458 lines
14 KiB
C++

// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef JUNGFRAULGADSTRIXELSDATA_H
#define JUNGFRAULGADSTRIXELSDATA_H
#ifdef CINT
#include "sls/sls_detector_defs_CINT.h"
#else
#include "sls/sls_detector_defs.h"
#endif
#include "slsDetectorData.h"
// #define VERSION_V2
/**
@short structure for a Detector Packet or Image Header
@li frameNumber is the frame number
@li expLength is the subframe number (32 bit eiger) or real time exposure
time in 100ns (others)
@li packetNumber is the packet number
@li bunchId is the bunch id from beamline
@li timestamp is the time stamp with 10 MHz clock
@li modId is the unique module id (unique even for left, right, top, bottom)
@li xCoord is the x coordinate in the complete detector system
@li yCoord is the y coordinate in the complete detector system
@li zCoord is the z coordinate in the complete detector system
@li debug is for debugging purposes
@li roundRNumber is the round robin set number
@li detType is the detector type see :: detectorType
@li version is the version number of this structure format
*/
namespace strixelSingleChip {
constexpr int nc_rawimg = 1024; // for full images //256;
constexpr int nr_rawimg = 512;
constexpr int nr_chip = 256;
constexpr int gr = 9;
// Group 1: 25um pitch, groups of 3, 1 column of square pixels
constexpr int g1_ncols{(nc_rawimg - (2 * gr) - 1) / 3}; // 79
constexpr int g1_nrows{((nr_chip / 4) - gr) * 3}; // 165
// Group 2: 15um pitch, groups of 5, 3 columns of square pixels
constexpr int g2_ncols{(nc_rawimg - (2 * gr) - 3) / 5}; // 47
constexpr int g2_nrows{(nr_chip / 4) * 5}; // 320
// Group 3: 18.75um pitch, groups of 4, 2 columns of square pixels (double the
// size of the other groups)
constexpr int g3_ncols{(nc_rawimg - (2 * gr) - 2) / 4}; // 59
constexpr int g3_nrows{(((nr_chip / 4) * 2) - gr) * 4}; // 476
constexpr int nc_strixel =
2 * gr + 1 + g1_ncols; // group 1 is the "longest" group in x and has one
// extra square pixel
constexpr int nr_strixel = 2 * gr + g1_nrows + g2_nrows + g3_nrows;
// chip and group boundaries in ASIC coordinates (pixels at both bounds are
// included in the group) y does NOT take into account the shifts for M408!
constexpr int c1g1_xstart = 256 + gr + 1; // 266
constexpr int c1g2_xstart = 256 + gr + 3; // 268
constexpr int c1g3_xstart = 256 + gr + 2; // 267
constexpr int c1_xend = 255 + 256 - gr; // 502
constexpr int c1g1_ystart = gr; // 9
constexpr int c1g1_yend = 63; // 63
constexpr int c1g2_ystart = c1g1_yend + 1; // 64
constexpr int c1g2_yend = c1g1_yend + 64; // 127
constexpr int c1g3_ystart = c1g2_yend + 1; // 128
constexpr int c1g3_yend = c1g2_yend + 2 * 64 - gr; // 246
constexpr int c6_xstart = 256 + 256 + gr; // 521
constexpr int c6g1_xend = 255 + 2 * 256 - gr - 1; // 757
constexpr int c6g2_xend = 256 + 2 * 256 - gr - 3; // 755
constexpr int c6g3_xend = 256 + 2 * 256 - gr - 2; // 756
constexpr int c6g3_ystart = 256 + gr; // 265
constexpr int c6g3_yend = 255 + 2 * 64; // 383
constexpr int c6g2_ystart = c6g3_yend + 1; // 384
constexpr int c6g2_yend = c6g3_yend + 64; // 447
constexpr int c6g1_ystart = c6g2_yend + 1; // 448
constexpr int c6g1_yend = c6g2_yend + 64 - gr; // 502
// y shift due to faulty bonding (relevant for M408)
constexpr int bond_shift_y = 1; // CHANGE IF YOU CHANGE MODULE!
