Dhanya Thattil a5022ff0ee
Jf strixelmap with roi (#715)
* Fix ROI mapping, Formatting, Minor edit
---------

Co-authored-by: vhinger182 <viktoria.hinger@psi.ch>
Co-authored-by: vhinger182 <hinger_v@hv_home_lt1.localdomain>
2023-04-12 14:03:04 +02:00

420 lines
12 KiB
C++

// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef JUNGFRAULGADSTRIXELSDATA_H
#define JUNGFRAULGADSTRIXELSDATA_H
#ifdef CINT
#include "sls/sls_detector_defs_CINT.h"
#else
#include "sls/sls_detector_defs.h"
#endif
#include "slsDetectorData.h"
//#define VERSION_V2
/**
@short structure for a Detector Packet or Image Header
@li frameNumber is the frame number
@li expLength is the subframe number (32 bit eiger) or real time exposure
time in 100ns (others)
@li packetNumber is the packet number
@li bunchId is the bunch id from beamline
@li timestamp is the time stamp with 10 MHz clock
@li modId is the unique module id (unique even for left, right, top, bottom)
@li xCoord is the x coordinate in the complete detector system
@li yCoord is the y coordinate in the complete detector system
@li zCoord is the z coordinate in the complete detector system
@li debug is for debugging purposes
@li roundRNumber is the round robin set number
@li detType is the detector type see :: detectorType
@li version is the version number of this structure format
*/
namespace strixelSingleChip {
constexpr int nc_rawimg = 1024; //for full images //256;
constexpr int nr_rawimg = 512;
constexpr int nr_chip = 256;
constexpr int gr = 9;
//Group 1: 25um pitch, groups of 3, 1 column of square pixels
constexpr int g1_ncols{ (nc_rawimg-(2*gr)-1)/3 }; //79
constexpr int g1_nrows{ ( (nr_chip/4)-gr )*3 }; //165
//Group 2: 15um pitch, groups of 5, 3 columns of square pixels
constexpr int g2_ncols{ (nc_rawimg-(2*gr)-3)/5 }; //47
constexpr int g2_nrows{ (nr_chip/4)*5 }; //320
//Group 3: 18.75um pitch, groups of 4, 2 columns of square pixels (double the size of the other groups)
constexpr int g3_ncols{ (nc_rawimg-(2*gr)-2)/4 }; //59
constexpr int g3_nrows{ ( ((nr_chip/4)*2)-gr )*4 }; //476
constexpr int nc_strixel = 2*gr + 1 + g1_ncols; //group 1 is the "longest" group in x and has one extra square pixel
constexpr int nr_strixel = 2*gr + g1_nrows + g2_nrows + g3_nrows;
//chip and group boundaries in ASIC coordinates (pixels at both bounds are included in the group)
//y does NOT take into account the shifts for M408!
constexpr int c1g1_xstart = 256 + gr + 1; //266
constexpr int c1g2_xstart = 256 + gr + 3; //268
constexpr int c1g3_xstart = 256 + gr + 2; //267
constexpr int c1_xend = 255 + 256 - gr; //502
constexpr int c1g1_ystart = gr; // 9
constexpr int c1g1_yend = 63; // 63
constexpr int c1g2_ystart = c1g1_yend + 1; // 64
constexpr int c1g2_yend = c1g1_yend + 64; //127
constexpr int c1g3_ystart = c1g2_yend + 1; //128
constexpr int c1g3_yend = c1g2_yend + 2*64 - gr; //246
constexpr int c6_xstart = 256 + 256 + gr; //521
constexpr int c6g1_xend = 255 + 2*256 - gr - 1; //757
constexpr int c6g2_xend = 256 + 2*256 - gr - 3; //755
constexpr int c6g3_xend = 256 + 2*256 - gr - 2; //756
constexpr int c6g3_ystart = 256 + gr; //265
constexpr int c6g3_yend = 255 + 2*64; //383
constexpr int c6g2_ystart = c6g3_yend + 1; //384
constexpr int c6g2_yend = c6g3_yend + 64; //447
constexpr int c6g1_ystart = c6g2_yend + 1; //448
constexpr int c6g1_yend = c6g2_yend + 64 - gr; //502
//y shift due to faulty bonding (relevant for M408)
constexpr int bond_shift_y = 1; //CHANGE IF YOU CHANGE MODULE!
