4007 lines
123 KiB
C++

#include "multiSlsDetector.h"
#include "SharedMemory.h"
#include "ZmqSocket.h"
#include "detectorData.h"
#include "file_utils.h"
#include "logger.h"
#include "multiSlsDetectorClient.h"
#include "slsDetector.h"
#include "slsDetectorCommand.h"
#include "sls_detector_exceptions.h"
#include "string_utils.h"
#include <cstring>
#include <iomanip>
#include <iostream>
#include <rapidjson/document.h> //json header in zmq stream
#include <sstream>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/types.h>
//#include <time.h> //clock()
#include "container_utils.h"
#include <chrono>
#include <future>
#include <vector>
multiSlsDetector::multiSlsDetector(int id, bool verify, bool update)
: detId(id) {
setupMultiDetector(verify, update);
}
multiSlsDetector::~multiSlsDetector() {
if (sharedMemory) {
sharedMemory->UnmapSharedMemory(thisMultiDetector);
delete sharedMemory;
}
}
void multiSlsDetector::setupMultiDetector(bool verify, bool update) {
initSharedMemory(verify);
initializeMembers(verify);
if (update) {
updateUserdetails();
}
}
template <typename RT, typename... CT>
std::vector<RT> multiSlsDetector::serialCall(RT (slsDetector::*somefunc)(CT...),
typename NonDeduced<CT>::type... Args) {
std::vector<RT> result;
result.reserve(detectors.size());
for (auto &d : detectors) {
result.push_back((d.get()->*somefunc)(Args...));
}
return result;
}
template <typename RT, typename... CT>
std::vector<RT>
multiSlsDetector::parallelCall(RT (slsDetector::*somefunc)(CT...), typename NonDeduced<CT>::type... Args) {
std::vector<std::future<RT>> futures;
for (auto &d : detectors) {
futures.push_back(
std::async(std::launch::async, somefunc, d.get(), Args...));
}
std::vector<RT> result;
result.reserve(detectors.size());
for (auto &i : futures) {
result.push_back(i.get());
}
return result;
}
int multiSlsDetector::decodeNChannel(int offsetX, int offsetY, int &channelX,
int &channelY) {
channelX = -1;
channelY = -1;
// loop over
for (size_t i = 0; i < detectors.size(); ++i) {
int x = detectors[i]->getDetectorOffset(X);
int y = detectors[i]->getDetectorOffset(Y);
// check x offset range
if ((offsetX >= x) &&
(offsetX <
(x + detectors[i]->getTotalNumberOfChannelsInclGapPixels(X)))) {
if (offsetY == -1) {
channelX = offsetX - x;
return i;
} else {
// check y offset range
if ((offsetY >= y) &&
(offsetY <
(y + detectors[i]->getTotalNumberOfChannelsInclGapPixels(
Y)))) {
channelX = offsetX - x;
channelY = offsetY - y;
return i;
}
}
}
}
return -1;
}
std::string multiSlsDetector::getErrorMessage(int &critical, int detPos) {
int64_t multiMask = 0, slsMask = 0;
std::string retval = "";
critical = 0;
size_t posmin = 0, posmax = detectors.size();
// single
if (detPos >= 0) {
slsMask = detectors[detPos]->getErrorMask();
posmin = (size_t)detPos;
posmax = posmin + 1;
}
multiMask = getErrorMask();
if (multiMask || slsMask) {
if (multiMask & MULTI_DETECTORS_NOT_ADDED) {
retval.append("Detectors not added:\n" +
std::string(getNotAddedList()) + std::string("\n"));
critical = 1;
}
if (multiMask & MULTI_HAVE_DIFFERENT_VALUES) {
retval.append(
"A previous multi detector command gave different values\n"
"Please check the console\n");
critical = 0;
}
if (multiMask & MULTI_CONFIG_FILE_ERROR) {
retval.append("Could not load Config File\n");
critical = 1;
}
if (multiMask & MULTI_POS_EXCEEDS_LIST) {
retval.append("Position exceeds multi detector list\n");
critical = 0;
}
if (multiMask & MUST_BE_MULTI_CMD) {
retval.append("Must be a multi detector level command.\n");
critical = 0;
}
if (multiMask & MULTI_OTHER_ERROR) {
retval.append("Some error occured from multi level.\n");
critical =
0; // FIXME: with exceptions/appropriate errors wherever used
}
for (size_t idet = posmin; idet < posmax; ++idet) {
// if the detector has error
if ((multiMask & (1 << idet)) || (detPos >= 0)) {
// append detector id
retval.append("Detector " + std::to_string(idet) +
std::string(":\n"));
// get sls det error mask
slsMask = detectors[idet]->getErrorMask();
// get the error critical level
if ((slsMask > 0xFFFFFFFF) | critical) {
critical = 1;
}
// append error message
retval.append(errorDefs::getErrorMessage(slsMask));
}
}
}
return retval;
}
int64_t multiSlsDetector::clearAllErrorMask(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->clearErrorMask();
}
// multi
clearErrorMask();
clearNotAddedList();
for (auto &d : detectors) {
d->clearErrorMask();
}
return getErrorMask();
}
void multiSlsDetector::setErrorMaskFromAllDetectors() {
for (size_t idet = 0; idet < detectors.size(); ++idet) {
if (detectors[idet]->getErrorMask()) {
setErrorMask(getErrorMask() | (1 << idet));
}
}
}
void multiSlsDetector::setAcquiringFlag(bool b) {
thisMultiDetector->acquiringFlag = b;
}
bool multiSlsDetector::getAcquiringFlag() const {
return thisMultiDetector->acquiringFlag;
}
bool multiSlsDetector::isAcquireReady() {
if (thisMultiDetector->acquiringFlag) {
FILE_LOG(logWARNING) << "Acquire has already started. "
"If previous acquisition terminated unexpectedly, "
"reset busy flag to restart.(sls_detector_put busy 0)";
return FAIL;
}
thisMultiDetector->acquiringFlag = true;
return OK;
}
int multiSlsDetector::checkDetectorVersionCompatibility(int detPos) {
if (detPos >= 0) {
return detectors[detPos]->checkDetectorVersionCompatibility();
}
auto r = parallelCall(&slsDetector::checkDetectorVersionCompatibility);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::checkReceiverVersionCompatibility(int detPos) {
if (detPos >= 0) {
return detectors[detPos]->checkReceiverVersionCompatibility();
}
auto r = parallelCall(&slsDetector::checkReceiverVersionCompatibility);
return sls::minusOneIfDifferent(r);
}
int64_t multiSlsDetector::getId(idMode mode, int detPos) {
if (detPos >= 0) {
return detectors[detPos]->getId(mode);
}
auto r = parallelCall(&slsDetector::getId, mode);
return sls::minusOneIfDifferent(r);
}
void multiSlsDetector::freeSharedMemory(int multiId, int detPos) {
// single
if (detPos >= 0) {
slsDetector::freeSharedMemory(multiId, detPos);
return;
}
// multi
// get number of detectors
int numDetectors = 0;
auto shm = SharedMemory(multiId, -1);
// get number of detectors from multi shm
if (shm.IsExisting()) {
sharedMultiSlsDetector *mdet =
(sharedMultiSlsDetector *)shm.OpenSharedMemory(
sizeof(sharedMultiSlsDetector));
numDetectors = mdet->numberOfDetectors;
shm.UnmapSharedMemory(mdet);
shm.RemoveSharedMemory();
}
for (int i = 0; i < numDetectors; ++i) {
auto shm = SharedMemory(multiId, i);
shm.RemoveSharedMemory();
}
}
void multiSlsDetector::freeSharedMemory(int detPos) {
// single
if (detPos >= 0) {
detectors[detPos]->freeSharedMemory();
return;
}
// multi
zmqSocket.clear();
clearAllErrorMask();
for (auto &d : detectors) {
d->freeSharedMemory();
}
detectors.clear();
// clear multi detector shm
if (sharedMemory) {
if (thisMultiDetector) {
sharedMemory->UnmapSharedMemory(thisMultiDetector);
thisMultiDetector = nullptr;
}
sharedMemory->RemoveSharedMemory();
delete sharedMemory;
sharedMemory = nullptr;
}
// zmq
client_downstream = false;
}
std::string multiSlsDetector::getUserDetails() {
if (detectors.empty()) {
return std::string("none");
}
std::ostringstream sstream;
sstream << "\nHostname: " << getHostname();
sstream << "\nType: ";
for (auto &d : detectors) {
sstream << d->getDetectorTypeAsString() << "+";
}
sstream << "\nPID: " << thisMultiDetector->lastPID
<< "\nUser: " << thisMultiDetector->lastUser
<< "\nDate: " << thisMultiDetector->lastDate << std::endl;
return sstream.str();
}
/*
* pre: sharedMemory=0, thisMultiDetector = 0, detectors.size() = 0
* exceptions are caught in calling function, shm unmapped and deleted
*/
void multiSlsDetector::initSharedMemory(bool verify) {
try {
// shared memory object with name
sharedMemory = new SharedMemory(detId, -1);
size_t sz = sizeof(sharedMultiSlsDetector);
// create
if (!sharedMemory->IsExisting()) {
thisMultiDetector =
(sharedMultiSlsDetector *)sharedMemory->CreateSharedMemory(sz);
initializeDetectorStructure();
}
// open and verify version
else {
thisMultiDetector =
(sharedMultiSlsDetector *)sharedMemory->OpenSharedMemory(sz);
if (verify && thisMultiDetector->shmversion != MULTI_SHMVERSION) {
FILE_LOG(logERROR) << "Multi shared memory (" << detId << ") version mismatch "
"(expected 0x"
<< std::hex << MULTI_SHMVERSION << " but got 0x" << thisMultiDetector->shmversion << std::dec;
throw SharedMemoryException();
}
}
} catch (...) {
if (sharedMemory) {
// unmap
if (thisMultiDetector) {
sharedMemory->UnmapSharedMemory(thisMultiDetector);
thisMultiDetector = nullptr;
}
// delete
delete sharedMemory;
sharedMemory = nullptr;
}
throw;
}
}
void multiSlsDetector::initializeDetectorStructure() {
thisMultiDetector->shmversion = MULTI_SHMVERSION;
thisMultiDetector->numberOfDetectors = 0;
thisMultiDetector->numberOfDetector[X] = 0;
thisMultiDetector->numberOfDetector[Y] = 0;
thisMultiDetector->onlineFlag = 1;
thisMultiDetector->stoppedFlag = 0;
thisMultiDetector->dataBytes = 0;
thisMultiDetector->dataBytesInclGapPixels = 0;
thisMultiDetector->numberOfChannels = 0;
thisMultiDetector->numberOfChannel[X] = 0;
thisMultiDetector->numberOfChannel[Y] = 0;
thisMultiDetector->numberOfChannelInclGapPixels[X] = 0;
thisMultiDetector->numberOfChannelInclGapPixels[Y] = 0;
thisMultiDetector->maxNumberOfChannelsPerDetector[X] = 0;
thisMultiDetector->maxNumberOfChannelsPerDetector[Y] = 0;
for (int64_t &i : thisMultiDetector->timerValue) {
i = 0;
}
thisMultiDetector->acquiringFlag = false;
thisMultiDetector->receiverOnlineFlag = OFFLINE_FLAG;
thisMultiDetector->receiver_upstream = false;
}
void multiSlsDetector::initializeMembers(bool verify) {
// multiSlsDetector
zmqSocket.clear();
// get objects from single det shared memory (open)
for (int i = 0; i < thisMultiDetector->numberOfDetectors; i++) {
try {
detectors.push_back(
sls::make_unique<slsDetector>(detId, i, verify));
} catch (...) {
detectors.clear();
throw;
}
}
// depend on number of detectors
updateOffsets();
}
void multiSlsDetector::updateUserdetails() {
thisMultiDetector->lastPID = getpid();
memset(thisMultiDetector->lastUser, 0, SHORT_STRING_LENGTH);
memset(thisMultiDetector->lastDate, 0, SHORT_STRING_LENGTH);
try {
sls::strcpy_safe(thisMultiDetector->lastUser, exec("whoami").c_str());
sls::strcpy_safe(thisMultiDetector->lastDate, exec("date").c_str());
} catch (...) {
sls::strcpy_safe(thisMultiDetector->lastUser, "errorreading");
sls::strcpy_safe(thisMultiDetector->lastDate, "errorreading");
}
}
std::string multiSlsDetector::exec(const char *cmd) {
int bufsize = 128;
char buffer[bufsize];
std::string result = "";
FILE *pipe = popen(cmd, "r");
if (!pipe) {
throw std::exception();
}
try {
while (!feof(pipe)) {
if (fgets(buffer, bufsize, pipe) != nullptr) {
result += buffer;
}
}
} catch (...) {
pclose(pipe);
throw;
}
pclose(pipe);
result.erase(result.find_last_not_of(" \t\n\r") + 1);
return result;
}
void multiSlsDetector::setHostname(const char *name, int detPos) {
// single
if (detPos >= 0) {
detectors[detPos]->setHostname(name);
return;
}
// multi
// this check is there only to allow the previous detsizechan command
if (thisMultiDetector->numberOfDetectors) {
FILE_LOG(logWARNING) << "There are already detector(s) in shared memory."
