
return ctb_shm()->getDacNames();
}
void DetectorImpl::setCtbDacNames(const std::vector<std::string> &names) {
ctb_shm()->setDacNames(names);
}
std::string DetectorImpl::getCtbDacName(defs::dacIndex i) const {
return ctb_shm()->getDacName(static_cast<int>(i));
}
void DetectorImpl::setCtbDacName(const defs::dacIndex index,
const std::string &name) {
ctb_shm()->setDacName(index, name);
}
std::vector<std::string> DetectorImpl::getCtbAdcNames() const {
return ctb_shm()->getAdcNames();
}
void DetectorImpl::setCtbAdcNames(const std::vector<std::string> &names) {
ctb_shm()->setAdcNames(names);
}
std::string DetectorImpl::getCtbAdcName(const int i) const {
return ctb_shm()->getAdcName(i);
}
void DetectorImpl::setCtbAdcName(const int index, const std::string &name) {
ctb_shm()->setAdcName(index, name);
}
std::vector<std::string> DetectorImpl::getCtbSignalNames() const {
return ctb_shm()->getSignalNames();
}
void DetectorImpl::setCtbSignalNames(const std::vector<std::string> &names) {
ctb_shm()->setSignalNames(names);
}
std::string DetectorImpl::getCtbSignalName(const int i) const {
return ctb_shm()->getSignalName(i);
}
void DetectorImpl::setCtbSignalName(const int index, const std::string &name) {
ctb_shm()->setSignalName(index, name);
}
std::vector<std::string> DetectorImpl::getCtbPowerNames() const {
return ctb_shm()->getPowerNames();
}
void DetectorImpl::setCtbPowerNames(const std::vector<std::string> &names) {
ctb_shm()->setPowerNames(names);
}
std::string DetectorImpl::getCtbPowerName(const defs::dacIndex i) const {
return ctb_shm()->getPowerName(static_cast<int>(i - defs::V_POWER_A));
}
void DetectorImpl::setCtbPowerName(const defs::dacIndex index,
const std::string &name) {
ctb_shm()->setPowerName(static_cast<int>(index - defs::V_POWER_A), name);
}
std::vector<std::string> DetectorImpl::getCtbSenseNames() const {
return ctb_shm()->getSenseNames();
}
void DetectorImpl::setCtbSenseNames(const std::vector<std::string> &names) {
ctb_shm()->setSenseNames(names);
}
std::string DetectorImpl::getCtbSenseName(const defs::dacIndex i) const {
return ctb_shm()->getSenseName(static_cast<int>(i - defs::SLOW_ADC0));
}
void DetectorImpl::setCtbSenseName(const defs::dacIndex index,
const std::string &name) {
ctb_shm()->setSenseName(static_cast<int>(index - defs::SLOW_ADC0), name);
}
} // namespace sls