mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-04-28 17:10:03 +02:00
162 lines
4.9 KiB
HTML
162 lines
4.9 KiB
HTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
|
|
|
<!--Converted with LaTeX2HTML 2012 (1.2)
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
* with significant contributions from:
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
<HTML>
|
|
<HEAD>
|
|
<TITLE>Simple average</TITLE>
|
|
<META NAME="description" CONTENT="Simple average">
|
|
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
|
|
<META NAME="resource-type" CONTENT="document">
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2012">
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
|
|
|
|
<LINK REL="next" HREF="node56.html">
|
|
<LINK REL="previous" HREF="node54.html">
|
|
<LINK REL="up" HREF="node54.html">
|
|
<LINK REL="next" HREF="node56.html">
|
|
</HEAD>
|
|
|
|
<BODY >
|
|
<!--Navigation Panel-->
|
|
<A NAME="tex2html873"
|
|
HREF="node56.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="file:/usr/share/latex2html/icons/next.png"></A>
|
|
<A NAME="tex2html869"
|
|
HREF="node54.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="file:/usr/share/latex2html/icons/up.png"></A>
|
|
<A NAME="tex2html863"
|
|
HREF="node54.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
|
|
<A NAME="tex2html871"
|
|
HREF="node1.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A NAME="tex2html874"
|
|
HREF="node56.html">Zero-skipping average</A>
|
|
<B> Up:</B> <A NAME="tex2html870"
|
|
HREF="node54.html">Average vs. weighted average</A>
|
|
<B> Previous:</B> <A NAME="tex2html864"
|
|
HREF="node54.html">Average vs. weighted average</A>
|
|
<B> <A NAME="tex2html872"
|
|
HREF="node1.html">Contents</A></B>
|
|
<BR>
|
|
<BR>
|
|
<!--End of Navigation Panel-->
|
|
|
|
<H3><A NAME="SECTION00625100000000000000">
|
|
Simple average</A>
|
|
</H3>
|
|
|
|
<P>
|
|
Suppose we have <!-- MATH
|
|
$N_{\mathrm{obs}}$
|
|
-->
|
|
<IMG
|
|
WIDTH="37" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img142.png"
|
|
ALT="$ N_{\mathrm{obs}}$">
|
|
Poisson-variate experimental evaluations
|
|
<!-- MATH
|
|
$C_j,\quad j=1\ldots N_{\mathrm{obs}}$
|
|
-->
|
|
<IMG
|
|
WIDTH="138" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img143.png"
|
|
ALT="$ C_j,\quad j=1\ldots N_{\mathrm{obs}}$">
|
|
,
|
|
of the same quantity <IMG
|
|
WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
|
SRC="img144.png"
|
|
ALT="$ x$">
|
|
.
|
|
There are different ways to obtain from all <!-- MATH
|
|
$N_{\mathrm{obs}}$
|
|
-->
|
|
<IMG
|
|
WIDTH="37" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img142.png"
|
|
ALT="$ N_{\mathrm{obs}}$">
|
|
data values a single estimate of the observable which is better than
|
|
any of them. The most straightforward and the best is the simple average
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
x=\langle x\rangle={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j\ .
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="173" HEIGHT="67" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img145.png"
|
|
ALT="$\displaystyle x=\langle x\rangle={\ensuremath{\displaystyle{\frac{{\ensuremath{...
|
|
...aystyle{ N_{\mathrm{obs}}}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j\ .
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
As the sum of Poisson variates is a Poisson variate, the standard deviation
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
\sigma_x=\sqrt{\langle x^2\rangle-\langle x\rangle^2}=\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j^2-{\ensuremath{\left({
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j
|
|
}\right)}}
|
|
}
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="394" HEIGHT="87" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img146.png"
|
|
ALT="$\displaystyle \sigma_x=\sqrt{\langle x^2\rangle-\langle x\rangle^2}=\sqrt{
|
|
{\en...
|
|
...\mathrm{obs}}}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j
|
|
}\right)}}
|
|
}
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
can be evaluated more comfortably as
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
\sigma_x={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}}}}}}}}\sqrt{ \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j }
|
|
=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x\rangle}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}}}}}
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="216" HEIGHT="78" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img147.png"
|
|
ALT="$\displaystyle \sigma_x={\ensuremath{\displaystyle{\frac{{\ensuremath{\displayst...
|
|
...style{\langle x\rangle}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}}}}}
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
|
|
<P>
|
|
<BR><HR>
|
|
<ADDRESS>
|
|
Thattil Dhanya
|
|
2018-09-28
|
|
</ADDRESS>
|
|
</BODY>
|
|
</HTML>
|