423 lines
12 KiB
C++

// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef JUNGFRAULGADSTRIXELSDATAQUAD_H
#define JUNGFRAULGADSTRIXELSDATAQUAD_H
#ifdef CINT
#include "sls/sls_detector_defs_CINT.h"
#else
#include "sls/sls_detector_defs.h"
#endif
#include "slsDetectorData.h"
// #define VERSION_V2
/**
@short structure for a Detector Packet or Image Header
@li frameNumber is the frame number
@li expLength is the subframe number (32 bit eiger) or real time exposure
time in 100ns (others)
@li packetNumber is the packet number
@li bunchId is the bunch id from beamline
@li timestamp is the time stamp with 10 MHz clock
@li modId is the unique module id (unique even for left, right, top, bottom)
@li xCoord is the x coordinate in the complete detector system
@li yCoord is the y coordinate in the complete detector system
@li zCoord is the z coordinate in the complete detector system
@li debug is for debugging purposes
@li roundRNumber is the round robin set number
@li detType is the detector type see :: detectorType
@li version is the version number of this structure format
*/
#include <algorithm>
#include <numeric>
#include <tuple>
namespace strixelQuad {
constexpr int nc_rawimg = 1024; // for full images //256;
constexpr int nc_quad = 512;
constexpr int nr_rawimg = 512;
constexpr int nr_chip = 256;
constexpr int gr = 9;
//shift due to extra pixels
constexpr int shift_x = 2; //left
constexpr int nc_strixel = ( nc_quad - shift_x - 2*gr ) / 3; //164
constexpr int nr_strixel = ( nr_chip - 1 - gr ) * 3; //one half (-1 because double sided pixel) //738
constexpr int nr_center = 12; //double sided pixels to be skipped
// boundaries in ASIC coordinates (pixels at both bounds are included)
constexpr int xstart = 256 + gr; // 265
constexpr int xend = 255 + nc_quad - gr; // 758
constexpr int bottom_ystart = gr; // 9
constexpr int bottom_yend = nr_chip - 2; // 254
constexpr int top_ystart = nr_chip + 1; // 257
constexpr int top_yend = nr_chip*2 - gr - 1; // 502
// x shift because of 2-pixel strixels on one side
constexpr int shift = 2;
} // namespace strixelQuad
//to account for module rotation
enum rotation {
NORMAL = 0,
INVERSE = 1
};
const int rota = NORMAL;
typedef struct {
uint64_t bunchNumber; /**< is the frame number */
uint64_t pre; /**< something */
} jf_header; // Aldo's header
using namespace strixelQuad;
class jungfrauLGADStrixelsDataQuad : public slsDetectorData<uint16_t> {
private:
int iframe;
int x0, y0, x1, y1, shifty;
struct {
uint16_t xmin;
uint16_t xmax;
uint16_t ymin;
uint16_t ymax;
int nc;
} globalROI;
//to account for the inverted routing of the two different quad halfs
enum location {
BOTTOM = 0,
TOP = 1
};
int multiplicator = 3;
std::vector<int> mods{ 0, 1, 2 };
void reverseVector( std::vector<int>& v ) {
std::reverse( v.begin(), v.end() );
std::cout << "mods reversed ";
for ( auto i : v )
std::cout << i << " ";
std::cout << '\n';
}
void setMappingShifts( const int rot, const int half ) {
x0 = xstart;
x1 = xend;
if (rot==NORMAL) {
x0 += shift;
} else {
x1-=shift;
reverseVector(mods);
}
if (half==BOTTOM) {
y0 = bottom_ystart;
y1 = bottom_yend;
shifty = 0;
} else {
y0 = top_ystart;
y1 = top_yend;
reverseVector(mods);
shifty = nr_strixel + nr_center; //double-sided pixels in the center have to be jumped
}
}
void remap( int xmin=0, int xmax=0, int ymin=0, int ymax=0 ) {
int ix, iy = 0;
// remapping loop
