4147 lines
103 KiB
C++

#include "multiSlsDetector.h"
#include "SharedMemory.h"
#include "slsDetector.h"
#include "sls_receiver_exceptions.h"
#include "ZmqSocket.h"
#include "multiSlsDetectorClient.h"
#include "multiSlsDetectorCommand.h"
#include "utilities.h"
#include "detectorData.h"
#include "logger.h"
#include <sys/types.h>
#include <iostream>
#include <string.h>
#include <sstream>
#include <rapidjson/document.h> //json header in zmq stream
#include <sys/ipc.h>
#include <sys/shm.h>
#include <iomanip>
//#include <time.h> //clock()
#include "container_utils.h"
#include <future>
#include <vector>
multiSlsDetector::multiSlsDetector(int id, bool verify, bool update)
: detId(id),
sharedMemory(0),
thisMultiDetector(0),
client_downstream(false),
totalProgress(0),
progressIndex(0),
jointhread(0),
acquiringDone(0),
fdata(0),
thisData(0),
acquisition_finished(0),
acqFinished_p(0),
measurement_finished(0),
measFinished_p(0),
progress_call(0),
pProgressCallArg(0),
dataReady(0),
pCallbackArg(0)
{
pthread_mutex_t mp1 = PTHREAD_MUTEX_INITIALIZER;
mp=mp1;
pthread_mutex_init(&mp, NULL);
mg=mp1;
pthread_mutex_init(&mg, NULL);
ms=mp1;
pthread_mutex_init(&ms, NULL);
setupMultiDetector(verify, update);
}
multiSlsDetector::~multiSlsDetector() {
// delete zmq sockets first
for (auto* it : zmqSocket)
delete it;
zmqSocket.clear();
for (auto* it : detectors)
delete it;
detectors.clear();
if (sharedMemory) {
sharedMemory->UnmapSharedMemory(thisMultiDetector);
delete sharedMemory;
}
}
void multiSlsDetector::setupMultiDetector(bool verify, bool update) {
if (initSharedMemory(verify))
// shared memory just created, so initialize the structure
initializeDetectorStructure();
initializeMembers(verify);
if (update)
updateUserdetails();
}
template <typename RT, typename... CT>
std::vector<RT> multiSlsDetector::serialCall(RT (slsDetector::*somefunc)(CT...), CT... Args)
{
std::vector<RT> result;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
result.push_back(((*this)[idet]->*somefunc)(Args...));
/*
if ((*this)[idet]->getErrorMask())
setErrorMask(getErrorMask() | (1 << idet));
*/
}
return result;
}
template <typename RT, typename... CT>
std::vector<RT> multiSlsDetector::parallelCall(RT (slsDetector::*somefunc)(CT...), CT... Args)
{
std::vector<std::future<RT>> futures;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
futures.push_back(std::async(somefunc, (*this)[idet], Args...));
/*
if ((*this)[idet]->getErrorMask())
setErrorMask(getErrorMask() | (1 << idet));
*/
}
std::vector<RT> result;
for (auto& i : futures)
result.push_back(i.get());
return result;
}
std::string multiSlsDetector::concatResultOrPos(std::string (slsDetector::*somefunc)(int), int pos) {
if (pos >= 0 && pos < (int)detectors.size()) {
return (detectors[pos]->*somefunc)(pos);
} else {
std::string s;
for (auto* it : detectors) {
s += (it->*somefunc)(pos) + "+";
}
return s;
}
}
int multiSlsDetector::decodeNChannel(int offsetX, int offsetY, int& channelX, int& channelY) {
channelX = -1;
channelY = -1;
//loop over
for (size_t i = 0; i < detectors.size(); ++i) {
int x = detectors[i]->getDetectorOffset(X);
int y = detectors[i]->getDetectorOffset(Y);
//check x offset range
if ((offsetX >= x) &&
(offsetX < (x + detectors[i]->getTotalNumberOfChannelsInclGapPixels(X)))) {
if (offsetY == -1) {
channelX = offsetX - x;
return i;
} else {
//check y offset range
if ((offsetY >= y) &&
(offsetY < (y + detectors[i]->getTotalNumberOfChannelsInclGapPixels(Y)))) {
channelX = offsetX - x;
channelY = offsetY - y;
return i;
}
}
}
}
return -1;
}
std::string multiSlsDetector::getErrorMessage(int& critical, int detPos) {
int64_t multiMask = 0, slsMask = 0;
std::string retval = "";
char sNumber[100];
critical = 0;
size_t posmin = 0, posmax = detectors.size();
// single
if (detPos >= 0) {
slsMask = detectors[detPos]->getErrorMask();
posmin = (size_t)detPos;
posmax = posmin + 1;
}
multiMask = getErrorMask();
if (multiMask || slsMask) {
if (multiMask & MULTI_DETECTORS_NOT_ADDED) {
retval.append("Detectors not added:\n" + std::string(getNotAddedList()) +
std::string("\n"));
critical = 1;
}
if (multiMask & MULTI_HAVE_DIFFERENT_VALUES) {
retval.append("A previous multi detector command gave different values\n"
"Please check the console\n");
critical = 0;
}
if (multiMask & MULTI_CONFIG_FILE_ERROR) {
retval.append("Could not load Config File\n");
critical = 1;
}
if (multiMask & MULTI_POS_EXCEEDS_LIST) {
retval.append("Position exceeds multi detector list\n");
critical = 0;
}
if (multiMask & MUST_BE_MULTI_CMD) {
retval.append("Must be a multi detector level command.\n");
critical = 0;
}
if (multiMask & MULTI_OTHER_ERROR) {
retval.append("Some error occured from multi level.\n");
critical = 0;//FIXME: with exceptions/appropriate errors wherever used
}
for (size_t idet = posmin; idet < posmax; ++idet) {
//if the detector has error
if ((multiMask & (1 << idet)) || (detPos >= 0)) {
//append detector id
sprintf(sNumber, "%ld", idet);
retval.append("Detector " + std::string(sNumber) + std::string(":\n"));
//get sls det error mask
slsMask = detectors[idet]->getErrorMask();
#ifdef VERYVERBOSE
//append sls det error mask
sprintf(sNumber, "0x%lx", slsMask);
retval.append("Error Mask " + std::string(sNumber) + std::string("\n"));
#endif
//get the error critical level
if ((slsMask > 0xFFFFFFFF) | critical)
critical = 1;
//append error message
retval.append(errorDefs::getErrorMessage(slsMask));
}
}
}
return retval;
}
int64_t multiSlsDetector::clearAllErrorMask(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->clearErrorMask();
}
// multi
clearErrorMask();
clearNotAddedList();
for (auto* it : detectors)
it->clearErrorMask();
return getErrorMask();
}
void multiSlsDetector::setErrorMaskFromAllDetectors() {
for (size_t idet = 0; idet < detectors.size(); ++idet) {
if (detectors[idet]->getErrorMask())
setErrorMask(getErrorMask() | (1 << idet));
}
}
void multiSlsDetector::setAcquiringFlag(bool b) {
thisMultiDetector->acquiringFlag = b;
}
bool multiSlsDetector::getAcquiringFlag() {
return thisMultiDetector->acquiringFlag;
}
bool multiSlsDetector::isAcquireReady() {
if (thisMultiDetector->acquiringFlag) {
std::cout << "Acquire has already started. "
"If previous acquisition terminated unexpectedly, "
"reset busy flag to restart.(sls_detector_put busy 0)" << std::endl;
return FAIL;
}
thisMultiDetector->acquiringFlag = true;
return OK;
}
int multiSlsDetector::checkVersionCompatibility(portType t, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->checkVersionCompatibility(t);
}
// multi
auto r = parallelCall(&slsDetector::checkVersionCompatibility, t);
return sls::minusOneIfDifferent(r);
}
int64_t multiSlsDetector::getId(idMode mode, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getId(mode);
}
// multi
auto r = parallelCall(&slsDetector::getId, mode);
return sls::minusOneIfDifferent(r);
}
slsDetector* multiSlsDetector::getSlsDetector(int detPos) {
return detectors[detPos];
}
slsDetector *multiSlsDetector::operator()(int detPos) const {
return detectors[detPos];
}
slsDetector* multiSlsDetector::operator[](int detPos) const {
//Providing access to detectors with range checking
//throw exception if out of range
if (detPos >= 0 && detPos < (int)detectors.size())
return detectors[detPos];
else
throw(std::range_error("Detector does not exist"));
}
void multiSlsDetector::freeSharedMemory(int multiId, int detPos) {
// single
if (detPos >= 0) {
slsDetector::freeSharedMemory(multiId, detPos);
return;
}
// multi
// get number of detectors
int numDetectors = 0;
SharedMemory* shm = new SharedMemory(multiId, -1);
// get number of detectors from multi shm
if (shm->IsExisting()) {
sharedMultiSlsDetector* mdet = (sharedMultiSlsDetector*)shm->OpenSharedMemory(
sizeof(sharedMultiSlsDetector));
numDetectors = mdet->numberOfDetectors;
shm->UnmapSharedMemory(mdet);
shm->RemoveSharedMemory();
}
delete shm;
for (int i = 0; i < numDetectors; ++i) {
SharedMemory* shm = new SharedMemory(multiId, i);
shm->RemoveSharedMemory();
delete shm;
}
}
void multiSlsDetector::freeSharedMemory(int detPos) {
// single
if (detPos >= 0) {
detectors[detPos]->freeSharedMemory();
return;
}
// multi
// clear zmq vector
for (auto* it : zmqSocket)
delete it;
zmqSocket.clear();
// should be done before the detector list is deleted
clearAllErrorMask();
// clear sls detector vector shm
for (auto* it : detectors) {
it->freeSharedMemory();
delete it;
}
detectors.clear();
// clear multi detector shm
if (sharedMemory) {
if (thisMultiDetector) {
sharedMemory->UnmapSharedMemory(thisMultiDetector);
thisMultiDetector = 0;
}
sharedMemory->RemoveSharedMemory();
delete sharedMemory;
sharedMemory = 0;
}
// zmq
client_downstream = false;
}
std::string multiSlsDetector::getUserDetails() {
std::ostringstream sstream;
if (!detectors.size()) {
return std::string("none");
}
//hostname
sstream << "\nHostname: " << getHostname();
//type
sstream<< "\nType: ";
for (auto* it : detectors) {
sstream<< it->sgetDetectorsType() << "+";
}
//PID
sstream << "\nPID: " << thisMultiDetector->lastPID
//user
<< "\nUser: " << thisMultiDetector->lastUser
<< "\nDate: " << thisMultiDetector->lastDate << std::endl;
std::string s = sstream.str();
return s;
}
/*
* pre: sharedMemory=0, thisMultiDetector = 0, detectors.size() = 0
* exceptions are caught in calling function, shm unmapped and deleted
*/
bool multiSlsDetector::initSharedMemory(bool verify) {
size_t sz = sizeof(sharedMultiSlsDetector);
bool created = false;
try {
// shared memory object with name
sharedMemory = new SharedMemory(detId, -1);
//create
if (!sharedMemory->IsExisting()) {
