slsDetectorPackage/slsDetectorCalibration/multiThreadedAnalogDetector.h
vhinger182 4c6be26846
Jf rawdataprocess txtfile (#732)
* Fix ROI mapping

* Formatting

* Minor edit

* intial draft of cmake for jungfrau executables Makefile.rawdataprocess

* added the cmake file

* missed Makefile

* added libfmt

* Fix some compiler warnings

* Fix some compiler warnings

* Create filename usining fmt::format

* Rewrite command line parsing with std::string and fmt::format

* Fix file reading

* Fix root string extraction

* Fix ifstream file reading

* Clean up comments

* Add version of rawdataprocess with bash wildcards

* Add version of rawdataprocess that reads inputs from txt-file, still buggy

* intermediate

* fix file loop

* fix const

* Circumevent bug with stuck threads

* Fix mutex bug

* cleanup

---------

Co-authored-by: vhinger182 <hinger_v@hv_home_lt1.localdomain>
Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
Co-authored-by: Erik Fröjdh <erik.frojdh@gmail.com>
2023-05-08 16:30:37 +02:00

646 lines
18 KiB
C++

// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef MULTITHREADED_ANALOG_DETECTOR_H
#define MULTITHREADED_ANALOG_DETECTOR_H
#define MAXTHREADS 1000
#include <fstream>
#include <iomanip>
#include <sstream>
#include <stdio.h>
#include <string>
#include <vector>
//#include <deque>
//#include <list>
//#include <queue>
#include <cstdlib>
#include <fstream>
#include <pthread.h>
#include "analogDetector.h"
#include "circularFifo.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
//#include <mutex>
using namespace std;
class threadedAnalogDetector {
public:
threadedAnalogDetector(analogDetector<uint16_t> *d, int fs = 10000) {
char *mm; //*mem,
det = d;
fifoFree = new CircularFifo<char>(fs);
fifoData = new CircularFifo<char>(fs);
// mem==NULL;
/* mem=(char*)calloc(fs, det->getDataSize()); */
/* if (mem) */
/* memset(mem,0, fs*det->getDataSize()); */
int i;
for (i = 0; i < fs; i++) {
//
// mm=mem+i*det->getDataSize();
// cout << i << endl;
mm = (char *)calloc(1, det->getDataSize());
if (mm) {
// memset(mm,0, det->getDataSize());
fifoFree->push(mm);
} else
break;
}
if (i < fs)
cout << "Could allocate only " << i << " frames";
busy = 0;
stop = 1;
fMode = eFrame;
ff = NULL;
}
virtual int setFrameMode(int fm) {
if (fm >= 0) {
det->setFrameMode((frameMode)fm);
fMode = fm;
}
return fMode;
};
virtual double setThreshold(double th) { return det->setThreshold(th); };
virtual double setClusterSize(int csx, int csy) {
//cout << "44" << endl;
return det->setClusterSize(csx);
};
virtual void setROI(int xmin, int xmax, int ymin, int ymax) {
det->setROI(xmin, xmax, ymin, ymax);
};
virtual int setDetectorMode(int dm) {
if (dm >= 0) {
det->setDetectorMode((detectorMode)dm);
dMode = dm;
}
return dMode;
};
virtual void newDataSet() { det->newDataSet(); };
// fMode=fm; return fMode;}
/* void prepareInterpolation(int &ok) { */
/* cout << "-" << endl; */
/* det->prepareInterpolation(ok); */
/* }; */
virtual int *getImage() { return det->getImage(); }
virtual int getImageSize(int &nnx, int &nny, int &ns, int &nsy) {
return det->getImageSize(nnx, nny, ns, nsy);
};
virtual int getDetectorSize(int &nnx, int &nny) {
return det->getDetectorSize(nnx, nny);
};
virtual ~threadedAnalogDetector() {
StopThread();
delete fifoFree;
delete fifoData;
}
/** Returns true if the thread was successfully started, false if there was
* an error starting the thread */
virtual bool StartThread() {
stop = 0;
cout << "Detector number " << det->getId() << endl;
cout << "common mode is " << det->getCommonModeSubtraction() << endl;
cout << "ghos summation is " << det->getGhostSummation() << endl;
return (pthread_create(&_thread, NULL, processData, this) == 0);
