2018-09-28 11:47:25 +02:00

346 lines
13 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2012 (1.2)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Analytical comparison of averages</TITLE>
<META NAME="description" CONTENT="Analytical comparison of averages">
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2012">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
<LINK REL="next" HREF="node62.html">
<LINK REL="previous" HREF="node60.html">
<LINK REL="up" HREF="node54.html">
<LINK REL="next" HREF="node62.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html945"
HREF="node62.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html941"
HREF="node54.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html935"
HREF="node60.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html943"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html946"
HREF="node62.html">Numerical comparison of averages</A>
<B> Up:</B> <A NAME="tex2html942"
HREF="node54.html">Average vs. weighted average</A>
<B> Previous:</B> <A NAME="tex2html936"
HREF="node60.html">Comparison</A>
&nbsp; <B> <A NAME="tex2html944"
HREF="node1.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION00625700000000000000">
Analytical comparison of averages</A>
</H3>
<P>
First we give an analytical comparison between simple average and Mighell-Poisson weighted average
for <!-- MATH
$N_{\mathrm{obs}}=2$
-->
<IMG
WIDTH="66" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img175.png"
ALT="$ N_{\mathrm{obs}}=2$">
.
If the two events are <IMG
WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img176.png"
ALT="$ C_1$">
and <IMG
WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img177.png"
ALT="$ C_2$">
, then
<P><!-- MATH
\begin{displaymath}
\langle x \rangle={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{C_1+C_2}}}}{{\ensuremath{\displaystyle{2}}}}}}}; \qquad \sigma_x={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sqrt{C_1+C_2}}}}}{{\ensuremath{\displaystyle{2}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="261" HEIGHT="63" ALIGN="MIDDLE" BORDER="0"
SRC="img178.png"
ALT="$\displaystyle \langle x \rangle={\ensuremath{\displaystyle{\frac{{\ensuremath{\...
...nsuremath{\displaystyle{\sqrt{C_1+C_2}}}}}{{\ensuremath{\displaystyle{2}}}}}}}
$">
</DIV><P>
</P>
For the M-P weighted average,
<P><!-- MATH
\begin{displaymath}
\langle x \rangle_{\mathrm{w(2)}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{2(C_1+1)(C_2+1)}}}}{{\ensuremath{\displaystyle{C_1+C_2+2}}}}}}}; \qquad
\sigma_{\langle x \rangle_{\mathrm{w(2)}}}=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(C_1+1)(C_2+1)}}}}{{\ensuremath{\displaystyle{C_1+C_2+2}}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="448" HEIGHT="71" ALIGN="MIDDLE" BORDER="0"
SRC="img179.png"
ALT="$\displaystyle \langle x \rangle_{\mathrm{w(2)}}={\ensuremath{\displaystyle{\fra...
...{\displaystyle{(C_1+1)(C_2+1)}}}}{{\ensuremath{\displaystyle{C_1+C_2+2}}}}}}}}
$">
</DIV><P>
</P>
<P>
Now, supposing that the common 'true' value of <IMG
WIDTH="49" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img180.png"
ALT="$ C_1,C_2$">
is <IMG
WIDTH="14" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img181.png"
ALT="$ \lambda$">
,
we use the Poisson distribution to compare the expectation values of the two results. The expectation value of the simple average is
<P><!-- MATH
\begin{displaymath}
E{\ensuremath{\left({\langle x \rangle}\right)}} = \mathop{\sum}_{m,n=0}^{+\infty}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{n+m}}}}{{\ensuremath{\displaystyle{2}}}}}}}P(n)P(m)=\mathop{\sum}_{m=0}^{+\infty}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{m}}}}{{\ensuremath{\displaystyle{2}}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda^m{\ensuremath{\mathrm{e}}}^{-\lambda}}}}}{{\ensuremath{\displaystyle{m!}}}}}}}
+\mathop{\sum}_{n=0}^{+\infty}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{n}}}}{{\ensuremath{\displaystyle{2}}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda^n{\ensuremath{\mathrm{e}}}^{-\lambda}}}}}{{\ensuremath{\displaystyle{n!}}}}}}}
=\lambda
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="491" HEIGHT="65" ALIGN="MIDDLE" BORDER="0"
SRC="img182.png"
ALT="$\displaystyle E{\ensuremath{\left({\langle x \rangle}\right)}} = \mathop{\sum}_...
...ath{\mathrm{e}}}^{-\lambda}}}}}{{\ensuremath{\displaystyle{n!}}}}}}}
=\lambda
$">
</DIV><P>
</P>
As expected, the simple average gives the true value.
For its variance,
<P><!-- MATH
\begin{displaymath}
E{\ensuremath{\left({\sigma_x^2}\right)}} = \mathop{\sum}_{m,n=0}^{+\infty}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{n+m}}}}{{\ensuremath{\displaystyle{4}}}}}}}P(n)P(m)={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
\lambda}}}}{{\ensuremath{\displaystyle{2}}}}}}};\qquad E{\ensuremath{\left({\sigma_x}\right)}} =\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda}}}}{{\ensuremath{\displaystyle{2}}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="397" HEIGHT="65" ALIGN="MIDDLE" BORDER="0"
SRC="img183.png"
ALT="$\displaystyle E{\ensuremath{\left({\sigma_x^2}\right)}} = \mathop{\sum}_{m,n=0}...
...ac{{\ensuremath{\displaystyle{\lambda}}}}{{\ensuremath{\displaystyle{2}}}}}}}}
$">
</DIV><P>
</P>
<P>
In order to evaluate the difference with the M-P weighted average, we rewrite the latter as
<P><!-- MATH
\begin{displaymath}
\langle x \rangle_{\mathrm{w(2)}}=\langle x \rangle + 1 -{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(C_1-C_2)^2}}}}{{\ensuremath{\displaystyle{4(\langle x \rangle+1)}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="222" HEIGHT="57" ALIGN="MIDDLE" BORDER="0"
SRC="img184.png"
ALT="$\displaystyle \langle x \rangle_{\mathrm{w(2)}}=\langle x \rangle + 1 -{\ensure...
