2078 lines
71 KiB
C
Executable File

#include "FebControl.h"
#include "FebRegisterDefs.h"
#include "slsDetectorServer_defs.h"
#include "logger.h"
#include "Beb.h"
#include <unistd.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <termios.h> // POSIX terminal control definitions(CS8, CREAD, CLOCAL..)
#include <errno.h>
#include <fcntl.h>
//GetDAQStatusRegister(512,current_mode_bits_from_fpga)) {
unsigned int Module_ndacs = 16;
char Module_dac_names[16][10]={"SvP","Vtr","Vrf","Vrs","SvN","Vtgstv","Vcmp_ll","Vcmp_lr","cal","Vcmp_rl","rxb_rb","rxb_lb","Vcmp_rr","Vcp","Vcn","Vis"};
struct Module modules[10];
int moduleSize = 0;
unsigned int Feb_Control_staticBits; //program=1,m4=2,m8=4,test=8,rotest=16,cs_bar_left=32,cs_bar_right=64
unsigned int Feb_Control_acquireNReadoutMode; //safe or parallel, half or full speed
unsigned int Feb_Control_triggerMode; //internal timer, external start, external window, signal polarity (external trigger and enable)
unsigned int Feb_Control_externalEnableMode; //external enabling engaged and it's polarity
unsigned int Feb_Control_subFrameMode;
unsigned int Feb_Control_softwareTrigger;
unsigned int Feb_Control_nimages;
double Feb_Control_exposure_time_in_sec;
int64_t Feb_Control_subframe_exposure_time_in_10nsec;
int64_t Feb_Control_subframe_period_in_10nsec;
double Feb_Control_exposure_period_in_sec;
int64_t Feb_Control_RateTable_Tau_in_nsec = -1;
int64_t Feb_Control_RateTable_Period_in_nsec = -1;
unsigned int Feb_Control_trimbit_size;
unsigned int* Feb_Control_last_downloaded_trimbits;
int Feb_Control_module_number;
int Feb_Control_current_index;
int Feb_Control_counter_bit = 1;
int Feb_control_master = 0;
int Feb_control_normal = 0;
unsigned int Feb_Control_rate_correction_table[1024];
double Feb_Control_rate_meas[16384];
double ratemax=-1;
int Feb_Control_activated = 1;
int Feb_Control_hv_fd = -1;
void Module_Module(struct Module* mod,unsigned int number, unsigned int address_top) {
unsigned int i;
mod->module_number = number;
mod->top_address_valid = 1;
mod->top_left_address = 0x100 | (0xff & address_top);
mod->top_right_address = (0x200 | (0xff & address_top));
mod-> bottom_address_valid = 0;
mod-> bottom_left_address = 0;
mod-> bottom_right_address = 0;
mod->high_voltage = -1;
mod->top_dac = malloc(Module_ndacs * sizeof(int));
mod->bottom_dac = malloc(Module_ndacs * sizeof(int));
for(i=0;i<Module_ndacs;i++) mod->top_dac[i] = mod->top_address_valid ? -1:0;
for(i=0;i<Module_ndacs;i++) mod->bottom_dac[i] = mod->bottom_address_valid ? -1:0;
}
void Module_ModuleBottom(struct Module* mod,unsigned int number, unsigned int address_bottom) {
unsigned int i;
mod->module_number = number;
mod->top_address_valid = 0;
mod->top_left_address = 0;
mod->top_right_address = 0;
mod-> bottom_address_valid = 1;
mod-> bottom_left_address = 0x100 | (0xff & address_bottom);
mod-> bottom_right_address = (0x200 | (0xff & address_bottom));
mod->high_voltage = -1;
for(i=0;i<4;i++) mod->idelay_top[i]=mod->idelay_bottom[i]=0;
mod->top_dac = malloc(Module_ndacs * sizeof(int));
mod->bottom_dac = malloc(Module_ndacs * sizeof(int));
for(i=0;i<Module_ndacs;i++) mod->top_dac[i] = mod->top_address_valid ? -1:0;
for(i=0;i<Module_ndacs;i++) mod->bottom_dac[i] = mod->bottom_address_valid ? -1:0;
}
void Module_Module1(struct Module* mod,unsigned int number, unsigned int address_top, unsigned int address_bottom) {
unsigned int i;
mod->module_number = number;
mod->top_address_valid = 1;
mod->top_left_address = 0x100 | (0xff & address_top);
mod->top_right_address = 0x200 | (0xff & address_top);
mod->bottom_address_valid = 1;
mod->bottom_left_address = 0x100 | (0xff & address_bottom);
mod->bottom_right_address = 0x200 | (0xff & address_bottom);
mod->high_voltage = -1;
for(i=0;i<4;i++) mod->idelay_top[i]=mod->idelay_bottom[i]=0;
mod->top_dac = malloc(Module_ndacs * sizeof(int));
mod->bottom_dac = malloc(Module_ndacs * sizeof(int));
for(i=0;i<Module_ndacs;i++) mod->top_dac[i] = mod->top_address_valid ? -1:0;
for(i=0;i<Module_ndacs;i++) mod->bottom_dac[i] = mod->bottom_address_valid ? -1:0;
}
unsigned int Module_GetModuleNumber(struct Module* mod) {return mod->module_number;}
int Module_TopAddressIsValid(struct Module* mod) {return mod->top_address_valid;}
unsigned int Module_GetTopBaseAddress(struct Module* mod) {return (mod->top_left_address&0xff);}
unsigned int Module_GetTopLeftAddress(struct Module* mod) {return mod->top_left_address;}
unsigned int Module_GetTopRightAddress(struct Module* mod) {return mod->top_right_address;}
unsigned int Module_GetBottomBaseAddress(struct Module* mod) {return (mod->bottom_left_address&0xff);}
int Module_BottomAddressIsValid(struct Module* mod) {return mod->bottom_address_valid;}
unsigned int Module_GetBottomLeftAddress(struct Module* mod) {return mod->bottom_left_address;}
unsigned int Module_GetBottomRightAddress(struct Module* mod) {return mod->bottom_right_address;}
unsigned int Module_SetTopIDelay(struct Module* mod,unsigned int chip,unsigned int value) { return Module_TopAddressIsValid(mod) &&chip<4 ? (mod->idelay_top[chip]=value) : 0;} //chip 0=ll,1=lr,0=rl,1=rr
unsigned int Module_GetTopIDelay(struct Module* mod,unsigned int chip) { return chip<4 ? mod->idelay_top[chip] : 0;} //chip 0=ll,1=lr,0=rl,1=rr
unsigned int Module_SetBottomIDelay(struct Module* mod,unsigned int chip,unsigned int value) { return Module_BottomAddressIsValid(mod) &&chip<4 ? (mod->idelay_bottom[chip]=value) : 0;} //chip 0=ll,1=lr,0=rl,1=rr
unsigned int Module_GetBottomIDelay(struct Module* mod,unsigned int chip) { return chip<4 ? mod->idelay_bottom[chip] : 0;} //chip 0=ll,1=lr,0=rl,1=rr
float Module_SetHighVoltage(struct Module* mod,float value) { return Feb_control_master ? (mod->high_voltage=value) : -1;}// Module_TopAddressIsValid(mod) ? (mod->high_voltage=value) : -1;}
float Module_GetHighVoltage(struct Module* mod) { return mod->high_voltage;}
int Module_SetTopDACValue(struct Module* mod,unsigned int i, int value) { return (i<Module_ndacs && Module_TopAddressIsValid(mod)) ? (mod->top_dac[i]=value) : -1;}
int Module_GetTopDACValue(struct Module* mod,unsigned int i) { return (i<Module_ndacs) ? mod->top_dac[i] : -1;}
int Module_SetBottomDACValue(struct Module* mod,unsigned int i, int value) { return (i<Module_ndacs && Module_BottomAddressIsValid(mod)) ? (mod->bottom_dac[i]=value): -1;}
int Module_GetBottomDACValue(struct Module* mod,unsigned int i) { return (i<Module_ndacs) ? mod->bottom_dac[i] : -1;}
void Feb_Control_activate(int activate) {
Feb_Control_activated = activate;
}
int Feb_Control_IsBottomModule() {
if (Module_BottomAddressIsValid(&modules[Feb_Control_current_index]))
return 1;
return 0;
}
int Feb_Control_GetModuleNumber() {
return Feb_Control_module_number;
}
void Feb_Control_FebControl() {
Feb_Control_staticBits=Feb_Control_acquireNReadoutMode=Feb_Control_triggerMode=Feb_Control_externalEnableMode=Feb_Control_subFrameMode=0;
Feb_Control_trimbit_size=263680;
Feb_Control_last_downloaded_trimbits = malloc(Feb_Control_trimbit_size * sizeof(int));
moduleSize = 0;
}
int Feb_Control_Init(int master, int top, int normal, int module_num) {
unsigned int i;
Feb_Control_module_number = 0;
Feb_Control_current_index = 0;
Feb_control_master = master;
Feb_control_normal = normal;
//global send
Feb_Control_AddModule1(0,1,0xff,0,1);
Feb_Control_PrintModuleList();
Feb_Control_module_number = (module_num & 0xFF);
int serial = !top;
FILE_LOG(logDEBUG1, ("serial: %d\n",serial));
Feb_Control_current_index = 1;
//Add the half module
Feb_Control_AddModule1(Feb_Control_module_number,top,serial,serial,1);
Feb_Control_PrintModuleList();
unsigned int nfebs = 0;
unsigned int* feb_list = malloc(moduleSize*4 * sizeof(unsigned int));
for(i=1;i<moduleSize;i++) {
if (Module_TopAddressIsValid(&modules[i])) {
feb_list[nfebs++] = Module_GetTopRightAddress(&modules[i]);
feb_list[nfebs++] = Module_GetTopLeftAddress(&modules[i]);
}
if (Module_BottomAddressIsValid(&modules[i])) {
feb_list[nfebs++] = Module_GetBottomRightAddress(&modules[i]);
feb_list[nfebs++] = Module_GetBottomLeftAddress(&modules[i]);
}
}
Feb_Interface_SendCompleteList(nfebs,feb_list);
free(feb_list);
if (Feb_Control_activated)
Feb_Interface_SetByteOrder();
return 1;
}
int Feb_Control_OpenSerialCommunication() {
FILE_LOG(logINFO, ("opening serial communication of hv\n"));
//if (Feb_Control_hv_fd != -1)
close(Feb_Control_hv_fd);
Feb_Control_hv_fd = open(SPECIAL9M_HIGHVOLTAGE_PORT, O_RDWR | O_NOCTTY | O_SYNC);
if (Feb_Control_hv_fd < 0) {
FILE_LOG(logERROR, ("Unable to open port %s to set up high "
"voltage serial communciation to the blackfin\n", SPECIAL9M_HIGHVOLTAGE_PORT));
return 0;
}
FILE_LOG(logINFO, ("Serial Port opened at %s\n",SPECIAL9M_HIGHVOLTAGE_PORT));
struct termios serial_conf;
// reset structure
memset (&serial_conf, 0, sizeof(serial_conf));
// control options
serial_conf.c_cflag = B2400 | CS8 | CREAD | CLOCAL;//57600 too high
// input options
serial_conf.c_iflag = IGNPAR;
// output options
serial_conf.c_oflag = 0;
// line options
serial_conf.c_lflag = ICANON;
// flush input
if (tcflush(Feb_Control_hv_fd, TCIOFLUSH) < 0) {
FILE_LOG(logERROR, ("error from tcflush %d\n", errno));
return 0;
}
// set new options for the port, TCSANOW:changes occur immediately without waiting for data to complete
if (tcsetattr(Feb_Control_hv_fd, TCSANOW, &serial_conf) < 0) {
FILE_LOG(logERROR, ("error from tcsetattr %d\n", errno));
return 0;
}
if (tcsetattr(Feb_Control_hv_fd, TCSAFLUSH, &serial_conf) < 0) {
FILE_LOG(logERROR, ("error from tcsetattr %d\n", errno));
return 0;
}
//send the first message (which will be garbled up)
char buffer[SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE];
memset(buffer,0,SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
buffer[SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE-1] = '\n';
strcpy(buffer,"start");
FILE_LOG(logINFO, ("sending start: '%s'\n",buffer));
int n = write(Feb_Control_hv_fd, buffer, SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
if (n < 0) {
FILE_LOG(logERROR, ("could not write to i2c bus\n"));
return 0;
}
FILE_LOG(logDEBUG1, ("Sent: %d bytes\n",n));
return 1;
}
void Feb_Control_CloseSerialCommunication() {
if (Feb_Control_hv_fd != -1)
close(Feb_Control_hv_fd);
}
void Feb_Control_PrintModuleList() {
unsigned int i;
FILE_LOG(logDEBUG1, ("Module list:\n"));
for(i=0;i<moduleSize;i++) {
FILE_LOG(logDEBUG1, ("\t%d) %s modules: %d 0x%x %s\n", i,
((i == 0) ? "All " : ((i == 1) ? "Master" : " ")),
Module_GetModuleNumber(&modules[i]),
(Module_TopAddressIsValid(&modules[i]) ?