thisMultiDetector = (sharedMultiSlsDetector*)sharedMemory->CreateSharedMemory(sz);
created = true;
}
// open and verify version
else {
thisMultiDetector = (sharedMultiSlsDetector*)sharedMemory->OpenSharedMemory(sz);
if (verify && thisMultiDetector->shmversion != MULTI_SHMVERSION) {
cprintf(RED, "Multi shared memory (%d) version mismatch "
"(expected 0x%x but got 0x%x)\n", detId,
MULTI_SHMVERSION, thisMultiDetector->shmversion);
throw SharedMemoryException();
}
}
} catch (...) {
if (sharedMemory) {
// unmap
if (thisMultiDetector) {
sharedMemory->UnmapSharedMemory(thisMultiDetector);
thisMultiDetector = 0;
}
// delete
delete sharedMemory;
sharedMemory = 0;
}
throw;
}
return created;
}
void multiSlsDetector::initializeDetectorStructure() {
thisMultiDetector->shmversion = MULTI_SHMVERSION;
thisMultiDetector->numberOfDetectors = 0;
thisMultiDetector->numberOfDetector[X] = 0;
thisMultiDetector->numberOfDetector[Y] = 0;
thisMultiDetector->onlineFlag = 1;
thisMultiDetector->stoppedFlag = 0;
thisMultiDetector->dataBytes = 0;
thisMultiDetector->dataBytesInclGapPixels = 0;
thisMultiDetector->numberOfChannels = 0;
thisMultiDetector->numberOfChannel[X] = 0;
thisMultiDetector->numberOfChannel[Y] = 0;
thisMultiDetector->numberOfChannelInclGapPixels[X] = 0;
thisMultiDetector->numberOfChannelInclGapPixels[Y] = 0;
thisMultiDetector->maxNumberOfChannelsPerDetector[X] = 0;
thisMultiDetector->maxNumberOfChannelsPerDetector[Y] = 0;
for (int i = 0; i < MAX_TIMERS; ++i) {
thisMultiDetector->timerValue[i] = 0;
}
thisMultiDetector->threadedProcessing = 1;
thisMultiDetector->acquiringFlag = false;
thisMultiDetector->receiverOnlineFlag = OFFLINE_FLAG;
thisMultiDetector->receiver_upstream = false;
}
void multiSlsDetector::initializeMembers(bool verify) {
//multiSlsDetector
for (auto* it : zmqSocket)
delete it;
zmqSocket.clear();
// get objects from single det shared memory (open)
for (int i = 0; i < thisMultiDetector->numberOfDetectors; i++) {
try {
slsDetector* sdet = new slsDetector(detId, i, verify);
detectors.push_back(sdet);
} catch (...) {
// clear detectors list
for (auto* it : detectors)
delete it;
detectors.clear();
throw;
}
}
// depend on number of detectors
updateOffsets();
}
void multiSlsDetector::updateUserdetails() {
thisMultiDetector->lastPID = getpid();
memset(thisMultiDetector->lastUser, 0, SHORT_STRING_LENGTH);
memset(thisMultiDetector->lastDate, 0, SHORT_STRING_LENGTH);
try {
strncpy(thisMultiDetector->lastUser, exec("whoami").c_str(), SHORT_STRING_LENGTH-1);
thisMultiDetector->lastUser[SHORT_STRING_LENGTH-1] = 0;
strncpy(thisMultiDetector->lastDate, exec("date").c_str(), DATE_LENGTH-1);
thisMultiDetector->lastDate[DATE_LENGTH-1] = 0;
} catch(...) {
strcpy(thisMultiDetector->lastUser, "errorreading");
strcpy(thisMultiDetector->lastDate, "errorreading");
}
}
std::string multiSlsDetector::exec(const char* cmd) {
int bufsize = 128;
char buffer[bufsize];
std::string result = "";
FILE* pipe = popen(cmd, "r");
if (!pipe) throw std::exception();
try {
while (!feof(pipe)) {
if (fgets(buffer, bufsize, pipe) != NULL)
result += buffer;
}
} catch (...) {
pclose(pipe);
throw;
}
pclose(pipe);
result.erase(result.find_last_not_of(" \t\n\r")+1);
return result;
}
void multiSlsDetector::setHostname(const char* name, int detPos) {
// single
if (detPos >= 0) {
detectors[detPos]->setHostname(name);
return;
}
// multi
// this check is there only to allow the previous detsizechan command
if (thisMultiDetector->numberOfDetectors) {
cprintf(RED, "Warning: There are already detector(s) in shared memory."
"Freeing Shared memory now.\n");
freeSharedMemory();
setupMultiDetector();
}
addMultipleDetectors(name);
}
std::string multiSlsDetector::getHostname(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getHostname();
}
// multi
auto r = serialCall(&slsDetector::getHostname);
return sls::concatenateIfDifferent(r);
}
void multiSlsDetector::addMultipleDetectors(const char* name) {
size_t p1 = 0;
std::string temp = std::string(name);
size_t p2 = temp.find('+', p1);
//single
if (p2 == std::string::npos) {
addSlsDetector(temp);
}
// multi
else {
while(p2 != std::string::npos) {
addSlsDetector(temp.substr(p1, p2-p1));
temp = temp.substr(p2 + 1);
p2 = temp.find('+');
}
}
// a get to update shared memory online flag
setOnline();
updateOffsets();
}
void multiSlsDetector::addSlsDetector (std::string s) {
#ifdef VERBOSE
std::cout << "Adding detector " << s << std::endl;
#endif
for (auto* it : detectors) {
if (it->getHostname() == s) {
std::cout << "Detector " << s << "already part of the multiDetector!" << std::endl
<< "Remove it before adding it back in a new position!" << std::endl;
return;
}
}
//check entire shared memory if it doesnt exist?? needed?
//could be that detectors not loaded completely cuz of crash in new slsdetector in initsharedmemory
// get type by connecting
detectorType type = slsDetector::getDetectorType(s.c_str(), DEFAULT_PORTNO);
if (type == GENERIC) {
std::cout << "Could not connect to Detector " << s << " to determine the type!" << std::endl;
setErrorMask(getErrorMask() | MULTI_DETECTORS_NOT_ADDED);
appendNotAddedList(s.c_str());
return;
}
int pos = (int)detectors.size();
slsDetector* sdet = new slsDetector(type, detId, pos, false);
detectors.push_back(sdet);
thisMultiDetector->numberOfDetectors = detectors.size();
detectors[pos]->setHostname(s.c_str()); // also updates client
thisMultiDetector->dataBytes += detectors[pos]->getDataBytes();
thisMultiDetector->dataBytesInclGapPixels += detectors[pos]->getDataBytesInclGapPixels();
thisMultiDetector->numberOfChannels += detectors[pos]->getTotalNumberOfChannels();
}
slsDetectorDefs::detectorType multiSlsDetector::getDetectorsType(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getDetectorsType();
}
// multi
auto r = serialCall(&slsDetector::getDetectorsType);
return (detectorType)sls::minusOneIfDifferent(r);
}
std::string multiSlsDetector::sgetDetectorsType(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->sgetDetectorsType();
}
// multi
auto r = serialCall(&slsDetector::sgetDetectorsType);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getDetectorType(int detPos) {
return sgetDetectorsType(detPos);
}
int multiSlsDetector::getNumberOfDetectors() {
return (int)detectors.size();
}
int multiSlsDetector::getNumberOfDetectors(dimension d) {
return thisMultiDetector->numberOfDetector[d];
}
void multiSlsDetector::getNumberOfDetectors(int& nx, int& ny) {
nx=thisMultiDetector->numberOfDetector[X];ny=thisMultiDetector->numberOfDetector[Y];
}
int multiSlsDetector::getTotalNumberOfChannels(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTotalNumberOfChannels();
}
// multi
return thisMultiDetector->numberOfChannels;
}
int multiSlsDetector::getTotalNumberOfChannels(dimension d, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTotalNumberOfChannels(d);
}
// multi
return thisMultiDetector->numberOfChannel[d];
}
int multiSlsDetector::getTotalNumberOfChannelsInclGapPixels(dimension d, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTotalNumberOfChannelsInclGapPixels(d);
}
// multi
return thisMultiDetector->numberOfChannelInclGapPixels[d];
}
int multiSlsDetector::getMaxNumberOfChannelsPerDetector(dimension d) {
return thisMultiDetector->maxNumberOfChannelsPerDetector[d];
}
int multiSlsDetector::setMaxNumberOfChannelsPerDetector(dimension d,int i) {
thisMultiDetector->maxNumberOfChannelsPerDetector[d] = i;
return thisMultiDetector->maxNumberOfChannelsPerDetector[d];
}
int multiSlsDetector::getDetectorOffset(dimension d, int detPos) {
return detectors[detPos]->getDetectorOffset(d);
}
void multiSlsDetector::setDetectorOffset(dimension d, int off, int detPos) {
detectors[detPos]->setDetectorOffset(d, off);
}
void multiSlsDetector::updateOffsets() {
//cannot paralllize due to slsdetector calling this via parentdet->
#ifdef VERBOSE
std::cout << std::endl
<< "Updating Multi-Detector Offsets" << std::endl;
#endif
int offsetX = 0, offsetY = 0, numX = 0, numY = 0;
int maxChanX = thisMultiDetector->maxNumberOfChannelsPerDetector[X];
int maxChanY = thisMultiDetector->maxNumberOfChannelsPerDetector[Y];
int prevChanX = 0;
int prevChanY = 0;
bool firstTime = true;
thisMultiDetector->numberOfChannel[X] = 0;
thisMultiDetector->numberOfChannel[Y] = 0;
thisMultiDetector->numberOfDetector[X] = 0;
thisMultiDetector->numberOfDetector[Y] = 0;
// gap pixels
int offsetX_gp = 0, offsetY_gp = 0, numX_gp = 0, numY_gp = 0;
int prevChanX_gp = 0, prevChanY_gp = 0;
thisMultiDetector->numberOfChannelInclGapPixels[X] = 0;
thisMultiDetector->numberOfChannelInclGapPixels[Y] = 0;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
#ifdef VERBOSE
std::cout << "offsetX:" << offsetX << " prevChanX:" << prevChanX << " "
"offsetY:" << offsetY << " prevChanY:" << prevChanY << std::endl;
std::cout << "offsetX_gp:" << offsetX_gp << " "
"prevChanX_gp:" << prevChanX_gp << " "
"offsetY_gp:" << offsetY_gp << " "
"prevChanY_gp:" << prevChanY_gp << std::endl;
#endif
//std::cout<<" totalchan:"<< detectors[idet]->getTotalNumberOfChannels(Y)
//<<" maxChanY:"<<maxChanY<<std::endl;
//incrementing in both direction
if (firstTime) {
//incrementing in both directions
firstTime = false;
if ((maxChanX > 0) && ((offsetX + detectors[idet]->getTotalNumberOfChannels(X))
> maxChanX))
std::cout << "\nDetector[" << idet << "] exceeds maximum channels "
"allowed for complete detector set in X dimension!" << std::endl;
if ((maxChanY > 0) && ((offsetY + detectors[idet]->getTotalNumberOfChannels(Y))
> maxChanY))
std::cout << "\nDetector[" << idet << "] exceeds maximum channels "
"allowed for complete detector set in Y dimension!" << std::endl;
