1350 lines
48 KiB
C++

#include "DetectorImpl.h"
#include "Module.h"
#include "SharedMemory.h"
#include "sls/ZmqSocket.h"
#include "sls/detectorData.h"
#include "sls/file_utils.h"
#include "sls/logger.h"
#include "sls/sls_detector_exceptions.h"
#include "sls/versionAPI.h"
#include "sls/ToString.h"
#include "sls/container_utils.h"
#include "sls/network_utils.h"
#include "sls/string_utils.h"
#include <cstring>
#include <iomanip>
#include <iostream>
#include <rapidjson/document.h> //json header in zmq stream
#include <sstream>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/types.h>
#include <chrono>
#include <future>
#include <vector>
namespace sls {
DetectorImpl::DetectorImpl(int multi_id, bool verify, bool update)
: multiId(multi_id), multi_shm(multi_id, -1) {
setupMultiDetector(verify, update);
}
DetectorImpl::~DetectorImpl() = default;
void DetectorImpl::setupMultiDetector(bool verify, bool update) {
initSharedMemory(verify);
initializeMembers(verify);
if (update) {
updateUserdetails();
}
}
void DetectorImpl::setAcquiringFlag(bool flag) {
multi_shm()->acquiringFlag = flag;
}
int DetectorImpl::getMultiId() const { return multiId; }
void DetectorImpl::freeSharedMemory(int multiId, int detPos) {
// single
if (detPos >= 0) {
SharedMemory<sharedSlsDetector> temp_shm(multiId, detPos);
if (temp_shm.IsExisting()) {
temp_shm.RemoveSharedMemory();
}
return;
}
// multi - get number of detectors from shm
SharedMemory<sharedMultiSlsDetector> multiShm(multiId, -1);
int numDetectors = 0;
if (multiShm.IsExisting()) {
multiShm.OpenSharedMemory();
numDetectors = multiShm()->numberOfDetectors;
multiShm.RemoveSharedMemory();
}
for (int i = 0; i < numDetectors; ++i) {
SharedMemory<sharedSlsDetector> shm(multiId, i);
shm.RemoveSharedMemory();
}
}
void DetectorImpl::freeSharedMemory() {
zmqSocket.clear();
for (auto &d : detectors) {
d->freeSharedMemory();
}
detectors.clear();
// clear multi detector shm
multi_shm.RemoveSharedMemory();
client_downstream = false;
}
std::string DetectorImpl::getUserDetails() {
if (detectors.empty()) {
return std::string("none");
}
std::ostringstream sstream;
sstream << "\nHostname: ";
for (auto &d : detectors) {
sstream << (d->isFixedPatternSharedMemoryCompatible() ? d->getHostname()
: "Unknown")
<< "+";
}
sstream << "\nType: ";
// get type from multi shm
if (multi_shm()->shmversion >= MULTI_SHMAPIVERSION) {
sstream << ToString(multi_shm()->multiDetectorType);
}
// get type from slsdet shm
else {
for (auto &d : detectors) {
sstream << (d->isFixedPatternSharedMemoryCompatible()
? ToString(d->getDetectorType())
: "Unknown")
<< "+";
}
}
sstream << "\nPID: " << multi_shm()->lastPID
<< "\nUser: " << multi_shm()->lastUser
<< "\nDate: " << multi_shm()->lastDate << std::endl;
return sstream.str();
}
bool DetectorImpl::getInitialChecks() const {
return multi_shm()->initialChecks;
}
void DetectorImpl::setInitialChecks(const bool value) {
multi_shm()->initialChecks = value;
}
void DetectorImpl::initSharedMemory(bool verify) {
if (!multi_shm.IsExisting()) {
multi_shm.CreateSharedMemory();
initializeDetectorStructure();
} else {
multi_shm.OpenSharedMemory();
if (verify && multi_shm()->shmversion != MULTI_SHMVERSION) {
LOG(logERROR) << "Multi shared memory (" << multiId
<< ") version mismatch "
"(expected 0x"
<< std::hex << MULTI_SHMVERSION << " but got 0x"
<< multi_shm()->shmversion << std::dec
<< ". Clear Shared memory to continue.";
throw SharedMemoryError("Shared memory version mismatch!");
}
}
}
void DetectorImpl::initializeDetectorStructure() {
multi_shm()->shmversion = MULTI_SHMVERSION;
multi_shm()->numberOfDetectors = 0;
multi_shm()->multiDetectorType = GENERIC;
multi_shm()->numberOfDetector.x = 0;
multi_shm()->numberOfDetector.y = 0;
multi_shm()->numberOfChannels.x = 0;
multi_shm()->numberOfChannels.y = 0;
multi_shm()->acquiringFlag = false;
multi_shm()->initialChecks = true;
multi_shm()->gapPixels = false;
// zmqlib default
multi_shm()->zmqHwm = -1;
}
void DetectorImpl::initializeMembers(bool verify) {
// DetectorImpl
zmqSocket.clear();
// get objects from single det shared memory (open)
for (int i = 0; i < multi_shm()->numberOfDetectors; i++) {
try {
detectors.push_back(sls::make_unique<Module>(multiId, i, verify));
} catch (...) {
detectors.clear();
throw;
}
}
}
void DetectorImpl::updateUserdetails() {
multi_shm()->lastPID = getpid();
memset(multi_shm()->lastUser, 0, sizeof(multi_shm()->lastUser));
memset(multi_shm()->lastDate, 0, sizeof(multi_shm()->lastDate));
try {
sls::strcpy_safe(multi_shm()->lastUser, exec("whoami").c_str());
sls::strcpy_safe(multi_shm()->lastDate, exec("date").c_str());
} catch (...) {
sls::strcpy_safe(multi_shm()->lastUser, "errorreading");
sls::strcpy_safe(multi_shm()->lastDate, "errorreading");
}
}
bool DetectorImpl::isAcquireReady() {
if (multi_shm()->acquiringFlag) {
LOG(logWARNING)
<< "Acquire has already started. "
"If previous acquisition terminated unexpectedly, "
"reset busy flag to restart.(sls_detector_put clearbusy)";
return false;
}
multi_shm()->acquiringFlag = true;
return true;
}
std::string DetectorImpl::exec(const char *cmd) {
char buffer[128];
std::string result;
FILE *pipe = popen(cmd, "r");
if (pipe == nullptr) {
throw RuntimeError("Could not open pipe");
}
while (feof(pipe) == 0) {
if (fgets(buffer, sizeof(buffer), pipe) != nullptr) {
result += buffer;
}
}
pclose(pipe);
result.erase(result.find_last_not_of(" \t\n\r") + 1);
return result;
}
void DetectorImpl::setVirtualDetectorServers(const int numdet, const int port) {
std::vector<std::string> hostnames;
for (int i = 0; i < numdet; ++i) {
// * 2 is for control and stop port
hostnames.push_back(std::string("localhost:") +
std::to_string(port + i * 2));
}
setHostname(hostnames);
}
void DetectorImpl::setHostname(const std::vector<std::string> &name) {
// this check is there only to allow the previous detsizechan command
if (multi_shm()->numberOfDetectors != 0) {
LOG(logWARNING) << "There are already detector(s) in shared memory."