Module_GetTopBaseAddress(&modules[i]) :
Module_GetBottomBaseAddress(&modules[i])),
(Module_TopAddressIsValid(&modules[i]) ? "(top) " : "(bottom) ")));
}
}
int Feb_Control_GetModuleIndex(unsigned int module_number, unsigned int* module_index) {
unsigned int i;
for(i=0;i<moduleSize;i++) {
if (Module_GetModuleNumber(&modules[i])==module_number) {
*module_index=i;
return 1;
}
}
return 0;
}
int Feb_Control_CheckModuleAddresses(struct Module* m) {
unsigned int i;
int found_t = 0;
int found_b = 0;
for(i=0;i<moduleSize;i++) {
if ((Module_TopAddressIsValid(m) && Module_GetTopBaseAddress(&modules[i]) && Module_GetTopBaseAddress(m)==Module_GetTopBaseAddress(&modules[i])) ||
(Module_TopAddressIsValid(m) && Module_GetBottomBaseAddress(&modules[i]) && Module_GetTopBaseAddress(m)==Module_GetBottomBaseAddress(&modules[i]))) found_t=1;
if ((Module_BottomAddressIsValid(m) && Module_GetTopBaseAddress(&modules[i]) && Module_GetBottomBaseAddress(m)==Module_GetTopBaseAddress(&modules[i])) ||
(Module_BottomAddressIsValid(m) && Module_GetBottomBaseAddress(&modules[i]) && Module_GetBottomBaseAddress(m)==Module_GetBottomBaseAddress(&modules[i]))) found_b=1;
}
if (found_t) {
FILE_LOG(logERROR, ("top address %d already used.\n",Module_GetTopBaseAddress(m)));
}
if (found_b) {
FILE_LOG(logERROR, ("bottom address %d already used.\n",Module_GetBottomBaseAddress(m)));
}
int top_bottom_same = Module_TopAddressIsValid(m)&&Module_BottomAddressIsValid(m)&&Module_GetTopBaseAddress(m)==Module_GetBottomBaseAddress(m);
if (top_bottom_same) {
FILE_LOG(logERROR, ("top and bottom address are the same %d.\n",Module_GetTopBaseAddress(m)));
}
return !(top_bottom_same||found_t||found_b);
}
int Feb_Control_AddModule(unsigned int module_number, unsigned int top_address) {
return Feb_Control_AddModule1(module_number,1,top_address,0,1);
}
int Feb_Control_AddModule1(unsigned int module_number, int top_enable, unsigned int top_address, unsigned int bottom_address, int half_module) { //bot_address 0 for half module
int parameters_ok = 1;
unsigned int pre_module_index = 0;
if (Feb_Control_GetModuleIndex(module_number,&pre_module_index)) {
FILE_LOG(logINFO, ("\tRemoving previous assignment of module number %d.\n",module_number));
// free(modules[pre_module_index]);
int i;
for(i=pre_module_index;i<moduleSize-1;i++)
modules[i] = modules[i+1];
moduleSize--;
parameters_ok = 0;
}
struct Module mod,* m;
m= &mod;
/* if ((half_module)&& (top_address != 1)) Module_Module(m,module_number,top_address);
else if (half_module) Module_ModuleBottom(m,module_number,top_address);*/
if ((half_module)&& (top_enable)) Module_Module(m,module_number,top_address);
else if (half_module) Module_ModuleBottom(m,module_number,bottom_address);
else Module_Module1(m,module_number,top_address,bottom_address);
parameters_ok&=Feb_Control_CheckModuleAddresses(m);
if (Module_TopAddressIsValid(m)&&Module_BottomAddressIsValid(m)) {
FILE_LOG(logDEBUG1, ("\tAdding full module number %d with top and bottom "
"base addresses: %d %d\n",Module_GetModuleNumber(m),
Module_GetTopBaseAddress(m),Module_GetBottomBaseAddress(m)));
modules[moduleSize] = mod;
moduleSize++;
} else if (Module_TopAddressIsValid(m)) {
FILE_LOG(logDEBUG1, ("\tAdding half module number %d with "
"top base address: %d\n",Module_GetModuleNumber(m),
Module_GetTopBaseAddress(m)));
modules[moduleSize] = mod;
moduleSize++;
} else if (Module_BottomAddressIsValid(m)) {
FILE_LOG(logDEBUG1, ("\tAdding half module number %d with "
"bottom base address: %d\n",Module_GetModuleNumber(m),
Module_GetBottomBaseAddress(m)));
modules[moduleSize] = mod;
moduleSize++;
} else {
//free(m);
}
return parameters_ok;
}
int Feb_Control_CheckSetup(int master) {
FILE_LOG(logDEBUG1, ("Checking Set up\n"));
unsigned int i,j;
int ok = 1;
/*for(i=0;i<moduleSize;i++) {*/
i = Feb_Control_current_index;
for(j=0;j<4;j++) {
if (Module_GetTopIDelay(&modules[i],j)<0) {
FILE_LOG(logERROR, ("module %d's idelay top number %d not set.\n",Module_GetModuleNumber(&modules[i]),j));
ok=0;
}
if (Module_GetBottomIDelay(&modules[i],j)<0) {
FILE_LOG(logERROR, ("module %d's idelay bottom number %d not set.\n",Module_GetModuleNumber(&modules[i]),j));
ok=0;
}
}
int value = 0;
if ((Feb_control_master) && (!Feb_Control_GetHighVoltage(&value))) {
FILE_LOG(logERROR, ("module %d's high voltage not set.\n",Module_GetModuleNumber(&modules[i])));
ok=0;
}
for(j=0;j<Module_ndacs;j++) {
if (Module_GetTopDACValue(&modules[i],j)<0) {
FILE_LOG(logERROR, ("module %d's top \"%s\" dac is not set.\n",Module_GetModuleNumber(&modules[i]),Module_dac_names[i]));
ok=0;
}
if (Module_GetBottomDACValue(&modules[i],j)<0) {
FILE_LOG(logERROR, ("module %d's bottom \"%s\" dac is not set.\n",Module_GetModuleNumber(&modules[i]),Module_dac_names[i]));
ok=0;
}
}
/* }*/
FILE_LOG(logDEBUG1, ("Done Checking Set up\n"));
return ok;
}
unsigned int Feb_Control_GetNModules() {
if (moduleSize<=0) return 0;
return moduleSize - 1;
}
unsigned int Feb_Control_GetNHalfModules() {
unsigned int n_half_modules = 0;
unsigned int i;
for(i=1;i<moduleSize;i++) {
if (Module_TopAddressIsValid(&modules[i])) n_half_modules++;
if (Module_BottomAddressIsValid(&modules[i])) n_half_modules++;
}
return n_half_modules;
}
int Feb_Control_SetIDelays(unsigned int module_num, unsigned int ndelay_units) {
int ret = Feb_Control_SetIDelays1(module_num,0,ndelay_units)&&Feb_Control_SetIDelays1(module_num,1,ndelay_units)&&Feb_Control_SetIDelays1(module_num,2,ndelay_units)&&Feb_Control_SetIDelays1(module_num,3,ndelay_units);
if (ret) {
FILE_LOG(logINFO, ("IODelay set to %d\n", ndelay_units));
}
return ret;
}
int Feb_Control_SetIDelays1(unsigned int module_num, unsigned int chip_pos, unsigned int ndelay_units) { //chip_pos 0=ll,1=lr,0=rl,1=rr
unsigned int i;
//currently set same for top and bottom
if (chip_pos>3) {
FILE_LOG(logERROR, ("SetIDelay chip_pos %d doesn't exist.\n",chip_pos));
return 0;
}
unsigned int module_index=0;
if (!Feb_Control_GetModuleIndex(module_num,&module_index)) {
FILE_LOG(logERROR, ("could not set i delay module number %d invalid.\n",module_num));
return 0;
}
int ok = 1;
if (chip_pos/2==0) { //left fpga
if (Module_TopAddressIsValid(&modules[module_index])) {
if (Feb_Control_SendIDelays(Module_GetTopLeftAddress(&modules[module_index]),chip_pos%2==0,0xffffffff,ndelay_units)) {
if (module_index!=0) Module_SetTopIDelay(&modules[module_index],chip_pos,ndelay_units);
else {
for(i=0;i<moduleSize;i++) Module_SetTopIDelay(&modules[i],chip_pos,ndelay_units);
for(i=0;i<moduleSize;i++) Module_SetBottomIDelay(&modules[i],chip_pos,ndelay_units);
}
} else {
FILE_LOG(logERROR, ("could not set idelay module number %d (top_left).\n",module_num));
ok=0;
}
}
if (Module_BottomAddressIsValid(&modules[module_index])) {
if (Feb_Control_SendIDelays(Module_GetBottomLeftAddress(&modules[module_index]),chip_pos%2==0,0xffffffff,ndelay_units)) {
if (module_index!=0) Module_SetBottomIDelay(&modules[module_index],chip_pos,ndelay_units);
else {
for(i=0;i<moduleSize;i++) Module_SetTopIDelay(&modules[i],chip_pos,ndelay_units);
for(i=0;i<moduleSize;i++) Module_SetBottomIDelay(&modules[i],chip_pos,ndelay_units);
}
} else {
FILE_LOG(logERROR, ("could not set idelay module number %d (bottom_left).\n",module_num));
ok=0;
}
}
} else {
if (Module_TopAddressIsValid(&modules[module_index])) {
if (Feb_Control_SendIDelays(Module_GetTopRightAddress(&modules[module_index]),chip_pos%2==0,0xffffffff,ndelay_units)) {
if (module_index!=0) Module_SetTopIDelay(&modules[module_index],chip_pos,ndelay_units);
else for(i=0;i<moduleSize;i++) Module_SetTopIDelay(&modules[i],chip_pos,ndelay_units);
} else {
FILE_LOG(logERROR, ("could not set idelay module number %d (top_right).\n",module_num));
ok=0;
}
}
if (Module_BottomAddressIsValid(&modules[module_index])) {
if (Feb_Control_SendIDelays(Module_GetBottomRightAddress(&modules[module_index]),chip_pos%2==0,0xffffffff,ndelay_units)) {
if (module_index!=0) Module_SetBottomIDelay(&modules[module_index],chip_pos,ndelay_units);
else for(i=0;i<moduleSize;i++) Module_SetBottomIDelay(&modules[i],chip_pos,ndelay_units);
} else {
FILE_LOG(logERROR, ("could not set idelay module number %d (bottom_right).\n",module_num));
ok=0;
}
}
}
return ok;
}
int Feb_Control_SendIDelays(unsigned int dst_num, int chip_lr, unsigned int channels, unsigned int ndelay_units) {
if (ndelay_units>0x3ff) ndelay_units=0x3ff;