prevChanX = detectors[idet]->getTotalNumberOfChannels(X);
prevChanY = detectors[idet]->getTotalNumberOfChannels(Y);
prevChanX_gp = detectors[idet]->getTotalNumberOfChannelsInclGapPixels(X);
prevChanY_gp = detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
numX += detectors[idet]->getTotalNumberOfChannels(X);
numY += detectors[idet]->getTotalNumberOfChannels(Y);
numX_gp += detectors[idet]->getTotalNumberOfChannelsInclGapPixels(X);
numY_gp += detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
++thisMultiDetector->numberOfDetector[X];
++thisMultiDetector->numberOfDetector[Y];
#ifdef VERBOSE
std::cout << "incrementing in both direction" << std::endl;
#endif
}
//incrementing in y direction
else if ((maxChanY == -1) || ((maxChanY > 0) &&
((offsetY + prevChanY + detectors[idet]->getTotalNumberOfChannels(Y))
<= maxChanY))) {
offsetY += prevChanY;
offsetY_gp += prevChanY_gp;
prevChanY = detectors[idet]->getTotalNumberOfChannels(Y);
prevChanY_gp = detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
numY += detectors[idet]->getTotalNumberOfChannels(Y);
numY_gp += detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
++thisMultiDetector->numberOfDetector[Y];
#ifdef VERBOSE
std::cout << "incrementing in y direction" << std::endl;
#endif
}
//incrementing in x direction
else {
if ((maxChanX > 0) &&
((offsetX + prevChanX + detectors[idet]->getTotalNumberOfChannels(X))
> maxChanX))
std::cout << "\nDetector[" << idet << "] exceeds maximum channels "
"allowed for complete detector set in X dimension!" << std::endl;
offsetY = 0;
offsetY_gp = 0;
prevChanY = detectors[idet]->getTotalNumberOfChannels(Y);
prevChanY_gp = detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y);
numY = 0; //assuming symmetry with this statement.
//whats on 1st column should be on 2nd column
numY_gp = 0;
offsetX += prevChanX;
offsetX_gp += prevChanX_gp;
prevChanX = detectors[idet]->getTotalNumberOfChannels(X);
prevChanX_gp = detectors[idet]->getTotalNumberOfChannelsInclGapPixels(X);
numX += detectors[idet]->getTotalNumberOfChannels(X);
numX_gp += detectors[idet]->getTotalNumberOfChannelsInclGapPixels(X);
++thisMultiDetector->numberOfDetector[X];
#ifdef VERBOSE
std::cout << "incrementing in x direction" << std::endl;
#endif
}
double bytesperchannel = (double)detectors[idet]->getDataBytes() /
(double)(detectors[idet]->getTotalNumberOfChannels(X)
* detectors[idet]->getTotalNumberOfChannels(Y));
detectors[idet]->setDetectorOffset(X, (bytesperchannel >= 1.0) ? offsetX_gp : offsetX);
detectors[idet]->setDetectorOffset(Y, (bytesperchannel >= 1.0) ? offsetY_gp : offsetY);
#ifdef VERBOSE
std::cout << "Detector[" << idet << "] has offsets (" <<
detectors[idet]->getDetectorOffset(X) << ", " <<
detectors[idet]->getDetectorOffset(Y) << ")" << std::endl;
#endif
//offsetY has been reset sometimes and offsetX the first time,
//but remember the highest values
if (numX > thisMultiDetector->numberOfChannel[X])
thisMultiDetector->numberOfChannel[X] = numX;
if (numY > thisMultiDetector->numberOfChannel[Y])
thisMultiDetector->numberOfChannel[Y] = numY;
if (numX_gp > thisMultiDetector->numberOfChannelInclGapPixels[X])
thisMultiDetector->numberOfChannelInclGapPixels[X] = numX_gp;
if (numY_gp > thisMultiDetector->numberOfChannelInclGapPixels[Y])
thisMultiDetector->numberOfChannelInclGapPixels[Y] = numY_gp;
}
#ifdef VERBOSE
std::cout << "Number of Channels in X direction:" << thisMultiDetector->numberOfChannel[X] << std::endl;
std::cout << "Number of Channels in Y direction:" << thisMultiDetector->numberOfChannel[Y] << std::endl
<< std::endl;
std::cout << "Number of Channels in X direction with Gap Pixels:" <<
thisMultiDetector->numberOfChannelInclGapPixels[X] << std::endl;
std::cout << "Number of Channels in Y direction with Gap Pixels:" <<
thisMultiDetector->numberOfChannelInclGapPixels[Y] << std::endl
<< std::endl;
#endif
thisMultiDetector->numberOfChannels =
thisMultiDetector->numberOfChannel[0] *
thisMultiDetector->numberOfChannel[1];
for (auto* it : detectors) {
it->updateMultiSize(thisMultiDetector->numberOfDetector[0],
thisMultiDetector->numberOfDetector[1]);
}
}
int multiSlsDetector::setOnline(int off, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setOnline(off);
}
// multi
if (off != GET_ONLINE_FLAG) {
auto r = parallelCall(&slsDetector::setOnline, off);
thisMultiDetector->onlineFlag = sls::minusOneIfDifferent(r);
}
return thisMultiDetector->onlineFlag;
}
std::string multiSlsDetector::checkOnline(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->checkOnline();
}
// multi
auto r = parallelCall(&slsDetector::checkOnline);
return sls::concatenateNonEmptyStrings(r);
}
int multiSlsDetector::setPort(portType t, int num, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setPort(t, num);
}
// multi
auto r = serialCall(&slsDetector::setPort, t, num);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::lockServer(int p, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->lockServer(p);
}
// multi
auto r = parallelCall(&slsDetector::lockServer, p);
return sls::minusOneIfDifferent(r);
}
std::string multiSlsDetector::getLastClientIP(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getLastClientIP();
}
// multi
auto r = parallelCall(&slsDetector::getLastClientIP);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::exitServer(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->exitServer();
}
// multi
auto r = parallelCall(&slsDetector::exitServer);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::readConfigurationFile(std::string const fname) {
freeSharedMemory();
setupMultiDetector();
multiSlsDetectorClient* cmd;
std::string ans;
std::string str;
std::ifstream infile;
int iargval;
int interrupt = 0;
char* args[1000];
char myargs[1000][1000];
std::string sargname, sargval;
int iline = 0;
std::cout << "config file name " << fname << std::endl;
infile.open(fname.c_str(), std::ios_base::in);
if (infile.is_open()) {
while (infile.good() and interrupt == 0) {
sargname = "none";
sargval = "0";
getline(infile, str);
++iline;
// remove comments that come after
if (str.find('#') != std::string::npos)
str.erase(str.find('#'));
#ifdef VERBOSE
std::cout << "string:" << str << std::endl;
#endif
if (str.length() < 2) {
#ifdef VERBOSE
std::cout << "Empty line or Comment " << std::endl;
#endif
continue;
} else {
std::istringstream ssstr(str);
iargval = 0;
while (ssstr.good()) {
ssstr >> sargname;
#ifdef VERBOSE
std::cout << iargval << " " << sargname << std::endl;
#endif
strcpy(myargs[iargval], sargname.c_str());
args[iargval] = myargs[iargval];
#ifdef VERBOSE
std::cout << "--" << iargval << " " << args[iargval] << std::endl;
#endif
++iargval;
}
#ifdef VERBOSE
std::cout << std::endl;
for (int ia = 0; ia < iargval; ia++)
std::cout << args[ia] << " ??????? ";
std::cout << std::endl;
#endif
cmd = new multiSlsDetectorClient(iargval, args, PUT_ACTION, this);
delete cmd;
}
++iline;
}
infile.close();
} else {
std::cout << "Error opening configuration file " << fname << " for reading" << std::endl;
setErrorMask(getErrorMask() | MULTI_CONFIG_FILE_ERROR);
return FAIL;
}
#ifdef VERBOSE
std::cout << "Read configuration file of " << iline << " lines" << std::endl;
#endif
if (getErrorMask()) {
int c;
cprintf(RED, "\n----------------\n Error Messages\n----------------\n%s\n",
getErrorMessage(c).c_str());
return FAIL;
}
return OK;
}
int multiSlsDetector::writeConfigurationFile(std::string const fname) {
std::string names[] = {
"detsizechan",
"hostname",
"outdir",
"threaded"
};
int nvar = 15;
char* args[100];
for (int ia = 0; ia < 100; ++ia) {
args[ia] = new char[1000];
}
int ret = OK, ret1 = OK;
std::ofstream outfile;
int iline = 0;
outfile.open(fname.c_str(), std::ios_base::out);
if (outfile.is_open()) {
slsDetectorCommand* cmd = new slsDetectorCommand(this);
// complete size of detector
std::cout << iline << " " << names[iline] << std::endl;
strcpy(args[0], names[iline].c_str());
outfile << names[iline] << " " << cmd->executeLine(1, args, GET_ACTION) << std::endl;
++iline;
// hostname of the detectors
std::cout << iline << " " << names[iline] << std::endl;
strcpy(args[0], names[iline].c_str());
outfile << names[iline] << " " << cmd->executeLine(1, args, GET_ACTION) << std::endl;
++iline;
// single detector configuration
for (size_t idet = 0; idet < detectors.size(); ++idet) {
outfile << std::endl;
ret1 = detectors[idet]->writeConfigurationFile(outfile, this);
if (detectors[idet]->getErrorMask())
setErrorMask(getErrorMask() | (1 << idet));
if (ret1 == FAIL)
ret = FAIL;
}
outfile << std::endl;
//other configurations
while (iline < nvar) {
std::cout << iline << " " << names[iline] << std::endl;
strcpy(args[0], names[iline].c_str());
outfile << names[iline] << " " << cmd->executeLine(1, args, GET_ACTION) << std::endl;
++iline;
}
delete cmd;
outfile.close();
#ifdef VERBOSE
std::cout << "wrote " << iline << " lines to configuration file " << std::endl;
#endif
} else {
std::cout << "Error opening configuration file " << fname << " for writing" << std::endl;
setErrorMask(getErrorMask() | MULTI_CONFIG_FILE_ERROR);
ret = FAIL;
}
for (int ia = 0; ia < 100; ++ia) {
delete[] args[ia];
}
return ret;
}
std::string multiSlsDetector::getSettingsFile(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getSettingsFile();
}
// multi
auto r = serialCall(&slsDetector::getSettingsFile);
return sls::concatenateIfDifferent(r);
}
slsDetectorDefs::detectorSettings multiSlsDetector::getSettings(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getSettings();
}
// multi
auto r = parallelCall(&slsDetector::getSettings);
return (detectorSettings)sls::minusOneIfDifferent(r);