}
virtual void StopThread() {
stop = 1;
(void)pthread_join(_thread, NULL);
}
virtual bool pushData(char *&ptr) { return fifoData->push(ptr); }
virtual bool popFree(char *&ptr) { return fifoFree->pop(ptr); }
// virtual int isBusy() {if (fifoData->isEmpty() && busy==0) return 0;
// return 1;}
virtual int isBusy() {
//std::cout << busy << " " << fifoData->isEmpty() << " " << fifoData->getDataValue() << " " << fifoData->getFreeValue() << std::endl;
if (busy == 0) {
usleep(100);
if (busy == 0) {
if (fifoData->isEmpty()) {
usleep(100);
return 0;
}
}
}
return 1;
}
// protected:
/** Implement this method in your subclass with the code you want your
* thread to run. */
// virtual void InternalThreadEntry() = 0;
virtual void *writeImage(const char *imgname) {
return det->writeImage(imgname);
};
virtual void clearImage() { det->clearImage(); };
virtual void setPedestal(double *ped, double *rms = NULL, int m = -1) {
det->setPedestal(ped, rms, m);
};
virtual void setPedestalRMS(double *rms) { det->setPedestalRMS(rms); };
virtual double *getPedestal(double *ped = NULL) {
return det->getPedestal(ped);
};
virtual double *getPedestalRMS(double *rms = NULL) {
return det->getPedestalRMS(rms);
};
/** sets file pointer where to write the clusters to
\param f file pointer
\returns current file pointer
*/
FILE *setFilePointer(FILE *f) { return det->setFilePointer(f); };
/** gets file pointer where to write the clusters to
\returns current file pointer
*/
FILE *getFilePointer() { return det->getFilePointer(); };
virtual double setNSigma(double n) { return det->setNSigma(n); };
virtual void setEnergyRange(double emi, double ema) {
det->setEnergyRange(emi, ema);
};
virtual void prepareInterpolation(int &ok) {
slsInterpolation *interp = det->getInterpolation();
if (interp)
interp->prepareInterpolation(ok);
}
virtual int *getFlatFieldDistribution() {
slsInterpolation *interp = (det)->getInterpolation();
if (interp)
return interp->getFlatFieldDistribution();
else
return NULL;
}
virtual int *setFlatField(int *ff, int nb, double emin, double emax) {
slsInterpolation *interp = (det)->getInterpolation();
if (interp)
return interp->setFlatField(ff, nb, emin, emax);
else
return NULL;
}
void *writeFlatField(const char *imgname) {
slsInterpolation *interp = (det)->getInterpolation();
// cout << "interp " << interp << endl;
if (interp) {
cout << imgname << endl;
return interp->writeFlatField(imgname);
}
return NULL;
}
void *readFlatField(const char *imgname, double emin = 1,
double emax = 0) {
slsInterpolation *interp = (det)->getInterpolation();
if (interp)
return interp->readFlatField(imgname, emin, emax);
return NULL;
}
virtual int *getFlatField(int &nbx, int &nby, double &emi, double &ema) {
slsInterpolation *interp = (det)->getInterpolation();
int *ff = NULL;
if (interp) {
ff = interp->getFlatField(nbx, nby, emi, ema);
}
return ff;
}
virtual slsInterpolation *getInterpolation() {
return (det)->getInterpolation();
}
virtual void resetFlatField() {
slsInterpolation *interp = (det)->getInterpolation();
if (interp)
interp
->resetFlatField(); //((interpolatingDetector*)det)->resetFlatField();
}
virtual int setNSubPixels(int ns, int nsy) {
slsInterpolation *interp = (det)->getInterpolation();
if (interp)
interp->setNSubPixels(ns, nsy);
return 1;
};
virtual slsInterpolation *setInterpolation(slsInterpolation *f) {
return (det)->setInterpolation(f);
};
protected:
analogDetector<uint16_t> *det;
int fMode;
int dMode;
int *dataSize;
pthread_t _thread;
CircularFifo<char> *fifoFree;
CircularFifo<char> *fifoData;
int stop;
int busy;
char *data;
int *ff;
static void *processData(void *ptr) {
threadedAnalogDetector *This = ((threadedAnalogDetector *)ptr);