// this is global
unsigned int delay_data_valid_nclks = 15 - ((ndelay_units&0x3c0)>>6); //data valid delay upto 15 clks
ndelay_units &= 0x3f;
unsigned int set_left_delay_channels = chip_lr ? channels:0;
unsigned int set_right_delay_channels = chip_lr ? 0:channels;
FILE_LOG(logDEBUG1, ("\tSetting delays of %s chips of dst_num %d, "
"tracks 0x%x to %d, %d clks and %d units.\n",
((set_left_delay_channels != 0) ? "left" : "right"),
dst_num, channels, (((15-delay_data_valid_nclks)<<6)|ndelay_units),
delay_data_valid_nclks, ndelay_units));
if (Feb_Control_activated) {
if (!Feb_Interface_WriteRegister(dst_num,CHIP_DATA_OUT_DELAY_REG2, 1<<31 | delay_data_valid_nclks<<16 | ndelay_units,0,0) || //the 1<<31 time enables the setting of the data valid delays
!Feb_Interface_WriteRegister(dst_num,CHIP_DATA_OUT_DELAY_REG3,set_left_delay_channels,0,0) ||
!Feb_Interface_WriteRegister(dst_num,CHIP_DATA_OUT_DELAY_REG4,set_right_delay_channels,0,0) ||
!Feb_Interface_WriteRegister(dst_num,CHIP_DATA_OUT_DELAY_REG_CTRL,CHIP_DATA_OUT_DELAY_SET,1,1)) {
FILE_LOG(logERROR, ("could not SetChipDataInputDelays(...).\n"));
return 0;
}
}
return 1;
}
int Feb_Control_VoltageToDAC(float value, unsigned int* digital,unsigned int nsteps,float vmin,float vmax) {
if (value<vmin||value>vmax) return 0;
*digital = (int)(((value-vmin)/(vmax-vmin))*(nsteps-1) + 0.5);
return 1;
}
float Feb_Control_DACToVoltage(unsigned int digital,unsigned int nsteps,float vmin,float vmax) {
return vmin+(vmax-vmin)*digital/(nsteps-1);
}
//only master gets to call this function
int Feb_Control_SetHighVoltage(int value) {
FILE_LOG(logDEBUG1, (" Setting High Voltage:\t"));
/*
* maximum voltage of the hv dc/dc converter:
* 300 for single module power distribution board
* 200 for 9M power distribution board
* but limit is 200V for both
*/
const float vmin=0;
float vmax=200;
if (Feb_control_normal)
vmax=300;
const float vlimit=200;
const unsigned int ntotalsteps = 256;
unsigned int nsteps = ntotalsteps*vlimit/vmax;
unsigned int dacval = 0;
//calculate dac value
if (!Feb_Control_VoltageToDAC(value,&dacval,nsteps,vmin,vlimit)) {
FILE_LOG(logERROR, ("SetHighVoltage bad value, %d. The range is 0 to %d V.\n",value, (int)vlimit));
return -1;
}
FILE_LOG(logINFO, ("High Voltage set to %dV\n", value));
FILE_LOG(logDEBUG1, ("High Voltage set to (%d dac):\t%dV\n", dacval, value));
return Feb_Control_SendHighVoltage(dacval);
}
int Feb_Control_GetHighVoltage(int* value) {
FILE_LOG(logDEBUG1, (" Getting High Voltage:\t"));
unsigned int dacval = 0;
if (!Feb_Control_ReceiveHighVoltage(&dacval))
return 0;
//ok, convert dac to v
/*
* maximum voltage of the hv dc/dc converter:
* 300 for single module power distribution board
* 200 for 9M power distribution board
* but limit is 200V for both
*/
const float vmin=0;
float vmax=200;
if (Feb_control_normal)
vmax=300;
const float vlimit=200;
const unsigned int ntotalsteps = 256;
unsigned int nsteps = ntotalsteps*vlimit/vmax;
*value = (int)(Feb_Control_DACToVoltage(dacval,nsteps,vmin,vlimit)+0.5);
FILE_LOG(logINFO, ("High Voltage read %dV\n", *value));
FILE_LOG(logDEBUG1, ("High Voltage read (%d dac)\t%dV\n", dacval, *value));
return 1;
}
int Feb_Control_SendHighVoltage(int dacvalue) {
//normal
if (Feb_control_normal) {
//open file
FILE* fd=fopen(NORMAL_HIGHVOLTAGE_OUTPUTPORT,"w");
if (fd==NULL) {
FILE_LOG(logERROR, ("Could not open file for writing to set high voltage\n"));
return 0;
}
//convert to string, add 0 and write to file
fprintf(fd, "%d0\n", dacvalue);
fclose(fd);
}
//9m
else {
/*Feb_Control_OpenSerialCommunication();*/
if (Feb_Control_hv_fd == -1) {
FILE_LOG(logERROR, ("High voltage serial communication not set up for 9m\n"));
return 0;
}
char buffer[SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE];
memset(buffer,0,SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
buffer[SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE-1]='\n';
int n;
sprintf(buffer,"p%d",dacvalue);
FILE_LOG(logINFO, ("Sending HV: '%s'\n",buffer));
n = write(Feb_Control_hv_fd, buffer, SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
if (n < 0) {
FILE_LOG(logERROR, ("writing to i2c bus\n"));
return 0;
}
#ifdef VERBOSEI
FILE_LOG(logINFO, ("Sent %d Bytes\n", n));
#endif
//ok/fail
memset(buffer,0,SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
buffer[SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE-1] = '\n';
n = read(Feb_Control_hv_fd, buffer, SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
if (n < 0) {
FILE_LOG(logERROR, ("reading from i2c bus\n"));
return 0;
}
#ifdef VERBOSEI
FILE_LOG(logINFO, ("Received %d Bytes\n", n));
#endif
FILE_LOG(logINFO, ("Received HV: '%s'\n",buffer));
fflush(stdout);
/*Feb_Control_CloseSerialCommunication();*/
if (buffer[0] != 's') {
FILE_LOG(logERROR, ("\nError: Failed to set high voltage\n"));
return 0;
}
FILE_LOG(logINFO, ("%s\n",buffer));
}
return 1;
}
int Feb_Control_ReceiveHighVoltage(unsigned int* value) {
//normal
if (Feb_control_normal) {
//open file
FILE* fd=fopen(NORMAL_HIGHVOLTAGE_INPUTPORT,"r");
if (fd==NULL) {
FILE_LOG(logERROR, ("Could not open file for writing to get high voltage\n"));
return 0;
}
//read, assigning line to null and readbytes to 0 then getline allocates initial buffer
size_t readbytes=0;
char* line=NULL;
if (getline(&line, &readbytes, fd) == -1) {
FILE_LOG(logERROR, ("could not read file to get high voltage\n"));
return 0;
}
//read again to read the updated value
rewind(fd);
free(line);
readbytes=0;
readbytes = getline(&line, &readbytes, fd);
if (readbytes == -1) {
FILE_LOG(logERROR, ("could not read file to get high voltage\n"));
return 0;
}
// Remove the trailing 0
*value = atoi(line)/10;
free(line);
fclose(fd);
}
//9m
else {
/*Feb_Control_OpenSerialCommunication();*/
if (Feb_Control_hv_fd == -1) {
FILE_LOG(logERROR, ("High voltage serial communication not set up for 9m\n"));
return 0;
}
char buffer[SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE];
buffer[SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE-1]='\n';
int n = 0;
//request
strcpy(buffer,"g ");
FILE_LOG(logINFO, ("\nSending HV: '%s'\n",buffer));
n = write(Feb_Control_hv_fd, buffer, SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
if (n < 0) {
FILE_LOG(logERROR, ("writing to i2c bus\n"));
return 0;
}
#ifdef VERBOSEI
FILE_LOG(logINFO, ("Sent %d Bytes\n", n));
#endif
//ok/fail
memset(buffer,0,SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
buffer[SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE-1] = '\n';
n = read(Feb_Control_hv_fd, buffer, SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
if (n < 0) {
FILE_LOG(logERROR, ("reading from i2c bus\n"));
return 0;
}
#ifdef VERBOSEI
FILE_LOG(logINFO, ("Received %d Bytes\n", n));
#endif
FILE_LOG(logINFO, ("Received HV: '%s'\n",buffer));
if (buffer[0] != 's') {
FILE_LOG(logERROR, ("failed to read high voltage\n"));
return 0;
}
memset(buffer,0,SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
buffer[SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE-1] = '\n';
n = read(Feb_Control_hv_fd, buffer, SPECIAL9M_HIGHVOLTAGE_BUFFERSIZE);
if (n < 0) {
FILE_LOG(logERROR, ("reading from i2c bus\n"));
return 0;
}
#ifdef VERBOSEI
FILE_LOG(logINFO, ("Received %d Bytes\n", n));
#endif
FILE_LOG(logINFO, ("Received HV: '%s'\n",buffer));
/*Feb_Control_OpenSerialCommunication();*/
if (!sscanf(buffer,"%d",value)) {
FILE_LOG(logERROR, ("failed to scan high voltage read\n"));
return 0;
}
}
return 1;
}
int Feb_Control_DecodeDACString(char* dac_str, unsigned int* module_index, int* top, int* bottom, unsigned int* dac_ch) {
char* local_s = dac_str;
*module_index = Feb_Control_current_index;
*top = 1;//make them both 1 instead of this
*bottom = 1;
if (Module_BottomAddressIsValid(&modules[*module_index]))
*top=0;
else
*bottom=0;
*dac_ch = 0;
if (!Feb_Control_GetDACNumber(local_s,dac_ch)) {
FILE_LOG(logERROR, ("invalid dac_name: %s (%s)\n",dac_str,local_s));
return 0;
}
return 1;
}
int Feb_Control_SetDAC(char* dac_str, int value, int is_a_voltage_mv) {
unsigned int i;
unsigned int module_index, dac_ch;
int top, bottom;
if (!Feb_Control_DecodeDACString(dac_str,&module_index,&top,&bottom,&dac_ch)) return 0;
unsigned int v = value;
if (is_a_voltage_mv&&!Feb_Control_VoltageToDAC(value,&v,4096,0,2048)) {
FILE_LOG(logERROR, ("SetDac bad value, %d. The range is 0 to 2048 mV.\n",value));