}
slsDetectorDefs::detectorSettings multiSlsDetector::setSettings(detectorSettings isettings,
int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setSettings(isettings);
}
// multi
auto r = parallelCall(&slsDetector::setSettings, isettings);
return (detectorSettings)sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getThresholdEnergy(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getThresholdEnergy();
}
// multi
auto r = parallelCall(&slsDetector::getThresholdEnergy);
if (sls::allEqualWithTol(r, 200))
return r.front();
return -1;
}
int multiSlsDetector::setThresholdEnergy(int e_eV, detectorSettings isettings, int tb, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setThresholdEnergy(e_eV, isettings, tb);
}
// multi
auto r = parallelCall(&slsDetector::setThresholdEnergy, e_eV, isettings, tb);
if (sls::allEqualWithTol(r, 200))
return r.front();
return -1;
}
std::string multiSlsDetector::getSettingsDir(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getSettingsDir();
}
// multi
auto r = serialCall(&slsDetector::getSettingsDir);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setSettingsDir(std::string s, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setSettingsDir(s);
}
// multi
size_t p1 = 0;
size_t p2 = s.find('+', p1);
int id = 0;
while (p2 != std::string::npos) {
detectors[id]->setSettingsDir(s.substr(p1, p2 - p1));
if (detectors[id]->getErrorMask())
setErrorMask(getErrorMask() | (1 << id));
++id;
s = s.substr(p2 + 1);
p2 = s.find('+');
if (id >= (int)detectors.size())
break;
}
return getSettingsDir();
}
int multiSlsDetector::loadSettingsFile(std::string fname, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->loadSettingsFile(fname);
}
// multi
auto r = parallelCall(&slsDetector::loadSettingsFile, fname);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::saveSettingsFile(std::string fname, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->saveSettingsFile(fname);
}
// multi
auto r = parallelCall(&slsDetector::saveSettingsFile, fname);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
slsDetectorDefs::runStatus multiSlsDetector::getRunStatus(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getRunStatus();
}
// multi
auto r = parallelCall(&slsDetector::getRunStatus);
if (sls::allEqual(r))
return r.front();
if (sls::anyEqualTo(r, ERROR))
return ERROR;
for (const auto& value : r)
if (value != IDLE)
return value;
return IDLE;
}
int multiSlsDetector::prepareAcquisition(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->prepareAcquisition();
}
// multi
auto r = parallelCall(&slsDetector::prepareAcquisition);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::startAcquisition(int detPos) {
// single
if (detPos >= 0) {
if (detectors[detPos]->getDetectorsType() == EIGER) {
if (detectors[detPos]->prepareAcquisition() == FAIL)
return FAIL;
}
return detectors[detPos]->startAcquisition();
}
// multi
if (getDetectorsType() == EIGER) {
if (prepareAcquisition() == FAIL)
return FAIL;
}
auto r = parallelCall(&slsDetector::startAcquisition);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::stopAcquisition(int detPos) {
int ret = OK;
// locks to synchronize using client->receiver simultaneously (processing thread)
pthread_mutex_lock(&mg);
// single
if (detPos >= 0) {
// if only 1 detector, set flag to stop current acquisition
if (detectors.size() == 1)
thisMultiDetector->stoppedFlag = 1;
ret = detectors[detPos]->stopAcquisition();
}
// multi
else {
// set flag to stop current acquisition
thisMultiDetector->stoppedFlag = 1;
auto r = parallelCall(&slsDetector::stopAcquisition);
ret = sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
pthread_mutex_unlock(&mg);
return ret;
}
int multiSlsDetector::sendSoftwareTrigger(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->sendSoftwareTrigger();
}
// multi
auto r = parallelCall(&slsDetector::sendSoftwareTrigger);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::startAndReadAll(int detPos) {
// single
if (detPos >= 0) {
if (detectors[detPos]->getDetectorsType() == EIGER) {
if (detectors[detPos]->prepareAcquisition() == FAIL)
return FAIL;
}
return detectors[detPos]->startAndReadAll();
}
// multi
if (getDetectorsType() == EIGER) {
if (prepareAcquisition() == FAIL)
return FAIL;
}
auto r = parallelCall(&slsDetector::startAndReadAll);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::startReadOut(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->startReadOut();
}
// multi
auto r = parallelCall(&slsDetector::startReadOut);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::readAll(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->readAll();
}
// multi
auto r = parallelCall(&slsDetector::readAll);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::configureMAC(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->configureMAC();
}
// multi
auto r = parallelCall(&slsDetector::configureMAC);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int64_t multiSlsDetector::setTimer(timerIndex index, int64_t t, int detPos) {
// single
if (detPos >= 0) {
// error for setting values individually
// FIXME: what else? and error code
if (t!=-1){
switch(index) {
case FRAME_NUMBER:
case CYCLES_NUMBER:
case STORAGE_CELL_NUMBER:
case MEASUREMENTS_NUMBER:
FILE_LOG(logERROR) << "Cannot set number of frames, cycles, "
"storage cells or measurements individually.";
setErrorMask(getErrorMask() | MUST_BE_MULTI_CMD);
return thisMultiDetector->timerValue[index];
default:
break;
}
}
return detectors[detPos]->setTimer(index, t);
}
// multi
auto r = parallelCall(&slsDetector::setTimer, index, t);
int64_t ret = sls::minusOneIfDifferent(r);
if (index == SAMPLES_JCTB)
setDynamicRange();
// set progress
if (t!=-1){
switch(index) {
case FRAME_NUMBER:
case CYCLES_NUMBER:
case STORAGE_CELL_NUMBER:
case MEASUREMENTS_NUMBER:
setTotalProgress();
break;
default:
break;
}
}
thisMultiDetector->timerValue[index] = ret;
return ret;
}
double multiSlsDetector::setExposureTime(double t, bool inseconds, int detPos){
if(!inseconds)
return setTimer(ACQUISITION_TIME, (int64_t)t, detPos);
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) tms = -1;
tms = setTimer(ACQUISITION_TIME, tms, detPos);
if (tms < 0)
return -1;
return ((1E-9) * (double)tms);
}
double multiSlsDetector::setExposurePeriod(double t, bool inseconds, int detPos){
if(!inseconds)
return setTimer(FRAME_PERIOD, (int64_t)t, detPos);
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) tms = -1;
tms = setTimer(FRAME_PERIOD, tms, detPos);
if (tms < 0)
return -1;
return ((1E-9) * (double)tms);
}
double multiSlsDetector::setDelayAfterTrigger(double t, bool inseconds, int detPos){
if(!inseconds)
return setTimer(DELAY_AFTER_TRIGGER, (int64_t)t, detPos);
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) tms = -1;
tms = setTimer(DELAY_AFTER_TRIGGER, tms, detPos);
if (tms < 0)
return -1;
return ((1E-9) * (double)tms);
}
double multiSlsDetector::setSubFrameExposureTime(double t, bool inseconds, int detPos){
if(!inseconds)
return setTimer(SUBFRAME_ACQUISITION_TIME, (int64_t)t, detPos);
else {
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) tms = -1;
tms = setTimer(SUBFRAME_ACQUISITION_TIME, tms, detPos);
if (tms < 0)
return -1;
return ((1E-9) * (double)tms);
}
}
double multiSlsDetector::setSubFrameExposureDeadTime(double t, bool inseconds, int detPos){
if(!inseconds)
return setTimer(SUBFRAME_DEADTIME, (int64_t)t, detPos);
else {
// + 0.5 to round for precision lost from converting double to int64_t
int64_t tms = (int64_t)(t * (1E+9) + 0.5);
if (t < 0) tms = -1;
tms = setTimer(SUBFRAME_DEADTIME, tms, detPos);
if (tms < 0)
return -1;
return ((1E-9) * (double)tms);
}
}
int64_t multiSlsDetector::setNumberOfFrames(int64_t t, int detPos){
return setTimer(FRAME_NUMBER, t, detPos);
}
int64_t multiSlsDetector::setNumberOfCycles(int64_t t, int detPos){
return setTimer(CYCLES_NUMBER, t, detPos);
}
int64_t multiSlsDetector::setNumberOfGates(int64_t t, int detPos){
return setTimer(GATES_NUMBER, t, detPos);
}
int64_t multiSlsDetector::setNumberOfStorageCells(int64_t t, int detPos) {
return setTimer(STORAGE_CELL_NUMBER, t, detPos);
}
double multiSlsDetector::getMeasuredPeriod(bool inseconds, int detPos){
if(!inseconds)
return getTimeLeft(MEASURED_PERIOD, detPos);
else {
int64_t tms = getTimeLeft(MEASURED_PERIOD, detPos);
if (tms < 0)
return -1;
return ((1E-9) * (double)tms);
}
}
double multiSlsDetector::getMeasuredSubFramePeriod(bool inseconds, int detPos){
if(!inseconds)
return getTimeLeft(MEASURED_SUBPERIOD, detPos);
else {
int64_t tms = getTimeLeft(MEASURED_SUBPERIOD, detPos);
if (tms < 0)
return -1;
return ((1E-9) * (double)tms);
}
}
int64_t multiSlsDetector::getTimeLeft(timerIndex index, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTimeLeft(index);
}
// multi
auto r = parallelCall(&slsDetector::getTimeLeft, index);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setSpeed(speedVariable index, int value, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setSpeed(index, value);
}
// multi
auto r = parallelCall(&slsDetector::setSpeed, index, value);
return (sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL);
}
int multiSlsDetector::setDynamicRange(int p, int detPos) {
// single
if (detPos >= 0) {
FILE_LOG(logERROR) << "Dynamic Range cannot be set individually";
setErrorMask(getErrorMask() | MUST_BE_MULTI_CMD);
return -1;
}
// multi
auto r = parallelCall(&slsDetector::setDynamicRange, p);
int ret = sls::minusOneIfDifferent(r);
//update shm
int prevValue = thisMultiDetector->dataBytes;
int prevGValue = thisMultiDetector->dataBytesInclGapPixels;