return This->processData();
}
void *processData() {
// busy=1;
while (!stop) {
if (fifoData->isEmpty()) {
usleep(100);
if (fifoData->isEmpty()) {
busy = 0;
} else
busy = 1;
} else
busy = 1;
if (busy == 1) {
fifoData->pop(data); // blocking!
det->processData(data);
fifoFree->push(data);
// busy=0;
}
}
return NULL;
}
};
class multiThreadedAnalogDetector {
public:
multiThreadedAnalogDetector(analogDetector<uint16_t> *d, int n,
int fs = 1000)
: stop(0), nThreads(n), ithread(0) {
dd[0] = d;
if (nThreads == 1)
dd[0]->setId(100);
else
dd[0]->setId(0);
for (int i = 1; i < nThreads; i++) {
dd[i] = d->Clone();
dd[i]->setId(i);
}
for (int i = 0; i < nThreads; i++) {
cout << "**" << i << endl;
dets[i] = new threadedAnalogDetector(dd[i], fs);
}
image = NULL;
ff = NULL;
ped = NULL;
cout << "Ithread is " << ithread << endl;
}
virtual ~multiThreadedAnalogDetector() {
StopThreads();
for (int i = 0; i < nThreads; i++)
delete dets[i];
/* for (int i=1; i<nThreads; i++) */
/* delete dd[i]; */
// delete [] image;
}
virtual int setFrameMode(int fm) {
int ret = dets[0]->setFrameMode(fm);
for (int i = 1; i < nThreads; i++) {
dets[i]->setFrameMode(fm);
}
return ret;
};
virtual double setThreshold(int fm) {
double ret = dets[0]->setThreshold(fm);
for (int i = 1; i < nThreads; i++)
dets[i]->setThreshold(fm);
return ret;
};
virtual int setDetectorMode(int dm) {
int ret = dets[0]->setDetectorMode(dm);
;
for (int i = 1; i < nThreads; i++)
dets[i]->setDetectorMode(dm);
return ret;
};
virtual void setROI(int xmin, int xmax, int ymin, int ymax) {
for (int i = 0; i < nThreads; i++)
dets[i]->setROI(xmin, xmax, ymin, ymax);
};
virtual void newDataSet() {
for (int i = 0; i < nThreads; i++)
dets[i]->newDataSet();
};
virtual int *getImage(int &nnx, int &nny, int &ns, int &nsy) {
int *img;
// int nnx, nny, ns;
// int nnx, nny, ns;
int nn = dets[0]->getImageSize(nnx, nny, ns, nsy);
if (image) {
delete[] image;
image = NULL;
}
image = new int[nn];
// int nn=dets[0]->getImageSize(nnx, nny, ns);
// for (i=0; i<nn; i++) image[i]=0;
for (int ii = 0; ii < nThreads; ii++) {
// cout << ii << " " << nn << " " << nnx << " " << nny << " " << ns
// << endl;
img = dets[ii]->getImage();
for (int i = 0; i < nn; i++) {
if (ii == 0)
// if (img[i]>0)
image[i] = img[i];
// else
// image[i]=0;
else // if (img[i]>0)
image[i] += img[i];
// if (img[i]) cout << "det " << ii << " pix " << i << " val
// " << img[i] << " " << image[i] << endl;
}
}
return image;
}
virtual void clearImage() {
for (int ii = 0; ii < nThreads; ii++) {
dets[ii]->clearImage();
}
}
virtual void *writeImage(const char *imgname, double t = 1) {
/* #ifdef SAVE_ALL */
/* for (int ii=0; ii<nThreads; ii++) { */
/* char tit[10000];cout << "m" <<endl; */
/* sprintf(tit,"/scratch/int_%d.tiff",ii); */
/* dets[ii]->writeImage(tit); */
/* } */
/* #endif */
int nnx, nny, ns, nsy;
getImage(nnx, nny, ns, nsy);
// int nnx, nny, ns;
int nn = dets[0]->getImageSize(nnx, nny, ns, nsy);
float *gm = new float[nn];
if (gm) {
for (int ix = 0; ix < nn; ix++) {
if (t) {
if (image[ix] < 0)
gm[ix] = 0;
else
gm[ix] = (image[ix]) / t;
} else
gm[ix] = image[ix];
// if (image[ix]>0 && ix/nnx<350) cout << ix/nnx << " " <<
// ix%nnx << " " << image[ix]<< " " << gm[ix] << endl;
}
// cout << "image " << nnx << " " << nny << endl;
WriteToTiff(gm, imgname, nnx, nny);
delete[] gm;
} else
cout << "Could not allocate float image " << endl;
return NULL;
}
virtual void StartThreads() {
for (int i = 0; i < nThreads; i++) {
dets[i]->StartThread();
}
}
virtual void StopThreads() {
for (int i = 0; i < nThreads; i++)
dets[i]->StopThread();
}
virtual int isBusy() {
int ret = 0, ret1;
for (int i = 0; i < nThreads; i++) {
ret1 = dets[i]->isBusy();
ret |= ret1;