}
typedef struct {
uint64_t bunchNumber; /**< is the frame number */
uint64_t pre; /**< something */
} jf_header; //Aldo's header
using namespace strixelSingleChip;
class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
private:
int iframe;
int mchip;
int chip_x0;
int chip_y0;
int x0, y0, x1, y1, shifty;
int getMultiplicator( const int group ) {
int multiplicator;
switch (group) {
default:
case 1:
multiplicator = 3;
break;
case 2:
multiplicator = 5;
break;
case 3:
multiplicator = 4;
break;
}
return multiplicator;
}
void setMappingShifts( const int group ) {
if ( mchip == 1 ) {
chip_x0=256;
chip_y0=bond_shift_y; //because of bump bonding issues(+1 row) on M408
switch (group) {
default:
case 1:
x0 = 10+chip_x0; //9 gr + 1 sq pixel
x1 = 246+chip_x0;
y0 = 9+chip_y0;
y1 = 63+chip_y0;
shifty = 0;
break;
case 2:
x0 = 12+chip_x0;
x1 = 247+chip_x0;
y0 = 64+chip_y0;
y1 = 127+chip_y0;
shifty = g1_nrows;
break;
case 3:
x0 = 11+chip_x0;
x1 = 247+chip_x0;
y0 = 128+chip_y0;
y1 = 246+chip_y0;
shifty = g2_nrows+g1_nrows;
break;
}
}
if ( mchip == 6 ) {
chip_x0=512;
chip_y0=256-bond_shift_y; //should be 256 but is 255 because of bump bonding issues (+1 row) on M408
switch (group) {
default:
case 1:
x0 = 9+chip_x0; //9 gr sq pixel
x1 = 246+chip_x0;
y0 = 192+chip_y0;
y1 = 244+chip_y0;
shifty = g1_nrows+2*g2_nrows+2*g3_nrows;
break;
case 2:
x0 = 9+chip_x0;
x1 = 244+chip_x0;
y0 = 128+chip_y0;
y1 = 191+chip_y0;
shifty = g1_nrows+g2_nrows+2*g3_nrows;;
break;
case 3:
x0 = 9+chip_x0;
x1 = 244+chip_x0;
y0 = 9+chip_y0;
y1 = 127+chip_y0;
shifty =g1_nrows+g2_nrows+g3_nrows;
break;
}
}
}
void remapGroup( const int group ) {
int multiplicator = getMultiplicator(group);
int shiftx;
int ix, iy=0;
setMappingShifts(group);
//remapping loop
for ( int ipy=y0; ipy<=y1;ipy++) {
for ( int ipx=x0; ipx<=x1; ipx++ ) {
ix = int ((ipx-x0)/multiplicator);
for ( int m=0; m<multiplicator;m++ ) {
if ( (ipx-x0)%multiplicator==m ) iy=(ipy-y0)*multiplicator +m + shifty;
}
// if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] = sizeof(header) + (nc_rawimg * ipy + ipx) * 2;
groupmap[iy][ix]=group-1;
}
}
}
void remapROI( uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax ) {
//determine group and chip selected by ROI
int group;
if ( ymax <= c1g1_yend+bond_shift_y ) { group = 1; mchip = 1; }
else if ( ymax <= c1g2_yend+bond_shift_y ) { group = 2; mchip = 1; }
else if ( ymax <= c1g3_yend+bond_shift_y ) { group = 3; mchip = 1; }
else if ( ymax <= c6g3_yend-bond_shift_y ) { group = 3; mchip = 6; }
else if ( ymax <= c6g2_yend-bond_shift_y ) { group = 2; mchip = 6; }
else if ( ymax <= c6g1_yend-bond_shift_y ) { group = 1; mchip = 6; }
int multiplicator = getMultiplicator(group);
setMappingShifts(group);
std::cout << "group: " << group << ", m: " << multiplicator << ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0 << ", y1: " << y1 << std::endl;
//get ROI raw image number of columns
int nc_roi = xmax - xmin + 1;
std::cout << "nc_roi = " << nc_roi << std::endl;
//make sure loop bounds are correct
if (y0<ymin) std::cout << "Error ymin" << std::endl;
if (y1>ymax) std::cout << "Error ymax - normal for G3 since ROI only 64 row" << std::endl;
if (x0<xmin) std::cout << "Error xmin" << std::endl;
if (x1>xmax) std::cout << "Error xmax" << std::endl;
//remapping loop
int ix, iy=0;
for ( int ipy=y0; ipy<=y1; ++ipy) {
for ( int ipx=x0; ipx<=x1; ++ipx ) {
ix = int ((ipx-x0/*-xmin*/)/multiplicator);
for ( int m=0; m<multiplicator;m++ ) {
if ( (ipx-x0/*-xmin*/)%multiplicator==m ) iy=(ipy-y0/*-ymin*/)*multiplicator +m + shifty;
}
// if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] = sizeof(header) + (nc_roi * (ipy-ymin) + (ipx-xmin)) * 2;