thisMultiDetector->dataBytes = 0;
thisMultiDetector->dataBytesInclGapPixels = 0;
thisMultiDetector->numberOfChannels = 0;
for (auto* it : detectors) {
thisMultiDetector->dataBytes += it->getDataBytes();
thisMultiDetector->dataBytesInclGapPixels += it->getDataBytesInclGapPixels();
thisMultiDetector->numberOfChannels += it->getTotalNumberOfChannels();
}
//for usability
if (getDetectorsType() == EIGER) {
switch(p){
case 32:
FILE_LOG(logINFO) << "Setting Clock to Quarter Speed to cope with Dynamic Range of 32";
setSpeed(CLOCK_DIVIDER, 2);
break;
case 16:
FILE_LOG(logINFO) << "Setting Clock to Half Speed for Dynamic Range of 16";
setSpeed(CLOCK_DIVIDER, 1);
break;
default:
break;
}
}
// update offsets if there was a change FIXME:add dr to sls shm and check that instead
if ((prevValue != thisMultiDetector->dataBytes) ||
(prevGValue != thisMultiDetector->dataBytesInclGapPixels))
updateOffsets();
return ret;
}
int multiSlsDetector::getDataBytes(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getDataBytes();
}
// multi
auto r = parallelCall(&slsDetector::getDataBytes);
return sls::sum(r);
}
int multiSlsDetector::setDAC(int val, dacIndex idac, int mV, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setDAC(val, idac, mV);
}
// multi
auto r = parallelCall(&slsDetector::setDAC, val, idac, mV);
if (idac != HV_NEW)
return sls::minusOneIfDifferent(r);
// ignore slave values for hv (-999)
int firstValue = r.front();
for (const auto& value : r) {
if ((value != -999) && (value != firstValue))
return -1;
}
return firstValue;
}
int multiSlsDetector::getADC(dacIndex idac, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getADC(idac);
}
// multi
auto r = parallelCall(&slsDetector::getADC, idac);
return sls::minusOneIfDifferent(r);
}
slsDetectorDefs::externalCommunicationMode multiSlsDetector::setExternalCommunicationMode(
externalCommunicationMode pol, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setExternalCommunicationMode(pol);
}
// multi
auto r = parallelCall(&slsDetector::setExternalCommunicationMode, pol);
return sls::minusOneIfDifferent(r);
}
slsDetectorDefs::externalSignalFlag multiSlsDetector::setExternalSignalFlags(
externalSignalFlag pol, int signalindex, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setExternalSignalFlags(pol, signalindex);
}
// multi
auto r = parallelCall(&slsDetector::setExternalSignalFlags, pol, signalindex);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReadOutFlags(readOutFlags flag, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReadOutFlags(flag);
}
// multi
auto r = parallelCall(&slsDetector::setReadOutFlags, flag);
return sls::minusOneIfDifferent(r);
}
uint32_t multiSlsDetector::writeRegister(uint32_t addr, uint32_t val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->writeRegister(addr, val);
}
// multi
auto r = parallelCall(&slsDetector::writeRegister, addr, val);
if (sls::allEqual(r))
return r.front();
// can't have different values
FILE_LOG(logERROR) << "Error: Different Values for function writeRegister "
"(write 0x" << std::hex << val << " to addr 0x" << std::hex << addr << std::dec << ")";
setErrorMask(getErrorMask() | MULTI_HAVE_DIFFERENT_VALUES);
return -1;
}
uint32_t multiSlsDetector::readRegister(uint32_t addr, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->readRegister(addr);
}
// multi
auto r = parallelCall(&slsDetector::readRegister, addr);
if (sls::allEqual(r))
return r.front();
// can't have different values
FILE_LOG(logERROR) << "Error: Different Values for function readRegister "
"(read from 0x" << std::hex << addr << std::dec << ")";
setErrorMask(getErrorMask() | MULTI_HAVE_DIFFERENT_VALUES);
return -1;
}
uint32_t multiSlsDetector::setBit(uint32_t addr, int n, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setBit(addr, n);
}
// multi
auto r = parallelCall(&slsDetector::setBit, addr, n);
if (sls::allEqual(r))
return r.front();
// can't have different values
FILE_LOG(logERROR) << "Error: Different Values for function setBit "
"(set bit " << n << " to addr 0x" << std::hex << addr << std::dec << ")";
setErrorMask(getErrorMask() | MULTI_HAVE_DIFFERENT_VALUES);
return -1;
}
uint32_t multiSlsDetector::clearBit(uint32_t addr, int n, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->clearBit(addr, n);
}
// multi
auto r = parallelCall(&slsDetector::clearBit, addr, n);
if (sls::allEqual(r))
return r.front();
// can't have different values
FILE_LOG(logERROR) << "Error: Different Values for function clearBit "
"(clear bit " << n << " to addr 0x" << std::hex << addr << std::dec << ")";
setErrorMask(getErrorMask() | MULTI_HAVE_DIFFERENT_VALUES);
return -1;
}
std::string multiSlsDetector::setNetworkParameter(networkParameter p, std::string s, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setNetworkParameter(p, s);
}
// multi
// single argument for all
if (s.find('+') == std::string::npos) {
if (p != RECEIVER_STREAMING_PORT && p != CLIENT_STREAMING_PORT){
auto r = parallelCall(&slsDetector::setNetworkParameter, p, s);
return sls::concatenateIfDifferent(r);
}
// calculate ports individually
int firstPort = stoi(s);
int numSockets = (getDetectorsType() == EIGER) ? 2 : 1;
std::vector<std::string> r;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
s = std::to_string(firstPort + (idet * numSockets));
r.push_back(detectors[idet]->setNetworkParameter(p,s));
}
return sls::concatenateIfDifferent(r);
}
//concatenated argumements for all
std::vector<std::string> r;
size_t p1 = 0;
size_t p2 = s.find('+', p1);
int id = 0;
while (p2 != std::string::npos) {
r.push_back(detectors[id]->setNetworkParameter(p, s.substr(p1, p2 - p1)));
++id;
s = s.substr(p2 + 1);
p2 = s.find('+');
if (id >= (int)detectors.size())
break;
}
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getNetworkParameter(networkParameter p, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getNetworkParameter(p);
}
// multi
auto r = serialCall(&slsDetector::getNetworkParameter, p);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::setReceiverDataStreamingOutPort(int i, int detPos) {
if (i >= 0) {
std::string s = std::to_string(i);
int prev_streaming = enableDataStreamingFromReceiver(-1, detPos);
setNetworkParameter(RECEIVER_STREAMING_PORT, s, detPos);
if (prev_streaming) {
enableDataStreamingFromReceiver(0, detPos);
enableDataStreamingFromReceiver(1, detPos);
}
}
return stoi(getNetworkParameter(RECEIVER_STREAMING_PORT, detPos));
}
int multiSlsDetector::setClientDataStreamingInPort(int i, int detPos) {
if (i >= 0) {
std::string s = std::to_string(i);
int prev_streaming = enableDataStreamingToClient();
setNetworkParameter(CLIENT_STREAMING_PORT, s, detPos);
if (prev_streaming) {
enableDataStreamingToClient(0);
enableDataStreamingToClient(1);
}
}
return stoi(getNetworkParameter(CLIENT_STREAMING_PORT, detPos));
}
std::string multiSlsDetector::setReceiverDataStreamingOutIP(std::string ip, int detPos) {
if (ip.length()) {
int prev_streaming = enableDataStreamingFromReceiver(-1, detPos);
setNetworkParameter(RECEIVER_STREAMING_SRC_IP, ip, detPos);
if (prev_streaming) {
enableDataStreamingFromReceiver(0, detPos);
enableDataStreamingFromReceiver(1, detPos);
}
}
return getNetworkParameter(RECEIVER_STREAMING_SRC_IP, detPos);
}
std::string multiSlsDetector::setClientDataStreamingInIP(std::string ip, int detPos) {
if (ip.length()) {
int prev_streaming = enableDataStreamingToClient(-1);
setNetworkParameter(CLIENT_STREAMING_SRC_IP, ip, detPos);
if (prev_streaming) {
enableDataStreamingToClient(0);
enableDataStreamingToClient(1);
}
}
return getNetworkParameter(CLIENT_STREAMING_SRC_IP, detPos);
}
int multiSlsDetector::setFlowControl10G(int enable, int detPos) {
std::string s;
if (enable != -1) {
s = std::to_string((enable >= 1) ? 1 : 0);
s = setNetworkParameter(FLOW_CONTROL_10G, s);
} else
s = getNetworkParameter(FLOW_CONTROL_10G);
return stoi(s);
}
int multiSlsDetector::digitalTest(digitalTestMode mode, int ival, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->digitalTest(mode, ival);
}
// multi
auto r = parallelCall(&slsDetector::digitalTest, mode, ival);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::loadImageToDetector(imageType index, std::string const fname, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->loadImageToDetector(index, fname);
}
// multi
//read image for all
int nch = thisMultiDetector->numberOfChannels;
short int imageVals[nch];
if (readDataFile(fname, imageVals, nch) < nch * (int)sizeof(short int)) {
FILE_LOG(logERROR) << "Could not open file or not enough data in file "
"to load image to detector.";
setErrorMask(getErrorMask() | MULTI_OTHER_ERROR);
return -1;
}
// send image to all
std::vector<int> r;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
r.push_back(detectors[idet]->sendImageToDetector(index,
imageVals + idet * detectors[idet]->getTotalNumberOfChannels()));
}
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::writeCounterBlockFile(std::string const fname, int startACQ, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->writeCounterBlockFile(fname, startACQ);
}
// multi
//get image from all
int nch = thisMultiDetector->numberOfChannels;
short int imageVals[nch];
std::vector<int> r;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
r.push_back(detectors[idet]->getCounterBlock(
imageVals+ idet * detectors[idet]->getTotalNumberOfChannels(),
startACQ));
}
// write image if all ok
if (sls::allEqualTo(r, static_cast<int>(OK))) {
if (writeDataFile(fname, nch, imageVals) < nch * (int)sizeof(short int)) {
FILE_LOG(logERROR) << "Could not open file to write or did not write enough data in file "
