688 lines
22 KiB
C++

// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
/************************************************
* @file DataProcessor.cpp
* @short creates data processor thread that
* pulls pointers to memory addresses from fifos
* and processes data stored in them & writes them to file
***********************************************/
#include "DataProcessor.h"
#include "BinaryDataFile.h"
#include "Fifo.h"
#include "GeneralData.h"
#include "MasterAttributes.h"
#include "MasterFileUtility.h"
#ifdef HDF5C
#include "HDF5DataFile.h"
#endif
#include "DataStreamer.h"
#include "sls/container_utils.h"
#include "sls/sls_detector_exceptions.h"
#include <cerrno>
#include <cstring>
#include <iostream>
namespace sls {
const std::string DataProcessor::typeName = "DataProcessor";
DataProcessor::DataProcessor(int index) : ThreadObject(index, typeName) {
LOG(logDEBUG) << "DataProcessor " << index << " created";
}
DataProcessor::~DataProcessor() { DeleteFiles(); }
bool DataProcessor::GetStartedFlag() const { return startedFlag; }
void DataProcessor::SetFifo(Fifo *f) { fifo = f; }
void DataProcessor::SetGeneralData(GeneralData *g) { generalData = g; }
void DataProcessor::SetUdpPortNumber(const uint16_t portNumber) {
udpPortNumber = portNumber;
}
void DataProcessor::SetActivate(bool enable) { activated = enable; }
void DataProcessor::SetReceiverROI(ROI roi) {
receiverRoi = roi;
receiverRoiEnabled = receiverRoi.completeRoi() ? false : true;
receiverNoRoi = receiverRoi.noRoi();
}
void DataProcessor::SetDataStreamEnable(bool enable) {
dataStreamEnable = enable;
}
void DataProcessor::SetStreamingFrequency(uint32_t value) {
streamingFrequency = value;
}
void DataProcessor::SetStreamingTimerInMs(uint32_t value) {
streamingTimerInMs = value;
}
void DataProcessor::SetStreamingStartFnum(uint32_t value) {
streamingStartFnum = value;
}
void DataProcessor::SetFramePadding(bool enable) { framePadding = enable; }
void DataProcessor::SetCtbDbitList(std::vector<int> value) {
ctbDbitList = value;
}
void DataProcessor::SetCtbDbitOffset(int value) { ctbDbitOffset = value; }
void DataProcessor::SetCtbDbitReorder(bool value) { ctbDbitReorder = value; }
void DataProcessor::SetQuadEnable(bool value) { quadEnable = value; }
void DataProcessor::SetFlipRows(bool fd) {
flipRows = fd;
// flip only right port of quad
if (quadEnable) {
flipRows = (index == 1 ? true : false);
}
}
void DataProcessor::SetNumberofTotalFrames(uint64_t value) {
nTotalFrames = value;
}
void DataProcessor::SetAdditionalJsonHeader(
const std::map<std::string, std::string> &json) {
std::lock_guard<std::mutex> lock(additionalJsonMutex);
additionalJsonHeader = json;
isAdditionalJsonUpdated = true;
}
void DataProcessor::ResetParametersforNewAcquisition() {
StopRunning();
startedFlag = false;
numFramesCaught = 0;
firstIndex = 0;
currentFrameIndex = 0;
firstStreamerFrame = true;
streamCurrentFrame = false;
completeImageToStreamBeforeCropping =
make_unique<char[]>(generalData->imageSize);
}
void DataProcessor::RecordFirstIndex(uint64_t fnum) {
// listen to this fnum, later +1
currentFrameIndex = fnum;
startedFlag = true;
firstIndex = fnum;
LOG(logDEBUG1) << index << " First Index:" << firstIndex;
}
void DataProcessor::CloseFiles() {
if (dataFile)
dataFile->CloseFile();
}
void DataProcessor::DeleteFiles() {
CloseFiles();
delete dataFile;
dataFile = nullptr;
}
void DataProcessor::SetupFileWriter(const bool filewriteEnable,
const fileFormat fileFormatType,
std::mutex *hdf5LibMutex) {
DeleteFiles();
if (filewriteEnable) {
switch (fileFormatType) {
#ifdef HDF5C
case HDF5:
dataFile = new HDF5DataFile(index, hdf5LibMutex);
break;
#endif
case BINARY:
dataFile = new BinaryDataFile(index);
break;
default:
throw RuntimeError("Unknown file format (compile with hdf5 flags");
}
}
}
void DataProcessor::CreateFirstFiles(const std::string &fileNamePrefix,
const uint64_t fileIndex,
const bool overWriteEnable,
const bool silentMode,
const bool detectorDataStream) {
if (dataFile == nullptr) {
throw RuntimeError("file object not contstructed");
}
CloseFiles();
// deactivated (half module/ single port or no roi), dont write file
if (!activated || !detectorDataStream || receiverNoRoi) {
return;
}
#ifdef HDF5C
int nx = generalData->nPixelsX;
int ny = generalData->nPixelsY;
if (receiverRoiEnabled) {
nx = receiverRoi.xmax - receiverRoi.xmin + 1;
ny = receiverRoi.ymax - receiverRoi.ymin + 1;
if (receiverRoi.ymax == -1 || receiverRoi.ymin == -1) {
ny = 1;
}
}
#endif
switch (dataFile->GetFileFormat()) {
#ifdef HDF5C
case HDF5:
dataFile->CreateFirstHDF5DataFile(
fileNamePrefix, fileIndex, overWriteEnable, silentMode,
udpPortNumber, generalData->framesPerFile, nTotalFrames, nx, ny,
generalData->dynamicRange);
break;
#endif
case BINARY:
dataFile->CreateFirstBinaryDataFile(
fileNamePrefix, fileIndex, overWriteEnable, silentMode,
udpPortNumber, generalData->framesPerFile);
break;
default:
throw RuntimeError("Unknown file format (compile with hdf5 flags");
}
}
#ifdef HDF5C
uint32_t DataProcessor::GetFilesInAcquisition() const {
if (dataFile == nullptr) {
throw RuntimeError("No data file object created to get number of "
"files in acquiistion");
}
return dataFile->GetFilesInAcquisition();
}
std::string DataProcessor::CreateVirtualFile(
const std::string &filePath, const std::string &fileNamePrefix,
const uint64_t fileIndex, const bool overWriteEnable, const bool silentMode,
const int modulePos, const int numModX, const int numModY,
std::mutex *hdf5LibMutex) {
if (receiverRoiEnabled) {
throw std::runtime_error(
"Skipping virtual hdf5 file since rx_roi is enabled.");
}
bool gotthard25um = ((generalData->detType == GOTTHARD ||
generalData->detType == GOTTHARD2) &&
(numModX * numModY) == 2);
// 0 for infinite files
uint32_t framesPerFile =
((generalData->framesPerFile == 0) ? numFramesCaught
: generalData->framesPerFile);
// TODO: assumption 1: create virtual file even if no data in other
// files (they exist anyway) assumption2: virtual file max frame index
// is from R0 P0 (difference from others when missing frames or for a
// stop acquisition)
return masterFileUtility::CreateVirtualHDF5File(
filePath, fileNamePrefix, fileIndex, overWriteEnable, silentMode,
modulePos, generalData->numUDPInterfaces, framesPerFile,
generalData->nPixelsX, generalData->nPixelsY, generalData->dynamicRange,
numFramesCaught, numModX, numModY, dataFile->GetPDataType(),
dataFile->GetParameterNames(), dataFile->GetParameterDataTypes(),
hdf5LibMutex, gotthard25um);
}
void DataProcessor::LinkFileInMaster(const std::string &masterFileName,
const std::string &virtualFileName,
const bool silentMode,
std::mutex *hdf5LibMutex) {
if (receiverRoiEnabled) {
throw std::runtime_error(
"Should not be here, roi with hdf5 virtual should throw.");
}
std::string fname{virtualFileName}, masterfname{masterFileName};
// if no virtual file, link data file
if (virtualFileName.empty()) {
fname = dataFile->GetFileName();
}
masterFileUtility::LinkHDF5FileInMaster(masterfname, fname,
dataFile->GetParameterNames(),
silentMode, hdf5LibMutex);
}
#endif
std::string DataProcessor::CreateMasterFile(
const std::string &filePath, const std::string &fileNamePrefix,
const uint64_t fileIndex, const bool overWriteEnable, bool silentMode,
const fileFormat fileFormatType, MasterAttributes *attr,
std::mutex *hdf5LibMutex) {
attr->framesInFile = numFramesCaught;