"Freeing Shared memory now.";
bool initialChecks = multi_shm()->initialChecks;
freeSharedMemory();
setupMultiDetector();
multi_shm()->initialChecks = initialChecks;
}
for (const auto &hostname : name) {
addSlsDetector(hostname);
}
updateDetectorSize();
}
void DetectorImpl::addSlsDetector(const std::string &hostname) {
LOG(logINFO) << "Adding detector " << hostname;
int port = DEFAULT_PORTNO;
std::string host = hostname;
auto res = sls::split(hostname, ':');
if (res.size() > 1) {
host = res[0];
port = StringTo<int>(res[1]);
}
if (host != "localhost") {
for (auto &d : detectors) {
if (d->getHostname() == host) {
LOG(logWARNING)
<< "Detector " << host
<< "already part of the multiDetector!" << std::endl
<< "Remove it before adding it back in a new position!";
return;
}
}
}
// get type by connecting
detectorType type = Module::getTypeFromDetector(host, port);
auto pos = detectors.size();
detectors.emplace_back(sls::make_unique<Module>(type, multiId, pos, false));
multi_shm()->numberOfDetectors = detectors.size();
detectors[pos]->setControlPort(port);
detectors[pos]->setStopPort(port + 1);
detectors[pos]->setHostname(host, multi_shm()->initialChecks);
// detector type updated by now
multi_shm()->multiDetectorType =
Parallel(&Module::getDetectorType, {})
.tsquash("Inconsistent detector types.");
// for moench and ctb
detectors[pos]->updateNumberOfChannels();
}
void DetectorImpl::updateDetectorSize() {
LOG(logDEBUG) << "Updating Multi-Detector Size: " << size();
const slsDetectorDefs::xy det_size = detectors[0]->getNumberOfChannels();
int maxx = multi_shm()->numberOfChannels.x;
int maxy = multi_shm()->numberOfChannels.y;
int ndetx = 0, ndety = 0;
// 1d, add detectors along x axis
if (det_size.y == 1) {
if (maxx == 0) {
maxx = det_size.x * size();
}
ndetx = maxx / det_size.x;
ndety = size() / ndetx;
if ((maxx % det_size.x) > 0) {
++ndety;
}
}
// 2d, add detectors along y axis (due to eiger top/bottom)
else {
if (maxy == 0) {
maxy = det_size.y * size();
}
ndety = maxy / det_size.y;
ndetx = size() / ndety;
if ((maxy % det_size.y) > 0) {
++ndetx;
}
}
multi_shm()->numberOfDetector.x = ndetx;
multi_shm()->numberOfDetector.y = ndety;
multi_shm()->numberOfChannels.x = det_size.x * ndetx;
multi_shm()->numberOfChannels.y = det_size.y * ndety;
LOG(logDEBUG) << "\n\tNumber of Detectors in X direction:"
<< multi_shm()->numberOfDetector.x
<< "\n\tNumber of Detectors in Y direction:"
<< multi_shm()->numberOfDetector.y
<< "\n\tNumber of Channels in X direction:"
<< multi_shm()->numberOfChannels.x
<< "\n\tNumber of Channels in Y direction:"
<< multi_shm()->numberOfChannels.y;
for (auto &d : detectors) {
d->updateNumberOfDetector(multi_shm()->numberOfDetector);
}
}
int DetectorImpl::size() const { return detectors.size(); }
slsDetectorDefs::xy DetectorImpl::getNumberOfDetectors() const {
return multi_shm()->numberOfDetector;
}
slsDetectorDefs::xy DetectorImpl::getNumberOfChannels() const {
return multi_shm()->numberOfChannels;
}
void DetectorImpl::setNumberOfChannels(const slsDetectorDefs::xy c) {
if (size() > 1) {
throw RuntimeError(
"Set the number of channels before setting hostname.");
}
multi_shm()->numberOfChannels = c;
}
bool DetectorImpl::getGapPixelsinCallback() const {
return multi_shm()->gapPixels;
}
void DetectorImpl::setGapPixelsinCallback(const bool enable) {
if (enable) {
switch (multi_shm()->multiDetectorType) {
case JUNGFRAU:
break;
case EIGER:
if (size() && detectors[0]->getQuad()) {
break;
}
if (multi_shm()->numberOfDetector.y % 2 != 0) {
throw RuntimeError("Gap pixels can only be used "
"for full modules.");
}
break;
default:
throw RuntimeError("Gap Pixels is not implemented for " +
ToString(multi_shm()->multiDetectorType));
}
}
multi_shm()->gapPixels = enable;
}
int DetectorImpl::destroyReceivingDataSockets() {
LOG(logINFO) << "Going to destroy data sockets";
// close socket
zmqSocket.clear();
client_downstream = false;
LOG(logINFO) << "Destroyed Receiving Data Socket(s)";
return OK;
}
int DetectorImpl::createReceivingDataSockets() {
if (client_downstream) {
return OK;
}
LOG(logINFO) << "Going to create data sockets";
size_t numSockets = detectors.size();
size_t numSocketsPerDetector = 1;
if (multi_shm()->multiDetectorType == EIGER) {
