2018-09-28 11:47:25 +02:00

206 lines
5.8 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2012 (1.2)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Mighell-Poisson weighted average</TITLE>
<META NAME="description" CONTENT="Mighell-Poisson weighted average">
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2012">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
<LINK REL="next" HREF="node60.html">
<LINK REL="previous" HREF="node58.html">
<LINK REL="up" HREF="node54.html">
<LINK REL="next" HREF="node60.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html921"
HREF="node60.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html917"
HREF="node54.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html911"
HREF="node58.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html919"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html922"
HREF="node60.html">Comparison</A>
<B> Up:</B> <A NAME="tex2html918"
HREF="node54.html">Average vs. weighted average</A>
<B> Previous:</B> <A NAME="tex2html912"
HREF="node58.html">Straight Poisson (zero-skipping) weighted</A>
&nbsp; <B> <A NAME="tex2html920"
HREF="node1.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION00625500000000000000">
Mighell-Poisson weighted average</A>
</H3>
<P>
When <!-- MATH
$O_j=C_j+\min{\ensuremath{\left({1,C_j}\right)}}$
-->
<IMG
WIDTH="157" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img165.png"
ALT="$ O_j=C_j+\min{\ensuremath{\left({1,C_j}\right)}}$">
and <!-- MATH
$\sigma_j^2=C_j+1$
-->
<IMG
WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img166.png"
ALT="$ \sigma_j^2=C_j+1$">
<P><!-- MATH
\begin{displaymath}
\langle x \rangle_{\!\mathrm{w(2)}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
{N_{\mathrm{obs}}^*}
}}}}{{\ensuremath{\displaystyle{
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
C_j+1
}}}}}}}
}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="180" HEIGHT="117" ALIGN="MIDDLE" BORDER="0"
SRC="img167.png"
ALT="$\displaystyle \langle x \rangle_{\!\mathrm{w(2)}}={\ensuremath{\displaystyle{\f...
...uremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
C_j+1
}}}}}}}
}}}}}}}
$">
</DIV><P>
</P>
<P><!-- MATH
\begin{displaymath}
\sigma_{\langle x \rangle_{\!\mathrm{w(2)}}} = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
1
}}}}{{\ensuremath{\displaystyle{\sqrt{
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
C_j+1
}}}}}}}
}}}}}}}}=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x \rangle_{\!\mathrm{w(2)}}}}}}{{\ensuremath{\displaystyle{
N_{\mathrm{obs}}^*
}}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="286" HEIGHT="141" ALIGN="MIDDLE" BORDER="0"
SRC="img168.png"
ALT="$\displaystyle \sigma_{\langle x \rangle_{\!\mathrm{w(2)}}} = {\ensuremath{\disp...
..._{\!\mathrm{w(2)}}}}}}{{\ensuremath{\displaystyle{
N_{\mathrm{obs}}^*
}}}}}}}}
$">
</DIV><P>
</P>
<P><!-- MATH
\begin{displaymath}
\mathsf{GoF}_{(2)}=
\sqrt{
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
\!\!\!\!C_j+N_{\mathrm{obs}}^*
-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
{\ensuremath{\left[{
N_{\mathrm{obs}}^*
}\right]}}^2
}}}}{{\ensuremath{\displaystyle{ \mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
C_j+1
}}}}}}} }}}}}}}
}}}}{{\ensuremath{\displaystyle{
N_{\mathrm{obs}}^*-1
}}}}}}}
}
=\sqrt{
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*-1}}}}}}}
{\ensuremath{\left({
\langle x\rangle^*-\langle x \rangle_{\!\mathrm{w(2)}}+1
}\right)}}
}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="568" HEIGHT="189" ALIGN="MIDDLE" BORDER="0"
SRC="img169.png"
ALT="$\displaystyle \mathsf{GoF}_{(2)}=
\sqrt{
{\ensuremath{\displaystyle{\frac{{\ens...
...{\left({
\langle x\rangle^*-\langle x \rangle_{\!\mathrm{w(2)}}+1
}\right)}}
}
$">
</DIV><P>
</P>
where <!-- MATH
$\langle x\rangle^*$
-->
<IMG
WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img163.png"
ALT="$ \langle x\rangle^*$">
is the simple average of the non-zero data points; and of course
<P><!-- MATH
\begin{displaymath}
{\sigma}_{\langle x \rangle_{\!\mathrm{w(2)}}}^{\mathrm{corrected}} = \mathsf{GoF}_{(2)}\ \sigma_{\langle x \rangle_{\!\mathrm{w(2)}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="185" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img170.png"
ALT="$\displaystyle {\sigma}_{\langle x \rangle_{\!\mathrm{w(2)}}}^{\mathrm{corrected}} = \mathsf{GoF}_{(2)}\ \sigma_{\langle x \rangle_{\!\mathrm{w(2)}}}
$">
</DIV><P>
</P>
<P>
<BR><HR>
<ADDRESS>
Thattil Dhanya
2018-09-28
</ADDRESS>
</BODY>
</HTML>