std::unique_ptr<File> masterFile{nullptr};
switch (fileFormatType) {
#ifdef HDF5C
case HDF5:
return masterFileUtility::CreateMasterHDF5File(
filePath, fileNamePrefix, fileIndex, overWriteEnable, silentMode,
attr, hdf5LibMutex);
#endif
case BINARY:
return masterFileUtility::CreateMasterBinaryFile(
filePath, fileNamePrefix, fileIndex, overWriteEnable, silentMode,
attr);
default:
throw RuntimeError("Unknown file format (compile with hdf5 flags");
}
}
void DataProcessor::ThreadExecution() {
char *buffer = nullptr;
fifo->PopAddress(buffer);
LOG(logDEBUG5) << "DataProcessor " << index << ", " << std::hex
<< static_cast<void *>(buffer) << std::dec << ":" << buffer;
auto *memImage = reinterpret_cast<image_structure *>(buffer);
// check dummy
LOG(logDEBUG1) << "DataProcessor " << index
<< ", Numbytes:" << memImage->size;
if (memImage->size == DUMMY_PACKET_VALUE) {
StopProcessing(buffer);
return;
}
try {
ProcessAnImage(memImage->header, memImage->size, memImage->firstIndex,
memImage->data);
} catch (const std::exception &e) {
fifo->FreeAddress(buffer);
return;
}
// stream (if time/freq to stream) or free
if (streamCurrentFrame) {
// copy the complete image back if roi enabled
if (receiverRoiEnabled) {
memImage->size = generalData->imageSize;
memcpy(memImage->data, &completeImageToStreamBeforeCropping[0],
generalData->imageSize);
}
fifo->PushAddressToStream(buffer);
} else {
fifo->FreeAddress(buffer);
}
}
void DataProcessor::StopProcessing(char *buf) {
LOG(logDEBUG1) << "DataProcessing " << index << ": Dummy";
// stream or free
if (dataStreamEnable)
fifo->PushAddressToStream(buf);
else
fifo->FreeAddress(buf);
CloseFiles();
StopRunning();
LOG(logDEBUG1) << index << ": Processing Completed";
}
void DataProcessor::ProcessAnImage(sls_receiver_header &header, size_t &size,
size_t &firstImageIndex, char *data) {
uint64_t fnum = header.detHeader.frameNumber;
LOG(logDEBUG1) << "DataProcessing " << index << ": fnum:" << fnum;
currentFrameIndex = fnum;
numFramesCaught++;
uint32_t nump = header.detHeader.packetNumber;
if (!startedFlag) {
RecordFirstIndex(fnum);
if (dataStreamEnable) {
// restart timer
clock_gettime(CLOCK_REALTIME, &timerbegin);
timerbegin.tv_sec -= streamingTimerInMs / 1000;
timerbegin.tv_nsec -= (streamingTimerInMs % 1000) * 1000000;
// to send first image
currentFreqCount = streamingFrequency - streamingStartFnum;
}
}
// frame padding
if (framePadding && nump < generalData->packetsPerFrame)
PadMissingPackets(header, data);
// rearrange ctb digital bits (if ctbDbitlist is not empty)
if (!ctbDbitList.empty()) {
ArrangeDbitData(size, data);
}
// 'stream Image' check has to be done here before crop image
// stream (if time/freq to stream) or free
if (dataStreamEnable && SendToStreamer()) {
if (firstStreamerFrame) {
firstStreamerFrame = false;
// write to memory structure of first streamer frame
firstImageIndex = firstIndex;
}
streamCurrentFrame = true;
} else {
streamCurrentFrame = false;
}
if (receiverRoiEnabled) {
// copy the complete image to stream before cropping
if (streamCurrentFrame) {
memcpy(&completeImageToStreamBeforeCropping[0], data,
generalData->imageSize);
}
CropImage(size, data);
}
try {
// callbacks
if (rawDataReadyCallBack != nullptr) {
uint64_t frameIndex = fnum - firstIndex;
// update local copy only if it was updated (to prevent locking each
// time)
if (isAdditionalJsonUpdated) {
std::lock_guard<std::mutex> lock(additionalJsonMutex);
localAdditionalJsonHeader = additionalJsonHeader;
isAdditionalJsonUpdated = false;
}
dataCallbackHeader callbackHeader = {
udpPortNumber,
{static_cast<int>(generalData->nPixelsX),
static_cast<int>(generalData->nPixelsY)},
fnum,
frameIndex,