numSocketsPerDetector = 2;
}
// gotthard2 second interface is only for veto debugging
else if (multi_shm()->multiDetectorType != GOTTHARD2) {
if (Parallel(&Module::getNumberofUDPInterfacesFromShm, {}).squash() ==
2) {
numSocketsPerDetector = 2;
}
}
numSockets *= numSocketsPerDetector;
for (size_t iSocket = 0; iSocket < numSockets; ++iSocket) {
uint32_t portnum = (detectors[iSocket / numSocketsPerDetector]
->getClientStreamingPort());
portnum += (iSocket % numSocketsPerDetector);
try {
zmqSocket.push_back(sls::make_unique<ZmqSocket>(
detectors[iSocket / numSocketsPerDetector]
->getClientStreamingIP()
.str()
.c_str(),
portnum));
// set high water mark
int hwm = multi_shm()->zmqHwm;
if (hwm >= 0) {
zmqSocket[iSocket]->SetReceiveHighWaterMark(hwm);
if (zmqSocket[iSocket]->GetReceiveHighWaterMark() != hwm) {
throw sls::ZmqSocketError("Could not set zmq rcv hwm to " +
std::to_string(hwm));
}
}
LOG(logINFO) << "Zmq Client[" << iSocket << "] at "
<< zmqSocket.back()->GetZmqServerAddress() << "[hwm: "
<< zmqSocket.back()->GetReceiveHighWaterMark() << "]";
} catch (...) {
LOG(logERROR) << "Could not create Zmq socket on port " << portnum;
destroyReceivingDataSockets();
return FAIL;
}
}
client_downstream = true;
LOG(logINFO) << "Receiving Data Socket(s) created";
return OK;
}
void DetectorImpl::readFrameFromReceiver() {
bool gapPixels = multi_shm()->gapPixels;
LOG(logDEBUG) << "Gap pixels: " << gapPixels;
int nX = 0;
int nY = 0;
int nDetPixelsX = 0;
int nDetPixelsY = 0;
bool quadEnable = false;
bool eiger = false;
bool numInterfaces = 1;
// gotthard2 second interface is veto debugging
if (multi_shm()->multiDetectorType != GOTTHARD2) {
numInterfaces = Parallel(&Module::getNumberofUDPInterfacesFromShm, {})
.squash(); // cannot pick up from zmq
}
std::vector<bool> runningList(zmqSocket.size());
std::vector<bool> connectList(zmqSocket.size());
numZmqRunning = 0;
for (size_t i = 0; i < zmqSocket.size(); ++i) {
if (zmqSocket[i]->Connect() == 0) {
connectList[i] = true;
runningList[i] = true;
++numZmqRunning;
} else {
// to remember the list it connected to, to disconnect later
connectList[i] = false;
LOG(logERROR) << "Could not connect to socket "
<< zmqSocket[i]->GetZmqServerAddress();
runningList[i] = false;
}
}
bool data = false;
bool completeImage = false;
std::unique_ptr<char[]> image{nullptr};
std::unique_ptr<char[]> multiframe{nullptr};
char *multigappixels = nullptr;
int multisize = 0;
// only first message header
uint32_t size = 0, nPixelsX = 0, nPixelsY = 0, dynamicRange = 0;
float bytesPerPixel = 0;
// header info every header
std::string currentFileName;
uint64_t currentAcquisitionIndex = -1, currentFrameIndex = -1,
currentFileIndex = -1;
double currentProgress = 0.00;
uint32_t currentSubFrameIndex = -1, coordX = -1, coordY = -1,
flippedDataX = -1;
while (numZmqRunning != 0) {
// reset data
data = false;
if (multiframe != nullptr) {
memset(multiframe.get(), 0xFF, multisize);
}
completeImage = (numZmqRunning == (int)zmqSocket.size());
// get each frame
for (unsigned int isocket = 0; isocket < zmqSocket.size(); ++isocket) {
// if running
if (runningList[isocket]) {
// HEADER
{
zmqHeader zHeader;
if (zmqSocket[isocket]->ReceiveHeader(
isocket, zHeader,
SLS_DETECTOR_JSON_HEADER_VERSION) == 0) {
// parse error, version error or end of acquisition for
// socket
runningList[isocket] = false;
completeImage = false;
--numZmqRunning;
continue;
}
// if first message, allocate (all one time stuff)
if (image == nullptr) {
// allocate
size = zHeader.imageSize;
multisize = size * zmqSocket.size();
image = sls::make_unique<char[]>(size);
multiframe = sls::make_unique<char[]>(multisize);
memset(multiframe.get(), 0xFF, multisize);
// dynamic range
dynamicRange = zHeader.dynamicRange;
bytesPerPixel = (float)dynamicRange / 8;
// shape
nPixelsX = zHeader.npixelsx;
nPixelsY = zHeader.npixelsy;
// detector shape
nX = zHeader.ndetx;
nY = zHeader.ndety;
nY *= numInterfaces;
nDetPixelsX = nX * nPixelsX;
nDetPixelsY = nY * nPixelsY;
// det type
eiger = (zHeader.detType == EIGER)
? true
: false; // to be changed to EIGER when
// firmware updates its header data
quadEnable = (zHeader.quad == 0) ? false : true;
LOG(logDEBUG1)
<< "One Time Header Info:"
"\n\tsize: "