} // namespace strixelSingleChip
typedef struct {
uint64_t bunchNumber; /**< is the frame number */
uint64_t pre; /**< something */
} jf_header; // Aldo's header
using namespace strixelSingleChip;
class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
private:
int iframe;
int mchip;
int chip_x0;
int chip_y0;
int x0, y0, x1, y1, shifty;
int getMultiplicator(const int group) {
int multiplicator;
switch (group) {
default:
case 1:
multiplicator = 3;
break;
case 2:
multiplicator = 5;
break;
case 3:
multiplicator = 4;
break;
}
return multiplicator;
}
void setMappingShifts(const int group) {
if (mchip == 1) {
chip_x0 = 256;
chip_y0 =
bond_shift_y; // because of bump bonding issues(+1 row) on M408
switch (group) {
default:
case 1:
x0 = 10 + chip_x0; // 9 gr + 1 sq pixel
x1 = 246 + chip_x0;
y0 = 9 + chip_y0;
y1 = 63 + chip_y0;
shifty = 0;
break;
case 2:
x0 = 12 + chip_x0;
x1 = 247 + chip_x0;
y0 = 64 + chip_y0;
y1 = 127 + chip_y0;
shifty = g1_nrows;
break;
case 3:
x0 = 11 + chip_x0;
x1 = 247 + chip_x0;
y0 = 128 + chip_y0;
y1 = 246 + chip_y0;
shifty = g2_nrows + g1_nrows;
break;
}
}
if (mchip == 6) {
chip_x0 = 512;
chip_y0 =
256 - bond_shift_y; // should be 256 but is 255 because of bump
// bonding issues (+1 row) on M408
switch (group) {
default:
case 1:
x0 = 9 + chip_x0; // 9 gr sq pixel
x1 = 245 + chip_x0; // was 246
y0 = 192 + chip_y0;
y1 = 246 + chip_y0;
shifty = g1_nrows + 2 * g2_nrows + 2 * g3_nrows;
break;
case 2:
x0 = 9 + chip_x0;
x1 = 243 + chip_x0; //was 244
y0 = 128 + chip_y0;
y1 = 191 + chip_y0;
shifty = g1_nrows + g2_nrows + 2 * g3_nrows;
;
break;
case 3:
x0 = 9 + chip_x0;
x1 = 244 + chip_x0;
y0 = 9 + chip_y0;
y1 = 127 + chip_y0;
shifty = g1_nrows + g2_nrows + g3_nrows;
break;
}
}
}
void remapGroup(const int group) {
int multiplicator = getMultiplicator(group);
//int shiftx;
int ix, iy = 0;
setMappingShifts(group);
// remapping loop
for (int ipy = y0; ipy <= y1; ipy++) {
for (int ipx = x0; ipx <= x1; ipx++) {
ix = int((ipx - x0) / multiplicator);
for (int m = 0; m < multiplicator; m++) {
if ((ipx - x0) % multiplicator == m)
iy = (ipy - y0) * multiplicator + m + shifty;
}
// if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] = sizeof(header) + (nc_rawimg * ipy + ipx) * 2;
groupmap[iy][ix] = group - 1;
}
}
}
void remapROI(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax) {
// determine group and chip selected by ROI
int group;
if (ymax <= c1g1_yend + bond_shift_y) {
group = 1;
mchip = 1;
} else if (ymax <= c1g2_yend + bond_shift_y) {
group = 2;
mchip = 1;
} else if (ymax <= c1g3_yend + bond_shift_y) {
group = 3;
mchip = 1;
} else if (ymax <= c6g3_yend - bond_shift_y) {
group = 3;
mchip = 6;
} else if (ymax <= c6g2_yend - bond_shift_y) {
group = 2;
mchip = 6;
} else if (ymax <= c6g1_yend - bond_shift_y) {
group = 1;
mchip = 6;
} else if (ymax <= 511) {
group = 1;
mchip = 6;
} else { //to fix compiler warning
group = -1;
mchip = -1;
}
int multiplicator = getMultiplicator(group);
setMappingShifts(group);
std::cout << "chip: " << mchip << ", group: " << group << ", m: " << multiplicator
<< ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0
<< ", y1: " << y1 << std::endl;
// get ROI raw image number of columns
int nc_roi = xmax - xmin + 1;
std::cout << "nc_roi = " << nc_roi << std::endl;
// make sure loop bounds are correct
if (y0 < ymin)
std::cout << "Error ymin" << std::endl;
if (y1 > ymax)
std::cout << "Error ymax - normal for G3 since ROI only 64 row"
<< std::endl;
if (x0 < xmin)
std::cout << "Error xmin" << std::endl;
if (x1 > xmax)
std::cout << "Error xmax" << std::endl;
// remapping loop
int ix, iy = 0;
for (int ipy = y0; ipy <= y1; ++ipy) {
for (int ipx = x0; ipx <= x1; ++ipx) {
ix = int((ipx - x0 /*-xmin*/) / multiplicator);
for (int m = 0; m < multiplicator; m++) {
if ((ipx - x0 /*-xmin*/) % multiplicator == m)
iy = (ipy - y0 /*-ymin*/) * multiplicator + m + shifty;
}
// if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] =