"Freeing Shared memory now.";
freeSharedMemory();
setupMultiDetector();
}
addMultipleDetectors(name);
}
std::string multiSlsDetector::getHostname(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getHostname();
}
// multi
auto r = serialCall(&slsDetector::getHostname);
return sls::concatenateIfDifferent(r);
}
void multiSlsDetector::addMultipleDetectors(const char *name) {
for (const auto &hostname : sls::split(name, '+')) {
addSlsDetector(hostname);
}
setOnline();
updateOffsets();
}
void multiSlsDetector::addSlsDetector(const std::string &hostname) {
FILE_LOG(logDEBUG1) << "Adding detector " << hostname;
for (auto &d : detectors) {
if (d->getHostname() == hostname) {
FILE_LOG(logWARNING) << "Detector " << hostname
<< "already part of the multiDetector!" << std::endl
<< "Remove it before adding it back in a new position!";
return;
}
}
// get type by connecting
detectorType type = slsDetector::getTypeFromDetector(hostname.c_str(), DEFAULT_PORTNO);
if (type == GENERIC) {
FILE_LOG(logERROR) << "Could not connect to Detector " << hostname
<< " to determine the type!";
setErrorMask(getErrorMask() | MULTI_DETECTORS_NOT_ADDED);
appendNotAddedList(hostname.c_str());
return;
}
int pos = (int)detectors.size();
detectors.push_back(sls::make_unique<slsDetector>(type, detId, pos, false));
thisMultiDetector->numberOfDetectors = detectors.size();
thisMultiDetector->dataBytes += detectors[pos]->getDataBytes();
thisMultiDetector->dataBytesInclGapPixels +=
detectors[pos]->getDataBytesInclGapPixels();
thisMultiDetector->numberOfChannels +=
detectors[pos]->getTotalNumberOfChannels();
detectors[pos]->setHostname(hostname);
detectors[pos]->setOnline(true);
}
slsDetectorDefs::detectorType multiSlsDetector::getDetectorTypeAsEnum(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getDetectorTypeAsEnum();
}
// multi
auto r = serialCall(&slsDetector::getDetectorTypeAsEnum);
return (detectorType)sls::minusOneIfDifferent(r);
}
std::string multiSlsDetector::getDetectorTypeAsString(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getDetectorTypeAsString();
}
// multi
auto r = serialCall(&slsDetector::getDetectorTypeAsString);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::getNumberOfDetectors() const {
return detectors.size();
}
int multiSlsDetector::getNumberOfDetectors(dimension d) const {
return thisMultiDetector->numberOfDetector[d];
}
void multiSlsDetector::getNumberOfDetectors(int &nx, int &ny) const {
nx = thisMultiDetector->numberOfDetector[X];
ny = thisMultiDetector->numberOfDetector[Y];
}
int multiSlsDetector::getTotalNumberOfChannels(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTotalNumberOfChannels();
}
// multi
return thisMultiDetector->numberOfChannels;
}
int multiSlsDetector::getTotalNumberOfChannels(dimension d, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTotalNumberOfChannels(d);
}
// multi
return thisMultiDetector->numberOfChannel[d];
}
int multiSlsDetector::getTotalNumberOfChannelsInclGapPixels(dimension d,
int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTotalNumberOfChannelsInclGapPixels(d);
}
// multi
return thisMultiDetector->numberOfChannelInclGapPixels[d];
}
int multiSlsDetector::getMaxNumberOfChannelsPerDetector(dimension d) {
return thisMultiDetector->maxNumberOfChannelsPerDetector[d];
}
int multiSlsDetector::setMaxNumberOfChannelsPerDetector(dimension d, int i) {
thisMultiDetector->maxNumberOfChannelsPerDetector[d] = i;
return thisMultiDetector->maxNumberOfChannelsPerDetector[d];
}
int multiSlsDetector::getDetectorOffset(dimension d, int detPos) {
return detectors[detPos]->getDetectorOffset(d);
}
void multiSlsDetector::setDetectorOffset(dimension d, int off, int detPos) {
detectors[detPos]->setDetectorOffset(d, off);
}
void multiSlsDetector::updateOffsets() {
FILE_LOG(logDEBUG1) << "Updating Multi-Detector Offsets";
int offsetX = 0, offsetY = 0, numX = 0, numY = 0;
int maxChanX = thisMultiDetector->maxNumberOfChannelsPerDetector[X];
int maxChanY = thisMultiDetector->maxNumberOfChannelsPerDetector[Y];
int prevChanX = 0;
int prevChanY = 0;
bool firstTime = true;
thisMultiDetector->numberOfChannel[X] = 0;
thisMultiDetector->numberOfChannel[Y] = 0;
thisMultiDetector->numberOfDetector[X] = 0;
thisMultiDetector->numberOfDetector[Y] = 0;
// gap pixels
int offsetX_gp = 0, offsetY_gp = 0, numX_gp = 0, numY_gp = 0;
int prevChanX_gp = 0, prevChanY_gp = 0;
thisMultiDetector->numberOfChannelInclGapPixels[X] = 0;
thisMultiDetector->numberOfChannelInclGapPixels[Y] = 0;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
FILE_LOG(logDEBUG1) << "offsetX:" << offsetX << " prevChanX:" << prevChanX << " offsetY:" << offsetY << " prevChanY:" << prevChanY << " offsetX_gp:" << offsetX_gp << " prevChanX_gp:" << prevChanX_gp << " offsetY_gp:" << offsetY_gp << " prevChanY_gp:" << prevChanY_gp;
// incrementing in both direction
if (firstTime) {
// incrementing in both directions
firstTime = false;
if ((maxChanX > 0) &&
((offsetX + detectors[idet]->getTotalNumberOfChannels(X)) > maxChanX)) {
FILE_LOG(logWARNING) << "\nDetector[" << idet
<< "] exceeds maximum channels "
"allowed for complete detector set in X dimension!";
}
if ((maxChanY > 0) &&
((offsetY + detectors[idet]->getTotalNumberOfChannels(Y)) > maxChanY)) {
FILE_LOG(logERROR) << "\nDetector[" << idet
<< "] exceeds maximum channels "
"allowed for complete detector set in Y dimension!";
}
prevChanX = detectors[idet]->getTotalNumberOfChannels(X);
prevChanY = detectors[idet]->getTotalNumberOfChannels(Y);
prevChanX_gp =
detectors[idet]->getTotalNumberOfChannelsInclGapPixels(X);
prevChanY_gp =
detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
numX += detectors[idet]->getTotalNumberOfChannels(X);
numY += detectors[idet]->getTotalNumberOfChannels(Y);
numX_gp +=
detectors[idet]->getTotalNumberOfChannelsInclGapPixels(X);
numY_gp +=
detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
++thisMultiDetector->numberOfDetector[X];
++thisMultiDetector->numberOfDetector[Y];
FILE_LOG(logDEBUG1) << "incrementing in both direction";
}
// incrementing in y direction
else if ((maxChanY == -1) ||
((maxChanY > 0) && ((offsetY + prevChanY +
detectors[idet]->getTotalNumberOfChannels(
Y)) <= maxChanY))) {
offsetY += prevChanY;
offsetY_gp += prevChanY_gp;
prevChanY = detectors[idet]->getTotalNumberOfChannels(Y);
prevChanY_gp =
detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
numY += detectors[idet]->getTotalNumberOfChannels(Y);
numY_gp +=
detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
// increment in y again only in the first column (else you double increment)
if (thisMultiDetector->numberOfDetector[X] == 1)
++thisMultiDetector->numberOfDetector[Y];
FILE_LOG(logDEBUG1) << "incrementing in y direction";
}
// incrementing in x direction
else {
if ((maxChanX > 0) &&
((offsetX + prevChanX +
detectors[idet]->getTotalNumberOfChannels(X)) > maxChanX)) {
FILE_LOG(logDEBUG1) << "\nDetector[" << idet
<< "] exceeds maximum channels "
"allowed for complete detector set in X dimension!";
}
offsetY = 0;
offsetY_gp = 0;
prevChanY = detectors[idet]->getTotalNumberOfChannels(Y);
prevChanY_gp =
detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
numY = 0; // assuming symmetry with this statement.
// whats on 1st column should be on 2nd column
numY_gp = 0;
offsetX += prevChanX;
offsetX_gp += prevChanX_gp;
prevChanX = detectors[idet]->getTotalNumberOfChannels(X);
prevChanX_gp =
detectors[idet]->getTotalNumberOfChannelsInclGapPixels(X);
numX += detectors[idet]->getTotalNumberOfChannels(X);
numX_gp +=
detectors[idet]->getTotalNumberOfChannelsInclGapPixels(X);
++thisMultiDetector->numberOfDetector[X];
FILE_LOG(logDEBUG1) << "incrementing in x direction";
}
double bytesperchannel =
(double)detectors[idet]->getDataBytes() /
(double)(detectors[idet]->getTotalNumberOfChannels(X) *
detectors[idet]->getTotalNumberOfChannels(Y));
detectors[idet]->setDetectorOffset(
X, (bytesperchannel >= 1.0) ? offsetX_gp : offsetX);
detectors[idet]->setDetectorOffset(
Y, (bytesperchannel >= 1.0) ? offsetY_gp : offsetY);
FILE_LOG(logDEBUG1) << "Detector[" << idet << "] has offsets ("
<< detectors[idet]->getDetectorOffset(X) << ", "
<< detectors[idet]->getDetectorOffset(Y) << ")";
// offsetY has been reset sometimes and offsetX the first time,
// but remember the highest values
if (numX > thisMultiDetector->numberOfChannel[X]) {
thisMultiDetector->numberOfChannel[X] = numX;
}
if (numY > thisMultiDetector->numberOfChannel[Y]) {
thisMultiDetector->numberOfChannel[Y] = numY;
}
if (numX_gp > thisMultiDetector->numberOfChannelInclGapPixels[X]) {
thisMultiDetector->numberOfChannelInclGapPixels[X] = numX_gp;
}
if (numY_gp > thisMultiDetector->numberOfChannelInclGapPixels[Y]) {
thisMultiDetector->numberOfChannelInclGapPixels[Y] = numY_gp;
}
}
FILE_LOG(logDEBUG1) << "\n\tNumber of Channels in X direction:" << thisMultiDetector->numberOfChannel[X] << "\n\tNumber of Channels in Y direction:" << thisMultiDetector->numberOfChannel[Y] << "\n\tNumber of Channels in X direction with Gap Pixels:" << thisMultiDetector->numberOfChannelInclGapPixels[X] << "\n\tNumber of Channels in Y direction with Gap Pixels:" << thisMultiDetector->numberOfChannelInclGapPixels[Y];
thisMultiDetector->numberOfChannels =
thisMultiDetector->numberOfChannel[0] *
thisMultiDetector->numberOfChannel[1];
for (auto &d : detectors) {
d->updateMultiSize(thisMultiDetector->numberOfDetector[0],
thisMultiDetector->numberOfDetector[1]);
}
}
int multiSlsDetector::setOnline(int value, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setOnline(value);
}
// multi
if (value != GET_ONLINE_FLAG) {
auto r = parallelCall(&slsDetector::setOnline, value);
thisMultiDetector->onlineFlag = sls::minusOneIfDifferent(r);
}
return thisMultiDetector->onlineFlag;
}
std::string multiSlsDetector::checkOnline(int detPos) {
if (detPos >= 0) {
return detectors[detPos]->checkOnline();
}
auto r = parallelCall(&slsDetector::checkOnline);
return sls::concatenateNonEmptyStrings(r);
}
int multiSlsDetector::setControlPort(int port_number, int detPos) {
if (detPos >= 0) {
return detectors[detPos]->setControlPort(port_number);
}
auto r = serialCall(&slsDetector::setControlPort, port_number);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setStopPort(int port_number, int detPos) {
if (detPos >= 0) {
return detectors[detPos]->setStopPort(port_number);
}
auto r = serialCall(&slsDetector::setStopPort, port_number);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverPort(int port_number, int detPos) {
if (detPos >= 0) {
return detectors[detPos]->setReceiverPort(port_number);
}
auto r = serialCall(&slsDetector::setReceiverPort, port_number);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::lockServer(int p, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->lockServer(p);
}
// multi
auto r = parallelCall(&slsDetector::lockServer, p);
return sls::minusOneIfDifferent(r);
}
std::string multiSlsDetector::getLastClientIP(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getLastClientIP();
}
// multi
auto r = parallelCall(&slsDetector::getLastClientIP);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::exitServer(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->exitServer();
}
// multi
auto r = parallelCall(&slsDetector::exitServer);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::execCommand(const std::string &cmd, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->execCommand(cmd);
}
// multi
auto r = parallelCall(&slsDetector::execCommand, cmd);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::readConfigurationFile(const std::string &fname) {
freeSharedMemory();
setupMultiDetector();
FILE_LOG(logINFO) << "Loading configuration file: " << fname;
std::ifstream input_file;
input_file.open(fname, std::ios_base::in);
if (input_file.is_open()) {
std::string current_line;
while (input_file.good()) {
getline(input_file, current_line);
if (current_line.find('#') != std::string::npos) {
current_line.erase(current_line.find('#'));
}
FILE_LOG(logDEBUG1) << "current_line after removing comments:\n\t" << current_line;
if (current_line.length() > 1) {