//if (ret1) cout << "thread " << i <<" still busy " << endl;
}
return ret;
}
virtual bool pushData(char *&ptr) { return dets[ithread]->pushData(ptr); }
virtual bool popFree(char *&ptr) {
// cout << ithread << endl;
return dets[ithread]->popFree(ptr);
}
virtual int nextThread() {
ithread++;
if (ithread == nThreads)
ithread = 0;
return ithread;
}
virtual double *getPedestal() {
int nx, ny;
dets[0]->getDetectorSize(nx, ny);
if (ped)
delete[] ped;
ped = new double[nx * ny];
double *p0 = new double[nx * ny];
for (int i = 0; i < nThreads; i++) {
// inte=(slsInterpolation*)dets[i]->getInterpolation(nb,emi,ema);
// cout << i << endl;
p0 = dets[i]->getPedestal(p0);
if (p0) {
if (i == 0) {
for (int ib = 0; ib < nx * ny; ib++) {
ped[ib] = p0[ib] / ((double)nThreads);
// cout << p0[ib] << " ";
}
} else {
for (int ib = 0; ib < nx * ny; ib++) {
ped[ib] += p0[ib] / ((double)nThreads);
// cout << p0[ib] << " ";
}
}
}
}
delete[] p0;
return ped;
};
virtual double *getPedestalRMS() {
int nx, ny;
dets[0]->getDetectorSize(nx, ny);
// if (ped) delete [] ped;
double *rms = new double[nx * ny];
double *p0 = new double[nx * ny];
for (int i = 0; i < nThreads; i++) {
// inte=(slsInterpolation*)dets[i]->getInterpolation(nb,emi,ema);
// cout << i << endl;
p0 = dets[i]->getPedestalRMS(p0);
if (p0) {
if (i == 0) {
for (int ib = 0; ib < nx * ny; ib++) {
rms[ib] = p0[ib] * p0[ib] / ((double)nThreads);
// cout << p0[ib] << " ";
}
} else {
for (int ib = 0; ib < nx * ny; ib++) {
rms[ib] += p0[ib] * p0[ib] / ((double)nThreads);
// cout << p0[ib] << " ";
}
}
}
}
delete[] p0;
/* for (int ib=0; ib<nx*ny; ib++) { */
/* if (rms[ib]>0) */
/* rms[ib]=sqrt(ped[ib]); */
/* else */
/* rms[ib]=0; */
/* } */
return rms;
};
virtual double *setPedestal(double *h = NULL) {
// int nb=0;
int nx, ny;
dets[0]->getDetectorSize(nx, ny);
if (h == NULL)
h = ped;
for (int i = 0; i < nThreads; i++) {
dets[i]->setPedestal(h);
}
return NULL;
};
virtual void *writePedestal(const char *imgname) {
int nx, ny;
dets[0]->getDetectorSize(nx, ny);
getPedestal();
float *gm = new float[nx * ny];
if (gm) {
for (int ix = 0; ix < nx * ny; ix++) {
gm[ix] = ped[ix];
}
WriteToTiff(gm, imgname, nx, ny);
delete[] gm;
} else
cout << "Could not allocate float image " << endl;
return NULL;
};
virtual void *writePedestalRMS(const char *imgname) {
int nx, ny;
dets[0]->getDetectorSize(nx, ny);
double *rms = getPedestalRMS();
float *gm = new float[nx * ny];
if (gm) {
for (int ix = 0; ix < nx * ny; ix++) {
gm[ix] = rms[ix];
}
WriteToTiff(gm, imgname, nx, ny);
delete[] gm;
delete[] rms;
} else
cout << "Could not allocate float image " << endl;
return NULL;
};
virtual void *readPedestal(const char *imgname, int nb = -1,
double emin = 1, double emax = 0) {
int nx, ny;
dets[0]->getDetectorSize(nx, ny);
uint32_t nnx;
uint32_t nny;
float *gm = ReadFromTiff(imgname, nnx, nny);
if (ped)
delete[] ped;
if (nnx > (uint)nx)
nx = nnx;
if (nny > (uint)ny)
ny = nny;
ped = new double[nx * ny];
for (int ix = 0; ix < nx * ny; ix++) {
ped[ix] = gm[ix];
}
delete[] gm;
return setPedestal();
};
/** sets file pointer where to write the clusters to
\param f file pointer
\returns current file pointer
*/
virtual FILE *setFilePointer(FILE *f) {
for (int i = 0; i < nThreads; i++) {
dets[i]->setFilePointer(f);
// dets[i]->setMutex(&fmutex);
}
return dets[0]->getFilePointer();
};
/** gets file pointer where to write the clusters to
\returns current file pointer
*/
virtual FILE *getFilePointer() { return dets[0]->getFilePointer(); };
protected:
bool stop;
const int nThreads;
threadedAnalogDetector *dets[MAXTHREADS];
analogDetector<uint16_t> *dd[MAXTHREADS];
int ithread;
int *image;
int *ff;
double *ped;
pthread_mutex_t fmutex;
};
#endif