(100 * ((double)(frameIndex + 1) / (double)(nTotalFrames))),
(nump == generalData->packetsPerFrame ? true : false),
flipRows,
localAdditionalJsonHeader};
rawDataReadyCallBack(header, callbackHeader, data, size,
pRawDataReady);
}
} catch (const std::exception &e) {
throw RuntimeError("Get Data Callback Error: " + std::string(e.what()));
}
// write to file
if (dataFile) {
try {
dataFile->WriteToFile(data, header, size, fnum - firstIndex, nump);
} catch (const RuntimeError &e) {
; // ignore write exception for now (TODO: send error message
// via stopReceiver tcp)
}
}
}
bool DataProcessor::SendToStreamer() {
// skip
if (streamingFrequency == 0u) {
if (!CheckTimer())
return false;
} else {
if (!CheckCount())
return false;
}
return true;
}
bool DataProcessor::CheckTimer() {
struct timespec end;
clock_gettime(CLOCK_REALTIME, &end);
auto elapsed_s = (end.tv_sec - timerbegin.tv_sec) +
(end.tv_nsec - timerbegin.tv_nsec) / 1e9;
double timer_s = streamingTimerInMs / 1e3;
LOG(logDEBUG1) << index << " Timer elapsed time:" << elapsed_s
<< " seconds";
// still less than streaming timer, keep waiting
if (elapsed_s < timer_s)
return false;
// restart timer
clock_gettime(CLOCK_REALTIME, &timerbegin);
return true;
}
bool DataProcessor::CheckCount() {
if (currentFreqCount == streamingFrequency) {
currentFreqCount = 1;
return true;
}
currentFreqCount++;
return false;
}
void DataProcessor::registerCallBackRawDataReady(
void (*func)(sls_receiver_header &, dataCallbackHeader, char *, size_t &,
void *),
void *arg) {
rawDataReadyCallBack = func;
pRawDataReady = arg;
}
void DataProcessor::PadMissingPackets(sls_receiver_header header, char *data) {
LOG(logDEBUG) << index << ": Padding Missing Packets";
uint32_t pperFrame = generalData->packetsPerFrame;
uint32_t nmissing = pperFrame - header.detHeader.packetNumber;
sls_bitset pmask = header.packetsMask;
uint32_t dsize = generalData->dataSize;
if (generalData->detType == GOTTHARD2 && index != 0) {
dsize = generalData->vetoDataSize;
}
uint32_t corrected_dsize =
dsize - ((pperFrame * dsize) - generalData->imageSize);
LOG(logDEBUG1) << "bitmask: " << pmask.to_string();
for (unsigned int pnum = 0; pnum < pperFrame; ++pnum) {
// not missing packet
if (pmask[pnum])
continue;
// done with padding, exit loop earlier
if (nmissing == 0u)
break;
LOG(logDEBUG) << "padding for " << index << " for pnum: " << pnum
<< std::endl;
// missing packet
switch (generalData->detType) {
// for gotthard, 1st packet: 4 bytes fnum, CACA + CACA, 639*2 bytes
// data
// 2nd packet: 4 bytes fnum, previous 1*2 bytes data +
// 640*2 bytes data !!
case GOTTHARD:
if (pnum == 0u)
memset(data + (pnum * dsize), 0xFF, dsize - 2);
else
memset(data + (pnum * dsize), 0xFF, dsize + 2);
break;
case CHIPTESTBOARD:
case XILINX_CHIPTESTBOARD:
if (pnum == (pperFrame - 1))
memset(data + (pnum * dsize), 0xFF, corrected_dsize);
else
memset(data + (pnum * dsize), 0xFF, dsize);
break;
default:
memset(data + (pnum * dsize), 0xFF, dsize);
break;
}
--nmissing;
}
}
/** ctb specific */
void DataProcessor::ArrangeDbitData(size_t &size, char *data) {
size_t nAnalogDataBytes = generalData->GetNumberOfAnalogDatabytes();
size_t nDigitalDataBytes = generalData->GetNumberOfDigitalDatabytes();
size_t nTransceiverDataBytes =
generalData->GetNumberOfTransceiverDatabytes();
// TODO! (Erik) Refactor and add tests
int ctbDigitalDataBytes = nDigitalDataBytes - ctbDbitOffset;
// no digital data
if (ctbDigitalDataBytes == 0) {
LOG(logWARNING)
<< "No digital data for call back, yet dbitlist is not empty.";
return;
}
auto *source = (uint64_t *)(data + nAnalogDataBytes + ctbDbitOffset);
const int numDigitalSamples = (ctbDigitalDataBytes / sizeof(uint64_t));