multiSlsDetectorClient(current_line, PUT_ACTION, this);
}
}
input_file.close();
} else {
FILE_LOG(logERROR) << "Could not openconfiguration file " << fname << " for reading";
setErrorMask(getErrorMask() | MULTI_CONFIG_FILE_ERROR);
return FAIL;
}
if (getErrorMask()) {
int c;
FILE_LOG(logERROR) << "----------------\n Error Messages\n----------------";
FILE_LOG(logERROR) << getErrorMessage(c);
return FAIL;
}
return OK;
}
int multiSlsDetector::writeConfigurationFile(const std::string &fname) {
const std::vector<std::string> names = {"detsizechan", "hostname", "outdir",
"threaded"};
char *args[100];
for (auto &arg : args) {
arg = new char[1000];
}
int ret = OK, ret1 = OK;
std::ofstream outfile;
size_t iline = 0;
outfile.open(fname.c_str(), std::ios_base::out);
if (outfile.is_open()) {
auto cmd = slsDetectorCommand(this);
// complete size of detector
FILE_LOG(logINFO) << "Command to write: " << iline << " " << names[iline];
strcpy(args[0], names[iline].c_str());
outfile << names[iline] << " " << cmd.executeLine(1, args, GET_ACTION)
<< std::endl;
++iline;
// hostname of the detectors
FILE_LOG(logINFO) << "Command to write: " << iline << " " << names[iline];
strcpy(args[0], names[iline].c_str());
outfile << names[iline] << " " << cmd.executeLine(1, args, GET_ACTION)
<< std::endl;
++iline;
// single detector configuration
for (size_t idet = 0; idet < detectors.size(); ++idet) {
outfile << std::endl;
ret1 = detectors[idet]->writeConfigurationFile(outfile, this);
if (detectors[idet]->getErrorMask()) {
setErrorMask(getErrorMask() | (1 << idet));
}
if (ret1 == FAIL) {
ret = FAIL;
}
}
outfile << std::endl;
// other configurations
while (iline < names.size()) {
FILE_LOG(logINFO) << "Command to write:" << iline << " " << names[iline];
strcpy(args[0], names[iline].c_str());
outfile << names[iline] << " "
<< cmd.executeLine(1, args, GET_ACTION) << std::endl;
++iline;
}
outfile.close();
FILE_LOG(logDEBUG1) << "wrote " << iline << " lines to configuration file ";
} else {
FILE_LOG(logERROR) << "Could not open configuration file " << fname << " for writing";
setErrorMask(getErrorMask() | MULTI_CONFIG_FILE_ERROR);
ret = FAIL;
}
for (auto &arg : args) {
delete[] arg;
}
return ret;
}
std::string multiSlsDetector::getSettingsFile(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getSettingsFile();
}
// multi
auto r = serialCall(&slsDetector::getSettingsFile);
return sls::concatenateIfDifferent(r);
}
slsDetectorDefs::detectorSettings multiSlsDetector::getSettings(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getSettings();
}
// multi
auto r = parallelCall(&slsDetector::getSettings);
return (detectorSettings)sls::minusOneIfDifferent(r);
}
slsDetectorDefs::detectorSettings
multiSlsDetector::setSettings(detectorSettings isettings, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setSettings(isettings);
}
// multi
auto r = parallelCall(&slsDetector::setSettings, isettings);
return (detectorSettings)sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getThresholdEnergy(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getThresholdEnergy();
}
// multi
auto r = parallelCall(&slsDetector::getThresholdEnergy);
if (sls::allEqualWithTol(r, 200)) {
return r.front();
}
return -1;
}
int multiSlsDetector::setThresholdEnergy(int e_eV, detectorSettings isettings,
int tb, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setThresholdEnergy(e_eV, isettings, tb);
}
// multi
auto r =
parallelCall(&slsDetector::setThresholdEnergy, e_eV, isettings, tb);
if (sls::allEqualWithTol(r, 200)) {
return r.front();
}
return -1;
}
std::string multiSlsDetector::getSettingsDir(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getSettingsDir();
}
// multi
auto r = serialCall(&slsDetector::getSettingsDir);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setSettingsDir(const std::string &directory,
int detPos) {
if (detPos >= 0) {
return detectors[detPos]->setSettingsDir(directory);
}
auto r = parallelCall(&slsDetector::setSettingsDir, directory);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::loadSettingsFile(const std::string &fname, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->loadSettingsFile(fname);
}
// multi
auto r = parallelCall(&slsDetector::loadSettingsFile, fname);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::saveSettingsFile(const std::string &fname, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->saveSettingsFile(fname);
}
// multi
auto r = parallelCall(&slsDetector::saveSettingsFile, fname);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
slsDetectorDefs::runStatus multiSlsDetector::getRunStatus(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getRunStatus();
}
// multi
auto r = parallelCall(&slsDetector::getRunStatus);
if (sls::allEqual(r)) {
return r.front();
}
if (sls::anyEqualTo(r, ERROR)) {
return ERROR;
}
for (const auto &value : r) {
if (value != IDLE) {
return value;
}
}
return IDLE;
}
int multiSlsDetector::prepareAcquisition(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->prepareAcquisition();
}
// multi
auto r = parallelCall(&slsDetector::prepareAcquisition);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::startAcquisition(int detPos) {
// single
if (detPos >= 0) {
if (detectors[detPos]->getDetectorTypeAsEnum() == EIGER) {
if (detectors[detPos]->prepareAcquisition() == FAIL) {
return FAIL;
}
}
return detectors[detPos]->startAcquisition();
}
// multi
if (getDetectorTypeAsEnum() == EIGER) {
if (prepareAcquisition() == FAIL) {
return FAIL;
}
}
auto r = parallelCall(&slsDetector::startAcquisition);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::stopAcquisition(int detPos) {
// locks to synchronize using client->receiver simultaneously (processing
// thread)
std::lock_guard<std::mutex> lock(mg);
if (detPos >= 0) {
// if only 1 detector, set flag to stop current acquisition
if (detectors.size() == 1) {
thisMultiDetector->stoppedFlag = 1;
}
return detectors[detPos]->stopAcquisition();
} else {
thisMultiDetector->stoppedFlag = 1;
auto r = parallelCall(&slsDetector::stopAcquisition);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
}
int multiSlsDetector::sendSoftwareTrigger(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->sendSoftwareTrigger();
}
// multi
auto r = parallelCall(&slsDetector::sendSoftwareTrigger);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::startAndReadAll(int detPos) {
// single
if (detPos >= 0) {
if (detectors[detPos]->getDetectorTypeAsEnum() == EIGER) {
if (detectors[detPos]->prepareAcquisition() == FAIL) {
return FAIL;
}
}
return detectors[detPos]->startAndReadAll();
}
// multi
if (getDetectorTypeAsEnum() == EIGER) {
if (prepareAcquisition() == FAIL) {
return FAIL;
}
}
auto r = parallelCall(&slsDetector::startAndReadAll);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::startReadOut(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->startReadOut();
}
// multi
auto r = parallelCall(&slsDetector::startReadOut);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::readAll(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->readAll();
}
// multi
auto r = parallelCall(&slsDetector::readAll);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::configureMAC(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->configureMAC();
}
// multi
auto r = parallelCall(&slsDetector::configureMAC);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int64_t multiSlsDetector::setTimer(timerIndex index, int64_t t, int detPos) {
// single
if (detPos >= 0) {
// error for setting values individually
// FIXME: what else? and error code
if (t != -1) {
switch (index) {
case FRAME_NUMBER:
case CYCLES_NUMBER:
case STORAGE_CELL_NUMBER:
case MEASUREMENTS_NUMBER:
FILE_LOG(logERROR)
<< "Cannot set number of frames, cycles, "
"storage cells or measurements individually.";
setErrorMask(getErrorMask() | MUST_BE_MULTI_CMD);
return thisMultiDetector->timerValue[index];
default:
break;
}
}
return detectors[detPos]->setTimer(index, t);
}
// multi
auto r = parallelCall(&slsDetector::setTimer, index, t);
int64_t ret = sls::minusOneIfDifferent(r);
if (index == SAMPLES) {
setDynamicRange();
}
// set progress
if (t != -1) {
switch (index) {
case FRAME_NUMBER:
case CYCLES_NUMBER:
case STORAGE_CELL_NUMBER:
case MEASUREMENTS_NUMBER:
setTotalProgress();
break;
default:
break;
}
}
thisMultiDetector->timerValue[index] = ret;
return ret;
}
double multiSlsDetector::setExposureTime(double t, bool inseconds, int detPos) {
if (!inseconds) {
return setTimer(ACQUISITION_TIME, (int64_t)t, detPos);
}
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) {
tms = -1;
}
tms = setTimer(ACQUISITION_TIME, tms, detPos);
if (tms < 0) {
return -1;
}
return ((1E-9) * (double)tms);
}
double multiSlsDetector::setExposurePeriod(double t, bool inseconds,
int detPos) {
if (!inseconds) {
return setTimer(FRAME_PERIOD, (int64_t)t, detPos);
}
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) {
tms = -1;
}
tms = setTimer(FRAME_PERIOD, tms, detPos);
if (tms < 0) {
return -1;
}
return ((1E-9) * (double)tms);
}
double multiSlsDetector::setDelayAfterTrigger(double t, bool inseconds,
int detPos) {
if (!inseconds) {
return setTimer(DELAY_AFTER_TRIGGER, (int64_t)t, detPos);
}
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) {
tms = -1;
}
tms = setTimer(DELAY_AFTER_TRIGGER, tms, detPos);
if (tms < 0) {
return -1;
}
return ((1E-9) * (double)tms);
}
double multiSlsDetector::setSubFrameExposureTime(double t, bool inseconds,
int detPos) {
if (!inseconds) {
return setTimer(SUBFRAME_ACQUISITION_TIME, (int64_t)t, detPos);
} else {
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) {
tms = -1;
}
tms = setTimer(SUBFRAME_ACQUISITION_TIME, tms, detPos);
if (tms < 0) {
return -1;
}
return ((1E-9) * (double)tms);
}
}
double multiSlsDetector::setSubFrameExposureDeadTime(double t, bool inseconds,
int detPos) {
if (!inseconds) {
return setTimer(SUBFRAME_DEADTIME, (int64_t)t, detPos);
} else {
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) {
tms = -1;
}
tms = setTimer(SUBFRAME_DEADTIME, tms, detPos);
if (tms < 0) {
return -1;
}
return ((1E-9) * (double)tms);
}
}
int64_t multiSlsDetector::setNumberOfFrames(int64_t t, int detPos) {
return setTimer(FRAME_NUMBER, t, detPos);
}
int64_t multiSlsDetector::setNumberOfCycles(int64_t t, int detPos) {
return setTimer(CYCLES_NUMBER, t, detPos);
}
int64_t multiSlsDetector::setNumberOfGates(int64_t t, int detPos) {
return setTimer(GATES_NUMBER, t, detPos);
}
int64_t multiSlsDetector::setNumberOfStorageCells(int64_t t, int detPos) {
return setTimer(STORAGE_CELL_NUMBER, t, detPos);
}
double multiSlsDetector::getMeasuredPeriod(bool inseconds, int detPos) {
if (!inseconds) {
return getTimeLeft(MEASURED_PERIOD, detPos);
} else {
int64_t tms = getTimeLeft(MEASURED_PERIOD, detPos);
if (tms < 0) {
return -1;
}
return ((1E-9) * (double)tms);
}
}
double multiSlsDetector::getMeasuredSubFramePeriod(bool inseconds, int detPos) {
if (!inseconds) {
return getTimeLeft(MEASURED_SUBPERIOD, detPos);
} else {
int64_t tms = getTimeLeft(MEASURED_SUBPERIOD, detPos);
if (tms < 0) {
return -1;
}
return ((1E-9) * (double)tms);
}
}
int64_t multiSlsDetector::getTimeLeft(timerIndex index, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTimeLeft(index);
}
// multi
auto r = parallelCall(&slsDetector::getTimeLeft, index);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setSpeed(speedVariable index, int value, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setSpeed(index, value);
}
// multi
auto r = parallelCall(&slsDetector::setSpeed, index, value);
return (sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL);
}
int multiSlsDetector::setDynamicRange(int dr, int detPos) {
// single
if (detPos >= 0) {
FILE_LOG(logERROR) << "Dynamic Range cannot be set individually";
setErrorMask(getErrorMask() | MUST_BE_MULTI_CMD);
return -1;
}
// multi
auto r = parallelCall(&slsDetector::setDynamicRange, dr);
int ret = sls::minusOneIfDifferent(r);
// update shm
int prevValue = thisMultiDetector->dataBytes;
int prevGValue = thisMultiDetector->dataBytesInclGapPixels;
thisMultiDetector->dataBytes = 0;