sizeof(header) + (nc_roi * (ipy - ymin) + (ipx - xmin)) * 2;
groupmap[iy][ix] = group - 1;
}
}
}
public:
int groupmap[512 * 5][1024 / 3];
using header = sls::defs::sls_receiver_header;
jungfrauLGADStrixelsData(uint16_t xmin = 0, uint16_t xmax = 0,
uint16_t ymin = 0, uint16_t ymax = 0)
: slsDetectorData<uint16_t>(
/*nc_strixel*/ g1_ncols,
/*nr_strixel*/ 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows,
g1_ncols * (2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows) * 2 +
sizeof(header)) {
std::cout << "Jungfrau strixels 2X single chip with full module data "
<< std::endl;
// Fill all strixels with dummy values
for (int ix = 0; ix != g1_ncols; ++ix) {
for (int iy = 0; iy != 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows;
++iy) {
dataMap[iy][ix] = sizeof(header);
}
}
std::cout << "sizeofheader = " << sizeof(header) << std::endl;
std::cout << "Jungfrau strixels 2X single chip with full module data "
<< std::endl;
if (xmin < xmax && ymin < ymax) {
dataSize =
(xmax - xmin + 1) * (ymax - ymin + 1) * 2 + sizeof(header);
std::cout << "datasize " << dataSize << std::endl;
remapROI(xmin, xmax, ymin, ymax);
} else {
mchip = 1;
for (int group=1; group!=4; ++group)
remapGroup(group);
mchip = 6;
for (int group=1; group!=4; ++group)
remapGroup(group);
}
iframe = 0;
std::cout << "data struct created" << std::endl;
};
/**
Returns the value of the selected channel for the given dataset as
double. \param data pointer to the dataset (including headers etc) \param
ix pixel number in the x direction \param iy pixel number in the y
direction \returns data for the selected channel, with inversion if
required as double
*/
virtual double getValue(char *data, int ix, int iy = 0) {
uint16_t val = getChannel(data, ix, iy) & 0x3fff;
return val;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
int getFrameNumber(char *buff) {
#ifdef ALDO // VH
return ((jf_header *)buff)->bunchNumber; // VH
#endif // VH
return ((header *)buff)->detHeader.frameNumber;
};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
*/
int getPacketNumber(char *buff) {
#ifdef ALDO // VH
// uint32_t fakePacketNumber = 1000;
// return fakePacketNumber; //VH //TODO: Keep in mind in case of bugs!
// //This is definitely bad!
return 1000;
#endif // VH
return ((header *)buff)->detHeader.packetNumber;
};
char *readNextFrame(std::ifstream &filebin) {
int ff = -1, np = -1;
return readNextFrame(filebin, ff, np);
};
char *readNextFrame(std::ifstream &filebin, int &ff) {
int np = -1;
return readNextFrame(filebin, ff, np);
};
char *readNextFrame(std::ifstream &filebin, int &ff, int &np) {
char *data = new char[dataSize];
char *d = readNextFrame(filebin, ff, np, data);
if (d == NULL) {
delete[] data;
data = NULL;
}
return data;
};
char *readNextFrame(std::ifstream &filebin, int &ff, int &np, char *data) {
//char *retval = 0;
//int nd;
//int fnum = -1;
np = 0;
//int pn;
//std::cout << dataSize << std::endl;
//if (ff >= 0) {
// fnum = ff; }
if (filebin.is_open()) {
if (filebin.read(data, dataSize)) {
std::cout << "*";
ff = getFrameNumber(data);
np = getPacketNumber(data);
return data;
}
std::cout << "#";
} else {
std::cout << "File not open" << std::endl;
}
return NULL;
};
/* Loops over a memory slot until a complete frame is found (i.e. all */
/* packets 0 to nPackets, same frame number). purely virtual func \param
*/
/* data pointer to the memory to be analyzed \param ndata reference to
* the */
/* amount of data found for the frame, in case the frame is incomplete at
*/
/* the end of the memory slot \param dsize size of the memory slot to be
*/
/* analyzed \returns pointer to the beginning of the last good frame
* (might */
/* be incomplete if ndata smaller than dataSize), or NULL if no frame is
*/
/* found */
/* *\/ */
virtual char *findNextFrame(char *data, int &ndata, int dsize) {
if (dsize < dataSize)
ndata = dsize;
else
ndata = dataSize;
return data;
};
// int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;};
};
#endif