<< size << "\n\tmultisize: " << multisize
<< "\n\tdynamicRange: " << dynamicRange
<< "\n\tbytesPerPixel: " << bytesPerPixel
<< "\n\tnPixelsX: " << nPixelsX
<< "\n\tnPixelsY: " << nPixelsY << "\n\tnX: " << nX
<< "\n\tnY: " << nY << "\n\teiger: " << eiger
<< "\n\tquadEnable: " << quadEnable;
}
// each time, parse rest of header
currentFileName = zHeader.fname;
currentAcquisitionIndex = zHeader.acqIndex;
currentFrameIndex = zHeader.frameIndex;
currentProgress = zHeader.progress;
currentFileIndex = zHeader.fileIndex;
currentSubFrameIndex = zHeader.expLength;
coordY = zHeader.row;
coordX = zHeader.column;
if (eiger) {
coordY = (nY - 1) - coordY;
}
flippedDataX = zHeader.flippedDataX;
if (zHeader.completeImage == 0) {
completeImage = false;
}
LOG(logDEBUG1)
<< "Header Info:"
"\n\tcurrentFileName: "
<< currentFileName << "\n\tcurrentAcquisitionIndex: "
<< currentAcquisitionIndex
<< "\n\tcurrentFrameIndex: " << currentFrameIndex
<< "\n\tcurrentFileIndex: " << currentFileIndex
<< "\n\tcurrentSubFrameIndex: " << currentSubFrameIndex
<< "\n\tcurrentProgress: " << currentProgress
<< "\n\tcoordX: " << coordX << "\n\tcoordY: " << coordY
<< "\n\tflippedDataX: " << flippedDataX
<< "\n\tcompleteImage: " << completeImage;
}
// DATA
data = true;
zmqSocket[isocket]->ReceiveData(isocket, image.get(), size);
// creating multi image
{
uint32_t xoffset = coordX * nPixelsX * bytesPerPixel;
uint32_t yoffset = coordY * nPixelsY;
uint32_t singledetrowoffset = nPixelsX * bytesPerPixel;
uint32_t rowoffset = nX * singledetrowoffset;
if (multi_shm()->multiDetectorType == CHIPTESTBOARD) {
singledetrowoffset = size;
}
LOG(logDEBUG1)
<< "Multi Image Info:"
"\n\txoffset: "
<< xoffset << "\n\tyoffset: " << yoffset
<< "\n\tsingledetrowoffset: " << singledetrowoffset
<< "\n\trowoffset: " << rowoffset;
if (eiger && (flippedDataX != 0U)) {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy((multiframe.get()) +
((yoffset + (nPixelsY - 1 - i)) *
rowoffset) +
xoffset,
image.get() + (i * singledetrowoffset),
singledetrowoffset);
}
} else {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy((multiframe.get()) +
((yoffset + i) * rowoffset) + xoffset,
image.get() + (i * singledetrowoffset),
singledetrowoffset);
}
}
}
}
}
LOG(logDEBUG) << "Call Back Info:"
<< "\n\t nDetPixelsX: " << nDetPixelsX
<< "\n\t nDetPixelsY: " << nDetPixelsY
<< "\n\t databytes: " << multisize
<< "\n\t dynamicRange: " << dynamicRange;
// send data to callback
if (data) {
char *callbackImage = multiframe.get();
int imagesize = multisize;
int nDetActualPixelsX = nDetPixelsX;
int nDetActualPixelsY = nDetPixelsY;
if (gapPixels) {
int n = InsertGapPixels(multiframe.get(), multigappixels,
quadEnable, dynamicRange,
nDetActualPixelsX, nDetActualPixelsY);
callbackImage = multigappixels;
imagesize = n;
}
LOG(logDEBUG) << "Image Info:"
<< "\n\tnDetActualPixelsX: " << nDetActualPixelsX
<< "\n\tnDetActualPixelsY: " << nDetActualPixelsY
<< "\n\timagesize: " << imagesize
<< "\n\tdynamicRange: " << dynamicRange;
thisData = new detectorData(currentProgress, currentFileName,
nDetActualPixelsX, nDetActualPixelsY,
callbackImage, imagesize, dynamicRange,
currentFileIndex, completeImage);
try {
dataReady(
thisData, currentFrameIndex,
((dynamicRange == 32 && eiger) ? currentSubFrameIndex : -1),
pCallbackArg);
} catch (const std::exception &e) {
LOG(logERROR) << "Exception caught from callback: " << e.what();
}
delete thisData;
}
}
// Disconnect resources
for (size_t i = 0; i < zmqSocket.size(); ++i) {
if (connectList[i]) {
zmqSocket[i]->Disconnect();
}
}
// free resources
delete[] multigappixels;
}
int DetectorImpl::InsertGapPixels(char *image, char *&gpImage, bool quadEnable,
int dr, int &nPixelsx, int &nPixelsy) {
LOG(logDEBUG) << "Insert Gap pixels:"
<< "\n\t nPixelsx: " << nPixelsx
<< "\n\t nPixelsy: " << nPixelsy
<< "\n\t quadEnable: " << quadEnable << "\n\t dr: " << dr;
// inter module gap pixels
int modGapPixelsx = 8;
int modGapPixelsy = 36;
// inter chip gap pixels
int chipGapPixelsx = 2;
int chipGapPixelsy = 2;
// number of pixels in a chip
int nChipPixelsx = 256;
int nChipPixelsy = 256;
// 1 module
// number of chips in a module
int nMod1Chipx = 4;
int nMod1Chipy = 2;
if (quadEnable) {
nMod1Chipx = 2;
}