thisMultiDetector->dataBytesInclGapPixels = 0;
thisMultiDetector->numberOfChannels = 0;
for (auto &d : detectors) {
thisMultiDetector->dataBytes += d->getDataBytes();
thisMultiDetector->dataBytesInclGapPixels +=
d->getDataBytesInclGapPixels();
thisMultiDetector->numberOfChannels += d->getTotalNumberOfChannels();
}
// for usability
if (getDetectorTypeAsEnum() == EIGER) {
switch (dr) {
case 32:
FILE_LOG(logINFO) << "Setting Clock to Quarter Speed to cope with "
"Dynamic Range of 32";
setSpeed(CLOCK_DIVIDER, 2);
break;
case 16:
FILE_LOG(logINFO)
<< "Setting Clock to Half Speed for Dynamic Range of 16";
setSpeed(CLOCK_DIVIDER, 1);
break;
default:
break;
}
}
// update offsets if there was a change FIXME:add dr to sls shm and check
// that instead
if ((prevValue != thisMultiDetector->dataBytes) ||
(prevGValue != thisMultiDetector->dataBytesInclGapPixels)) {
updateOffsets();
}
return ret;
}
int multiSlsDetector::getDataBytes(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getDataBytes();
}
// multi
auto r = parallelCall(&slsDetector::getDataBytes);
return sls::sum(r);
}
int multiSlsDetector::setDAC(int val, dacIndex index, int mV, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setDAC(val, index, mV);
}
// multi
auto r = parallelCall(&slsDetector::setDAC, val, index, mV);
if (getDetectorTypeAsEnum() != EIGER && index != HIGH_VOLTAGE) {
return sls::minusOneIfDifferent(r);
}
// ignore slave values for hv (-999)
int firstValue = r.front();
for (const auto &value : r) {
if ((value != -999) && (value != firstValue)) {
return -1;
}
}
return firstValue;
}
int multiSlsDetector::getADC(dacIndex index, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getADC(index);
}
// multi
auto r = parallelCall(&slsDetector::getADC, index);
return sls::minusOneIfDifferent(r);
}
slsDetectorDefs::externalCommunicationMode
multiSlsDetector::setExternalCommunicationMode(externalCommunicationMode pol,
int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setExternalCommunicationMode(pol);
}
// multi
auto r = parallelCall(&slsDetector::setExternalCommunicationMode, pol);
return sls::minusOneIfDifferent(r);
}
slsDetectorDefs::externalSignalFlag
multiSlsDetector::setExternalSignalFlags(externalSignalFlag pol,
int signalindex, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setExternalSignalFlags(pol, signalindex);
}
// multi
auto r =
parallelCall(&slsDetector::setExternalSignalFlags, pol, signalindex);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReadOutFlags(readOutFlags flag, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReadOutFlags(flag);
}
// multi
auto r = parallelCall(&slsDetector::setReadOutFlags, flag);
return sls::minusOneIfDifferent(r);
}
uint32_t multiSlsDetector::writeRegister(uint32_t addr, uint32_t val,
int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->writeRegister(addr, val);
}
// multi
auto r = parallelCall(&slsDetector::writeRegister, addr, val);
if (sls::allEqual(r)) {
return r.front();
}
// can't have different values
FILE_LOG(logERROR) << "Error: Different Values for function writeRegister "
"(write 0x"
<< std::hex << val << " to addr 0x" << std::hex << addr
<< std::dec << ")";
setErrorMask(getErrorMask() | MULTI_HAVE_DIFFERENT_VALUES);
return -1;
}
uint32_t multiSlsDetector::readRegister(uint32_t addr, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->readRegister(addr);
}
// multi
auto r = parallelCall(&slsDetector::readRegister, addr);
if (sls::allEqual(r)) {
return r.front();
}
// can't have different values
FILE_LOG(logERROR) << "Error: Different Values for function readRegister "
"(read from 0x"
<< std::hex << addr << std::dec << ")";
setErrorMask(getErrorMask() | MULTI_HAVE_DIFFERENT_VALUES);
return -1;
}
uint32_t multiSlsDetector::setBit(uint32_t addr, int n, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setBit(addr, n);
}
// multi
auto r = parallelCall(&slsDetector::setBit, addr, n);
if (sls::allEqual(r)) {
return r.front();
}
// can't have different values
FILE_LOG(logERROR) << "Error: Different Values for function setBit "
"(set bit "
<< n << " to addr 0x" << std::hex << addr << std::dec
<< ")";
setErrorMask(getErrorMask() | MULTI_HAVE_DIFFERENT_VALUES);
return -1;
}
uint32_t multiSlsDetector::clearBit(uint32_t addr, int n, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->clearBit(addr, n);
}
// multi
auto r = parallelCall(&slsDetector::clearBit, addr, n);
if (sls::allEqual(r)) {
return r.front();
}
// can't have different values
FILE_LOG(logERROR) << "Error: Different Values for function clearBit "
"(clear bit "
<< n << " to addr 0x" << std::hex << addr << std::dec
<< ")";
setErrorMask(getErrorMask() | MULTI_HAVE_DIFFERENT_VALUES);
return -1;
}
std::string multiSlsDetector::setDetectorMAC(const std::string &detectorMAC, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setDetectorMAC(detectorMAC);
}
// multi
auto r = parallelCall(&slsDetector::setDetectorMAC, detectorMAC);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getDetectorMAC(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getDetectorMAC();
}
// multi
auto r = serialCall(&slsDetector::getDetectorMAC);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setDetectorIP(const std::string &detectorIP, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setDetectorIP(detectorIP);
}
// multi
auto r = parallelCall(&slsDetector::setDetectorIP, detectorIP);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getDetectorIP(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getDetectorIP();
}
// multi
auto r = serialCall(&slsDetector::getDetectorIP);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setReceiver(const std::string &receiver, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiver(receiver);
}
// multi
auto r = parallelCall(&slsDetector::setReceiver, receiver);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getReceiver(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiver();
}
// multi
auto r = serialCall(&slsDetector::getReceiver);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setReceiverUDPIP(const std::string &udpip, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverUDPIP(udpip);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverUDPIP, udpip);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getReceiverUDPIP(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverUDPIP();
}
// multi
auto r = serialCall(&slsDetector::getReceiverUDPIP);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setReceiverUDPMAC(const std::string &udpmac, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverUDPMAC(udpmac);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverUDPMAC, udpmac);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getReceiverUDPMAC(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverUDPMAC();
}
// multi
auto r = serialCall(&slsDetector::getReceiverUDPMAC);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::setReceiverUDPPort(int udpport, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverUDPPort(udpport);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverUDPPort, udpport);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getReceiverUDPPort(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverUDPPort();
}
// multi
auto r = serialCall(&slsDetector::getReceiverUDPPort);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverUDPPort2(int udpport, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverUDPPort2(udpport);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverUDPPort2, udpport);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getReceiverUDPPort2(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverUDPPort2();
}
// multi
auto r = serialCall(&slsDetector::getReceiverUDPPort2);
return sls::minusOneIfDifferent(r);
}
void multiSlsDetector::setClientDataStreamingInPort(int i, int detPos) {
if (i >= 0) {
int prev_streaming = enableDataStreamingToClient();
// single
if (detPos >= 0) {
detectors[detPos]->setClientStreamingPort(i);
}
// multi
else {
// calculate ports individually
int firstPort = i;
int numSockets = (getDetectorTypeAsEnum() == EIGER) ? 2 : 1;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
auto port = firstPort + (idet * numSockets);
detectors[idet]->setClientStreamingPort(port);
}
}
if (prev_streaming) {
enableDataStreamingToClient(0);
enableDataStreamingToClient(1);
}
}
}
int multiSlsDetector::getClientStreamingPort(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getClientStreamingPort();
}
// multi
auto r = serialCall(&slsDetector::getClientStreamingPort);
return sls::minusOneIfDifferent(r);
}
void multiSlsDetector::setReceiverDataStreamingOutPort(int i, int detPos) {
if (i >= 0) {
int prev_streaming = enableDataStreamingFromReceiver(-1, detPos);
// single
if (detPos >= 0) {
detectors[detPos]->setReceiverStreamingPort(i);
}
// multi
else {
// calculate ports individually
int firstPort = i;
int numSockets = (getDetectorTypeAsEnum() == EIGER) ? 2 : 1;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
auto port = firstPort + (idet * numSockets);
detectors[idet]->setReceiverStreamingPort(port);
}
}
if (prev_streaming) {
enableDataStreamingFromReceiver(0, detPos);
enableDataStreamingFromReceiver(1, detPos);
}
}
}
int multiSlsDetector::getReceiverStreamingPort(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverStreamingPort();
}
// multi
auto r = serialCall(&slsDetector::getReceiverStreamingPort);
return sls::minusOneIfDifferent(r);
}
void multiSlsDetector::setClientDataStreamingInIP(const std::string &ip,
int detPos) {
if (ip.length()) {
int prev_streaming = enableDataStreamingToClient(-1);
// single
if (detPos >= 0) {
detectors[detPos]->setClientStreamingIP(ip);
}
// multi
else {
for (auto &d : detectors) {
d->setClientStreamingIP(ip);
}
}
if (prev_streaming) {
enableDataStreamingToClient(0);
enableDataStreamingToClient(1);
}
}
}
std::string multiSlsDetector::getClientStreamingIP(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getClientStreamingIP();
}
// multi
auto r = serialCall(&slsDetector::getClientStreamingIP);
return sls::concatenateIfDifferent(r);
}
void multiSlsDetector::setReceiverDataStreamingOutIP(const std::string &ip,
int detPos) {
if (ip.length()) {
int prev_streaming = enableDataStreamingFromReceiver(-1, detPos);
// single
if (detPos >= 0) {
detectors[detPos]->setReceiverStreamingIP(ip);
}
// multi
else {
for (auto &d : detectors) {
d->setReceiverStreamingIP(ip);
}
}
if (prev_streaming) {
enableDataStreamingFromReceiver(0, detPos);
enableDataStreamingFromReceiver(1, detPos);
}
}
}
std::string multiSlsDetector::getReceiverStreamingIP(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverStreamingIP();
}
// multi
auto r = serialCall(&slsDetector::getReceiverStreamingIP);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::setDetectorNetworkParameter(networkParameter index, int delay, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setDetectorNetworkParameter(index, delay);
}
// multi
auto r = parallelCall(&slsDetector::setDetectorNetworkParameter, index, delay);
return sls::minusOneIfDifferent(r);
}
std::string multiSlsDetector::setAdditionalJsonHeader(const std::string &jsonheader, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setAdditionalJsonHeader(jsonheader);
}
// multi
auto r = parallelCall(&slsDetector::setAdditionalJsonHeader, jsonheader);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getAdditionalJsonHeader(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getAdditionalJsonHeader();
}
// multi
auto r = serialCall(&slsDetector::getAdditionalJsonHeader);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::setReceiverUDPSocketBufferSize(int udpsockbufsize, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverUDPSocketBufferSize(udpsockbufsize);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverUDPSocketBufferSize, udpsockbufsize);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getReceiverUDPSocketBufferSize(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverUDPSocketBufferSize();
}
// multi