for (int ipy = y0; ipy <= y1; ipy++) {
for (int ipx = x0; ipx <= x1; ipx++) {
ix = int((ipx - x0) / multiplicator);
for (int m = 0; m < multiplicator; ++m) {
if ((ipx - x0) % multiplicator == m)
iy = (ipy - y0) * multiplicator + mods[m] + shifty;
}
// if (iy< 40) cout << iy << " " << ix <<endl;
if (xmin < xmax && ymin < ymax) {
if ( ipx>=xmin && ipx<=xmax && ipy>=ymin && ipy <=ymax )
dataMap[iy][ix] =
sizeof(header) + (globalROI.nc * (ipy - globalROI.ymin) + (ipx - globalROI.xmin)) * 2;
} else {
dataMap[iy][ix] = sizeof(header) + (nc_rawimg * ipy + ipx) * 2;
}
}
}
}
void remapQuad(const int rot) {
setMappingShifts( rot, BOTTOM );
remap();
setMappingShifts( rot, TOP );
remap();
}
std::tuple< uint16_t, uint16_t, uint16_t, uint16_t > adjustROItoLimits(uint16_t xmin,
uint16_t xmax,
uint16_t ymin,
uint16_t ymax,
uint16_t lim_roi_xmin,
uint16_t lim_roi_xmax,
uint16_t lim_roi_ymin,
uint16_t lim_roi_ymax) {
uint16_t xmin_roi, xmax_roi, ymin_roi, ymax_roi;
if ( xmin < lim_roi_xmin)
xmin_roi = lim_roi_xmin;
else
xmin_roi = xmin;
if ( xmax > lim_roi_xmax )
xmax_roi = lim_roi_xmax;
else
xmax_roi = xmax;
if ( ymin < lim_roi_ymin )
ymin_roi = lim_roi_ymin;
else
ymin_roi = ymin;
if ( ymax > lim_roi_ymax )
ymax_roi = lim_roi_ymax;
else
ymax_roi = ymax;
return std::make_tuple(xmin_roi, xmax_roi, ymin_roi, ymax_roi);
}
std::vector < std::tuple< int, uint16_t, uint16_t, uint16_t, uint16_t > > mapSubROIs(uint16_t xmin,
uint16_t xmax,
uint16_t ymin,
uint16_t ymax) {
bool bottom = false;
bool top = false;
for ( int x=xmin; x!=xmax+1; ++x ) {
for ( int y=ymin; y!=ymax; ++y ) {
if ( xstart<=x && x<=xend && bottom_ystart<=y && y<=bottom_yend )
bottom = true;
if ( xstart<=x && x<=xend && top_ystart<=y && y<=top_yend )
top = true;
}
}
uint16_t xmin_roi{}, xmax_roi{}, ymin_roi{}, ymax_roi{};
std::vector < std::tuple< int, uint16_t, uint16_t, uint16_t, uint16_t > > rois{};
if (bottom) {
std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) =
adjustROItoLimits( xmin, xmax, ymin, ymax,
xstart, xend, bottom_ystart, bottom_yend );
rois.push_back( std::make_tuple( BOTTOM, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) );
}
if (top) {
std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) =
adjustROItoLimits( xmin, xmax, ymin, ymax,
xstart, xend, top_ystart, top_yend );
rois.push_back( std::make_tuple( TOP, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) );
}
return rois;
}
void remapROI(std::tuple< int, uint16_t, uint16_t, uint16_t, uint16_t > roi, const int rot ) {
int half, xmin, xmax, ymin, ymax;
std::tie( half, xmin, xmax, ymin, ymax ) = roi;
setMappingShifts(rot, half);
std::cout << "remapping roi: "
<< ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0
<< ", y1: " << y1 << std::endl;
std::cout << "Adjusted roi: [" << xmin << ", " << xmax << ", " << ymin << ", " << ymax << "]" << std::endl;
remap( xmin, xmax, ymin, ymax );
}
public:
using header = sls::defs::sls_receiver_header;
jungfrauLGADStrixelsDataQuad(uint16_t xmin = 0, uint16_t xmax = 0,
uint16_t ymin = 0, uint16_t ymax = 0)
: slsDetectorData<uint16_t>(
nc_strixel,
nr_strixel * 2 + nr_center,
nc_strixel * ( nr_strixel * 2 + nr_center ) * 2 + sizeof(header)) {
std::cout << "Jungfrau strixels quad with full module data "
<< std::endl;
// Fill all strixels with dummy values
for (int ix = 0; ix != nc_strixel; ++ix) {
for (int iy = 0; iy != nr_strixel * 2 + nr_center; ++iy) {