return 0;
}
if (v<0||v>4095) {
FILE_LOG(logERROR, ("SetDac bad value, %d. The range is 0 to 4095.\n",v));
return 0;
}
if (top&&Module_TopAddressIsValid(&modules[module_index])) {
if (!Feb_Control_SendDACValue(Module_GetTopRightAddress(&modules[module_index]),dac_ch,&v)) return 0;
if (module_index!=0) Module_SetTopDACValue(&modules[module_index],dac_ch,v);
else for(i=0;i<moduleSize;i++) Module_SetTopDACValue(&modules[i],dac_ch,v);
}
if (bottom&&Module_BottomAddressIsValid(&modules[module_index])) {
if (!Feb_Control_SendDACValue(Module_GetBottomRightAddress(&modules[module_index]),dac_ch,&v))return 0;
if (module_index!=0) Module_SetBottomDACValue(&modules[module_index],dac_ch,v);
else for(i=0;i<moduleSize;i++) Module_SetBottomDACValue(&modules[i],dac_ch,v);
}
return 1;
}
int Feb_Control_GetDAC(char* s, int* ret_value, int voltage_mv) {
unsigned int module_index, dac_ch;
int top, bottom;
if (!Feb_Control_DecodeDACString(s,&module_index,&top,&bottom,&dac_ch)) return 0;
*ret_value = top ? Module_GetTopDACValue(&modules[module_index],dac_ch) : Module_GetBottomDACValue(&modules[module_index],dac_ch);
if (voltage_mv) *ret_value = Feb_Control_DACToVoltage(*ret_value,4096,0,2048);
return 1;
}
int Feb_Control_GetDACName(unsigned int dac_num, char* s) {
if (dac_num>=Module_ndacs) {
FILE_LOG(logERROR, ("GetDACName index out of range, %d invalid.\n",dac_num));
return 0;
}
strcpy(s,Module_dac_names[dac_num]);
return 1;
}
int Feb_Control_GetDACNumber(char* s, unsigned int* n) {
unsigned int i;
for(i=0;i<Module_ndacs;i++) {
if (!strcmp(Module_dac_names[i],s)) {
*n=i;
return 1;
}
}
return 0;
}
int Feb_Control_SendDACValue(unsigned int dst_num, unsigned int ch, unsigned int* value) {
if (ch<0||ch>15) {
FILE_LOG(logERROR, ("invalid ch for SetDAC.\n"));
return 0;
}
//if (voltage<0) return PowerDownDAC(socket_num,ch);
*value&=0xfff;
unsigned int dac_ic = (ch<8) ? 1:2;
unsigned int dac_ch = ch%8;
unsigned int r = dac_ic<<30 | 3<<16 | dac_ch<<12 | *value; //3 write and power up
if (Feb_Control_activated) {
if (!Feb_Interface_WriteRegister(dst_num,0,r,1,0)) {
FILE_LOG(logERROR, ("trouble setting dac %d voltage.\n",ch));
return 0;
}
}
float voltage=Feb_Control_DACToVoltage(*value,4096,0,2048);
FILE_LOG(logINFO, ("%s set to %d (%.2fmV)\n", Module_dac_names[ch],*value,voltage));
FILE_LOG(logDEBUG1, ("Dac number %d (%s) of dst %d set to %d (%f mV)\n",ch,Module_dac_names[ch],dst_num,*value,voltage));
return 1;
}
int Feb_Control_SetTrimbits(unsigned int module_num, unsigned int *trimbits) {
FILE_LOG(logINFO, ("Setting Trimbits\n"));
//for (int iy=10000;iy<20020;++iy)//263681
//for (int iy=263670;iy<263680;++iy)//263681
// FILE_LOG(logINFO, ("%d:%c\t\t",iy,trimbits[iy]));
unsigned int trimbits_to_load_l[1024];
unsigned int trimbits_to_load_r[1024];
unsigned int module_index=0;
if (!Feb_Control_GetModuleIndex(module_num,&module_index)) {
FILE_LOG(logERROR, ("could not set trimbits, bad module number.\n"));
return 0;
}
if (Feb_Control_Reset() == STATUS_ERROR) {
FILE_LOG(logERROR, ("could not reset DAQ.\n"));
}
int l_r;
for(l_r=0;l_r<2;l_r++) { // l_r loop
unsigned int disable_chip_mask = l_r ? DAQ_CS_BAR_LEFT : DAQ_CS_BAR_RIGHT;
if (Feb_Control_activated) {
if (!(Feb_Interface_WriteRegister(0xfff,DAQ_REG_STATIC_BITS,disable_chip_mask|DAQ_STATIC_BIT_PROGRAM|DAQ_STATIC_BIT_M8,0,0)
&&Feb_Control_SetCommandRegister(DAQ_SET_STATIC_BIT)
&&(Feb_Control_StartDAQOnlyNWaitForFinish(5000) == STATUS_IDLE))) {
FILE_LOG(logERROR, ("Could not select chips\n"));
return 0;
}
}
int row_set;
for(row_set=0;row_set<16;row_set++) { //16 rows at a time
if (row_set==0) {
if (!Feb_Control_SetCommandRegister(DAQ_RESET_COMPLETELY|DAQ_SEND_A_TOKEN_IN|DAQ_LOAD_16ROWS_OF_TRIMBITS)) {
FILE_LOG(logERROR, ("Could not Feb_Control_SetCommandRegister for loading trim bits.\n"));
return 0;
}
} else {
if (!Feb_Control_SetCommandRegister(DAQ_LOAD_16ROWS_OF_TRIMBITS)) {
FILE_LOG(logERROR, ("Could not Feb_Control_SetCommandRegister for loading trim bits.\n"));
return 0;
}
}
int row;
for(row=0;row<16;row++) { //row loop
int offset = 2*32*row;
int sc;
for(sc=0;sc<32;sc++) { //supercolumn loop sc
int super_column_start_position_l = 1030*row + l_r *258 + sc*8;
int super_column_start_position_r = 1030*row + 516 + l_r *258 + sc*8;
/*
int super_column_start_position_l = 1024*row + l_r *256 + sc*8; //256 per row, 8 per super column
int super_column_start_position_r = 1024*row + 512 + l_r *256 + sc*8; //256 per row, 8 per super column
*/
int chip_sc = 31 - sc;
trimbits_to_load_l[offset+chip_sc] = 0;
trimbits_to_load_r[offset+chip_sc] = 0;
trimbits_to_load_l[offset+chip_sc+32] = 0;
trimbits_to_load_r[offset+chip_sc+32] = 0;
int i;
for(i=0;i<8;i++) { // column loop i
if (Module_TopAddressIsValid(&modules[1])) {
trimbits_to_load_l[offset+chip_sc] |= ( 0x7 & trimbits[row_set*16480+super_column_start_position_l+i])<<((7-i)*4);//low
trimbits_to_load_l[offset+chip_sc+32] |= ((0x38 & trimbits[row_set*16480+super_column_start_position_l+i])>>3)<<((7-i)*4);//upper
trimbits_to_load_r[offset+chip_sc] |= ( 0x7 & trimbits[row_set*16480+super_column_start_position_r+i])<<((7-i)*4);//low
trimbits_to_load_r[offset+chip_sc+32] |= ((0x38 & trimbits[row_set*16480+super_column_start_position_r+i])>>3)<<((7-i)*4);//upper
} else {
trimbits_to_load_l[offset+chip_sc] |= ( 0x7 & trimbits[263679 - (row_set*16480+super_column_start_position_l+i)])<<((7-i)*4);//low
trimbits_to_load_l[offset+chip_sc+32] |= ((0x38 & trimbits[263679 - (row_set*16480+super_column_start_position_l+i)])>>3)<<((7-i)*4);//upper
trimbits_to_load_r[offset+chip_sc] |= ( 0x7 & trimbits[263679 - (row_set*16480+super_column_start_position_r+i)])<<((7-i)*4);//low
trimbits_to_load_r[offset+chip_sc+32] |= ((0x38 & trimbits[263679 - (row_set*16480+super_column_start_position_r+i)])>>3)<<((7-i)*4);//upper
}
} // end column loop i
} //end supercolumn loop sc
} //end row loop
if (Module_TopAddressIsValid(&modules[1])) {
if (Feb_Control_activated) {
if (!Feb_Interface_WriteMemoryInLoops(Module_GetTopLeftAddress(&modules[Feb_Control_current_index]),0,0,1024,trimbits_to_load_l)||
!Feb_Interface_WriteMemoryInLoops(Module_GetTopRightAddress(&modules[Feb_Control_current_index]),0,0,1024,trimbits_to_load_r)||
//if (!Feb_Interface_WriteMemory(Module_GetTopLeftAddress(&modules[0]),0,0,1023,trimbits_to_load_r)||
// !Feb_Interface_WriteMemory(Module_GetTopRightAddress(&modules[0]),0,0,1023,trimbits_to_load_l)||
(Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, (" some errror!\n"));
return 0;
}
}
} else {
if (Feb_Control_activated) {
if (!Feb_Interface_WriteMemoryInLoops(Module_GetBottomLeftAddress(&modules[Feb_Control_current_index]),0,0,1024,trimbits_to_load_l)||
!Feb_Interface_WriteMemoryInLoops(Module_GetBottomRightAddress(&modules[Feb_Control_current_index]),0,0,1024,trimbits_to_load_r)||
//if (!Feb_Interface_WriteMemory(Module_GetTopLeftAddress(&modules[0]),0,0,1023,trimbits_to_load_r)||
// !Feb_Interface_WriteMemory(Module_GetTopRightAddress(&modules[0]),0,0,1023,trimbits_to_load_l)||
(Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, (" some errror!\n"));
return 0;
}
}
}
} //end row_set loop (groups of 16 rows)
} // end l_r loop
memcpy(Feb_Control_last_downloaded_trimbits,trimbits,Feb_Control_trimbit_size*sizeof(unsigned int));
return Feb_Control_SetStaticBits(); //send the static bits
}
unsigned int* Feb_Control_GetTrimbits() {
return Feb_Control_last_downloaded_trimbits;
}
unsigned int Feb_Control_AddressToAll() {
FILE_LOG(logDEBUG1, ("in Feb_Control_AddressToAll()\n"));
if (moduleSize==0) return 0;
if (Module_BottomAddressIsValid(&modules[1])) {
//if (Feb_Control_am_i_master)
return Module_GetBottomLeftAddress(&modules[1])|Module_GetBottomRightAddress(&modules[1]);
// else return 0;
}
return Module_GetTopLeftAddress(&modules[1])|Module_GetTopRightAddress(&modules[1]);
//return Module_GetTopLeftAddress(&modules[0])|Module_GetTopRightAddress(&modules[0]);
}
int Feb_Control_SetCommandRegister(unsigned int cmd) {
if (Feb_Control_activated)
return Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_CHIP_CMDS,cmd,0,0);
else
return 1;
}
int Feb_Control_GetDAQStatusRegister(unsigned int dst_address, unsigned int* ret_status) {
//if deactivated, should be handled earlier and should not get into this function
if (Feb_Control_activated) {