auto r = serialCall(&slsDetector::getReceiverUDPSocketBufferSize);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getReceiverRealUDPSocketBufferSize(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverRealUDPSocketBufferSize();
}
// multi
auto r = serialCall(&slsDetector::getReceiverRealUDPSocketBufferSize);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setFlowControl10G(int enable, int detPos) {
if (enable != -1) {
enable = ((enable >= 1) ? 1 : 0);
}
return setDetectorNetworkParameter(FLOW_CONTROL_10G, enable, detPos);
}
int multiSlsDetector::digitalTest(digitalTestMode mode, int ival, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->digitalTest(mode, ival);
}
// multi
auto r = parallelCall(&slsDetector::digitalTest, mode, ival);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::loadImageToDetector(imageType index,
const std::string &fname,
int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->loadImageToDetector(index, fname);
}
// multi
// read image for all
int nch = thisMultiDetector->numberOfChannels;
short int imageVals[nch];
if (readDataFile(fname, imageVals, nch) < nch * (int)sizeof(short int)) {
FILE_LOG(logERROR) << "Could not open file or not enough data in file "
"to load image to detector.";
setErrorMask(getErrorMask() | MULTI_OTHER_ERROR);
return -1;
}
// send image to all
std::vector<int> r;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
r.push_back(detectors[idet]->sendImageToDetector(
index,
imageVals + idet * detectors[idet]->getTotalNumberOfChannels()));
}
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::writeCounterBlockFile(const std::string &fname,
int startACQ, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->writeCounterBlockFile(fname, startACQ);
}
// multi
// get image from all
int nch = thisMultiDetector->numberOfChannels;
short int imageVals[nch];
std::vector<int> r;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
r.push_back(detectors[idet]->getCounterBlock(
imageVals + idet * detectors[idet]->getTotalNumberOfChannels(),
startACQ));
}
// write image if all ok
if (sls::allEqualTo(r, static_cast<int>(OK))) {
if (writeDataFile(fname, nch, imageVals) <
nch * (int)sizeof(short int)) {
FILE_LOG(logERROR) << "Could not open file to write or did not "
"write enough data in file "
"to wrte counter block file from detector.";
setErrorMask(getErrorMask() | MULTI_OTHER_ERROR);
return -1;
}
return OK;
}
return FAIL;
}
int multiSlsDetector::resetCounterBlock(int startACQ, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->resetCounterBlock(startACQ);
}
// multi
auto r = parallelCall(&slsDetector::resetCounterBlock, startACQ);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::setCounterBit(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCounterBit(i);
}
// multi
auto r = parallelCall(&slsDetector::setCounterBit, i);
return sls::minusOneIfDifferent(r);
}
void multiSlsDetector::verifyMinMaxROI(int n, ROI r[]) {
int temp;
for (int i = 0; i < n; ++i) {
if ((r[i].xmax) < (r[i].xmin)) {
temp = r[i].xmax;
r[i].xmax = r[i].xmin;
r[i].xmin = temp;
}
if ((r[i].ymax) < (r[i].ymin)) {
temp = r[i].ymax;
r[i].ymax = r[i].ymin;
r[i].ymin = temp;
}
}
}
int multiSlsDetector::setROI(int n, ROI roiLimits[], int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setROI(n, roiLimits);
}
// multi
int xmin, xmax, ymin, ymax, channelX, channelY, idet, lastChannelX,
lastChannelY, index, offsetX, offsetY;
bool invalidroi = false;
int ndet = detectors.size();
ROI allroi[ndet][n];
int nroi[ndet];
for (int i = 0; i < ndet; ++i) {
nroi[i] = 0;
}
if ((n < 0) || (roiLimits == nullptr)) {
return FAIL;
}
// ensures min < max
verifyMinMaxROI(n, roiLimits);
FILE_LOG(logDEBUG1) << "Setting ROI for " << n << "rois:";
for (int i = 0; i < n; ++i) {
FILE_LOG(logDEBUG1) << i << ":" << roiLimits[i].xmin << "\t" << roiLimits[i].xmax
<< "\t" << roiLimits[i].ymin << "\t" << roiLimits[i].ymax;
}
// for each roi
for (int i = 0; i < n; ++i) {
xmin = roiLimits[i].xmin;
xmax = roiLimits[i].xmax;
ymin = roiLimits[i].ymin;
ymax = roiLimits[i].ymax;
if (getDetectorsType() != JUNGFRAUCTB || getNumberOfDetectors() > 1) {
// check roi max values
idet = decodeNChannel(xmax, ymax, channelX, channelY);
FILE_LOG(logDEBUG1) << "Decoded Channel max vals: " << std::endl
<< "det:" << idet << "\t" << xmax << "\t" << ymax << "\t" << channelX << "\t" << channelY;
if (idet == -1) {
FILE_LOG(logERROR) << "invalid roi";
continue;
}
// split in x dir
while (xmin <= xmax) {
invalidroi = false;
ymin = roiLimits[i].ymin;
// split in y dir
while (ymin <= ymax) {
// get offset for each detector
idet = decodeNChannel(xmin, ymin, channelX, channelY);
FILE_LOG(logDEBUG1) << "Decoded Channel min vals: " << std::endl
<< "det:" << idet << "\t" << xmin << "\t" << ymin << "\t" << channelX << "\t" << channelY;
if (idet < 0 || idet >= (int)detectors.size()) {
FILE_LOG(logDEBUG1) << "invalid roi";
invalidroi = true;
break;
}
// get last channel for each det in x and y dir
lastChannelX =
(detectors[idet]->getTotalNumberOfChannelsInclGapPixels(
X)) -
1;
lastChannelY =
(detectors[idet]->getTotalNumberOfChannelsInclGapPixels(
Y)) -
1;
offsetX = detectors[idet]->getDetectorOffset(X);
offsetY = detectors[idet]->getDetectorOffset(Y);
// at the end in x dir
if ((offsetX + lastChannelX) >= xmax) {
lastChannelX = xmax - offsetX;
}
// at the end in y dir
if ((offsetY + lastChannelY) >= ymax) {
lastChannelY = ymax - offsetY;
}
FILE_LOG(logDEBUG1) << "lastChannelX:" << lastChannelX << "\t"
<< "lastChannelY:" << lastChannelY;
// creating the list of roi for corresponding detector
index = nroi[idet];
allroi[idet][index].xmin = channelX;
allroi[idet][index].xmax = lastChannelX;
allroi[idet][index].ymin = channelY;
allroi[idet][index].ymax = lastChannelY;
nroi[idet] = nroi[idet] + 1;
ymin = lastChannelY + offsetY + 1;
if ((lastChannelY + offsetY) == ymax) {
ymin = ymax + 1;
}
FILE_LOG(logDEBUG1) << "nroi[idet]:" << nroi[idet] << "\tymin:" << ymin;
}
if (invalidroi) {
break;
}
xmin = lastChannelX + offsetX + 1;
if ((lastChannelX + offsetX) == xmax) {
xmin = xmax + 1;
}
}
} else {// FIXME: check if xmax is greater? or reduce logic above?
idet=0;
nroi[idet]=n;
index = 0;
allroi[idet][index].xmin = xmin;
allroi[idet][index].xmax = xmax;
allroi[idet][index].ymin = ymin;
allroi[idet][index].ymax = ymax;
// nroi[idet] = nroi[idet] + 1;
}
}
FILE_LOG(logDEBUG1) << "Setting ROI :";
for (size_t i = 0; i < detectors.size(); ++i) {
FILE_LOG(logDEBUG1) << "detector " << i;
for (int j = 0; j < nroi[i]; ++j) {
FILE_LOG(logDEBUG1) << allroi[i][j].xmin << "\t" << allroi[i][j].xmax << "\t"
<< allroi[i][j].ymin << "\t" << allroi[i][j].ymax;
}
}
// settings the rois for each detector
std::vector<int> r;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
r.push_back(detectors[idet]->setROI(nroi[idet], allroi[idet]));
}
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
slsDetectorDefs::ROI *multiSlsDetector::getROI(int &n, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getROI(n);
}
// multi
n = 0;
int num = 0, i, j;
int ndet = detectors.size();
int maxroi = ndet * MAX_ROIS;
ROI temproi;
ROI roiLimits[maxroi];
ROI *retval = new ROI[maxroi];
ROI *temp = nullptr;
int index = 0;
// get each detector's roi array
for (size_t idet = 0; idet < detectors.size(); ++idet) {
temp = detectors[idet]->getROI(index);
if (temp) {
if (index) {
FILE_LOG(logINFO) << "detector " << idet << ":";
}
for (j = 0; j < index; ++j) {
FILE_LOG(logINFO) << temp[j].xmin << "\t" << temp[j].xmax << "\t"
<< temp[j].ymin << "\t" << temp[j].ymax;
int x = detectors[idet]->getDetectorOffset(X);
int y = detectors[idet]->getDetectorOffset(Y);
roiLimits[n].xmin = temp[j].xmin + x;
roiLimits[n].xmax = temp[j].xmax + x;
roiLimits[n].ymin = temp[j].ymin + y;
roiLimits[n].ymax = temp[j].ymin + y;
++n;
}
}
}
// empty roi
if (!n) {
return nullptr;
}
FILE_LOG(logDEBUG1) << "ROI :" << std::endl;
for (int j = 0; j < n; ++j) {
FILE_LOG(logDEBUG1) << roiLimits[j].xmin << "\t" << roiLimits[j].xmax << "\t"
<< roiLimits[j].ymin << "\t" << roiLimits[j].ymax;
}
// combine all the adjacent rois in x direction
for (i = 0; i < n; ++i) {
// since the ones combined are replaced by -1
if ((roiLimits[i].xmin) == -1) {
continue;
}
for (j = i + 1; j < n; ++j) {
// since the ones combined are replaced by -1
if ((roiLimits[j].xmin) == -1) {
continue;
}
// if y values are same
if (((roiLimits[i].ymin) == (roiLimits[j].ymin)) &&
((roiLimits[i].ymax) == (roiLimits[j].ymax))) {
// if adjacent, increase [i] range and replace all [j] with -1
if ((roiLimits[i].xmax) + 1 == roiLimits[j].xmin) {
roiLimits[i].xmax = roiLimits[j].xmax;
roiLimits[j].xmin = -1;
roiLimits[j].xmax = -1;
roiLimits[j].ymin = -1;
roiLimits[j].ymax = -1;
}
// if adjacent, increase [i] range and replace all [j] with -1
else if ((roiLimits[i].xmin) - 1 == roiLimits[j].xmax) {
roiLimits[i].xmin = roiLimits[j].xmin;
roiLimits[j].xmin = -1;
roiLimits[j].xmax = -1;
roiLimits[j].ymin = -1;
roiLimits[j].ymax = -1;
}
}
}
}
FILE_LOG(logDEBUG1) << "Combined along x axis Getting ROI :\ndetector " << i;
for (int j = 0; j < n; ++j) {
FILE_LOG(logDEBUG1) << roiLimits[j].xmin << "\t" << roiLimits[j].xmax << "\t"
<< roiLimits[j].ymin << "\t" << roiLimits[j].ymax;
}
// combine all the adjacent rois in y direction
for (i = 0; i < n; ++i) {
// since the ones combined are replaced by -1
if ((roiLimits[i].ymin) == -1) {
continue;
}
for (j = i + 1; j < n; ++j) {
// since the ones combined are replaced by -1
if ((roiLimits[j].ymin) == -1) {
continue;
}
// if x values are same
if (((roiLimits[i].xmin) == (roiLimits[j].xmin)) &&
((roiLimits[i].xmax) == (roiLimits[j].xmax))) {
// if adjacent, increase [i] range and replace all [j] with -1
if ((roiLimits[i].ymax) + 1 == roiLimits[j].ymin) {
roiLimits[i].ymax = roiLimits[j].ymax;
roiLimits[j].xmin = -1;
roiLimits[j].xmax = -1;
roiLimits[j].ymin = -1;
roiLimits[j].ymax = -1;
}
// if adjacent, increase [i] range and replace all [j] with -1
else if ((roiLimits[i].ymin) - 1 == roiLimits[j].ymax) {
roiLimits[i].ymin = roiLimits[j].ymin;
roiLimits[j].xmin = -1;
roiLimits[j].xmax = -1;
roiLimits[j].ymin = -1;
roiLimits[j].ymax = -1;
}
}
}
}
// get rid of -1s
for (i = 0; i < n; ++i) {
if ((roiLimits[i].xmin) != -1) {
retval[num] = roiLimits[i];
++num;
}
}
// sort final roi
for (i = 0; i < num; ++i) {
for (j = i + 1; j < num; ++j) {
if (retval[j].xmin < retval[i].xmin) {
temproi = retval[i];
retval[i] = retval[j];
retval[j] = temproi;
}
}
}
n = num;
FILE_LOG(logDEBUG1) << "\nxmin\txmax\tymin\tymax";
for (i = 0; i < n; ++i) {
FILE_LOG(logDEBUG1) << retval[i].xmin << "\t" << retval[i].xmax << "\t"
<< retval[i].ymin << "\t" << retval[i].ymax;
}
return retval;
}
int multiSlsDetector::writeAdcRegister(int addr, int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->writeAdcRegister(addr, val);
}
// multi
auto r = parallelCall(&slsDetector::writeAdcRegister, addr, val);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::activate(int const enable, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->activate(enable);
}
// multi
auto r = parallelCall(&slsDetector::activate, enable);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setDeactivatedRxrPaddingMode(int padding, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setDeactivatedRxrPaddingMode(padding);
}
// multi
auto r = parallelCall(&slsDetector::setDeactivatedRxrPaddingMode, padding);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getFlippedData(dimension d, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFlippedData(d);
}
// multi
auto r = serialCall(&slsDetector::getFlippedData, d);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setFlippedData(dimension d, int value, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setFlippedData(d, value);
}
// multi
auto r = parallelCall(&slsDetector::setFlippedData, d, value);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setAllTrimbits(int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setAllTrimbits(val);
}
// multi
auto r = parallelCall(&slsDetector::setAllTrimbits, val);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::enableGapPixels(int val, int detPos) {