groupmap[iy][ix]=group-1;
}
}
}
public:
int groupmap[512*5][1024/3];
using header = sls::defs::sls_receiver_header;
jungfrauLGADStrixelsData( uint16_t xmin=0, uint16_t xmax=0, uint16_t ymin=0, uint16_t ymax=0 )
: slsDetectorData<uint16_t>( /*nc_strixel*/g1_ncols, /*nr_strixel*/ 2*g1_nrows+2*g2_nrows+2*g3_nrows,
g1_ncols* (2*g1_nrows+2*g2_nrows+2*g3_nrows) * 2 + sizeof(header) ) {
std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl;
//Fill all strixels with dummy values
for (int ix = 0; ix != g1_ncols; ++ix) {
for (int iy = 0; iy != 2*g1_nrows+2*g2_nrows+2*g3_nrows; ++iy) {
dataMap[iy][ix] = sizeof(header);
}
}
std::cout << "sizeofheader = "<<sizeof(header)<<std::endl;
std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl;
if (xmin<xmax && ymin<ymax) {
dataSize=(xmax-xmin+1)*(ymax-ymin+1)*2 + sizeof(header);
std::cout << "datasize " << dataSize << std::endl;
remapROI( xmin, xmax, ymin, ymax );
} else {
mchip = 1;
remapGroup(1);
remapGroup(2);
remapGroup(3);
mchip = 6;
remapGroup(1);
remapGroup(2);
remapGroup(3);
}
iframe = 0;
std::cout << "data struct created" << std::endl;
};
/**
Returns the value of the selected channel for the given dataset as
double. \param data pointer to the dataset (including headers etc) \param
ix pixel number in the x direction \param iy pixel number in the y
direction \returns data for the selected channel, with inversion if
required as double
*/
virtual double getValue(char *data, int ix, int iy = 0) {
uint16_t val = getChannel(data, ix, iy) & 0x3fff;
return val;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
int getFrameNumber(char *buff) {
#ifdef ALDO //VH
return ((header *)buff)->bunchNumber; //VH
#else //VH
return ((header *)buff)->detHeader.frameNumber;
#endif //VH
};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
*/
int getPacketNumber(char *buff) {
#ifdef ALDO //VH
//uint32_t fakePacketNumber = 1000;
//return fakePacketNumber; //VH //TODO: Keep in mind in case of bugs! //This is definitely bad!
return 1000;
#else //VH
return ((header *)buff)->detHeader.packetNumber;
#endif //VH
};
char *readNextFrame(std::ifstream &filebin) {
int ff = -1, np = -1;
return readNextFrame(filebin, ff, np);
};
char *readNextFrame(std::ifstream &filebin, int &ff) {
int np = -1;
return readNextFrame(filebin, ff, np);
};
char *readNextFrame(std::ifstream &filebin, int &ff, int &np) {
char *data = new char[dataSize];
char *d = readNextFrame(filebin, ff, np, data);
if (d == NULL) {
delete[] data;
data = NULL;
}
return data;
};
char *readNextFrame(std::ifstream &filebin, int &ff, int &np,char *data) {
char *retval = 0;
int nd;
int fnum = -1;
np = 0;
int pn;
//std::cout << dataSize << std::endl;
if (ff >= 0)
fnum = ff;
if (filebin.is_open()) {
if (filebin.read(data, dataSize)) {
std::cout << "*";
ff = getFrameNumber(data);
np = getPacketNumber(data);
return data;
}
}
return NULL;
};
/* Loops over a memory slot until a complete frame is found (i.e. all */
/* packets 0 to nPackets, same frame number). purely virtual func \param */
/* data pointer to the memory to be analyzed \param ndata reference to the */
/* amount of data found for the frame, in case the frame is incomplete at */
/* the end of the memory slot \param dsize size of the memory slot to be */
/* analyzed \returns pointer to the beginning of the last good frame (might */
/* be incomplete if ndata smaller than dataSize), or NULL if no frame is */
/* found */
/* *\/ */
virtual char *findNextFrame(char *data, int &ndata, int dsize) {
if (dsize < dataSize)
ndata = dsize;
else
ndata = dataSize;
return data;
};
// int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;};
};
#endif