if (!Feb_Interface_ReadRegister(dst_address,DAQ_REG_STATUS,ret_status)) {
FILE_LOG(logERROR, ("Error: reading status register.\n"));
return 0;
}
}
*ret_status = (0x02FF0000 & *ret_status) >> 16;
return 1;
}
int Feb_Control_StartDAQOnlyNWaitForFinish(int sleep_time_us) {
if (Feb_Control_activated) {
if (!Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_CTRL,0,0,0)||!Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_CTRL,DAQ_CTRL_START,0,0)) {
FILE_LOG(logERROR, ("could not start.\n"));
return 0;
}
}
return Feb_Control_WaitForFinishedFlag(sleep_time_us);
}
int Feb_Control_AcquisitionInProgress() {
unsigned int status_reg_r=0,status_reg_l=0;
//deactivated should return end of acquisition
if (!Feb_Control_activated)
return STATUS_IDLE;
int ind = Feb_Control_current_index;
if (Module_BottomAddressIsValid(&modules[ind])) {
if (!(Feb_Control_GetDAQStatusRegister(Module_GetBottomRightAddress(&modules[ind]),&status_reg_r)))
{FILE_LOG(logERROR, ("Error: Trouble reading Status register. bottom right address\n"));return STATUS_ERROR;}
if (!(Feb_Control_GetDAQStatusRegister(Module_GetBottomLeftAddress(&modules[ind]),&status_reg_l)))
{FILE_LOG(logERROR, ("Error: Trouble reading Status register. bottom left address\n"));return STATUS_ERROR;}
} else {
if (!(Feb_Control_GetDAQStatusRegister(Module_GetTopRightAddress(&modules[ind]),&status_reg_r)))
{FILE_LOG(logERROR, ("Error: Trouble reading Status register. top right address\n"));return STATUS_ERROR;}
if (!(Feb_Control_GetDAQStatusRegister(Module_GetTopLeftAddress(&modules[ind]),&status_reg_l)))
{FILE_LOG(logERROR, ("Error: Trouble reading Status register. top left address\n"));return STATUS_ERROR;}
}
//running
if ((status_reg_r|status_reg_l)&DAQ_STATUS_DAQ_RUNNING) {
FILE_LOG(logDEBUG1, ("**runningggg\n"));
return STATUS_RUNNING;
}
//idle
return STATUS_IDLE;
}
int Feb_Control_AcquisitionStartedBit() {
unsigned int status_reg_r=0,status_reg_l=0;
//deactivated should return acquisition started/ready
if (!Feb_Control_activated)
return 1;
int ind = Feb_Control_current_index;
if (Module_BottomAddressIsValid(&modules[ind])) {
if (!(Feb_Control_GetDAQStatusRegister(Module_GetBottomRightAddress(&modules[ind]),&status_reg_r)))
{FILE_LOG(logERROR, ("Error: Trouble reading Status register. bottom right address\n"));return -1;}
if (!(Feb_Control_GetDAQStatusRegister(Module_GetBottomLeftAddress(&modules[ind]),&status_reg_l)))
{FILE_LOG(logERROR, ("Error: Trouble reading Status register. bottom left address\n"));return -1;}
} else {
if (!(Feb_Control_GetDAQStatusRegister(Module_GetTopRightAddress(&modules[ind]),&status_reg_r)))
{FILE_LOG(logERROR, ("Error: Trouble reading Status register. top right address\n")); return -1;}
if (!(Feb_Control_GetDAQStatusRegister(Module_GetTopLeftAddress(&modules[ind]),&status_reg_l)))
{FILE_LOG(logERROR, ("Error: Trouble reading Status register. top left address\n"));return -1;}
}
//doesnt mean it started, just the bit
if ((status_reg_r|status_reg_l)&DAQ_STATUS_DAQ_RUN_TOGGLE)
return 1;
return 0;
}
int Feb_Control_WaitForFinishedFlag(int sleep_time_us) {
int is_running = Feb_Control_AcquisitionInProgress();
int check_error = 0;
// it will break out if it is idle or if check_error is more than 5 times
while(is_running != STATUS_IDLE) {
usleep(sleep_time_us);
is_running = Feb_Control_AcquisitionInProgress();
// check error only 5 times (ensuring it is not something that happens sometimes)
if (is_running == STATUS_ERROR) {
if (check_error == 5)
break;
check_error++;
}// reset check_error for next time
else check_error = 0;
}
return is_running;
}
int Feb_Control_WaitForStartedFlag(int sleep_time_us, int prev_flag) {
//deactivated dont wait (otherwise give a toggle value back)
if (!Feb_Control_activated)
return 1;
//did not start
if (prev_flag == -1)
return 0;
int value = prev_flag;
while(value == prev_flag) {
usleep(sleep_time_us);
value = Feb_Control_AcquisitionStartedBit();
}
//did not start
if (value == -1)
return 0;
return 1;
}
int Feb_Control_Reset() {
FILE_LOG(logINFO, ("Reset daq\n"));
if (Feb_Control_activated) {
if (!Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_CTRL,0,0,0) || !Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_CTRL,DAQ_CTRL_RESET,0,0) || !Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_CTRL,0,0,0)) {
FILE_LOG(logERROR, ("Could not reset daq, no response.\n"));
return 0;
}
}
return Feb_Control_WaitForFinishedFlag(5000);
}
int Feb_Control_SetStaticBits() {
if (Feb_Control_activated) {
//program=1,m4=2,m8=4,test=8,rotest=16,cs_bar_left=32,cs_bar_right=64
if (!Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_STATIC_BITS,Feb_Control_staticBits,0,0) ||
!Feb_Control_SetCommandRegister(DAQ_SET_STATIC_BIT) ||
(Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("Could not set static bits\n"));
return 0;
}
}
return 1;
}
int Feb_Control_SetStaticBits1(unsigned int the_static_bits) {
Feb_Control_staticBits = the_static_bits;
return Feb_Control_SetStaticBits();
}
int Feb_Control_SetInTestModeVariable(int on) {
if (on) Feb_Control_staticBits |= DAQ_STATIC_BIT_CHIP_TEST; //setting test bit to high
else Feb_Control_staticBits &= (~DAQ_STATIC_BIT_CHIP_TEST); //setting test bit to low
return 1;
}
int Feb_Control_GetTestModeVariable() {
return Feb_Control_staticBits&DAQ_STATIC_BIT_CHIP_TEST;
}
int Feb_Control_SetDynamicRange(unsigned int four_eight_sixteen_or_thirtytwo) {
static unsigned int everything_but_bit_mode = DAQ_STATIC_BIT_PROGRAM|DAQ_STATIC_BIT_CHIP_TEST|DAQ_STATIC_BIT_ROTEST;
if (four_eight_sixteen_or_thirtytwo==4) {
Feb_Control_staticBits = DAQ_STATIC_BIT_M4 | (Feb_Control_staticBits&everything_but_bit_mode); //leave test bits in currernt state
Feb_Control_subFrameMode &= ~DAQ_NEXPOSURERS_ACTIVATE_AUTO_SUBIMAGING;
} else if (four_eight_sixteen_or_thirtytwo==8) {
Feb_Control_staticBits = DAQ_STATIC_BIT_M8 | (Feb_Control_staticBits&everything_but_bit_mode);
Feb_Control_subFrameMode &= ~DAQ_NEXPOSURERS_ACTIVATE_AUTO_SUBIMAGING;
} else if (four_eight_sixteen_or_thirtytwo==16) {
Feb_Control_staticBits = DAQ_STATIC_BIT_M12 | (Feb_Control_staticBits&everything_but_bit_mode);
Feb_Control_subFrameMode &= ~DAQ_NEXPOSURERS_ACTIVATE_AUTO_SUBIMAGING;
} else if (four_eight_sixteen_or_thirtytwo==32) {
Feb_Control_staticBits = DAQ_STATIC_BIT_M12 | (Feb_Control_staticBits&everything_but_bit_mode);
Feb_Control_subFrameMode |= DAQ_NEXPOSURERS_ACTIVATE_AUTO_SUBIMAGING;
} else {
FILE_LOG(logERROR, ("dynamic range (%d) not valid, not setting bit mode.\n",four_eight_sixteen_or_thirtytwo));
FILE_LOG(logINFO, ("Set dynamic range int must equal 4,8 16, or 32.\n"));
return 0;
}
FILE_LOG(logINFO, ("Dynamic range set to %d\n",four_eight_sixteen_or_thirtytwo));
return 1;
}
unsigned int Feb_Control_GetDynamicRange() {
if (Feb_Control_subFrameMode&DAQ_NEXPOSURERS_ACTIVATE_AUTO_SUBIMAGING) return 32;
else if (DAQ_STATIC_BIT_M4&Feb_Control_staticBits) return 4;
else if (DAQ_STATIC_BIT_M8&Feb_Control_staticBits) return 8;
return 16;
}
int Feb_Control_SetReadoutSpeed(unsigned int readout_speed) { //0->full,1->half,2->quarter or 3->super_slow
Feb_Control_acquireNReadoutMode &= (~DAQ_CHIP_CONTROLLER_SUPER_SLOW_SPEED);
if (readout_speed==1) {
Feb_Control_acquireNReadoutMode |= DAQ_CHIP_CONTROLLER_HALF_SPEED;
FILE_LOG(logINFO, ("Speed set to half speed (50 MHz)\n"));
} else if (readout_speed==2) {
Feb_Control_acquireNReadoutMode |= DAQ_CHIP_CONTROLLER_QUARTER_SPEED;
FILE_LOG(logINFO, ("Speed set to quarter speed (25 MHz)\n"));
} else if (readout_speed==3) {
Feb_Control_acquireNReadoutMode |= DAQ_CHIP_CONTROLLER_SUPER_SLOW_SPEED;
FILE_LOG(logINFO, ("Speed set to super slow speed (~0.200 MHz)\n"));
} else {
if (readout_speed) {
FILE_LOG(logERROR, ("readout speed %d unknown, defaulting to full speed.\n",readout_speed));
FILE_LOG(logINFO, ("full speed, (100 MHz)\n"));
return 0;
}
FILE_LOG(logINFO, ("Speed set to full speed (100 MHz)\n"));
}
return 1;
}
int Feb_Control_SetReadoutMode(unsigned int readout_mode) { //0->parallel,1->non-parallel,2-> safe_mode
Feb_Control_acquireNReadoutMode &= (~DAQ_NEXPOSURERS_PARALLEL_MODE);
if (readout_mode==1) {
Feb_Control_acquireNReadoutMode |= DAQ_NEXPOSURERS_NORMAL_NONPARALLEL_MODE;
FILE_LOG(logINFO, ("Readout mode set to Non Parallel\n"));
} else if (readout_mode==2) {
Feb_Control_acquireNReadoutMode |= DAQ_NEXPOSURERS_SAFEST_MODE_ROW_CLK_BEFORE_MODE;