dataMap[iy][ix] = sizeof(header);
}
}
globalROI.xmin = xmin;
globalROI.xmax = xmax;
globalROI.ymin = ymin;
globalROI.ymax = ymax;
std::cout << "sizeofheader = " << sizeof(header) << std::endl;
std::cout << "Jungfrau strixels quad with full module data "
<< std::endl;
if (xmin < xmax && ymin < ymax) {
// get ROI raw image number of columns
globalROI.nc = xmax - xmin + 1;
std::cout << "nc_roi = " << globalROI.nc << std::endl;
dataSize =
(xmax - xmin + 1) * (ymax - ymin + 1) * 2 + sizeof(header);
std::cout << "datasize " << dataSize << std::endl;
auto rois = mapSubROIs(xmin, xmax, ymin, ymax);
//function to fill vector of rois from globalROI
for ( auto roi : rois )
remapROI(roi, rota);
} else {
remapQuad( rota );
}
iframe = 0;
std::cout << "data struct created" << std::endl;
};
/**
Returns the value of the selected channel for the given dataset as
double. \param data pointer to the dataset (including headers etc) \param
ix pixel number in the x direction \param iy pixel number in the y
direction \returns data for the selected channel, with inversion if
required as double
*/
virtual double getValue(char *data, int ix, int iy = 0) {
uint16_t val = getChannel(data, ix, iy) & 0x3fff;
return val;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
int getFrameNumber(char *buff) {
#ifdef ALDO // VH
return ((jf_header *)buff)->bunchNumber; // VH
#endif // VH
return ((header *)buff)->detHeader.frameNumber;
};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
*/
int getPacketNumber(char *buff) {
#ifdef ALDO // VH
// uint32_t fakePacketNumber = 1000;
// return fakePacketNumber; //VH //TODO: Keep in mind in case of bugs!
// //This is definitely bad!
return 1000;
#endif // VH
return ((header *)buff)->detHeader.packetNumber;
};
char *readNextFrame(std::ifstream &filebin) {
int ff = -1, np = -1;
return readNextFrame(filebin, ff, np);
};
char *readNextFrame(std::ifstream &filebin, int &ff) {
int np = -1;
return readNextFrame(filebin, ff, np);
};
char *readNextFrame(std::ifstream &filebin, int &ff, int &np) {
char *data = new char[dataSize];
char *d = readNextFrame(filebin, ff, np, data);
if (d == NULL) {
delete[] data;
data = NULL;
}
return data;
};
char *readNextFrame(std::ifstream &filebin, int &ff, int &np, char *data) {
//char *retval = 0;
//int nd;
//int fnum = -1;
np = 0;
//int pn;
//std::cout << dataSize << std::endl;
//if (ff >= 0) {
// fnum = ff; }
if (filebin.is_open()) {
if (filebin.read(data, dataSize)) {
std::cout << "*";
ff = getFrameNumber(data);
np = getPacketNumber(data);
return data;
}
std::cout << "#";
} else {
std::cout << "File not open" << std::endl;
}
return NULL;
};
/* Loops over a memory slot until a complete frame is found (i.e. all */
/* packets 0 to nPackets, same frame number). purely virtual func \param
*/
/* data pointer to the memory to be analyzed \param ndata reference to
* the */
/* amount of data found for the frame, in case the frame is incomplete at
*/
/* the end of the memory slot \param dsize size of the memory slot to be
*/
/* analyzed \returns pointer to the beginning of the last good frame
* (might */
/* be incomplete if ndata smaller than dataSize), or NULL if no frame is
*/
/* found */
/* *\/ */
virtual char *findNextFrame(char *data, int &ndata, int dsize) {
if (dsize < dataSize)
ndata = dsize;
else
ndata = dataSize;
return data;
};
// int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;};
};
#endif