"to wrte counter block file from detector.";
setErrorMask(getErrorMask() | MULTI_OTHER_ERROR);
return -1;
}
return OK;
}
return FAIL;
}
int multiSlsDetector::resetCounterBlock(int startACQ, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->resetCounterBlock(startACQ);
}
// multi
auto r = parallelCall(&slsDetector::resetCounterBlock, startACQ);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::setCounterBit(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCounterBit(i);
}
// multi
auto r = parallelCall(&slsDetector::setCounterBit, i);
return sls::minusOneIfDifferent(r);
}
void multiSlsDetector::verifyMinMaxROI(int n, ROI r[]) {
int temp;
for (int i = 0; i < n; ++i) {
if ((r[i].xmax) < (r[i].xmin)) {
temp = r[i].xmax;
r[i].xmax = r[i].xmin;
r[i].xmin = temp;
}
if ((r[i].ymax) < (r[i].ymin)) {
temp = r[i].ymax;
r[i].ymax = r[i].ymin;
r[i].ymin = temp;
}
}
}
int multiSlsDetector::setROI(int n, ROI roiLimits[], int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setROI(n, roiLimits);
}
// multi
int i, xmin, xmax, ymin, ymax, channelX, channelY, idet, lastChannelX,
lastChannelY, index, offsetX, offsetY;
bool invalidroi = false;
int ndet = detectors.size();
ROI allroi[ndet][n];
int nroi[ndet];
for (i = 0; i < ndet; ++i)
nroi[i] = 0;
if ((n < 0) || (roiLimits == NULL))
return FAIL;
//ensures min < max
verifyMinMaxROI(n, roiLimits);
#ifdef VERBOSE
std::cout << "Setting ROI for " << n << "rois:" << std::endl;
for (i = 0; i < n; ++i)
std::cout << i << ":" << roiLimits[i].xmin << "\t" << roiLimits[i].xmax
<< "\t" << roiLimits[i].ymin << "\t" << roiLimits[i].ymax << std::endl;
#endif
//for each roi
for (i = 0; i < n; ++i) {
xmin = roiLimits[i].xmin;
xmax = roiLimits[i].xmax;
ymin = roiLimits[i].ymin;
ymax = roiLimits[i].ymax;
//check roi max values
idet = decodeNChannel(xmax, ymax, channelX, channelY);
#ifdef VERBOSE
std::cout << "Decoded Channel max vals: " << std::endl;
std::cout << "det:" << idet << "\t" << xmax << "\t" << ymax << "\t"
<< channelX << "\t" << channelY << std::endl;
#endif
if (idet == -1) {
std::cout << "invalid roi" << std::endl;
continue;
}
//split in x dir
while (xmin <= xmax) {
invalidroi = false;
ymin = roiLimits[i].ymin;
//split in y dir
while (ymin <= ymax) {
//get offset for each detector
idet = decodeNChannel(xmin, ymin, channelX, channelY);
#ifdef VERBOSE
std::cout << "Decoded Channel min vals: " << std::endl;
std::cout << "det:" << idet << "\t" << xmin << "\t" << ymin
<< "\t" << channelX << "\t" << channelY << std::endl;
#endif
if (idet < 0 || idet >= (int)detectors.size()) {
std::cout << "invalid roi" << std::endl;
invalidroi = true;
break;
}
//get last channel for each det in x and y dir
lastChannelX = (detectors[idet]->getTotalNumberOfChannelsInclGapPixels(X)) - 1;
lastChannelY = (detectors[idet]->getTotalNumberOfChannelsInclGapPixels(Y)) - 1;
offsetX = detectors[idet]->getDetectorOffset(X);
offsetY = detectors[idet]->getDetectorOffset(Y);
//at the end in x dir
if ((offsetX + lastChannelX) >= xmax)
lastChannelX = xmax - offsetX;
//at the end in y dir
if ((offsetY + lastChannelY) >= ymax)
lastChannelY = ymax - offsetY;
#ifdef VERBOSE
std::cout << "lastChannelX:" << lastChannelX << "\t"
<< "lastChannelY:" << lastChannelY << std::endl;
#endif
//creating the list of roi for corresponding detector
index = nroi[idet];
allroi[idet][index].xmin = channelX;
allroi[idet][index].xmax = lastChannelX;
allroi[idet][index].ymin = channelY;
allroi[idet][index].ymax = lastChannelY;
nroi[idet] = nroi[idet] + 1;
ymin = lastChannelY + offsetY + 1;
if ((lastChannelY + offsetY) == ymax)
ymin = ymax + 1;
#ifdef VERBOSE
std::cout << "nroi[idet]:" << nroi[idet] << "\tymin:" << ymin << std::endl;
#endif
}
if (invalidroi)
break;
xmin = lastChannelX + offsetX + 1;
if ((lastChannelX + offsetX) == xmax)
xmin = xmax + 1;
}
}
#ifdef VERBOSE
std::cout << "Setting ROI :" << std::endl;
for (i = 0; i < detectors.size(); ++i) {
std::cout << "detector " << i << std::endl;
for (int j = 0; j < nroi[i]; ++j) {
std::cout << allroi[i][j].xmin << "\t" << allroi[i][j].xmax << "\t"
<< allroi[i][j].ymin << "\t" << allroi[i][j].ymax << std::endl;
}
}
#endif
//settings the rois for each detector
std::vector<int> r;
for (size_t idet = 0; idet < detectors.size(); ++idet) {
r.push_back(detectors[idet]->setROI(nroi[i], allroi[i]));
}
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
slsDetectorDefs::ROI* multiSlsDetector::getROI(int& n, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getROI(n);
}
// multi
n = 0;
int num = 0, i, j;
int ndet = detectors.size();
int maxroi = ndet * MAX_ROIS;
ROI temproi;
ROI roiLimits[maxroi];
ROI* retval = new ROI[maxroi];
ROI* temp = 0;
int index = 0;
//get each detector's roi array
for (size_t idet = 0; idet < detectors.size(); ++idet) {
temp = detectors[idet]->getROI(index);
if (temp) {
//#ifdef VERBOSE
if (index)
std::cout << "detector " << idet << ":" << std::endl;
//#endif
for (j = 0; j < index; ++j) {
//#ifdef VERBOSE
std::cout << temp[j].xmin << "\t" << temp[j].xmax << "\t"
<< temp[j].ymin << "\t" << temp[j].ymax << std::endl;
//#endif
int x = detectors[idet]->getDetectorOffset(X);
int y = detectors[idet]->getDetectorOffset(Y);
roiLimits[n].xmin = temp[j].xmin + x;
roiLimits[n].xmax = temp[j].xmax + x;
roiLimits[n].ymin = temp[j].ymin + y;
roiLimits[n].ymax = temp[j].ymin + y;
++n;
}
}
}
//empty roi
if (!n)
return NULL;
#ifdef VERBOSE
std::cout << "ROI :" << std::endl;
for (int j = 0; j < n; ++j) {
std::cout << roiLimits[j].xmin << "\t" << roiLimits[j].xmax << "\t"
<< roiLimits[j].ymin << "\t" << roiLimits[j].ymax << std::endl;
}
#endif
//combine all the adjacent rois in x direction
for (i = 0; i < n; ++i) {
//since the ones combined are replaced by -1
if ((roiLimits[i].xmin) == -1)
continue;
for (j = i + 1; j < n; ++j) {
//since the ones combined are replaced by -1
if ((roiLimits[j].xmin) == -1)
continue;
//if y values are same
if (((roiLimits[i].ymin) == (roiLimits[j].ymin)) &&
((roiLimits[i].ymax) == (roiLimits[j].ymax))) {
//if adjacent, increase [i] range and replace all [j] with -1
if ((roiLimits[i].xmax) + 1 == roiLimits[j].xmin) {
roiLimits[i].xmax = roiLimits[j].xmax;
roiLimits[j].xmin = -1;
roiLimits[j].xmax = -1;
roiLimits[j].ymin = -1;
roiLimits[j].ymax = -1;
}
//if adjacent, increase [i] range and replace all [j] with -1
else if ((roiLimits[i].xmin) - 1 == roiLimits[j].xmax) {
roiLimits[i].xmin = roiLimits[j].xmin;
roiLimits[j].xmin = -1;
roiLimits[j].xmax = -1;
roiLimits[j].ymin = -1;
roiLimits[j].ymax = -1;
}
}
}
}
#ifdef VERBOSE
std::cout << "Combined along x axis Getting ROI :" << std::endl;
std::cout << "detector " << i << std::endl;
for (int j = 0; j < n; ++j) {
std::cout << roiLimits[j].xmin << "\t" << roiLimits[j].xmax << "\t"
<< roiLimits[j].ymin << "\t" << roiLimits[j].ymax << std::endl;
}
#endif
//combine all the adjacent rois in y direction
for (i = 0; i < n; ++i) {
//since the ones combined are replaced by -1
if ((roiLimits[i].ymin) == -1)
continue;
for (j = i + 1; j < n; ++j) {
//since the ones combined are replaced by -1
if ((roiLimits[j].ymin) == -1)
continue;
//if x values are same
if (((roiLimits[i].xmin) == (roiLimits[j].xmin)) &&
((roiLimits[i].xmax) == (roiLimits[j].xmax))) {
//if adjacent, increase [i] range and replace all [j] with -1
if ((roiLimits[i].ymax) + 1 == roiLimits[j].ymin) {
roiLimits[i].ymax = roiLimits[j].ymax;
roiLimits[j].xmin = -1;
roiLimits[j].xmax = -1;
roiLimits[j].ymin = -1;
roiLimits[j].ymax = -1;
}
//if adjacent, increase [i] range and replace all [j] with -1
else if ((roiLimits[i].ymin) - 1 == roiLimits[j].ymax) {
roiLimits[i].ymin = roiLimits[j].ymin;
roiLimits[j].xmin = -1;
roiLimits[j].xmax = -1;
roiLimits[j].ymin = -1;
roiLimits[j].ymax = -1;
}
}
}
}
// get rid of -1s
for (i = 0; i < n; ++i) {
if ((roiLimits[i].xmin) != -1) {
retval[num] = roiLimits[i];
++num;
}
}
//sort final roi
for (i = 0; i < num; ++i) {
for (j = i + 1; j < num; ++j) {
if (retval[j].xmin < retval[i].xmin) {
temproi = retval[i];
retval[i] = retval[j];
retval[j] = temproi;
}
}
}
n = num;
std::cout << "\nxmin\txmax\tymin\tymax" << std::endl;
for (i = 0; i < n; ++i)
std::cout << retval[i].xmin << "\t" << retval[i].xmax << "\t"
<< retval[i].ymin << "\t" << retval[i].ymax << std::endl;
return retval;
}
int multiSlsDetector::writeAdcRegister(int addr, int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->writeAdcRegister(addr, val);
}
// multi
auto r = parallelCall(&slsDetector::writeAdcRegister, addr, val);
if (sls::allEqual(r))
return r.front();
// can't have different values
FILE_LOG(logERROR) << "Error: Different Values for function writeAdcRegister "
"(write 0x" << std::hex << val << " to addr 0x" << std::hex << addr << std::dec << ")";
setErrorMask(getErrorMask() | MULTI_HAVE_DIFFERENT_VALUES);
return -1;
}
int multiSlsDetector::activate(int const enable, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->activate(enable);
}
// multi
auto r = parallelCall(&slsDetector::activate, enable);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setDeactivatedRxrPaddingMode(int padding, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setDeactivatedRxrPaddingMode(padding);
}
// multi
auto r = parallelCall(&slsDetector::setDeactivatedRxrPaddingMode, padding);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getFlippedData(dimension d, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFlippedData(d);
}
// multi
auto r = serialCall(&slsDetector::getFlippedData, d);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setFlippedData(dimension d, int value, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setFlippedData(d, value);