FILE_LOG(logINFO, ("Readout mode set to Safe (row clk before main clk readout sequence)\n"));
} else {
Feb_Control_acquireNReadoutMode |= DAQ_NEXPOSURERS_PARALLEL_MODE;
if (readout_mode) {
FILE_LOG(logERROR, ("readout mode %d) unknown, defaulting to parallel readout.\n",readout_mode));
FILE_LOG(logINFO, ("Readout mode set to Parallel\n"));
return 0;
}
FILE_LOG(logINFO, ("Readout mode set to Parallel\n"));
}
return 1;
}
int Feb_Control_SetTriggerMode(unsigned int trigger_mode,int polarity) {
//"00"-> internal exposure time and period,
//"01"-> external acquistion start and internal exposure time and period,
//"10"-> external start trigger and internal exposure time,
//"11"-> external triggered start and stop of exposures
Feb_Control_triggerMode = (~DAQ_NEXPOSURERS_EXTERNAL_IMAGE_START_AND_STOP);
if (trigger_mode == 1) {
Feb_Control_triggerMode = DAQ_NEXPOSURERS_EXTERNAL_ACQUISITION_START;
FILE_LOG(logINFO, ("Trigger mode set to Burst Trigger\n"));
} else if (trigger_mode == 2) {
Feb_Control_triggerMode = DAQ_NEXPOSURERS_EXTERNAL_IMAGE_START;
FILE_LOG(logINFO, ("Trigger mode set to Trigger Exposure\n"));
} else if (trigger_mode == 3) {
Feb_Control_triggerMode = DAQ_NEXPOSURERS_EXTERNAL_IMAGE_START_AND_STOP;
FILE_LOG(logINFO, ("Trigger mode set to Gated\n"));
} else {
Feb_Control_triggerMode = DAQ_NEXPOSURERS_INTERNAL_ACQUISITION;
if (trigger_mode) {
FILE_LOG(logERROR, ("trigger %d) unknown, defaulting to Auto\n",trigger_mode));
}
FILE_LOG(logINFO, ("Trigger mode set to Auto\n"));
return trigger_mode==0;
}
if (polarity) {
Feb_Control_triggerMode |= DAQ_NEXPOSURERS_EXTERNAL_TRIGGER_POLARITY;
FILE_LOG(logINFO, ("External trigger polarity set to positive\n"));
} else {
Feb_Control_triggerMode &= (~DAQ_NEXPOSURERS_EXTERNAL_TRIGGER_POLARITY);
FILE_LOG(logINFO, ("External trigger polarity set to negitive\n"));
}
return 1;
}
int Feb_Control_SetExternalEnableMode(int use_external_enable, int polarity) {
if (use_external_enable) {
Feb_Control_externalEnableMode |= DAQ_NEXPOSURERS_EXTERNAL_ENABLING;
if (polarity) {
Feb_Control_externalEnableMode |= DAQ_NEXPOSURERS_EXTERNAL_ENABLING_POLARITY;
} else {
Feb_Control_externalEnableMode &= (~DAQ_NEXPOSURERS_EXTERNAL_ENABLING_POLARITY);
}
FILE_LOG(logINFO, ("External enabling enabled, polarity set to %s\n",
(polarity ? "positive" : "negative")));
} else {
Feb_Control_externalEnableMode = 0; /* changed by Dhanya according to old code &= (~DAQ_NEXPOSURERS_EXTERNAL_ENABLING);*/
FILE_LOG(logINFO, ("External enabling disabled\n"));
}
return 1;
}
int Feb_Control_SetNExposures(unsigned int n_images) {
if (!n_images) {
FILE_LOG(logERROR, ("nimages must be greater than zero.%d\n",n_images));
return 0;
}
Feb_Control_nimages = n_images;
FILE_LOG(logINFO, ("Number of images set to %d\n",Feb_Control_nimages));
return 1;
}
unsigned int Feb_Control_GetNExposures() {return Feb_Control_nimages;}
int Feb_Control_SetExposureTime(double the_exposure_time_in_sec) {
Feb_Control_exposure_time_in_sec = the_exposure_time_in_sec;
FILE_LOG(logINFO, ("Exposure time set to %fs\n",Feb_Control_exposure_time_in_sec));
return 1;
}
double Feb_Control_GetExposureTime() {return Feb_Control_exposure_time_in_sec;}
int64_t Feb_Control_GetExposureTime_in_nsec() {return (int64_t)(Feb_Control_exposure_time_in_sec*(1E9));}
int Feb_Control_SetSubFrameExposureTime(int64_t the_subframe_exposure_time_in_10nsec) {
Feb_Control_subframe_exposure_time_in_10nsec = the_subframe_exposure_time_in_10nsec;
FILE_LOG(logINFO, ("Sub Frame Exposure time set to %lldns\n",(long long int)Feb_Control_subframe_exposure_time_in_10nsec * 10));
return 1;
}
int64_t Feb_Control_GetSubFrameExposureTime() {return Feb_Control_subframe_exposure_time_in_10nsec*10;}
int Feb_Control_SetSubFramePeriod(int64_t the_subframe_period_in_10nsec) {
Feb_Control_subframe_period_in_10nsec = the_subframe_period_in_10nsec;
FILE_LOG(logINFO, ("Sub Frame Period set to %lldns\n",(long long int)Feb_Control_subframe_period_in_10nsec * 10));
return 1;
}
int64_t Feb_Control_GetSubFramePeriod() {return Feb_Control_subframe_period_in_10nsec*10;}
int Feb_Control_SetExposurePeriod(double the_exposure_period_in_sec) {
Feb_Control_exposure_period_in_sec = the_exposure_period_in_sec;
FILE_LOG(logINFO, ("Exposure period set to %fs\n",Feb_Control_exposure_period_in_sec));
return 1;
}
double Feb_Control_GetExposurePeriod() {return Feb_Control_exposure_period_in_sec;}
unsigned int Feb_Control_ConvertTimeToRegister(float time_in_sec) {
float n_clk_cycles = round(time_in_sec/10e-9); //200 MHz ctb clk or 100 MHz feb clk
unsigned int decoded_time;
if (n_clk_cycles>(pow(2,29)-1)*pow(10,7)) {
float max_time = 10e-9*(pow(2,28)-1)*pow(10,7);
FILE_LOG(logERROR, ("time exceeds (%f) maximum exposure time of %f sec.\n",time_in_sec,max_time));
FILE_LOG(logINFO, ("\t Setting to maximum %f us.\n",max_time));
decoded_time = 0xffffffff;
} else {
int power_of_ten = 0;
while(n_clk_cycles>pow(2,29)-1) { power_of_ten++; n_clk_cycles = round(n_clk_cycles/10.0);}
decoded_time = (int)(n_clk_cycles)<<3 | (int)(power_of_ten);
}
return decoded_time;
}
int Feb_Control_ResetChipCompletely() {
if (!Feb_Control_SetCommandRegister(DAQ_RESET_COMPLETELY) || (Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("could not ResetChipCompletely() with 0x%x.\n",DAQ_RESET_COMPLETELY));
return 0;
}
FILE_LOG(logINFO, ("Chip reset completely\n"));
return 1;
}
int Feb_Control_ResetChipPartially() {
if (!Feb_Control_SetCommandRegister(DAQ_RESET_PERIPHERY) || (Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("could not ResetChipPartially with periphery\n"));
return 0;
}
FILE_LOG(logINFO, ("Chip reset periphery 0x%x\n",DAQ_RESET_PERIPHERY));
if (!Feb_Control_SetCommandRegister(DAQ_RESET_COLUMN_SELECT) || (Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("could not ResetChipPartially with column select\n"));
return 0;
}
FILE_LOG(logINFO, ("Chip reset column select 0x%x\n",DAQ_RESET_COLUMN_SELECT));
return 1;
}
void Feb_Control_PrintAcquisitionSetup() {
time_t rawtime;
time(&rawtime);
struct tm *timeinfo = localtime(&rawtime);
FILE_LOG(logINFO, ("Starting an exposure: (%s)"
"\t Dynamic range nbits: %d\n"
"\t Trigger mode: 0x%x\n"
"\t Number of exposures: %d\n"
"\t Exsposure time (if used): %f seconds.\n"
"\t Exsposure period (if used): %f seconds.\n\n",
asctime(timeinfo), Feb_Control_GetDynamicRange(), Feb_Control_triggerMode,
Feb_Control_GetNExposures(), Feb_Control_exposure_time_in_sec,
Feb_Control_exposure_period_in_sec));
}
int Feb_Control_SendBitModeToBebServer() {
unsigned int just_bit_mode = (DAQ_STATIC_BIT_M4|DAQ_STATIC_BIT_M8) & Feb_Control_staticBits;
unsigned int bit_mode = 16; //default
if (just_bit_mode == DAQ_STATIC_BIT_M4) bit_mode = 4;
else if (just_bit_mode == DAQ_STATIC_BIT_M8) bit_mode = 8;
else if (Feb_Control_subFrameMode&DAQ_NEXPOSURERS_ACTIVATE_AUTO_SUBIMAGING) bit_mode = 32;
if (!Beb_SetUpTransferParameters(bit_mode)) {
FILE_LOG(logERROR, ("Error: sending bit mode ...\n"));
return 0;
}
return 1;
}
int Feb_Control_PrepareForAcquisition() {//return 1;
FILE_LOG(logINFO, ("Going to Prepare for Acquisition\n\n\n"));
static unsigned int reg_nums[20];
static unsigned int reg_vals[20];
Feb_Control_PrintAcquisitionSetup();
// if (!Reset()||!ResetDataStream()) {
if (Feb_Control_Reset() == STATUS_ERROR) {
FILE_LOG(logERROR, ("Trouble reseting daq or data stream...\n"));
return 0;
}
if (!Feb_Control_SetStaticBits1(Feb_Control_staticBits&(DAQ_STATIC_BIT_M4|DAQ_STATIC_BIT_M8))) {
FILE_LOG(logERROR, ("Trouble setting static bits ...\n"));
return 0;
}
if (!Feb_Control_SendBitModeToBebServer()) {
FILE_LOG(logERROR, ("Trouble sending static bits to server ...\n"));
return 0;
}
int ret=0;
if (Feb_Control_counter_bit)
ret = Feb_Control_ResetChipCompletely();
else
ret = Feb_Control_ResetChipPartially();
if (!ret) {
FILE_LOG(logERROR, ("Trouble resetting chips ...\n"));
return 0;
}
reg_nums[0]=DAQ_REG_CTRL;
reg_vals[0]=0;
reg_nums[1]=DAQ_REG_NEXPOSURES;
reg_vals[1]=Feb_Control_nimages;
reg_nums[2]=DAQ_REG_EXPOSURE_TIMER;
reg_vals[2]=Feb_Control_ConvertTimeToRegister(Feb_Control_exposure_time_in_sec);
reg_nums[3]=DAQ_REG_EXPOSURE_REPEAT_TIMER;
reg_vals[3]=Feb_Control_ConvertTimeToRegister(Feb_Control_exposure_period_in_sec);
reg_nums[4]=DAQ_REG_CHIP_CMDS;
reg_vals[4]=(Feb_Control_acquireNReadoutMode|Feb_Control_triggerMode|Feb_Control_externalEnableMode|Feb_Control_subFrameMode);