// number of pixels in a module
int nMod1Pixelsx = nChipPixelsx * nMod1Chipx;
int nMod1Pixelsy = nChipPixelsy * nMod1Chipy;
// number of gap pixels in a module
int nMod1GapPixelsx = (nMod1Chipx - 1) * chipGapPixelsx;
int nMod1GapPixelsy = (nMod1Chipy - 1) * chipGapPixelsy;
// total number of modules
int nModx = nPixelsx / nMod1Pixelsx;
int nMody = nPixelsy / nMod1Pixelsy;
// check if not full modules
// (setting gap pixels and then adding half module or disabling quad)
if (nPixelsy / nMod1Pixelsy == 0) {
LOG(logERROR) << "Gap pixels can only be enabled with full modules. "
"Sending dummy data without gap pixels.\n";
double bytesPerPixel = (double)dr / 8.00;
int imagesize = nPixelsy * nPixelsx * bytesPerPixel;
if (gpImage == nullptr) {
gpImage = new char[imagesize];
}
memset(gpImage, 0xFF, imagesize);
return imagesize;
}
// total number of pixels
int nTotx =
nPixelsx + (nMod1GapPixelsx * nModx) + (modGapPixelsx * (nModx - 1));
int nToty =
nPixelsy + (nMod1GapPixelsy * nMody) + (modGapPixelsy * (nMody - 1));
// total number of chips
int nChipx = nPixelsx / nChipPixelsx;
int nChipy = nPixelsy / nChipPixelsy;
double bytesPerPixel = (double)dr / 8.00;
int imagesize = nTotx * nToty * bytesPerPixel;
int nChipBytesx = nChipPixelsx * bytesPerPixel; // 1 chip bytes in x
int nChipGapBytesx = chipGapPixelsx * bytesPerPixel; // 2 pixel bytes
int nModGapBytesx = modGapPixelsx * bytesPerPixel; // 8 pixel bytes
int nChipBytesy = nChipPixelsy * nTotx * bytesPerPixel; // 1 chip bytes in y
int nChipGapBytesy = chipGapPixelsy * nTotx * bytesPerPixel; // 2 lines
int nModGapBytesy = modGapPixelsy * nTotx *
bytesPerPixel; // 36 lines
// 4 bit mode, its 1 byte (because for 4
// bit mode, we handle 1 byte at a time)
int pixel1 = (int)(ceil(bytesPerPixel));
int row1Bytes = nTotx * bytesPerPixel;
int nMod1TotPixelsx = nMod1Pixelsx + nMod1GapPixelsx;
if (dr == 4) {
nMod1TotPixelsx /= 2;
}
// eiger requires inter chip gap pixels are halved
// jungfrau prefers same inter chip gap pixels as the boundary pixels
int divisionValue = 2;
slsDetectorDefs::detectorType detType = multi_shm()->multiDetectorType;
if (detType == JUNGFRAU) {
divisionValue = 1;
}
LOG(logDEBUG) << "Insert Gap pixels Calculations:\n\t"
<< "nPixelsx: " << nPixelsx << "\n\t"
<< "nPixelsy: " << nPixelsy << "\n\t"
<< "nMod1Pixelsx: " << nMod1Pixelsx << "\n\t"
<< "nMod1Pixelsy: " << nMod1Pixelsy << "\n\t"
<< "nMod1GapPixelsx: " << nMod1GapPixelsx << "\n\t"
<< "nMod1GapPixelsy: " << nMod1GapPixelsy << "\n\t"
<< "nChipy: " << nChipy << "\n\t"
<< "nChipx: " << nChipx << "\n\t"
<< "nModx: " << nModx << "\n\t"
<< "nMody: " << nMody << "\n\t"
<< "nTotx: " << nTotx << "\n\t"
<< "nToty: " << nToty << "\n\t"
<< "bytesPerPixel: " << bytesPerPixel << "\n\t"
<< "imagesize: " << imagesize << "\n\t"
<< "nChipBytesx: " << nChipBytesx << "\n\t"
<< "nChipGapBytesx: " << nChipGapBytesx << "\n\t"
<< "nModGapBytesx: " << nModGapBytesx << "\n\t"
<< "nChipBytesy: " << nChipBytesy << "\n\t"
<< "nChipGapBytesy: " << nChipGapBytesy << "\n\t"
<< "nModGapBytesy: " << nModGapBytesy << "\n\t"
<< "pixel1: " << pixel1 << "\n\t"
<< "row1Bytes: " << row1Bytes << "\n\t"
<< "nMod1TotPixelsx: " << nMod1TotPixelsx << "\n\t"
<< "divisionValue: " << divisionValue << "\n\n";
if (gpImage == nullptr) {
gpImage = new char[imagesize];
}
memset(gpImage, 0xFF, imagesize);
// memcpy(gpImage, image, imagesize);
char *src = nullptr;
char *dst = nullptr;
// copying line by line
src = image;
dst = gpImage;
// for each chip row in y
for (int iChipy = 0; iChipy < nChipy; ++iChipy) {
// for each row
for (int iy = 0; iy < nChipPixelsy; ++iy) {
// in each row, for every chip
for (int iChipx = 0; iChipx < nChipx; ++iChipx) {
// copy 1 chip line
memcpy(dst, src, nChipBytesx);
src += nChipBytesx;
dst += nChipBytesx;
// skip inter chip gap pixels in x
if (((iChipx + 1) % nMod1Chipx) != 0) {
dst += nChipGapBytesx;
}
// skip inter module gap pixels in x
else if (iChipx + 1 != nChipx) {
dst += nModGapBytesx;
}
}
}
// skip inter chip gap pixels in y
if (((iChipy + 1) % nMod1Chipy) != 0) {
dst += nChipGapBytesy;
}
// skip inter module gap pixels in y
else if (iChipy + 1 != nChipy) {
dst += nModGapBytesy;
}
}
// iner chip gap pixel values is half of neighboring one