}
// multi
auto r = parallelCall(&slsDetector::setFlippedData, d, value);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setAllTrimbits(int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setAllTrimbits(val);
}
// multi
auto r = parallelCall(&slsDetector::setAllTrimbits, val);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::enableGapPixels(int val, int detPos) {
if (getDetectorsType() != EIGER) {
if (val >= 0) {
FILE_LOG(logERROR) << "Function (enableGapPixels) not implemented for this detector";
setErrorMask(getErrorMask() | MULTI_OTHER_ERROR);
}
return 0;
}
// single
if (detPos >= 0) {
if (val >= 0) {
FILE_LOG(logERROR) << "Function (enableGapPixels) must be called from a multi detector level.";
setErrorMask(getErrorMask() | MUST_BE_MULTI_CMD);
return -1;
}
return detectors[detPos]->enableGapPixels(val);
}
// multi
auto r = parallelCall(&slsDetector::enableGapPixels, val);
int ret = sls::minusOneIfDifferent(r);
// update data bytes incl gap pixels
if (val != -1) {
auto r = serialCall(&slsDetector::getDataBytesInclGapPixels);
thisMultiDetector->dataBytesInclGapPixels = sls::sum(r);
// update
updateOffsets();
}
return ret;
}
int multiSlsDetector::setTrimEn(int ne, int* ene, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setTrimEn(ne, ene);
}
// multi
auto r = serialCall(&slsDetector::setTrimEn, ne, ene);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getTrimEn(int* ene, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getTrimEn(ene);
}
// multi
auto r = serialCall(&slsDetector::getTrimEn, ene);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::pulsePixel(int n, int x, int y, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->pulsePixel(n, x, y);
}
// multi
auto r = parallelCall(&slsDetector::pulsePixel, n, x, y);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::pulsePixelNMove(int n, int x, int y, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->pulsePixelNMove(n, x, y);
}
// multi
auto r = parallelCall(&slsDetector::pulsePixelNMove, n, x, y);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::pulseChip(int n, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->pulseChip(n);
}
// multi
auto r = parallelCall(&slsDetector::pulseChip, n);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::setThresholdTemperature(int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setThresholdTemperature(val);
}
// multi
auto r = parallelCall(&slsDetector::setThresholdTemperature, val);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setTemperatureControl(int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setTemperatureControl(val);
}
// multi
auto r = parallelCall(&slsDetector::setTemperatureControl, val);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setTemperatureEvent(int val, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setTemperatureEvent(val);
}
// multi
auto r = parallelCall(&slsDetector::setTemperatureEvent, val);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setStoragecellStart(int pos, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setStoragecellStart(pos);
}
// multi
auto r = parallelCall(&slsDetector::setStoragecellStart, pos);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::programFPGA(std::string fname, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->programFPGA(fname);
}
// multi
auto r = serialCall(&slsDetector::programFPGA, fname);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::resetFPGA(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->resetFPGA();
}
// multi
auto r = parallelCall(&slsDetector::resetFPGA);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::powerChip(int ival, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->powerChip(ival);
}
// multi
auto r = parallelCall(&slsDetector::powerChip, ival);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setAutoComparatorDisableMode(int ival, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setAutoComparatorDisableMode(ival);
}
// multi
auto r = parallelCall(&slsDetector::setAutoComparatorDisableMode, ival);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getChanRegs(double* retval, bool fromDetector, int detPos) {
int offset = 0;
std::vector<int> r;
for (auto* it : detectors) {
int nch = it->getTotalNumberOfChannels();
double result[nch];
r.push_back(it->getChanRegs(result, fromDetector));
memcpy(retval + offset, result, nch * sizeof(double));
}
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::calibratePedestal(int frames, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->calibratePedestal(frames);
}
// multi
auto r = parallelCall(&slsDetector::calibratePedestal, frames);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setRateCorrection(int t, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setRateCorrection(t);
}
// multi
auto r = parallelCall(&slsDetector::setRateCorrection, t);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::getRateCorrection(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getRateCorrection();
}
// multi
auto r = parallelCall(&slsDetector::getRateCorrection);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::printReceiverConfiguration(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->printReceiverConfiguration();
}
// multi
auto r = parallelCall(&slsDetector::printReceiverConfiguration);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::setReceiverOnline(int off, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverOnline(off);
}
// multi
if (off != GET_ONLINE_FLAG) {
auto r = parallelCall(&slsDetector::setReceiverOnline, off);
thisMultiDetector->receiverOnlineFlag = sls::minusOneIfDifferent(r);
}
return thisMultiDetector->receiverOnlineFlag;
}
std::string multiSlsDetector::checkReceiverOnline(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->checkReceiverOnline();
}
// multi
auto r = parallelCall(&slsDetector::checkReceiverOnline);
return sls::concatenateNonEmptyStrings(r);
}
int multiSlsDetector::lockReceiver(int lock, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->lockReceiver(lock);
}
// multi
auto r = parallelCall(&slsDetector::lockReceiver, lock);
return sls::minusOneIfDifferent(r);
}
std::string multiSlsDetector::getReceiverLastClientIP(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverLastClientIP();
}
// multi
auto r = parallelCall(&slsDetector::getReceiverLastClientIP);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::exitReceiver(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->exitReceiver();
}
// multi
auto r = parallelCall(&slsDetector::exitReceiver);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
std::string multiSlsDetector::getFilePath(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFilePath();
}
// multi
auto r = serialCall(&slsDetector::getFilePath);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setFilePath(std::string s, int detPos) {
if (s.empty())
return getFilePath(detPos);
// single
if (detPos >= 0) {
return detectors[detPos]->setFilePath(s);
}
// multi
auto r = parallelCall(&slsDetector::setFilePath, s);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::getFileName(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFileName();
}
// multi
auto r = serialCall(&slsDetector::getFileName);
return sls::concatenateIfDifferent(r);
}
std::string multiSlsDetector::setFileName(std::string s, int detPos) {
if (s.empty())
return getFileName(detPos);
// single
if (detPos >= 0) {
return detectors[detPos]->setFileName(s);
}
// multi
auto r = parallelCall(&slsDetector::setFileName, s);
return sls::concatenateIfDifferent(r);
}
int multiSlsDetector::setReceiverFramesPerFile(int f, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverFramesPerFile(f);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverFramesPerFile, f);
return sls::minusOneIfDifferent(r);
}
slsReceiverDefs::frameDiscardPolicy multiSlsDetector::setReceiverFramesDiscardPolicy(
frameDiscardPolicy f, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverFramesDiscardPolicy(f);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverFramesDiscardPolicy, f);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverPartialFramesPadding(int f, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverPartialFramesPadding(f);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverPartialFramesPadding, f);
return sls::minusOneIfDifferent(r);
}
slsReceiverDefs::fileFormat multiSlsDetector::getFileFormat(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFileFormat();
}
// multi
auto r = serialCall(&slsDetector::getFileFormat);
return sls::minusOneIfDifferent(r);
}
slsReceiverDefs::fileFormat multiSlsDetector::setFileFormat(fileFormat f, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setFileFormat(f);
}
// multi
auto r = parallelCall(&slsDetector::setFileFormat, f);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::getFileIndex(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFileIndex();
}
// multi
auto r = serialCall(&slsDetector::getFileIndex);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::incrementFileIndex(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->incrementFileIndex();
}
// multi
auto r = parallelCall(&slsDetector::incrementFileIndex);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setFileIndex(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setFileIndex(i);
}
// multi
auto r = parallelCall(&slsDetector::setFileIndex, i);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::startReceiver(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->startReceiver();