reg_nums[5]=DAQ_REG_SUBFRAME_EXPOSURES;
reg_vals[5]= Feb_Control_subframe_exposure_time_in_10nsec; //(1 means 10ns, 100 means 1000ns)
reg_nums[6]=DAQ_REG_SUBFRAME_PERIOD;
reg_vals[6]= Feb_Control_subframe_period_in_10nsec; //(1 means 10ns, 100 means 1000ns)
// if (!Feb_Interface_WriteRegisters((Module_GetTopLeftAddress(&modules[1])|Module_GetTopRightAddress(&modules[1])),20,reg_nums,reg_vals,0,0)) {
if (Feb_Control_activated) {
if (!Feb_Interface_WriteRegisters(Feb_Control_AddressToAll(),7,reg_nums,reg_vals,0,0)) {
FILE_LOG(logERROR, ("Trouble starting acquisition....\n"));
return 0;
}
}
return 1;
}
int Feb_Control_StartAcquisition() {
FILE_LOG(logINFOBLUE, ("Starting Acquisition\n"));
static unsigned int reg_nums[20];
static unsigned int reg_vals[20];
int i;
for(i=0;i<14;i++) {
reg_nums[i]=DAQ_REG_CTRL;
reg_vals[i]=0;
}
reg_nums[14]=DAQ_REG_CTRL;
reg_vals[14]=ACQ_CTRL_START;
if (Feb_Control_activated) {
if (!Feb_Interface_WriteRegisters(Feb_Control_AddressToAll(),15,reg_nums,reg_vals,0,0)) {
FILE_LOG(logERROR, ("Trouble starting acquisition....\n"));
return 0;
}
}
return 1;
}
int Feb_Control_StopAcquisition() {
return Feb_Control_Reset();
}
int Feb_Control_SaveAllTrimbitsTo(int value) {
unsigned int chanregs[Feb_Control_trimbit_size];
int i;
for(i=0;i<Feb_Control_trimbit_size;i++)
chanregs[i] = value;
return Feb_Control_SetTrimbits(0,chanregs);
}
void Feb_Control_Set_Counter_Bit(int value) {
Feb_Control_counter_bit = value;
}
int Feb_Control_Get_Counter_Bit() {
return Feb_Control_counter_bit;
}
int Feb_Control_Pulse_Pixel(int npulses, int x, int y) {
//this function is not designed for speed
int pulse_multiple = 0; //has to be 0 or 1
int i;
if (x<0) {
x=-x;
pulse_multiple=1;
FILE_LOG(logINFO, ("Pulsing pixel %d in all super columns below number %d.\n",x%8,x/8));
}
if (x<0||x>255||y<0||y>255) {
FILE_LOG(logERROR, ("Pixel out of range.\n"));
return 0;
}
// y = 255 - y;
int nrowclocks = 0;
nrowclocks += (Feb_Control_staticBits&DAQ_STATIC_BIT_M4) ? 0 : 2*y;
nrowclocks += (Feb_Control_staticBits&DAQ_STATIC_BIT_M8) ? 0 : y;
Feb_Control_SetInTestModeVariable(1); //on
Feb_Control_SetStaticBits();
Feb_Control_SetCommandRegister(DAQ_RESET_PERIPHERY|DAQ_RESET_COLUMN_SELECT);
if (Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE) {
FILE_LOG(logERROR, ("could not pulse pixel as status not idle\n"));
return 0;
}
unsigned int serial_in = 8<<(4*(7-x%8));
if (!Feb_Control_Shift32InSerialIn(serial_in)) {
FILE_LOG(logERROR, ("ChipController::PulsePixel: could shift in the initail 32.\n"));
return 0;
}
if (!pulse_multiple)
serial_in=0;
for(i=0;i<x/8;i++)
Feb_Control_Shift32InSerialIn(serial_in);
Feb_Control_SendTokenIn();
Feb_Control_ClockRowClock(nrowclocks);
Feb_Control_PulsePixelNMove(npulses,0,0);
return 1;
}
int Feb_Control_PulsePixelNMove(int npulses, int inc_x_pos, int inc_y_pos) {
unsigned int c = DAQ_SEND_N_TEST_PULSES;
c |= (inc_x_pos) ? DAQ_CLK_MAIN_CLK_TO_SELECT_NEXT_PIXEL : 0;
c |= (inc_y_pos) ? DAQ_CLK_ROW_CLK_TO_SELECT_NEXT_ROW : 0;
if (Feb_Control_activated) {
if (!Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_SEND_N_TESTPULSES,npulses,0,0) ||
!Feb_Control_SetCommandRegister(c) ||
(Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("could not PulsePixelNMove(...).\n"));
return 0;
}
}
return 1;
}
/**new*/
int Feb_Control_Shift32InSerialIn(unsigned int value_to_shift_in) {
if (Feb_Control_activated) {
if (!Feb_Control_SetCommandRegister(DAQ_SERIALIN_SHIFT_IN_32) ||
!Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_SHIFT_IN_32,value_to_shift_in,0,0) ||
(Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("could not shift in 32.\n"));
return 0;
}
}
return 1;
}
int Feb_Control_SendTokenIn() {
if (!Feb_Control_SetCommandRegister(DAQ_SEND_A_TOKEN_IN) ||
(Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("could not SendTokenIn().\n"));
return 0;
}
return 1;
}
int Feb_Control_ClockRowClock(unsigned int ntimes) {
if (ntimes>1023) {
FILE_LOG(logERROR, ("Clock row clock ntimes (%d) exceeds the maximum value of 1023.\n\t Setting ntimes to 1023.\n",ntimes));
ntimes=1023;
}
if (Feb_Control_activated) {
if (!Feb_Control_SetCommandRegister(DAQ_CLK_ROW_CLK_NTIMES) ||
!Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_CLK_ROW_CLK_NTIMES,ntimes,0,0) ||
(Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("could not clock row clock.\n"));
return 0;
}
}
return 1;
}
int Feb_Control_PulseChip(int npulses) {
int i;
int on = 1;
if (npulses == -1) {
on = 0;
FILE_LOG(logINFO, ("\nResetting to normal mode\n"));
} else {
FILE_LOG(logINFO, ("\n\nPulsing Chip.\n"));//really just toggles the enable
FILE_LOG(logINFO, ("Vcmp should be set to 2.0 and Vtrim should be 2.\n"));
}
Feb_Control_SetInTestModeVariable(on);
Feb_Control_SetStaticBits(); //toggle the enable 2x times
Feb_Control_ResetChipCompletely();
for(i=0;i<npulses;i++) {
if (!Feb_Control_SetCommandRegister(DAQ_CHIP_CONTROLLER_SUPER_SLOW_SPEED|DAQ_RESET_PERIPHERY|DAQ_RESET_COLUMN_SELECT)) {
FILE_LOG(logERROR, ("some set command register error\n"));
}
if ((Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("some wait error\n"));
}
}
Feb_Control_SetExternalEnableMode(on,1);
Feb_Control_counter_bit = (on?0:1);
FILE_LOG(logINFO, ("Feb_Control_counter_bit:%d\n",Feb_Control_counter_bit));
if (on) {
FILE_LOG(logINFO, ("Pulse chip success\n\n"));
} else {
FILE_LOG(logINFO, ("Reset to normal mode success\n\n"));
}
return 1;
}
int64_t Feb_Control_Get_RateTable_Tau_in_nsec() { return Feb_Control_RateTable_Tau_in_nsec;}
int64_t Feb_Control_Get_RateTable_Period_in_nsec() { return Feb_Control_RateTable_Period_in_nsec;}
int Feb_Control_SetRateCorrectionTau(int64_t tau_in_Nsec) {
//period = exptime if 16bit, period = subexptime if 32 bit
int dr = Feb_Control_GetDynamicRange();
double period_in_sec = (double)(Feb_Control_GetSubFrameExposureTime())/(double)1e9;
if (dr == 16)
period_in_sec = Feb_Control_GetExposureTime();
double tau_in_sec = (double)tau_in_Nsec/(double)1e9;
FILE_LOG(logINFO, (" tau %lf %lf ", (double)tau_in_Nsec, (double) tau_in_sec));
unsigned int np = 16384; //max slope 16 * 1024
double b0[1024];
double m[1024];
if (tau_in_sec<0||period_in_sec<0) {
if (dr == 32) {
FILE_LOG(logERROR, ("tau %lf and sub_exposure_time %lf must be greater than 0.\n", tau_in_sec, period_in_sec));
} else {
FILE_LOG(logERROR, ("tau %lf and exposure_time %lf must be greater than 0.\n", tau_in_sec, period_in_sec));
}
return 0;
}
FILE_LOG(logINFO, ("Changing Rate Correction Table tau:%0.8f sec, period:%f sec",tau_in_sec,period_in_sec));
FILE_LOG(logINFO, ("\tCalculating table for tau of %lld ns.\n", tau_in_Nsec));
int i;
for(i=0;i<np;i++) {
Feb_Control_rate_meas[i] = i*exp(-i/period_in_sec*tau_in_sec);
if (Feb_Control_rate_meas[i] > ratemax) ratemax= Feb_Control_rate_meas[i];
}
/*
b : index/address of block ram/rate correction table
b0 : base in vhdl
m : slope in vhdl
Firmware:
data_in(11..2) -> memory address --> memory
data_in( 1..0) -> lsb
mem_data_out(13.. 0) -> base
mem_data_out(17..14) -> slope
delta = slope*lsb
corr = base+delta
*/
int next_i=0;
double beforemax;
b0[0] = 0;
m[0] = 1;
Feb_Control_rate_correction_table[0] = (((int)(m[0]+0.5)&0xf)<<14) | ((int)(b0[0]+0.5)&0x3fff);
int b=0;
for(b=1;b<1024;b++) {
if (m[b-1]<15) {
double s=0,sx=0,sy=0,sxx=0,sxy=0;
for(;;next_i++) {
if (next_i>=np) {
for(; b<1024; b++) {
if (beforemax>ratemax) b0[b] = beforemax;
else b0[b] = ratemax;
m[b] = 15;
Feb_Control_rate_correction_table[b] = (((int)(m[b]+0.5)&0xf)<<14) | ((int)(b0[b]+0.5)&0x3fff);
}
b=1024;
break;
}
double x = Feb_Control_rate_meas[next_i] - b*4;
double y = next_i;
/*FILE_LOG(logDEBUG1, ("Start Loop x: %f,\t y: %f,\t s: %f,\t sx: %f,\t sy: %f,\t sxx: %f,\t sxy: %f,\t "
"next_i: %d,\t b: %d,\t Feb_Control_rate_meas[next_i]: %f\n",
x, y, s, sx, sy, sxx, sxy, next_i, b, Feb_Control_rate_meas[next_i]));*/
if (x < -0.5) continue;
if (x > 3.5) break;
s += 1;
sx += x;
sy += y;
sxx += x*x;
sxy += x*y;
/*FILE_LOG(logDEBUG1, ("End Loop x: %f,\t y: %f,\t s: %f,\t sx: %f,\t sy: %f,\t sxx: %f,\t sxy: %f,\t "
"next_i: %d,\t b: %d,\t Feb_Control_rate_meas[next_i]: %f\n",
x, y, s, sx, sy, sxx, sxy, next_i, b, Feb_Control_rate_meas[next_i]));*/
}
double delta = s*sxx - sx*sx;
b0[b] = (sxx*sy - sx*sxy)/delta;
m[b] = (s*sxy - sx*sy) /delta;
beforemax= b0[b];
if (m[b]<0||m[b]>15) {
m[b]=15;
