2020-11-18 18:01:39 +01:00

178 lines
5.4 KiB
C

#include "nios.h"
#include "RegisterDefs.h"
#include "clogger.h"
#include "common.h"
#include "sls/ansi.h"
#include "sls/sls_detector_defs.h"
#include <fcntl.h> // open
#include <string.h>
#include <sys/mman.h> // mmap
#include <sys/utsname.h> // uname
/* global variables */
u_int32_t *csp0base = 0;
#define CSP0 0x18060000
#define MEM_SIZE \
0x100000 // TODO (1804 0000 - 1804 07FF = 800 * 4 = 2000), (1806 0000 =
// 10000* 4 = 40000)
u_int32_t *csp1base = 0;
#define CSP1 0x18040000
void bus_w_csp1(u_int32_t offset, u_int32_t data) {
volatile u_int32_t *ptr1;
ptr1 = (u_int32_t *)(csp1base + offset / (sizeof(u_int32_t)));
*ptr1 = data;
}
u_int32_t bus_r_csp1(u_int32_t offset) {
volatile u_int32_t *ptr1;
ptr1 = (u_int32_t *)(csp1base + offset / (sizeof(u_int32_t)));
return *ptr1;
}
void bus_w(u_int32_t offset, u_int32_t data) {
volatile u_int32_t *ptr1;
ptr1 = (u_int32_t *)(csp0base + offset / (sizeof(u_int32_t)));
*ptr1 = data;
}
u_int32_t bus_r(u_int32_t offset) {
volatile u_int32_t *ptr1;
ptr1 = (u_int32_t *)(csp0base + offset / (sizeof(u_int32_t)));
return *ptr1;
}
int64_t get64BitReg(int aLSB, int aMSB) {
int64_t v64;
u_int32_t vLSB, vMSB;
vLSB = bus_r(aLSB);
vMSB = bus_r(aMSB);
v64 = vMSB;
v64 = (v64 << 32) | vLSB;
LOG(logDEBUG5, (" reg64(%x,%x) %x %x %llx\n", aLSB, aMSB, vLSB, vMSB,
(long long unsigned int)v64));
return v64;
}
int64_t set64BitReg(int64_t value, int aLSB, int aMSB) {
int64_t v64;
u_int32_t vLSB, vMSB;
if (value != -1) {
vLSB = value & (0xffffffff);
bus_w(aLSB, vLSB);
v64 = value >> 32;
vMSB = v64 & (0xffffffff);
bus_w(aMSB, vMSB);
}
return get64BitReg(aLSB, aMSB);
}
uint64_t getU64BitReg(int aLSB, int aMSB) {
uint64_t retval = bus_r(aMSB);
retval = (retval << 32) | bus_r(aLSB);
return retval;
}
void setU64BitReg(uint64_t value, int aLSB, int aMSB) {
bus_w(aLSB, value & (0xffffffff));
bus_w(aMSB, (value >> 32) & (0xffffffff));
}
u_int32_t readRegister(u_int32_t offset) { return bus_r(offset); }
u_int32_t writeRegister(u_int32_t offset, u_int32_t data) {
bus_w(offset, data);
return readRegister(offset);
}
int mapCSP0(void) {
u_int32_t csps[2] = {CSP0, CSP1};
u_int32_t **cspbases[2] = {&csp0base, &csp1base};
char names[2][10] = {"csp0base", "csp1base"};
for (int i = 0; i < 2; ++i) {
// if not mapped
if (*cspbases[i] == 0) {
LOG(logINFO, ("Mapping memory for %s\n", names[i]));
#ifdef VIRTUAL
*cspbases[i] = malloc(MEM_SIZE);
if (*cspbases[i] == NULL) {
LOG(logERROR,
("Could not allocate virtual memory for %s.\n", names[i]));
return FAIL;
}
LOG(logINFO, ("memory allocated for %s\n", names[i]));
#else
int fd = open("/dev/mem", O_RDWR | O_SYNC, 0);
if (fd == -1) {
LOG(logERROR, ("Can't find /dev/mem for %s\n", names[i]));
return FAIL;
}
LOG(logDEBUG1,
("/dev/mem opened for %s, (CSP:0x%x)\n", names[i], csps[i]));
*cspbases[i] =
(u_int32_t *)mmap(0, MEM_SIZE, PROT_READ | PROT_WRITE,
MAP_FILE | MAP_SHARED, fd, csps[i]);
if (*cspbases[i] == MAP_FAILED) {
LOG(logERROR, ("Can't map memmory area for %s\n", names[i]));
return FAIL;
}
#endif
LOG(logINFO, ("%s mapped from %p to %p,(CSP:0x%x) \n", names[i],
*cspbases[i], *cspbases[i] + MEM_SIZE, csps[i]));
// LOG(logINFO, ("Status Register: %08x\n", bus_r(STATUS_REG)));
} else
LOG(logINFO, ("Memory %s already mapped before\n", names[i]));
}
return OK;
}
u_int32_t *Nios_getBaseAddress() { return csp0base; }
int Nios_checkKernelVersion(char *expectedVersion) {
// extract kernel date string
struct utsname buf;
if (uname(&buf) == -1) {
LOG(logERROR, ("Could not get kernel version\n"));
return FAIL;
}
// remove first word (#version number)
const char *ptr = strchr(buf.version, ' ');
if (ptr == NULL) {
LOG(logERROR, ("Could not parse kernel version\n"));
return FAIL;
}
char output[256];
memset(output, 0, 256);
strcpy(output, buf.version + (ptr - buf.version + 1));
// convert kernel date string into time
time_t kernelDate;
if (GetTimeFromString(output, &kernelDate) == FAIL) {
LOG(logERROR, ("Could not parse retrieved kernel date, %s\n", output));
return FAIL;
}
// convert expected date into time
time_t expDate;
if (GetTimeFromString(expectedVersion, &expDate) == FAIL) {
LOG(logERROR,
("Could not parse expected kernel date, %s\n", expectedVersion));
return FAIL;
}
// compare if kernel time is older than expected time
if (kernelDate < expDate) {
LOG(logERROR, ("Kernel Version Incompatible (too old)! Expected: [%s], "
"Got [%s]\n",
expectedVersion, output));
return FAIL;
}
LOG(logINFOBLUE, ("Kernel Version Compatible: %s [min.: %s]\n", output,
expectedVersion));
return OK;
}