2018-09-28 11:47:25 +02:00

174 lines
5.5 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2012 (1.2)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Comparison</TITLE>
<META NAME="description" CONTENT="Comparison">
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2012">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
<LINK REL="next" HREF="node61.html">
<LINK REL="previous" HREF="node59.html">
<LINK REL="up" HREF="node54.html">
<LINK REL="next" HREF="node61.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html933"
HREF="node61.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html929"
HREF="node54.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html923"
HREF="node59.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html931"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html934"
HREF="node61.html">Analytical comparison of averages</A>
<B> Up:</B> <A NAME="tex2html930"
HREF="node54.html">Average vs. weighted average</A>
<B> Previous:</B> <A NAME="tex2html924"
HREF="node59.html">Mighell-Poisson weighted average</A>
&nbsp; <B> <A NAME="tex2html932"
HREF="node1.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION00625600000000000000">
Comparison</A>
</H3>
<P>
We have seen four different ways to take an average -
two simple averages (the second skipping zero values)
and two weighted averages (using straight Poisson and Poisson-Mighell [6] <IMG
WIDTH="22" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img1.png"
ALT="$ \chi ^2$">
formulations).
We know that the simple average (not skipping zeros) is the best possible result. However,
there are inconveniences with it. If for instance we need to scale our data before averaging, then the
simple average is no more usable (it will give the correct average but a bad estimate of the s.d.) .
In any case, the passage to normal statistics (using Mighell's correction) needs to be done before or later.
Therefore a comparison is due in order to ascertain
how wrong can it be using the different methods.
<P>
We have to give a measure of what is negligible first.
The relative error is a measure of the smallest relative variation of an estimate <IMG
WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img144.png"
ALT="$ x$">
that is <I>not</I> negligible:
<P><!-- MATH
\begin{displaymath}
\epsilon_x = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_x}}}}{{\ensuremath{\displaystyle{x}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="61" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
SRC="img171.png"
ALT="$\displaystyle \epsilon_x = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_x}}}}{{\ensuremath{\displaystyle{x}}}}}}}
$">
</DIV><P>
</P>
We shall then consider negligible
(w.r.t. <IMG
WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img144.png"
ALT="$ x$">
) terms whose relative magnitude is <!-- MATH
$O(\epsilon_x^2)$
-->
<IMG
WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img172.png"
ALT="$ O(\epsilon_x^2)$">
.
As the s.d. of <IMG
WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img144.png"
ALT="$ x$">
is <!-- MATH
$\propto\epsilon_x$
-->
<IMG
WIDTH="36" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img173.png"
ALT="$ \propto\epsilon_x$">
, we may not discard terms <!-- MATH
$O(\epsilon_x^2)$
-->
<IMG
WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img172.png"
ALT="$ O(\epsilon_x^2)$">
on the s.d.;
there instead we may neglect terms <!-- MATH
$O(\epsilon_x^3)$
-->
<IMG
WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img174.png"
ALT="$ O(\epsilon_x^3)$">
.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html933"
HREF="node61.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html929"
HREF="node54.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html923"
HREF="node59.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html931"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html934"
HREF="node61.html">Analytical comparison of averages</A>
<B> Up:</B> <A NAME="tex2html930"
HREF="node54.html">Average vs. weighted average</A>
<B> Previous:</B> <A NAME="tex2html924"
HREF="node59.html">Mighell-Poisson weighted average</A>
&nbsp; <B> <A NAME="tex2html932"
HREF="node1.html">Contents</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Thattil Dhanya
2018-09-28
</ADDRESS>
</BODY>
</HTML>