if (getDetectorTypeAsEnum() != EIGER) {
if (val >= 0) {
FILE_LOG(logERROR) << "Function (enableGapPixels) not implemented "
"for this detector";
setErrorMask(getErrorMask() | MULTI_OTHER_ERROR);
}
return 0;
}
// single
if (detPos >= 0) {
if (val >= 0) {
FILE_LOG(logERROR) << "Function (enableGapPixels) must be called "
"from a multi detector level.";
setErrorMask(getErrorMask() | MUST_BE_MULTI_CMD);
return -1;
}
return detectors[detPos]->enableGapPixels(val);
}
// multi
auto r = parallelCall(&slsDetector::enableGapPixels, val);
int ret = sls::minusOneIfDifferent(r);
// update data bytes incl gap pixels
if (val != -1) {
auto r = serialCall(&slsDetector::getDataBytesInclGapPixels);
thisMultiDetector->dataBytesInclGapPixels = sls::sum(r);
// update
updateOffsets();
}
return ret;
}
int multiSlsDetector::setTrimEn(int ne, int *ene, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setTrimEn(ne, ene);
}
// multi
auto r = serialCall(&slsDetector::setTrimEn, ne, ene);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getTrimEn(int *ene, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTrimEn(ene);
}
// multi
auto r = serialCall(&slsDetector::getTrimEn, ene);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::pulsePixel(int n, int x, int y, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->pulsePixel(n, x, y);
}
// multi
auto r = parallelCall(&slsDetector::pulsePixel, n, x, y);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::pulsePixelNMove(int n, int x, int y, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->pulsePixelNMove(n, x, y);
}
// multi
auto r = parallelCall(&slsDetector::pulsePixelNMove, n, x, y);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::pulseChip(int n, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->pulseChip(n);
}
// multi
auto r = parallelCall(&slsDetector::pulseChip, n);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::setThresholdTemperature(int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setThresholdTemperature(val);
}
// multi
auto r = parallelCall(&slsDetector::setThresholdTemperature, val);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setTemperatureControl(int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setTemperatureControl(val);
}
// multi
auto r = parallelCall(&slsDetector::setTemperatureControl, val);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setTemperatureEvent(int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setTemperatureEvent(val);
}
// multi
auto r = parallelCall(&slsDetector::setTemperatureEvent, val);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setStoragecellStart(int pos, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setStoragecellStart(pos);
}
// multi
auto r = parallelCall(&slsDetector::setStoragecellStart, pos);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::programFPGA(const std::string &fname, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->programFPGA(fname);
}
// multi
auto r = serialCall(&slsDetector::programFPGA, fname);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::resetFPGA(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->resetFPGA();
}
// multi
auto r = parallelCall(&slsDetector::resetFPGA);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::powerChip(int ival, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->powerChip(ival);
}
// multi
auto r = parallelCall(&slsDetector::powerChip, ival);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setAutoComparatorDisableMode(int ival, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setAutoComparatorDisableMode(ival);
}
// multi
auto r = parallelCall(&slsDetector::setAutoComparatorDisableMode, ival);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getChanRegs(double *retval, int detPos) {
int offset = 0;
std::vector<int> r;
for (auto &d : detectors) {
int nch = d->getTotalNumberOfChannels();
double result[nch];
r.push_back(d->getChanRegs(result));
memcpy(retval + offset, result, nch * sizeof(double));
}
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setRateCorrection(int64_t t, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setRateCorrection(t);
}
// multi
auto r = parallelCall(&slsDetector::setRateCorrection, t);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int64_t multiSlsDetector::getRateCorrection(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getRateCorrection();
}
// multi
auto r = parallelCall(&slsDetector::getRateCorrection);
return sls::minusOneIfDifferent(r);
}
void multiSlsDetector::printReceiverConfiguration(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->printReceiverConfiguration();
}
// multi
for (auto &d : detectors) {
d->printReceiverConfiguration();
}
}
int multiSlsDetector::setReceiverOnline(int value, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverOnline(value);
}
// multi
if (value != GET_ONLINE_FLAG) {
auto r = parallelCall(&slsDetector::setReceiverOnline, value);
thisMultiDetector->receiverOnlineFlag = sls::minusOneIfDifferent(r);
}
return thisMultiDetector->receiverOnlineFlag;
}
std::string multiSlsDetector::checkReceiverOnline(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->checkReceiverOnline();
}
// multi
auto r = parallelCall(&slsDetector::checkReceiverOnline);
return sls::concatenateNonEmptyStrings(r);
}
int multiSlsDetector::lockReceiver(int lock, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->lockReceiver(lock);
}
// multi
auto r = parallelCall(&slsDetector::lockReceiver, lock);
return sls::minusOneIfDifferent(r);
}
std::string multiSlsDetector::getReceiverLastClientIP(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverLastClientIP();
}
// multi
auto r = parallelCall(&slsDetector::getReceiverLastClientIP);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::exitReceiver(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->exitReceiver();
}
// multi
auto r = parallelCall(&slsDetector::exitReceiver);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::execReceiverCommand(const std::string &cmd, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->execReceiverCommand(cmd);
}
// multi
auto r = parallelCall(&slsDetector::execReceiverCommand, cmd);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
std::string multiSlsDetector::getFilePath(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFilePath();
}
// multi
auto r = serialCall(&slsDetector::getFilePath);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setFilePath(const std::string &path, int detPos) {
if (path.empty()) {
return getFilePath(detPos);
}
// single
if (detPos >= 0) {
return detectors[detPos]->setFilePath(path);
}
// multi
auto r = parallelCall(&slsDetector::setFilePath, path);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getFileName(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFileName();
}
// multi
auto r = serialCall(&slsDetector::getFileName);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setFileName(const std::string &fname, int detPos) {
if (fname.empty()) {
return getFileName(detPos);
}
// single
if (detPos >= 0) {
return detectors[detPos]->setFileName(fname);
}
// multi
auto r = parallelCall(&slsDetector::setFileName, fname);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::setReceiverFramesPerFile(int f, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverFramesPerFile(f);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverFramesPerFile, f);
return sls::minusOneIfDifferent(r);
}
slsDetectorDefs::frameDiscardPolicy
multiSlsDetector::setReceiverFramesDiscardPolicy(frameDiscardPolicy f,
int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverFramesDiscardPolicy(f);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverFramesDiscardPolicy, f);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverPartialFramesPadding(int f, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverPartialFramesPadding(f);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverPartialFramesPadding, f);
return sls::minusOneIfDifferent(r);
}
slsDetectorDefs::fileFormat multiSlsDetector::getFileFormat(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFileFormat();
}
// multi
auto r = serialCall(&slsDetector::getFileFormat);
return sls::minusOneIfDifferent(r);
}
slsDetectorDefs::fileFormat multiSlsDetector::setFileFormat(fileFormat f,
int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setFileFormat(f);
}
// multi
auto r = parallelCall(&slsDetector::setFileFormat, f);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getFileIndex(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFileIndex();
}
// multi
auto r = serialCall(&slsDetector::getFileIndex);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::incrementFileIndex(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->incrementFileIndex();
}
// multi
auto r = parallelCall(&slsDetector::incrementFileIndex);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setFileIndex(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setFileIndex(i);
}
// multi
auto r = parallelCall(&slsDetector::setFileIndex, i);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::startReceiver(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->startReceiver();
}
// multi
auto r = parallelCall(&slsDetector::startReceiver);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::stopReceiver(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->stopReceiver();
}
// multi
auto r = parallelCall(&slsDetector::stopReceiver);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
slsDetectorDefs::runStatus multiSlsDetector::getReceiverStatus(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverStatus();
}
// multi
auto r = parallelCall(&slsDetector::getReceiverStatus);
if (sls::allEqual(r)) {
return r.front();
}
if (sls::anyEqualTo(r, ERROR)) {
return ERROR;
}
for (const auto &value : r) {
if (value != IDLE) {
return value;
}
}
return IDLE;
}
int multiSlsDetector::getFramesCaughtByReceiver(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFramesCaughtByReceiver();
}
// multi
auto r = parallelCall(&slsDetector::getFramesCaughtByReceiver);
// prevent divide by all or do not take avg when -1 for "did not connect"
if ((!detectors.size()) || (sls::anyEqualTo(r, -1))) {
return -1;
}
// return average
return ((sls::sum(r)) / (int)detectors.size());
}
int multiSlsDetector::getReceiverCurrentFrameIndex(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverCurrentFrameIndex();
}
// multi
auto r = parallelCall(&slsDetector::getReceiverCurrentFrameIndex);
// prevent divide by all or do not take avg when -1 for "did not connect"
if ((!detectors.size()) || (sls::anyEqualTo(r, -1))) {
return -1;
}
// return average
return ((sls::sum(r)) / (int)detectors.size());
}
int multiSlsDetector::resetFramesCaught(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->resetFramesCaught();
}
// multi
auto r = parallelCall(&slsDetector::resetFramesCaught);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::createReceivingDataSockets(const bool destroy) {
if (destroy) {
FILE_LOG(logINFO) << "Going to destroy data sockets";
// close socket
zmqSocket.clear();
client_downstream = false;
FILE_LOG(logINFO) << "Destroyed Receiving Data Socket(s)";
return OK;
}
FILE_LOG(logINFO) << "Going to create data sockets";
size_t numSockets = detectors.size();
size_t numSocketsPerDetector = 1;
if (getDetectorTypeAsEnum() == EIGER) {
numSocketsPerDetector = 2;
}
numSockets *= numSocketsPerDetector;
for (size_t iSocket = 0; iSocket < numSockets; ++iSocket) {
uint32_t portnum = (detectors[iSocket / numSocketsPerDetector]
->getClientStreamingPort());
portnum += (iSocket % numSocketsPerDetector);
try {
zmqSocket.push_back(sls::make_unique<ZmqSocket>(
detectors[iSocket / numSocketsPerDetector]
->getClientStreamingIP()
.c_str(),
portnum));
FILE_LOG(logINFO) << "Zmq Client[" << iSocket << "] at " << zmqSocket.back()->GetZmqServerAddress();
} catch (...) {
FILE_LOG(logERROR) << "Could not create Zmq socket on port " << portnum;
createReceivingDataSockets(true);
return FAIL;
}
}
client_downstream = true;