// (corners becomes divide by 4 automatically after horizontal filling)
// vertical filling of inter chip gap pixels
dst = gpImage;
// for each chip row in y
for (int iChipy = 0; iChipy < nChipy; ++iChipy) {
// for each row
for (int iy = 0; iy < nChipPixelsy; ++iy) {
// in each row, for every chip
for (int iChipx = 0; iChipx < nChipx; ++iChipx) {
// go to gap pixels
dst += nChipBytesx;
// fix inter chip gap pixels in x
if (((iChipx + 1) % nMod1Chipx) != 0) {
uint8_t temp8 = 0;
uint16_t temp16 = 0;
uint32_t temp32 = 0;
uint8_t g1 = 0;
uint8_t g2 = 0;
switch (dr) {
case 4:
// neighbouring gap pixels to left
temp8 = (*((uint8_t *)(dst - 1)));
g1 = ((temp8 & 0xF) / 2);
(*((uint8_t *)(dst - 1))) = (temp8 & 0xF0) + g1;
// neighbouring gap pixels to right
temp8 = (*((uint8_t *)(dst + 1)));
g2 = ((temp8 >> 4) / 2);
(*((uint8_t *)(dst + 1))) = (g2 << 4) + (temp8 & 0x0F);
// gap pixels
(*((uint8_t *)dst)) = (g1 << 4) + g2;
break;
case 8:
// neighbouring gap pixels to left
temp8 = (*((uint8_t *)(dst - pixel1))) / 2;
(*((uint8_t *)dst)) = temp8;
(*((uint8_t *)(dst - pixel1))) = temp8;
// neighbouring gap pixels to right
temp8 = (*((uint8_t *)(dst + 2 * pixel1))) / 2;
(*((uint8_t *)(dst + pixel1))) = temp8;
(*((uint8_t *)(dst + 2 * pixel1))) = temp8;
break;
case 16:
// neighbouring gap pixels to left
temp16 =
(*((uint16_t *)(dst - pixel1))) / divisionValue;
(*((uint16_t *)dst)) = temp16;
(*((uint16_t *)(dst - pixel1))) = temp16;
// neighbouring gap pixels to right
temp16 =
(*((uint16_t *)(dst + 2 * pixel1))) / divisionValue;
(*((uint16_t *)(dst + pixel1))) = temp16;
(*((uint16_t *)(dst + 2 * pixel1))) = temp16;
break;
default:
// neighbouring gap pixels to left
temp32 = (*((uint32_t *)(dst - pixel1))) / 2;
(*((uint32_t *)dst)) = temp32;
(*((uint32_t *)(dst - pixel1))) = temp32;
// neighbouring gap pixels to right
temp32 = (*((uint32_t *)(dst + 2 * pixel1))) / 2;
(*((uint32_t *)(dst + pixel1))) = temp32;
(*((uint32_t *)(dst + 2 * pixel1))) = temp32;
break;
}
dst += nChipGapBytesx;
}
// skip inter module gap pixels in x
else if (iChipx + 1 != nChipx) {
dst += nModGapBytesx;
}
}
}
// skip inter chip gap pixels in y
if (((iChipy + 1) % nMod1Chipy) != 0) {
dst += nChipGapBytesy;
}
// skip inter module gap pixels in y
else if (iChipy + 1 != nChipy) {
dst += nModGapBytesy;
}
}
// horizontal filling of inter chip gap pixels
// starting at bottom part (1 line below to copy from)
src = gpImage + (nChipBytesy - row1Bytes);
dst = gpImage + nChipBytesy;
// for each chip row in y
for (int iChipy = 0; iChipy < nChipy; ++iChipy) {
// for each module in x
for (int iModx = 0; iModx < nModx; ++iModx) {
// in each module, for every pixel in x
for (int iPixel = 0; iPixel < nMod1TotPixelsx; ++iPixel) {
uint8_t temp8 = 0, g1 = 0, g2 = 0;
uint16_t temp16 = 0;
uint32_t temp32 = 0;
switch (dr) {
case 4:
temp8 = (*((uint8_t *)src));
g1 = ((temp8 >> 4) / 2);
g2 = ((temp8 & 0xF) / 2);
temp8 = (g1 << 4) + g2;
(*((uint8_t *)dst)) = temp8;
(*((uint8_t *)src)) = temp8;
break;
case 8:
temp8 = (*((uint8_t *)src)) / divisionValue;
(*((uint8_t *)dst)) = temp8;
(*((uint8_t *)src)) = temp8;
break;
case 16:
temp16 = (*((uint16_t *)src)) / divisionValue;
(*((uint16_t *)dst)) = temp16;
(*((uint16_t *)src)) = temp16;
break;
default:
temp32 = (*((uint32_t *)src)) / 2;
(*((uint32_t *)dst)) = temp32;
(*((uint32_t *)src)) = temp32;
break;
}
// every pixel (but 4 bit mode, every byte)
src += pixel1;
dst += pixel1;
}
// skip inter module gap pixels in x
if (iModx + 1 < nModx) {
src += nModGapBytesx;
dst += nModGapBytesx;
}
}
// bottom parts, skip inter chip gap pixels
if ((iChipy % nMod1Chipy) == 0) {
src += nChipGapBytesy;
}
// top parts, skip inter module gap pixels and two chips
else {
src += (nModGapBytesy + 2 * nChipBytesy - 2 * row1Bytes);
dst += (nModGapBytesy + 2 * nChipBytesy);
}
}
nPixelsx = nTotx;
nPixelsy = nToty;
return imagesize;
}
bool DetectorImpl::getDataStreamingToClient() { return client_downstream; }
void DetectorImpl::setDataStreamingToClient(bool enable) {
// destroy data threads
if (!enable) {
destroyReceivingDataSockets();
// create data threads
} else {
if (createReceivingDataSockets() == FAIL) {
throw RuntimeError("Could not create data threads in client.");
}
}
}