int totalNumBytes =
0; // number of bytes for selected digital data given by dtbDbitList
// store each selected bit from all samples consecutively
if (ctbDbitReorder) {
int numBitsPerDbit = numDigitalSamples; // num bits per selected digital
// Bit for all samples
if ((numBitsPerDbit % 8) != 0)
numBitsPerDbit += (8 - (numDigitalSamples % 8));
totalNumBytes = (numBitsPerDbit / 8) * ctbDbitList.size();
}
// store all selected bits from one sample consecutively
else {
size_t numBitsPerSample =
ctbDbitList.size(); // num bits for all selected bits per sample
if ((numBitsPerSample % 8) != 0)
numBitsPerSample += (8 - (numBitsPerSample % 8));
totalNumBytes = (numBitsPerSample / 8) * numDigitalSamples;
}
std::vector<uint8_t> result(totalNumBytes, 0);
uint8_t *dest = &result[0];
if (ctbDbitReorder) {
// loop through digital bit enable vector
int bitoffset = 0;
for (auto bi : ctbDbitList) {
// where numbits * numDigitalSamples is not a multiple of 8
if (bitoffset != 0) {
bitoffset = 0;
++dest;
}
// loop through the frame digital data
for (auto *ptr = source; ptr < (source + numDigitalSamples);) {
// get selected bit from each 8 bit
uint8_t bit = (*ptr++ >> bi) & 1;
*dest |= bit << bitoffset;
++bitoffset;
// extract destination in 8 bit batches
if (bitoffset == 8) {
bitoffset = 0;
++dest;
}
}
}
} else {
// loop through the digital data
int bitoffset = 0;
for (auto *ptr = source; ptr < (source + numDigitalSamples); ++ptr) {
// where bit enable vector size is not a multiple of 8
if (bitoffset != 0) {
bitoffset = 0;
++dest;
}
// loop through digital bit enable vector
for (auto bi : ctbDbitList) {
// get selected bit from each 64 bit
uint8_t bit = (*ptr >> bi) & 1;
*dest |= bit << bitoffset;
++bitoffset;
// extract destination in 8 bit batches
if (bitoffset == 8) {
bitoffset = 0;
++dest;
}
}
}
}
// copy back to memory and update size
memcpy(data + nAnalogDataBytes, result.data(),
totalNumBytes * sizeof(uint8_t));
size = totalNumBytes * sizeof(uint8_t) + nAnalogDataBytes +
nTransceiverDataBytes;
// check if size changed, if so move transceiver data to avoid gap in memory
if (size < nAnalogDataBytes + nDigitalDataBytes + nTransceiverDataBytes)
memmove(data + nAnalogDataBytes + totalNumBytes * sizeof(uint8_t),
data + nAnalogDataBytes + nDigitalDataBytes,
nTransceiverDataBytes);
LOG(logDEBUG1) << "totalNumBytes: " << totalNumBytes
<< " nAnalogDataBytes:" << nAnalogDataBytes
<< " ctbDbitOffset:" << ctbDbitOffset
<< " nTransceiverDataBytes:" << nTransceiverDataBytes
<< " size:" << size;
}
void DataProcessor::CropImage(size_t &size, char *data) {
LOG(logDEBUG) << "Cropping Image to ROI " << ToString(receiverRoi);
int nPixelsX = generalData->nPixelsX;
int xmin = receiverRoi.xmin;
int xmax = receiverRoi.xmax;
int ymin = receiverRoi.ymin;
int ymax = receiverRoi.ymax;
int xwidth = xmax - xmin + 1;
int ywidth = ymax - ymin + 1;
if (ymin == -1 || ymax == -1) {
ywidth = 1;
ymin = 0;
}
// calculate total roi size
double bytesPerPixel = generalData->dynamicRange / 8.00;
int startOffset = (int)((nPixelsX * ymin + xmin) * bytesPerPixel);
// write size into memory
std::size_t roiImageSize = xwidth * ywidth * bytesPerPixel;
LOG(logDEBUG) << "roiImageSize:" << roiImageSize;
size = roiImageSize;
// copy the roi to the beginning of the image
char *dstOffset = data;
char *srcOffset = dstOffset + startOffset;
// entire width
if (xwidth == nPixelsX) {
memcpy(dstOffset, srcOffset, roiImageSize);
}
// width is cropped
else {
for (int y = 0; y != ywidth; ++y) {
memcpy(dstOffset, srcOffset, xwidth * bytesPerPixel);
dstOffset += (int)(xwidth * bytesPerPixel);
srcOffset += (int)(generalData->nPixelsX * bytesPerPixel);
}
}
}
} // namespace sls