FILE_LOG(logINFO) << "Receiving Data Socket(s) created";
return OK;
}
void multiSlsDetector::readFrameFromReceiver() {
int nX =
thisMultiDetector->numberOfDetector[X]; // to copy data in multi module
int nY = thisMultiDetector
->numberOfDetector[Y]; // for eiger, to reverse the data
bool gappixelsenable = false;
bool eiger = false;
if (getDetectorTypeAsEnum() == EIGER) {
eiger = true;
nX *= 2;
gappixelsenable = detectors[0]->enableGapPixels(-1) >= 1 ? true : false;
}
bool runningList[zmqSocket.size()], connectList[zmqSocket.size()];
int numRunning = 0;
for (size_t i = 0; i < zmqSocket.size(); ++i) {
if (!zmqSocket[i]->Connect()) {
connectList[i] = true;
runningList[i] = true;
++numRunning;
} else {
// to remember the list it connected to, to disconnect later
connectList[i] = false;
FILE_LOG(logERROR) << "Could not connect to socket " << zmqSocket[i]->GetZmqServerAddress();
runningList[i] = false;
}
}
int numConnected = numRunning;
bool data = false;
char *image = nullptr;
char *multiframe = nullptr;
char *multigappixels = nullptr;
int multisize = 0;
// only first message header
uint32_t size = 0, nPixelsX = 0, nPixelsY = 0, dynamicRange = 0;
float bytesPerPixel = 0;
// header info every header
std::string currentFileName = "";
uint64_t currentAcquisitionIndex = -1, currentFrameIndex = -1,
currentFileIndex = -1;
uint32_t currentSubFrameIndex = -1, coordX = -1, coordY = -1,
flippedDataX = -1;
// wait for real time acquisition to start
bool running = true;
sem_wait(&sem_newRTAcquisition);
if (getJoinThreadFlag()) {
running = false;
}
while (running) {
// reset data
data = false;
if (multiframe != nullptr) {
memset(multiframe, 0xFF, multisize);
}
// get each frame
for (unsigned int isocket = 0; isocket < zmqSocket.size(); ++isocket) {
// if running
if (runningList[isocket]) {
// HEADER
{
rapidjson::Document doc;
if (!zmqSocket[isocket]->ReceiveHeader(
isocket, doc, SLS_DETECTOR_JSON_HEADER_VERSION)) {
// parse error, version error or end of acquisition for
// socket
runningList[isocket] = false;
--numRunning;
continue;
}
// if first message, allocate (all one time stuff)
if (image == nullptr) {
// allocate
size = doc["size"].GetUint();
multisize = size * zmqSocket.size();
image = new char[size];
multiframe = new char[multisize];
memset(multiframe, 0xFF, multisize);
// dynamic range
dynamicRange = doc["bitmode"].GetUint();
bytesPerPixel = (float)dynamicRange / 8;
// shape
nPixelsX = doc["shape"][0].GetUint();
nPixelsY = doc["shape"][1].GetUint();
FILE_LOG(logDEBUG1) << "One Time Header Info:"
"\n\tsize: "
<< size << "\n\tmultisize: " << multisize << "\n\tdynamicRange: " << dynamicRange << "\n\tbytesPerPixel: " << bytesPerPixel << "\n\tnPixelsX: " << nPixelsX << "\n\tnPixelsY: " << nPixelsY;
}
// each time, parse rest of header
currentFileName = doc["fname"].GetString();
currentAcquisitionIndex = doc["acqIndex"].GetUint64();
currentFrameIndex = doc["fIndex"].GetUint64();
currentFileIndex = doc["fileIndex"].GetUint64();
currentSubFrameIndex = doc["expLength"].GetUint();
coordY = doc["row"].GetUint();
coordX = doc["column"].GetUint();
if (eiger) {
coordY = (nY - 1) - coordY;
}
flippedDataX = doc["flippedDataX"].GetUint();
FILE_LOG(logDEBUG1) << "Header Info:"
"\n\tcurrentFileName: "
<< currentFileName << "\n\tcurrentAcquisitionIndex: " << currentAcquisitionIndex << "\n\tcurrentFrameIndex: " << currentFrameIndex << "\n\tcurrentFileIndex: " << currentFileIndex << "\n\tcurrentSubFrameIndex: " << currentSubFrameIndex << "\n\tcoordX: " << coordX << "\n\tcoordY: " << coordY << "\n\tflippedDataX: " << flippedDataX;
}
// DATA
data = true;
zmqSocket[isocket]->ReceiveData(isocket, image, size);
// creating multi image
{
uint32_t xoffset = coordX * nPixelsX * bytesPerPixel;
uint32_t yoffset = coordY * nPixelsY;
uint32_t singledetrowoffset = nPixelsX * bytesPerPixel;
uint32_t rowoffset = nX * singledetrowoffset;
FILE_LOG(logDEBUG1) << "Multi Image Info:"
"\n\txoffset: "
<< xoffset << "\n\tyoffset: " << yoffset << "\n\tsingledetrowoffset: " << singledetrowoffset << "\n\trowoffset: " << rowoffset;
if (eiger && flippedDataX) {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy(((char *)multiframe) +
((yoffset + (nPixelsY - 1 - i)) *
rowoffset) +
xoffset,
(char *)image + (i * singledetrowoffset),
singledetrowoffset);
}
} else {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy(((char *)multiframe) +
((yoffset + i) * rowoffset) + xoffset,
(char *)image + (i * singledetrowoffset),
singledetrowoffset);
}
}
}
}
}
// send data to callback
if (data) {
// 4bit gap pixels
if (dynamicRange == 4 && gappixelsenable) {
int n = processImageWithGapPixels(multiframe, multigappixels);
nPixelsX = thisMultiDetector->numberOfChannelInclGapPixels[X];
nPixelsY = thisMultiDetector->numberOfChannelInclGapPixels[Y];
thisData = new detectorData(getCurrentProgress(),
currentFileName.c_str(), nPixelsX,
nPixelsY, multigappixels, n,
dynamicRange, currentFileIndex);
}
// normal pixels
else {
thisData = new detectorData(getCurrentProgress(),
currentFileName.c_str(), nPixelsX,
nPixelsY, multiframe, multisize,
dynamicRange, currentFileIndex);
}
dataReady(thisData, currentFrameIndex,
((dynamicRange == 32) ? currentSubFrameIndex : -1),
pCallbackArg);
delete thisData;
setCurrentProgress(currentAcquisitionIndex + 1);
}
// all done
if (!numRunning) {
// let main thread know that all dummy packets have been received
//(also from external process),
// main thread can now proceed to measurement finished call back
sem_post(&sem_endRTAcquisition);
// wait for next scan/measurement, else join thread
sem_wait(&sem_newRTAcquisition);
// done with complete acquisition
if (getJoinThreadFlag()) {
running = false;
} else {
// starting a new scan/measurement (got dummy data)
for (size_t i = 0; i < zmqSocket.size(); ++i) {
runningList[i] = connectList[i];
}
numRunning = numConnected;
}
}
}
// Disconnect resources
for (size_t i = 0; i < zmqSocket.size(); ++i) {
if (connectList[i]) {
zmqSocket[i]->Disconnect();
}
}
// free resources
delete[] image;
delete[] multiframe;
delete[] multigappixels;
}
int multiSlsDetector::processImageWithGapPixels(char *image, char *&gpImage) {
// eiger 4 bit mode
int nxb = thisMultiDetector->numberOfDetector[X] * (512 + 3);
int nyb = thisMultiDetector->numberOfDetector[Y] * (256 + 1);
int gapdatabytes = nxb * nyb;
int nxchip = thisMultiDetector->numberOfDetector[X] * 4;
int nychip = thisMultiDetector->numberOfDetector[Y] * 1;
// allocate
if (gpImage == nullptr) {
gpImage = new char[gapdatabytes];
}
// fill value
memset(gpImage, 0xFF, gapdatabytes);
const int b1chipx = 128;
const int b1chipy = 256;
char *src = nullptr;
char *dst = nullptr;
// copying line by line
src = image;
dst = gpImage;
for (int row = 0; row < nychip; ++row) { // for each chip in a row
for (int ichipy = 0; ichipy < b1chipy;
++ichipy) { // for each row in a chip
for (int col = 0; col < nxchip; ++col) {
memcpy(dst, src, b1chipx);
src += b1chipx;
dst += b1chipx;
if ((col + 1) % 4) {
++dst;
}
}
}
dst += (2 * nxb);
}
// vertical filling of values
{
uint8_t temp, g1, g2;
int mod;
dst = gpImage;
for (int row = 0; row < nychip; ++row) { // for each chip in a row
for (int ichipy = 0; ichipy < b1chipy;
++ichipy) { // for each row in a chip
for (int col = 0; col < nxchip; ++col) {
dst += b1chipx;
mod = (col + 1) % 4;
// copy gap pixel(chip 0, 1, 2)
if (mod) {
// neighbouring gap pixels to left
temp = (*((uint8_t *)(dst - 1)));
g1 = ((temp & 0xF) / 2);
(*((uint8_t *)(dst - 1))) = (temp & 0xF0) + g1;
// neighbouring gap pixels to right
temp = (*((uint8_t *)(dst + 1)));
g2 = ((temp >> 4) / 2);
(*((uint8_t *)(dst + 1))) = (g2 << 4) + (temp & 0x0F);
// gap pixels
(*((uint8_t *)dst)) = (g1 << 4) + g2;
// increment to point to proper chip destination
++dst;
}
}
}
dst += (2 * nxb);
}
}
// return gapdatabytes;
// horizontal filling
{
uint8_t temp, g1, g2;
char *dst_prevline = nullptr;
dst = gpImage;
for (int row = 0; row < nychip; ++row) { // for each chip in a row
dst += (b1chipy * nxb);
// horizontal copying of gap pixels from neighboring past line
// (bottom parts)
if (row < nychip - 1) {
dst_prevline = dst - nxb;
for (int gapline = 0; gapline < nxb; ++gapline) {
temp = (*((uint8_t *)dst_prevline));
g1 = ((temp >> 4) / 2);
g2 = ((temp & 0xF) / 2);
(*((uint8_t *)dst_prevline)) = (g1 << 4) + g2;
(*((uint8_t *)dst)) = (*((uint8_t *)dst_prevline));
++dst;
++dst_prevline;
}
}
// horizontal copying of gap pixels from neihboring future line (top
// part)
if (row > 0) {
dst -= ((b1chipy + 1) * nxb);
dst_prevline = dst + nxb;
for (int gapline = 0; gapline < nxb; ++gapline) {
temp = (*((uint8_t *)dst_prevline));
g1 = ((temp >> 4) / 2);
g2 = ((temp & 0xF) / 2);
temp = (g1 << 4) + g2;
(*((uint8_t *)dst_prevline)) = temp;
(*((uint8_t *)dst)) = temp;
++dst;
++dst_prevline;
}
dst += ((b1chipy + 1) * nxb);
}
dst += nxb;
}
}
return gapdatabytes;
}
int multiSlsDetector::enableWriteToFile(int enable, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->enableWriteToFile(enable);
}
// multi
auto r = parallelCall(&slsDetector::enableWriteToFile, enable);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::overwriteFile(int enable, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->overwriteFile(enable);
}
// multi
auto r = parallelCall(&slsDetector::overwriteFile, enable);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverStreamingFrequency(int freq, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverStreamingFrequency(freq);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverStreamingFrequency, freq);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverStreamingTimer(int time_in_ms, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverStreamingTimer(time_in_ms);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverStreamingTimer, time_in_ms);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::enableDataStreamingToClient(int enable) {
if (enable >= 0) {
// destroy data threads
if (!enable) {
createReceivingDataSockets(true);
// create data threads
} else {
if (createReceivingDataSockets() == FAIL) {
FILE_LOG(logERROR)
<< "Could not create data threads in client.";
detectors[0]->setErrorMask((detectors[0]->getErrorMask()) |
(DATA_STREAMING));
// only for the first det as theres no general one
setErrorMask(getErrorMask() | (1 << 0));
}
}
}
return client_downstream;
}
int multiSlsDetector::enableDataStreamingFromReceiver(int enable, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->enableDataStreamingFromReceiver(enable);
}
// multi
auto r =
parallelCall(&slsDetector::enableDataStreamingFromReceiver, enable);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::enableTenGigabitEthernet(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->enableTenGigabitEthernet(i);
}
// multi
auto r = parallelCall(&slsDetector::enableTenGigabitEthernet, i);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverFifoDepth(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverFifoDepth(i);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverFifoDepth, i);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverSilentMode(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverSilentMode(i);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverSilentMode, i);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setCTBPattern(const std::string &fname, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBPattern(fname);
}
// multi
int addr = 0;
FILE *fd = fopen(fname.c_str(), "r");
if (fd == nullptr) {
FILE_LOG(logERROR) << "Could not open file";
setErrorMask(getErrorMask() | MULTI_OTHER_ERROR);
return -1;
}
uint64_t word;
while (fread(&word, sizeof(word), 1, fd)) {
serialCall(&slsDetector::setCTBWord, addr, word);
++addr;
}
fclose(fd);
return addr;
}
uint64_t multiSlsDetector::setCTBWord(int addr, uint64_t word, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBWord(addr, word);
}
// multi
auto r = parallelCall(&slsDetector::setCTBWord, addr, word);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setCTBPatLoops(int level, int &start, int &stop, int &n,
int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBPatLoops(level, start, stop, n);