int DetectorImpl::getClientStreamingHwm() const {
// disabled
if (!client_downstream) {
return multi_shm()->zmqHwm;
}
// enabled
sls::Result<int> result;
result.reserve(zmqSocket.size());
for (auto &it : zmqSocket) {
result.push_back(it->GetReceiveHighWaterMark());
}
int res = result.tsquash("Inconsistent zmq receive hwm values");
return res;
}
void DetectorImpl::setClientStreamingHwm(const int limit) {
if (limit < -1) {
throw sls::RuntimeError(
"Cannot set hwm to less than -1 (-1 is lib default).");
}
// update shm
multi_shm()->zmqHwm = limit;
// streaming enabled
if (client_downstream) {
// custom limit, set it directly
if (limit >= 0) {
for (auto &it : zmqSocket) {
it->SetReceiveHighWaterMark(limit);
if (it->GetReceiveHighWaterMark() != limit) {
multi_shm()->zmqHwm = -1;
throw sls::ZmqSocketError("Could not set zmq rcv hwm to " +
std::to_string(limit));
}
}
LOG(logINFO) << "Setting Client Zmq socket rcv hwm to " << limit;
}
// default, disable and enable to get default
else {
setDataStreamingToClient(false);
setDataStreamingToClient(true);
}
}
}
void DetectorImpl::registerAcquisitionFinishedCallback(void (*func)(double, int,
void *),
void *pArg) {
acquisition_finished = func;
acqFinished_p = pArg;
}
void DetectorImpl::registerDataCallback(void (*userCallback)(detectorData *,
uint64_t, uint32_t,
void *),
void *pArg) {
dataReady = userCallback;
pCallbackArg = pArg;
setDataStreamingToClient(dataReady == nullptr ? false : true);
}
int DetectorImpl::acquire() {
// ensure acquire isnt started multiple times by same client
if (!isAcquireReady()) {
return FAIL;
}
try {
struct timespec begin, end;
clock_gettime(CLOCK_REALTIME, &begin);
bool receiver = Parallel(&Module::getUseReceiverFlag, {}).squash(false);
if (dataReady == nullptr) {
setJoinThreadFlag(false);
}
// verify receiver is idle
if (receiver) {
if (Parallel(&Module::getReceiverStatus, {}).squash(ERROR) !=
IDLE) {
Parallel(&Module::stopReceiver, {});
}
}
// start receiver
if (receiver) {
Parallel(&Module::startReceiver, {});
}
startProcessingThread(receiver);
// start and read all
try {
Parallel(&Module::startAndReadAll, {});
} catch (...) {
if (receiver)
Parallel(&Module::stopReceiver, {});
throw;
}
// stop receiver
if (receiver) {
Parallel(&Module::stopReceiver, {});
Parallel(&Module::incrementFileIndex, {});
}
// let the progress thread (no callback) know acquisition is done
if (dataReady == nullptr) {
setJoinThreadFlag(true);
}
if (receiver) {
while (numZmqRunning != 0) {
Parallel(&Module::restreamStopFromReceiver, {});
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
}
dataProcessingThread.join();
if (acquisition_finished != nullptr) {
int status = Parallel(&Module::getRunStatus, {}).squash(ERROR);
auto a = Parallel(&Module::getReceiverProgress, {});
double progress = (*std::min_element(a.begin(), a.end()));
acquisition_finished(progress, status, acqFinished_p);
}
clock_gettime(CLOCK_REALTIME, &end);
LOG(logDEBUG1) << "Elapsed time for acquisition:"
<< ((end.tv_sec - begin.tv_sec) +
(end.tv_nsec - begin.tv_nsec) / 1000000000.0)
<< " seconds";
} catch (...) {
if (dataProcessingThread.joinable()) {
setJoinThreadFlag(true);
dataProcessingThread.join();
}
setAcquiringFlag(false);
throw;
}
setAcquiringFlag(false);
return OK;
}
void DetectorImpl::printProgress(double progress) {
// spaces for python printout
std::cout << " " << std::fixed << std::setprecision(2) << std::setw(6)
<< progress << " \%";
std::cout << '\r' << std::flush;
}
void DetectorImpl::startProcessingThread(bool receiver) {
dataProcessingThread =
std::thread(&DetectorImpl::processData, this, receiver);
}
void DetectorImpl::processData(bool receiver) {
if (receiver) {
if (dataReady != nullptr) {
readFrameFromReceiver();
}
// only update progress
else {
double progress = 0;
printProgress(progress);
while (true) {
// to exit acquire by typing q
if (kbhit() != 0) {
if (fgetc(stdin) == 'q') {
LOG(logINFO)
<< "Caught the command to stop acquisition";
Parallel(&Module::stopAcquisition, {});
}
}
// get and print progress
double temp =
(double)Parallel(&Module::getReceiverProgress, {0})
.squash();
if (temp != progress) {
printProgress(progress);
progress = temp;
}
// exiting loop
if (getJoinThreadFlag()) {