if (beforemax>ratemax) b0[b] = beforemax;
else b0[b] = ratemax;
}
/*FILE_LOG(logDEBUG1, ("After Loop s: %f,\t sx: %f,\t sy: %f,\t sxx: %f,\t sxy: %f,\t "
"next_i: %d,\t b: %d,\t Feb_Control_rate_meas[next_i]: %f\n",
s, sx, sy, sxx, sxy, next_i, b, Feb_Control_rate_meas[next_i]));*/
// cout<<s<<" "<<sx<<" "<<sy<<" "<<sxx<<" "<<" "<<sxy<<" "<<delta<<" "<<m[b]<<" "<<b0[b]<<endl;
} else {
if (beforemax>ratemax) b0[b] = beforemax;
else b0[b] = ratemax;
m[b] = 15;
}
Feb_Control_rate_correction_table[b] = (((int)(m[b]+0.5)&0xf)<<14) | ((int)(b0[b]+0.5)&0x3fff);
/*FILE_LOG(logDEBUG1, ("After Loop 4*b: %d\tbase:%d\tslope:%d\n",4*b, (int)(b0[b]+0.5), (int)(m[b]+0.5) ));*/
}
if (Feb_Control_SetRateCorrectionTable(Feb_Control_rate_correction_table)) {
Feb_Control_RateTable_Tau_in_nsec = tau_in_Nsec;
Feb_Control_RateTable_Period_in_nsec = period_in_sec*1e9;
return 1;
} else {
Feb_Control_RateTable_Tau_in_nsec = -1;
Feb_Control_RateTable_Period_in_nsec = -1;
return 0;
}
}
int Feb_Control_SetRateCorrectionTable(unsigned int *table) {
if (!table) {
FILE_LOG(logERROR, ("Error: could not set rate correction table, point is zero.\n"));
Feb_Control_SetRateCorrectionVariable(0);
return 0;
}
FILE_LOG(logINFO, ("Setting rate correction table. %d %d %d %d ....\n",
table[0],table[1],table[2],table[3]));
//was added otherwise after an acquire, startdaqonlywatiforfinish waits forever
if (!Feb_Control_SetCommandRegister(DAQ_RESET_COMPLETELY)) {
FILE_LOG(logERROR, ("Could not Feb_Control_SetCommandRegister for loading trim bits.\n"));
return 0;
}
FILE_LOG(logINFO, ("daq reset completely\n"));
if (Module_TopAddressIsValid(&modules[1])) {
if (Feb_Control_activated) {
if (!Feb_Interface_WriteMemoryInLoops(Module_GetTopLeftAddress(&modules[Feb_Control_current_index]),1,0,1024,Feb_Control_rate_correction_table)||
!Feb_Interface_WriteMemoryInLoops(Module_GetTopRightAddress(&modules[Feb_Control_current_index]),1,0,1024,Feb_Control_rate_correction_table)||
(Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("could not write to memory (top) ::Feb_Control_SetRateCorrectionTable\n"));
return 0;
}
}
} else {
if (Feb_Control_activated) {
if (!Feb_Interface_WriteMemoryInLoops(Module_GetBottomLeftAddress(&modules[Feb_Control_current_index]),1,0,1024,Feb_Control_rate_correction_table)||
!Feb_Interface_WriteMemoryInLoops(Module_GetBottomRightAddress(&modules[Feb_Control_current_index]),1,0,1024,Feb_Control_rate_correction_table)||
(Feb_Control_StartDAQOnlyNWaitForFinish(5000) != STATUS_IDLE)) {
FILE_LOG(logERROR, ("could not write to memory (bottom) ::Feb_Control_SetRateCorrectionTable\n"));
return 0;
}
}
}
return 1;
}
int Feb_Control_GetRateCorrectionVariable() { return (Feb_Control_subFrameMode&DAQ_NEXPOSURERS_ACTIVATE_RATE_CORRECTION);}
void Feb_Control_SetRateCorrectionVariable(int activate_rate_correction) {
if (activate_rate_correction) {
Feb_Control_subFrameMode |= DAQ_NEXPOSURERS_ACTIVATE_RATE_CORRECTION;
FILE_LOG(logINFO, ("Rate correction activated\n"));
} else {
Feb_Control_subFrameMode &= ~DAQ_NEXPOSURERS_ACTIVATE_RATE_CORRECTION;
FILE_LOG(logINFO, ("Rate correction deactivated\n"));
}
}
int Feb_Control_PrintCorrectedValues() {
int i;
int delta, slope, base, lsb, corr;
for (i=0; i < 4096; i++) {
lsb = i&3;
base = Feb_Control_rate_correction_table[i>>2] & 0x3fff;
slope = ((Feb_Control_rate_correction_table[i>>2] & 0x3c000) >> 14);
delta = slope*lsb;
corr = delta+base;
if (slope==15) corr= 3*slope+base;
FILE_LOG(logDEBUG1, ("Readout Input: %d,\tBase:%d,\tSlope:%d,\tLSB:%d,\tDelta:%d\tResult:%d\tReal:%lf\n",
i, base, slope, lsb, delta, corr, Feb_Control_rate_meas[i]));
}
return 1;
}
//So if software says now 40.00 you neeed to convert to mdegrees 40000(call it A1) and then
//A1/65536/0.00198421639-273.15
int Feb_Control_GetLeftFPGATemp() {
unsigned int temperature=0;
if (Module_TopAddressIsValid(&modules[1]))
Feb_Interface_ReadRegister(Module_GetTopLeftAddress (&modules[1]),FEB_REG_STATUS, &temperature);
else
Feb_Interface_ReadRegister(Module_GetBottomLeftAddress (&modules[1]),FEB_REG_STATUS, &temperature);
temperature = temperature >> 16;
temperature = ((((float)(temperature)/65536.0f)/0.00198421639f ) - 273.15f)*1000; // Static conversation, copied from xps sysmon standalone driver
//division done in client to send int over network
return (int)temperature;
}
int Feb_Control_GetRightFPGATemp() {
unsigned int temperature=0;
if (Module_TopAddressIsValid(&modules[1]))
Feb_Interface_ReadRegister(Module_GetTopRightAddress (&modules[1]),FEB_REG_STATUS, &temperature);
else
Feb_Interface_ReadRegister(Module_GetBottomRightAddress (&modules[1]),FEB_REG_STATUS, &temperature);
temperature = temperature >> 16;
temperature = ((((float)(temperature)/65536.0f)/0.00198421639f ) - 273.15f)*1000; // Static conversation, copied from xps sysmon standalone driver
//division done in client to send int over network
return (int)temperature;
}
int64_t Feb_Control_GetMeasuredPeriod() {
unsigned int sub_num = (Module_TopAddressIsValid(&modules[1])) ?
Module_GetTopLeftAddress (&modules[1]):
Module_GetBottomLeftAddress (&modules[1]);
unsigned int value = 0;
Feb_Interface_ReadRegister(sub_num,MEAS_PERIOD_REG, &value);
return (int64_t)value*10;
}
int64_t Feb_Control_GetSubMeasuredPeriod() {
unsigned int sub_num = (Module_TopAddressIsValid(&modules[1])) ?
Module_GetTopLeftAddress (&modules[1]):
Module_GetBottomLeftAddress (&modules[1]);
unsigned int value = 0;
Feb_Interface_ReadRegister(sub_num,MEAS_SUBPERIOD_REG, &value);
return (int64_t)value*10;
}
int Feb_Control_SoftwareTrigger() {
unsigned int orig_value = 0;
Feb_Interface_ReadRegister(Feb_Control_AddressToAll(),DAQ_REG_CHIP_CMDS, &orig_value);
unsigned int cmd = orig_value | DAQ_REG_CHIP_CMDS_INT_TRIGGER;
if (Feb_Control_activated) {
// set trigger bit
FILE_LOG(logDEBUG1, ("Setting Trigger, Register:0x%x\n",cmd));
if (!Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_CHIP_CMDS,cmd,0,0)) {
FILE_LOG(logERROR, ("Could not give software trigger\n"));
return 0;
}
// unset trigger bit
FILE_LOG(logDEBUG1, ("Unsetting Trigger, Register:0x%x\n",orig_value));
if (!Feb_Interface_WriteRegister(Feb_Control_AddressToAll(),DAQ_REG_CHIP_CMDS,orig_value,0,0)) {
FILE_LOG(logERROR, ("Could not give software trigger\n"));
return 0;
}
FILE_LOG(logINFO, ("Software Internal Trigger Sent!\n"));
}
return 1;
}
uint32_t Feb_Control_WriteRegister(uint32_t offset, uint32_t data) {
uint32_t value=0;
if (Module_TopAddressIsValid(&modules[1])) {
if (!Feb_Interface_WriteRegister(Module_GetTopRightAddress (&modules[1]),offset, data,0, 0)) {
FILE_LOG(logERROR, ("Could not read tr value. Value read:%d\n", value));
value = 0;
}
if(!Feb_Interface_WriteRegister(Module_GetTopLeftAddress (&modules[1]),offset, data,0, 0)) {
cprintf(RED,"Could not read tl value. Value read:%d\n", value);
value = 0;
}
} else {
if (!Feb_Interface_WriteRegister(Module_GetBottomRightAddress (&modules[1]),offset, data,0, 0)) {
FILE_LOG(logERROR, ("Could not read br value. Value read:%d\n", value));
value = 0;
}
if(!Feb_Interface_WriteRegister(Module_GetBottomLeftAddress (&modules[1]),offset, data,0, 0)) {
cprintf(RED,"Could not read bl value. Value read:%d\n", value);
value = 0;
}
}
return Feb_Control_ReadRegister(offset);
}
uint32_t Feb_Control_ReadRegister(uint32_t offset) {
uint32_t value=0;
uint32_t value1=0;
if (Module_TopAddressIsValid(&modules[1])) {
if (!Feb_Interface_ReadRegister(Module_GetTopRightAddress (&modules[1]),offset, &value)) {
FILE_LOG(logERROR, ("Could not read value. Value read:%d\n", value));
value = 0;
}
printf("Read top right addr: 0x%08x\n", value);
if(!Feb_Interface_ReadRegister(Module_GetTopLeftAddress (&modules[1]),offset, &value1)) {
cprintf(RED,"Could not read value. Value read:%d\n", value1);
value1 = 0;
}
printf("Read top left addr: 0x%08x\n", value1);
if (value != value1)
value = -1;
} else {
if (!Feb_Interface_ReadRegister(Module_GetBottomRightAddress (&modules[1]),offset, &value)) {
FILE_LOG(logERROR, ("Could not read value. Value read:%d\n", value));
value = 0;
}
printf("Read bottom right addr: 0x%08x\n", value);
if(!Feb_Interface_ReadRegister(Module_GetBottomLeftAddress (&modules[1]),offset, &value1)) {
cprintf(RED,"Could not read value. Value read:%d\n", value1);
value1 = 0;
}
printf("Read bottom left addr: 0x%08x\n", value1);
if (value != value1)
value = -1;
}
return value;
}