}
// multi
std::vector<int> r;
for (auto &d : detectors) {
r.push_back(d->setCTBPatLoops(level, start, stop, n));
}
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::setCTBPatWaitAddr(int level, int addr, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBPatWaitAddr(level, addr);
}
// multi
auto r = parallelCall(&slsDetector::setCTBPatWaitAddr, level, addr);
return sls::minusOneIfDifferent(r);
}
uint64_t multiSlsDetector::setCTBPatWaitTime(int level, uint64_t t, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBPatWaitTime(level, t);
}
// multi
auto r = parallelCall(&slsDetector::setCTBPatWaitTime, level, t);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::retrieveDetectorSetup(const std::string &fname1,
int level) {
int skip = 0;
std::string fname;
std::string str;
std::ifstream infile;
int iargval;
int interrupt = 0;
char *args[10];
char myargs[10][1000];
std::string sargname, sargval;
int iline = 0;
if (level == 2) {
FILE_LOG(logDEBUG1) << "config file read";
fname = fname1 + std::string(".det");
} else {
fname = fname1;
}
infile.open(fname.c_str(), std::ios_base::in);
if (infile.is_open()) {
auto cmd = slsDetectorCommand(this);
while (infile.good() and interrupt == 0) {
sargname = "none";
sargval = "0";
getline(infile, str);
iline++;
FILE_LOG(logDEBUG1) << str;
if (str.find('#') != std::string::npos) {
FILE_LOG(logDEBUG1) << "Line is a comment \n"
<< str;
continue;
} else {
std::istringstream ssstr(str);
iargval = 0;
while (ssstr.good()) {
ssstr >> sargname;
// if (ssstr.good()) {
sls::strcpy_safe(myargs[iargval], sargname.c_str());
args[iargval] = myargs[iargval];
FILE_LOG(logDEBUG1) << args[iargval];
iargval++;
// }
skip = 0;
}
if (level != 2) {
if (std::string(args[0]) == std::string("trimbits")) {
skip = 1;
}
}
if (skip == 0) {
cmd.executeLine(iargval, args, PUT_ACTION);
}
}
iline++;
}
infile.close();
} else {
FILE_LOG(logERROR) << "Error opening " << fname << " for reading";
return FAIL;
}
FILE_LOG(logDEBUG1) << "Read " << iline << " lines";
if (getErrorMask()) {
return FAIL;
}
return OK;
}
int multiSlsDetector::dumpDetectorSetup(const std::string &fname, int level) {
detectorType type = getDetectorTypeAsEnum();
// std::string names[100];
std::vector<std::string> names;
// int nvar = 0;
// common config
names.emplace_back("fname");
names.emplace_back("index");
names.emplace_back("enablefwrite");
names.emplace_back("overwrite");
names.emplace_back("dr");
names.emplace_back("settings");
names.emplace_back("exptime");
names.emplace_back("period");
names.emplace_back("frames");
names.emplace_back("cycles");
names.emplace_back("measurements");
names.emplace_back("timing");
switch (type) {
case EIGER:
names.emplace_back("flags");
names.emplace_back("clkdivider");
names.emplace_back("threshold");
names.emplace_back("ratecorr");
names.emplace_back("trimbits");
break;
case GOTTHARD:
names.emplace_back("delay");
break;
case JUNGFRAU:
names.emplace_back("delay");
names.emplace_back("clkdivider");
break;
case CHIPTESTBOARD:
names.emplace_back("dac:0");
names.emplace_back("dac:1");
names.emplace_back("dac:2");
names.emplace_back("dac:3");
names.emplace_back("dac:4");
names.emplace_back("dac:5");
names.emplace_back("dac:6");
names.emplace_back("dac:7");
names.emplace_back("dac:8");
names.emplace_back("dac:9");
names.emplace_back("dac:10");
names.emplace_back("dac:11");
names.emplace_back("dac:12");
names.emplace_back("dac:13");
names.emplace_back("dac:14");
names.emplace_back("dac:15");
names.emplace_back("dac:16");
names.emplace_back("dac:17");
names.emplace_back("dac:18");
names.emplace_back("dac:19");
names.emplace_back("dac:20");
names.emplace_back("dac:21");
names.emplace_back("dac:22");
names.emplace_back("dac:23");
names.emplace_back("adcvpp");
names.emplace_back("adcclk");
names.emplace_back("clkdivider");
names.emplace_back("adcphase");
names.emplace_back("adcpipeline");
names.emplace_back("adcinvert"); //
names.emplace_back("adcdisable");
names.emplace_back("patioctrl");
names.emplace_back("patclkctrl");
names.emplace_back("patlimits");
names.emplace_back("patloop0");
names.emplace_back("patnloop0");
names.emplace_back("patwait0");
names.emplace_back("patwaittime0");
names.emplace_back("patloop1");
names.emplace_back("patnloop1");
names.emplace_back("patwait1");
names.emplace_back("patwaittime1");
names.emplace_back("patloop2");
names.emplace_back("patnloop2");
names.emplace_back("patwait2");
names.emplace_back("patwaittime2");
break;
default:
break;
}
//Workaround to bo able to suplly ecexuteLine with char**
const int n_arguments = 1;
char buffer[1000]; //TODO! this should not be hardcoded!
char *args[n_arguments] = {buffer};
std::string outfname;
if (level == 2) {
writeConfigurationFile(fname + ".config");
outfname = fname + ".det";
} else {
outfname = fname;
}
std::ofstream outfile;
outfile.open(outfname.c_str(), std::ios_base::out);
if (outfile.is_open()) {
auto cmd = slsDetectorCommand(this);
for (auto &name : names) {
sls::strcpy_safe(buffer, name.c_str()); //this is...
outfile << name << " " << cmd.executeLine(n_arguments, args, GET_ACTION)
<< std::endl;
}
outfile.close();
} else {
FILE_LOG(logERROR) << "Could not open parameters file " << outfname << " for writing";
return FAIL;
}
FILE_LOG(logDEBUG1) << "wrote " << names.size() << " lines to " << outfname;
return OK;
}
void multiSlsDetector::registerAcquisitionFinishedCallback(
int (*func)(double, int, void *), void *pArg) {
acquisition_finished = func;
acqFinished_p = pArg;
}
void multiSlsDetector::registerMeasurementFinishedCallback(int (*func)(int, int,
void *),
void *pArg) {
measurement_finished = func;
measFinished_p = pArg;
}
void multiSlsDetector::registerProgressCallback(int (*func)(double, void *),
void *pArg) {
progress_call = func;
pProgressCallArg = pArg;
}
void multiSlsDetector::registerDataCallback(
int (*userCallback)(detectorData *, int, int, void *), void *pArg) {
dataReady = userCallback;
pCallbackArg = pArg;
if (setReceiverOnline() == slsDetectorDefs::ONLINE_FLAG) {
enableDataStreamingToClient(1);
enableDataStreamingFromReceiver(1);
}
}
int multiSlsDetector::setTotalProgress() {
int nf = 1, nc = 1, ns = 1, nm = 1;
if (thisMultiDetector->timerValue[FRAME_NUMBER]) {
nf = thisMultiDetector->timerValue[FRAME_NUMBER];
}
if (thisMultiDetector->timerValue[CYCLES_NUMBER] > 0) {
nc = thisMultiDetector->timerValue[CYCLES_NUMBER];
}
if (thisMultiDetector->timerValue[STORAGE_CELL_NUMBER] > 0) {
ns = thisMultiDetector->timerValue[STORAGE_CELL_NUMBER] + 1;
}
if (thisMultiDetector->timerValue[MEASUREMENTS_NUMBER] > 0) {
nm = thisMultiDetector->timerValue[MEASUREMENTS_NUMBER];
}
totalProgress = nm * nf * nc * ns;
FILE_LOG(logDEBUG1) << "nm " << nm << " nf " << nf << " nc " << nc << " ns " << ns;
FILE_LOG(logDEBUG1) << "Set total progress " << totalProgress << std::endl;
return totalProgress;
}
double multiSlsDetector::getCurrentProgress() {
std::lock_guard<std::mutex> lock(mp);
return 100. * ((double)progressIndex) / ((double)totalProgress);
}
void multiSlsDetector::incrementProgress() {
std::lock_guard<std::mutex> lock(mp);
progressIndex++;
std::cout << std::fixed << std::setprecision(2) << std::setw(6)
<< 100. * ((double)progressIndex) / ((double)totalProgress)
<< " \%";
std::cout << '\r' << std::flush;
}
void multiSlsDetector::setCurrentProgress(int i) {
std::lock_guard<std::mutex> lock(mp);
progressIndex = i;
std::cout << std::fixed << std::setprecision(2) << std::setw(6)
<< 100. * ((double)progressIndex) / ((double)totalProgress)
<< " \%";
std::cout << '\r' << std::flush;
}
int multiSlsDetector::acquire() {
// ensure acquire isnt started multiple times by same client
if (isAcquireReady() == FAIL) {
return FAIL;
}
struct timespec begin, end;
clock_gettime(CLOCK_REALTIME, &begin);
// in the real time acquisition loop, processing thread will wait for a post
// each time
sem_init(&sem_newRTAcquisition, 1, 0);
// in the real time acquistion loop, main thread will wait for processing
// thread to be done each time (which in turn waits for receiver/ext
// process)
sem_init(&sem_endRTAcquisition, 1, 0);
bool receiver = (setReceiverOnline() == ONLINE_FLAG);
progressIndex = 0;
thisMultiDetector->stoppedFlag = 0;
setJoinThreadFlag(false);
int nm = thisMultiDetector->timerValue[MEASUREMENTS_NUMBER];
if (nm < 1) {
nm = 1;
}
// verify receiver is idle
if (receiver) {
std::lock_guard<std::mutex> lock(mg);
if (getReceiverStatus() != IDLE) {
if (stopReceiver() == FAIL) {
thisMultiDetector->stoppedFlag = 1;
}
}
}
startProcessingThread();
// resets frames caught in receiver
if (receiver) {
std::lock_guard<std::mutex> lock(mg);
if (resetFramesCaught() == FAIL) {
thisMultiDetector->stoppedFlag = 1;
}
}
// loop through measurements
for (int im = 0; im < nm; ++im) {
if (thisMultiDetector->stoppedFlag) {
break;
}
// start receiver
if (receiver) {
std::lock_guard<std::mutex> lock(mg);
if (startReceiver() == FAIL) {
FILE_LOG(logERROR) << "Start receiver failed ";
stopReceiver();
thisMultiDetector->stoppedFlag = 1;
break;
}
// let processing thread listen to these packets
sem_post(&sem_newRTAcquisition);
}
startAndReadAll();
// stop receiver
std::lock_guard<std::mutex> lock(mg);
if (receiver) {
if (stopReceiver() == FAIL) {
thisMultiDetector->stoppedFlag = 1;
} else {
if (dataReady) {
sem_wait(&sem_endRTAcquisition); // waits for receiver's
}
// external process to be
// done sending data to gui
}
}
int findex = 0;
findex = incrementFileIndex();
if (measurement_finished) {
measurement_finished(im, findex, measFinished_p);
}
if (thisMultiDetector->stoppedFlag) {
break;
}
} // end measurements loop im
// waiting for the data processing thread to finish!
setJoinThreadFlag(true);
sem_post(&sem_newRTAcquisition);
dataProcessingThread.join();
if (progress_call) {
progress_call(getCurrentProgress(), pProgressCallArg);
}
if (acquisition_finished) {
acquisition_finished(getCurrentProgress(), getRunStatus(),
acqFinished_p);
}
sem_destroy(&sem_newRTAcquisition);
sem_destroy(&sem_endRTAcquisition);
clock_gettime(CLOCK_REALTIME, &end);
FILE_LOG(logDEBUG1) << "Elapsed time for acquisition:"
<< ((end.tv_sec - begin.tv_sec) +
(end.tv_nsec - begin.tv_nsec) / 1000000000.0)
<< " seconds";
setAcquiringFlag(false);
return OK;
}
void multiSlsDetector::startProcessingThread() {
setTotalProgress();
dataProcessingThread = std::thread(&multiSlsDetector::processData, this);
}
// void* multiSlsDetector::startProcessData(void *n) {
// ((multiSlsDetector*)n)->processData();
// return n;
// }
void multiSlsDetector::processData() {
if (setReceiverOnline() == OFFLINE_FLAG) {
return;
} else {
if (dataReady) {
readFrameFromReceiver();
}
// only update progress
else {
int caught = -1;
while (true) {
// to exit acquire by typing q
if (kbhit() != 0) {
if (fgetc(stdin) == 'q') {
FILE_LOG(logINFO) << "Caught the command to stop acquisition";
stopAcquisition();
}
}
// get progress
if (setReceiverOnline() == ONLINE_FLAG) {
std::lock_guard<std::mutex> lock(mg);
caught = getFramesCaughtByReceiver(0);
}
// updating progress
if (caught != -1) {
setCurrentProgress(caught);
}
// exiting loop
if (getJoinThreadFlag()) {
break;
}
// otherwise error when connecting to the receiver too fast
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
}
return;
}
bool multiSlsDetector::getJoinThreadFlag() const {
std::lock_guard<std::mutex> lock(mp);
return jointhread;
}
void multiSlsDetector::setJoinThreadFlag(bool value) {
std::lock_guard<std::mutex> lock(mp);
jointhread = value;
}
int multiSlsDetector::kbhit() {
struct timeval tv;
fd_set fds;
tv.tv_sec = 0;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(STDIN_FILENO, &fds); // STDIN_FILENO is 0
select(STDIN_FILENO + 1, &fds, nullptr, nullptr, &tv);
return FD_ISSET(STDIN_FILENO, &fds);
}
bool multiSlsDetector::isDetectorIndexOutOfBounds(int detPos) {
// position exceeds multi list size
if (detPos >= static_cast<int>(detectors.size())) {
FILE_LOG(logERROR) << "Position " << detPos
<< " is out of bounds with "
"a detector list of "
<< detectors.size();
setErrorMask(getErrorMask() | MULTI_POS_EXCEEDS_LIST);
return true;
}
return false;
}