// print progress one final time before exiting
progress =
(double)Parallel(&Module::getReceiverProgress, {0})
.squash();
printProgress(progress);
break;
}
// otherwise error when connecting to the receiver too fast
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
}
}
bool DetectorImpl::getJoinThreadFlag() const {
std::lock_guard<std::mutex> lock(mp);
return jointhread;
}
void DetectorImpl::setJoinThreadFlag(bool value) {
std::lock_guard<std::mutex> lock(mp);
jointhread = value;
}
int DetectorImpl::kbhit() {
struct timeval tv;
fd_set fds;
tv.tv_sec = 0;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(STDIN_FILENO, &fds); // STDIN_FILENO is 0
select(STDIN_FILENO + 1, &fds, nullptr, nullptr, &tv);
return FD_ISSET(STDIN_FILENO, &fds);
}
std::vector<char> DetectorImpl::readProgrammingFile(const std::string &fname) {
// validate type of file
bool isPof = false;
switch (multi_shm()->multiDetectorType) {
case JUNGFRAU:
case CHIPTESTBOARD:
case MOENCH:
if (fname.find(".pof") == std::string::npos) {
throw RuntimeError("Programming file must be a pof file.");
}
isPof = true;
break;
case MYTHEN3:
case GOTTHARD2:
if (fname.find(".rbf") == std::string::npos) {
throw RuntimeError("Programming file must be an rbf file.");
}
break;
default:
throw RuntimeError("programfpga not implemented for this detector");
}
LOG(logINFO)
<< "Updating Firmware. This can take awhile. Please be patient...";
LOG(logDEBUG1) << "Programming FPGA with file name:" << fname;
size_t filesize = 0;
// check if it exists
struct stat st;
if (stat(fname.c_str(), &st) != 0) {
throw RuntimeError("Program FPGA: Programming file does not exist");
}
// open src
FILE *src = fopen(fname.c_str(), "rb");
if (src == nullptr) {
throw RuntimeError(
"Program FPGA: Could not open source file for programming: " +
fname);
}
// create temp destination file
char destfname[] = "/tmp/SLS_DET_MCB.XXXXXX";
int dst = mkstemp(destfname); // create temporary file and open it in r/w
if (dst == -1) {
fclose(src);
throw RuntimeError(
std::string(
"Could not create destination file in /tmp for programming: ") +
destfname);
}
// convert src to dst rawbin
LOG(logDEBUG1) << "Converting " << fname << " to " << destfname;
{
constexpr int pofNumHeaderBytes = 0x11C;
constexpr int pofFooterOfst = 0x1000000;
int dstFilePos = 0;
if (isPof) {
// Read header and discard
for (int i = 0; i < pofNumHeaderBytes; ++i) {
fgetc(src);
}
// Write 0xFF to destination 0x80 times (padding)
constexpr int pofNumPadding{0x80};
constexpr uint8_t c{0xFF};
while (dstFilePos < pofNumPadding) {
write(dst, &c, sizeof(c));
++dstFilePos;
}
}
// Swap bits from source and write to dest
while (!feof(src)) {
// pof: exit early to discard footer
if (isPof && dstFilePos >= pofFooterOfst) {
break;
}
// read source
int s = fgetc(src);
if (s < 0) {
break;
}
// swap bits
int d = 0;
for (int i = 0; i < 8; ++i) {
d = d | (((s & (1 << i)) >> i) << (7 - i));
}
write(dst, &d, 1);
++dstFilePos;
}
// validate pof: read less than footer offset
if (isPof && dstFilePos < pofFooterOfst) {
throw RuntimeError(
"Could not convert programming file. EOF before end of flash");
}
}
if (fclose(src) != 0) {
throw RuntimeError("Program FPGA: Could not close source file");
}
if (close(dst) != 0) {
throw RuntimeError("Program FPGA: Could not close destination file");
}
LOG(logDEBUG1) << "File has been converted to " << destfname;
// loading dst file to memory
FILE *fp = fopen(destfname, "r");
if (fp == nullptr) {
throw RuntimeError("Program FPGA: Could not open rawbin file");
}
if (fseek(fp, 0, SEEK_END) != 0) {
throw RuntimeError("Program FPGA: Seek error in rawbin file");
}
filesize = ftell(fp);
if (filesize <= 0) {
throw RuntimeError("Program FPGA: Could not get length of rawbin file");
}
rewind(fp);
std::vector<char> buffer(filesize, 0);
if (fread(buffer.data(), sizeof(char), filesize, fp) != filesize) {
throw RuntimeError("Program FPGA: Could not read rawbin file");
}
if (fclose(fp) != 0) {
throw RuntimeError(
"Program FPGA: Could not close destination file after converting");
}
unlink(destfname); // delete temporary file
LOG(logDEBUG1) << "Successfully loaded the rawbin file to program memory";
LOG(logINFO) << "Read file into memory";
return buffer;
}
} // namespace sls