mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-04-29 01:20:02 +02:00
243 lines
6.7 KiB
HTML
243 lines
6.7 KiB
HTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
|
|
|
<!--Converted with LaTeX2HTML 2012 (1.2)
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
* with significant contributions from:
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
<HTML>
|
|
<HEAD>
|
|
<TITLE>Straight Poisson (zero-skipping) weighted average</TITLE>
|
|
<META NAME="description" CONTENT="Straight Poisson (zero-skipping) weighted average">
|
|
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
|
|
<META NAME="resource-type" CONTENT="document">
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2012">
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
|
|
|
|
<LINK REL="next" HREF="node59.html">
|
|
<LINK REL="previous" HREF="node57.html">
|
|
<LINK REL="up" HREF="node54.html">
|
|
<LINK REL="next" HREF="node59.html">
|
|
</HEAD>
|
|
|
|
<BODY >
|
|
<!--Navigation Panel-->
|
|
<A NAME="tex2html909"
|
|
HREF="node59.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="file:/usr/share/latex2html/icons/next.png"></A>
|
|
<A NAME="tex2html905"
|
|
HREF="node54.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="file:/usr/share/latex2html/icons/up.png"></A>
|
|
<A NAME="tex2html899"
|
|
HREF="node57.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
|
|
<A NAME="tex2html907"
|
|
HREF="node1.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A NAME="tex2html910"
|
|
HREF="node59.html">Mighell-Poisson weighted average</A>
|
|
<B> Up:</B> <A NAME="tex2html906"
|
|
HREF="node54.html">Average vs. weighted average</A>
|
|
<B> Previous:</B> <A NAME="tex2html900"
|
|
HREF="node57.html">Weighted average: definition and</A>
|
|
<B> <A NAME="tex2html908"
|
|
HREF="node1.html">Contents</A></B>
|
|
<BR>
|
|
<BR>
|
|
<!--End of Navigation Panel-->
|
|
|
|
<H3><A NAME="SECTION00625400000000000000">
|
|
Straight Poisson (zero-skipping) weighted average</A>
|
|
</H3>
|
|
|
|
<P>
|
|
When <IMG
|
|
WIDTH="63" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img158.png"
|
|
ALT="$ O_j=C_j$">
|
|
and <!-- MATH
|
|
$\sigma_j^2=C_j$
|
|
-->
|
|
<IMG
|
|
WIDTH="61" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img159.png"
|
|
ALT="$ \sigma_j^2=C_j$">
|
|
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
\langle x \rangle_{\!\mathrm{w(1)}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
{N_{\mathrm{obs}}}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}}
|
|
}}}}}}}
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="126" HEIGHT="110" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img160.png"
|
|
ALT="$\displaystyle \langle x \rangle_{\!\mathrm{w(1)}}={\ensuremath{\displaystyle{\f...
|
|
...nsuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}}
|
|
}}}}}}}
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
Here we need to eliminate the singularity when <IMG
|
|
WIDTH="52" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img148.png"
|
|
ALT="$ C_j=0$">
|
|
. In order to do so, we skip data points which are zero.
|
|
Then if <!-- MATH
|
|
$N_{\mathrm{obs}}^*$
|
|
-->
|
|
<IMG
|
|
WIDTH="37" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img149.png"
|
|
ALT="$ N_{\mathrm{obs}}^*$">
|
|
is the number of non-zero data points,
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
\langle x \rangle_{\!\mathrm{w(1)}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
{N_{\mathrm{obs}}^*}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}}
|
|
}}}}}}}
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="126" HEIGHT="110" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img160.png"
|
|
ALT="$\displaystyle \langle x \rangle_{\!\mathrm{w(1)}}={\ensuremath{\displaystyle{\f...
|
|
...nsuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}}
|
|
}}}}}}}
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
\sigma_{\langle x \rangle_{\!\mathrm{w(1)}}} = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
1
|
|
}}}}{{\ensuremath{\displaystyle{\sqrt{
|
|
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}}
|
|
}}}}}}}}=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x \rangle_{\!\mathrm{w(1)}}}}}}{{\ensuremath{\displaystyle{
|
|
N_{\mathrm{obs}}^*
|
|
}}}}}}}}
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="258" HEIGHT="141" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img161.png"
|
|
ALT="$\displaystyle \sigma_{\langle x \rangle_{\!\mathrm{w(1)}}} = {\ensuremath{\disp...
|
|
..._{\!\mathrm{w(1)}}}}}}{{\ensuremath{\displaystyle{
|
|
N_{\mathrm{obs}}^*
|
|
}}}}}}}}
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
\mathsf{GoF}_{(1)}=
|
|
\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
\!\!\!\!C_j
|
|
-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
{\ensuremath{\left[{
|
|
N_{\mathrm{obs}}^*
|
|
}\right]}}^2
|
|
}}}}{{\ensuremath{\displaystyle{ \mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}} }}}}}}}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
N_{\mathrm{obs}}^*-1
|
|
}}}}}}}
|
|
}
|
|
=\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*-1}}}}}}}
|
|
{\ensuremath{\left({
|
|
\langle x\rangle^*-\langle x \rangle_{\!\mathrm{w(1)}}
|
|
}\right)}}
|
|
}
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="463" HEIGHT="189" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img162.png"
|
|
ALT="$\displaystyle \mathsf{GoF}_{(1)}=
|
|
\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ens...
|
|
...th{\left({
|
|
\langle x\rangle^*-\langle x \rangle_{\!\mathrm{w(1)}}
|
|
}\right)}}
|
|
}
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
where <!-- MATH
|
|
$\langle x\rangle^*$
|
|
-->
|
|
<IMG
|
|
WIDTH="33" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img163.png"
|
|
ALT="$ \langle x\rangle^*$">
|
|
is the simple average of the non-zero data points; and of course
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
{\sigma}_{\langle x \rangle_{\!\mathrm{w(1)}}}^{\mathrm{corrected}} = \mathsf{GoF}_{(1)}\ \sigma_{\langle x \rangle_{\!\mathrm{w(1)}}}
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="185" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img164.png"
|
|
ALT="$\displaystyle {\sigma}_{\langle x \rangle_{\!\mathrm{w(1)}}}^{\mathrm{corrected}} = \mathsf{GoF}_{(1)}\ \sigma_{\langle x \rangle_{\!\mathrm{w(1)}}}
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
|
|
<P>
|
|
<BR><HR>
|
|
<ADDRESS>
|
|
Thattil Dhanya
|
|
2018-09-28
|
|
</ADDRESS>
|
|
</BODY>
|
|
</HTML>
|