...style{(C_1-C_2)^2}}}}{{\ensuremath{\displaystyle{4(\langle x \rangle+1)}}}}}}}
$">
</DIV><P>
</P>
and calculate the expectation value of the last term:
<P><!-- MATH
\begin{displaymath}
E{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(C_1-C_2)^2}}}}{{\ensuremath{\displaystyle{4(\langle x \rangle+1)}}}}}}}}\right)}} =
\mathop{\sum}_{m,n=0}^{+\infty}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(n-m)^2}}}}{{\ensuremath{\displaystyle{2(n+m+2) }}}}}}}P(n)P(m)={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{2}}}}}}}
\mathop{\sum}_{m,n=0}^{+\infty}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(n-m)^2}}}}{{\ensuremath{\displaystyle{(n+m+2) }}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda^{n+m}}}}}{{\ensuremath{\displaystyle{n!m!}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="578" HEIGHT="65" ALIGN="MIDDLE" BORDER="0"
SRC="img185.png"
ALT="$\displaystyle E{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremat...
...uremath{\displaystyle{\lambda^{n+m}}}}}{{\ensuremath{\displaystyle{n!m!}}}}}}}
$">
</DIV><P>
</P>
Rearranging the sums with <IMG
WIDTH="76" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img186.png"
ALT="$ s=n+m$">
, <!-- MATH
$s=0\ldots +\infty$
-->
<IMG
WIDTH="98" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img187.png"
ALT="$ s=0\ldots +\infty$">
; <IMG
WIDTH="112" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img188.png"
ALT="$ n-m=s-2k$">
, <!-- MATH
$k=0\ldots s$
-->
<IMG
WIDTH="74" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img189.png"
ALT="$ k=0\ldots s$">
,
we get
<P><!-- MATH
\begin{displaymath}
E{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(C_1-C_2)^2}}}}{{\ensuremath{\displaystyle{4(\langle x \rangle+1)}}}}}}}}\right)}} =
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{2}}}}}}}
\mathop{\sum}_{s=0}^{+\infty}
\mathop{\sum}_{k=0}^{s}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(s-2k)^2(s+1)}}}}{{\ensuremath{\displaystyle{(s+2)! }}}}}}}{\lambda^{s}}
\binom{s}{k}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{2}}}}}}}-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{2\lambda}}}}}}}+{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1-{\ensuremath{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{4\lambda^2}}}}}}}
%{n!m!}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="550" HEIGHT="65" ALIGN="MIDDLE" BORDER="0"
SRC="img190.png"
ALT="$\displaystyle E{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremat...
...hrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{4\lambda^2}}}}}}}
%{n!m!}
$">
</DIV><P>
</P>
So, the relative difference between averages is
<P><!-- MATH
\begin{displaymath}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{E{\ensuremath{\left({\langle x \rangle_{\mathrm{w(2)}}-\langle x \rangle}\right)}}}}}}{{\ensuremath{\displaystyle{E{\ensuremath{\left({\langle x \rangle}\right)}}}}}}}}}=
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{2\lambda}}}}}}}+{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{2\lambda^2}}}}}}}-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1-{\ensuremath{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{4\lambda^3}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="296" HEIGHT="59" ALIGN="MIDDLE" BORDER="0"
SRC="img191.png"
ALT="$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{E{\en...
...math{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{4\lambda^3}}}}}}}
$">
</DIV><P>
</P>
The relative error on <!-- MATH
$\langle x \rangle$
-->
<IMG
WIDTH="26" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img192.png"
ALT="$ \langle x \rangle$">
is
<P><!-- MATH
\begin{displaymath}
\epsilon = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_x}}}}{{\ensuremath{\displaystyle{\langle x \rangle}}}}}}} =
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda^{1/2}}}}}{{\ensuremath{\displaystyle{\sqrt{2} \lambda}}}}}}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{\sqrt{2\lambda}}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="169" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
SRC="img193.png"
ALT="$\displaystyle \epsilon = {\ensuremath{\displaystyle{\frac{{\ensuremath{\display...
...suremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{\sqrt{2\lambda}}}}}}}}
$">
</DIV><P>
</P>
therefore
<P><!-- MATH
\begin{displaymath}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{E{\ensuremath{\left({\langle x \rangle_{\mathrm{w(2)}}-\langle x \rangle}\right)}}}}}}{{\ensuremath{\displaystyle{E{\ensuremath{\left({\langle x \rangle}\right)}}}}}}}}}=
O(\epsilon^2)
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="184" HEIGHT="59" ALIGN="MIDDLE" BORDER="0"
SRC="img194.png"
ALT="$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{E{\en...
...aystyle{E{\ensuremath{\left({\langle x \rangle}\right)}}}}}}}}}=
O(\epsilon^2)
$">
</DIV><P>
</P>
Therefore, the expectation value of the error (relative) involved in taking
the M-P weighted average instead of the simple average is negligible.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html945"
HREF="node62.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html941"
HREF="node54.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html935"
HREF="node60.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html943"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html946"
HREF="node62.html">Numerical comparison of averages</A>
<B> Up:</B> <A NAME="tex2html942"
HREF="node54.html">Average vs. weighted average</A>
<B> Previous:</B> <A NAME="tex2html936"
HREF="node60.html">Comparison</A>
&nbsp; <B> <A NAME="tex2html944"
HREF="node1.html">Contents</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Thattil Dhanya
2018-09-28
</ADDRESS>
</BODY>
</HTML>