}
// multi
auto r = parallelCall(&slsDetector::startReceiver);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::stopReceiver(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->stopReceiver();
}
// multi
auto r = parallelCall(&slsDetector::stopReceiver);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
slsDetectorDefs::runStatus multiSlsDetector::getReceiverStatus(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverStatus();
}
// multi
auto r = parallelCall(&slsDetector::getReceiverStatus);
if (sls::allEqual(r))
return r.front();
if (sls::anyEqualTo(r, ERROR))
return ERROR;
for (const auto& value : r)
if (value != IDLE)
return value;
return IDLE;
}
int multiSlsDetector::getFramesCaughtByReceiver(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getFramesCaughtByReceiver();
}
// multi
auto r = parallelCall(&slsDetector::getFramesCaughtByReceiver);
// prevent divide by all or do not take avg when -1 for "did not connect"
if ((!detectors.size()) || (sls::anyEqualTo(r, -1)))
return -1;
// return average
return ((sls::sum(r))/(int)detectors.size());
}
int multiSlsDetector::getReceiverCurrentFrameIndex(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->getReceiverCurrentFrameIndex();
}
// multi
auto r = parallelCall(&slsDetector::getReceiverCurrentFrameIndex);
// prevent divide by all or do not take avg when -1 for "did not connect"
if ((!detectors.size()) || (sls::anyEqualTo(r, -1)))
return -1;
// return average
return ((sls::sum(r))/(int)detectors.size());
}
int multiSlsDetector::resetFramesCaught(int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->resetFramesCaught();
}
// multi
auto r = parallelCall(&slsDetector::resetFramesCaught);
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::createReceivingDataSockets(const bool destroy) {
if (destroy) {
cprintf(MAGENTA, "Going to destroy data sockets\n");
//close socket
for (auto* it : zmqSocket)
delete it;
zmqSocket.clear();
client_downstream = false;
FILE_LOG(logINFO) << "Destroyed Receiving Data Socket(s)";
return OK;
}
cprintf(MAGENTA, "Going to create data sockets\n");
size_t numSockets = detectors.size();
size_t numSocketsPerDetector = 1;
if (getDetectorsType() == EIGER) {
numSocketsPerDetector = 2;
}
numSockets *= numSocketsPerDetector;
for (size_t iSocket = 0; iSocket < numSockets; ++iSocket) {
uint32_t portnum = stoi(detectors[iSocket / numSocketsPerDetector]->getClientStreamingPort());
portnum += (iSocket % numSocketsPerDetector);
try {
ZmqSocket* z = new ZmqSocket(
detectors[iSocket / numSocketsPerDetector]->getClientStreamingIP().c_str(),
portnum);
zmqSocket.push_back(z);
printf("Zmq Client[%lu] at %s\n", iSocket, z->GetZmqServerAddress());
} catch (...) {
cprintf(RED, "Error: Could not create Zmq socket on port %d\n", portnum);
createReceivingDataSockets(true);
return FAIL;
}
}
client_downstream = true;
FILE_LOG(logINFO) << "Receiving Data Socket(s) created";
return OK;
}
void multiSlsDetector::readFrameFromReceiver() {
int nX = thisMultiDetector->numberOfDetector[X]; // to copy data in multi module
int nY = thisMultiDetector->numberOfDetector[Y]; // for eiger, to reverse the data
bool gappixelsenable = false;
bool eiger = false;
if (getDetectorsType() == EIGER) {
eiger = true;
nX *= 2;
gappixelsenable = detectors[0]->enableGapPixels(-1) >= 1 ? true : false;
}
bool runningList[zmqSocket.size()], connectList[zmqSocket.size()];
int numRunning = 0;
for (size_t i = 0; i < zmqSocket.size(); ++i) {
if (!zmqSocket[i]->Connect()) {
connectList[i] = true;
runningList[i] = true;
++numRunning;
} else {
// to remember the list it connected to, to disconnect later
connectList[i] = false;
cprintf(RED, "Error: Could not connect to socket %s\n",
zmqSocket[i]->GetZmqServerAddress());
runningList[i] = false;
}
}
int numConnected = numRunning;
bool data = false;
char* image = NULL;
char* multiframe = NULL;
char* multigappixels = NULL;
int multisize = 0;
// only first message header
uint32_t size = 0, nPixelsX = 0, nPixelsY = 0, dynamicRange = 0;
float bytesPerPixel = 0;
// header info every header
std::string currentFileName = "";
uint64_t currentAcquisitionIndex = -1, currentFrameIndex = -1, currentFileIndex = -1;
uint32_t currentSubFrameIndex = -1, coordX = -1, coordY = -1, flippedDataX = -1;
//wait for real time acquisition to start
bool running = true;
sem_wait(&sem_newRTAcquisition);
if (checkJoinThread())
running = false;
//exit when checkJoinThread() (all sockets done)
while (running) {
// reset data
data = false;
if (multiframe != NULL)
memset(multiframe, 0xFF, multisize);
//get each frame
for (unsigned int isocket = 0; isocket < zmqSocket.size(); ++isocket) {
//if running
if (runningList[isocket]) {
// HEADER
{
rapidjson::Document doc;
if (!zmqSocket[isocket]->ReceiveHeader(isocket, doc,
SLS_DETECTOR_JSON_HEADER_VERSION)) {
// parse error, version error or end of acquisition for socket
runningList[isocket] = false;
--numRunning;
continue;
}
// if first message, allocate (all one time stuff)
if (image == NULL) {
// allocate
size = doc["size"].GetUint();
multisize = size * zmqSocket.size();
image = new char[size];
multiframe = new char[multisize];
memset(multiframe, 0xFF, multisize);
// dynamic range
dynamicRange = doc["bitmode"].GetUint();
bytesPerPixel = (float)dynamicRange / 8;
// shape
nPixelsX = doc["shape"][0].GetUint();
nPixelsY = doc["shape"][1].GetUint();
#ifdef VERBOSE
cprintf(BLUE, "(Debug) One Time Header Info:\n"
"size: %u\n"
"multisize: %u\n"
"dynamicRange: %u\n"
"bytesPerPixel: %f\n"
"nPixelsX: %u\n"
"nPixelsY: %u\n",
size, multisize, dynamicRange, bytesPerPixel,
nPixelsX, nPixelsY);
#endif
}
// each time, parse rest of header
currentFileName = doc["fname"].GetString();
currentAcquisitionIndex = doc["acqIndex"].GetUint64();
currentFrameIndex = doc["fIndex"].GetUint64();
currentFileIndex = doc["fileIndex"].GetUint64();
currentSubFrameIndex = doc["expLength"].GetUint();
coordY = doc["row"].GetUint();
coordX = doc["column"].GetUint();
if (eiger)
coordY = (nY - 1) - coordY;
//std::cout << "X:" << doc["row"].GetUint() <<" Y:"<<doc["column"].GetUint();
flippedDataX = doc["flippedDataX"].GetUint();
#ifdef VERBOSE
cprintf(BLUE, "(Debug) Header Info:\n"
"currentFileName: %s\n"
"currentAcquisitionIndex: %lu\n"
"currentFrameIndex: %lu\n"
"currentFileIndex: %lu\n"
"currentSubFrameIndex: %u\n"
"coordX: %u\n"
"coordY: %u\n"
"flippedDataX: %u\n",
currentFileName.c_str(), currentAcquisitionIndex,
currentFrameIndex, currentFileIndex, currentSubFrameIndex,
coordX, coordY,
flippedDataX);
#endif
}
// DATA
data = true;
zmqSocket[isocket]->ReceiveData(isocket, image, size);
// creating multi image
{
uint32_t xoffset = coordX * nPixelsX * bytesPerPixel;
uint32_t yoffset = coordY * nPixelsY;
uint32_t singledetrowoffset = nPixelsX * bytesPerPixel;
uint32_t rowoffset = nX * singledetrowoffset;
#ifdef VERBOSE
cprintf(BLUE, "(Debug) Multi Image Info:\n"
"xoffset: %u\n"
"yoffset: %u\n"
"singledetrowoffset: %u\n"
"rowoffset: %u\n",
xoffset, yoffset, singledetrowoffset, rowoffset);
#endif
if (eiger && flippedDataX) {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy(((char*)multiframe) +
((yoffset + (nPixelsY - 1 - i)) * rowoffset) + xoffset,
(char*)image + (i * singledetrowoffset),
singledetrowoffset);
}
} else {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy(((char*)multiframe) +
((yoffset + i) * rowoffset) + xoffset,
(char*)image + (i * singledetrowoffset),
singledetrowoffset);
}
}
}
}
}
//send data to callback
if (data) {
// 4bit gap pixels
if (dynamicRange == 4 && gappixelsenable) {
int n = processImageWithGapPixels(multiframe, multigappixels);
nPixelsX = thisMultiDetector->numberOfChannelInclGapPixels[X];
nPixelsY = thisMultiDetector->numberOfChannelInclGapPixels[Y];
thisData = new detectorData(getCurrentProgress(),
currentFileName.c_str(), nPixelsX, nPixelsY,
multigappixels, n, dynamicRange, currentFileIndex);
}
// normal pixels
else {
thisData = new detectorData(getCurrentProgress(),
currentFileName.c_str(), nPixelsX, nPixelsY,
multiframe, multisize, dynamicRange, currentFileIndex);
}
dataReady(thisData, currentFrameIndex,
((dynamicRange == 32) ? currentSubFrameIndex : -1),
pCallbackArg);
delete thisData;
setCurrentProgress(currentAcquisitionIndex + 1);
}
//all done
if (!numRunning) {
// let main thread know that all dummy packets have been received
//(also from external process),
// main thread can now proceed to measurement finished call back
sem_post(&sem_endRTAcquisition);
// wait for next scan/measurement, else join thread
sem_wait(&sem_newRTAcquisition);
//done with complete acquisition
if (checkJoinThread())
running = false;
else {
//starting a new scan/measurement (got dummy data)
for (size_t i = 0; i < zmqSocket.size(); ++i)
runningList[i] = connectList[i];
numRunning = numConnected;
}
}
}
// Disconnect resources
for (size_t i= 0; i < zmqSocket.size(); ++i)
if (connectList[i])
zmqSocket[i]->Disconnect();
//free resources
if (image != NULL)
delete[] image;
if (multiframe != NULL)
delete[] multiframe;
if (multigappixels != NULL)
delete[] multigappixels;
}
int multiSlsDetector::processImageWithGapPixels(char* image, char*& gpImage) {
// eiger 4 bit mode
int nxb = thisMultiDetector->numberOfDetector[X] * (512 + 3);
int nyb = thisMultiDetector->numberOfDetector[Y] * (256 + 1);
int gapdatabytes = nxb * nyb;
int nxchip = thisMultiDetector->numberOfDetector[X] * 4;
int nychip = thisMultiDetector->numberOfDetector[Y] * 1;
// allocate
if (gpImage == NULL)
gpImage = new char[gapdatabytes];
// fill value
memset(gpImage, 0xFF, gapdatabytes);
const int b1chipx = 128;
const int b1chipy = 256;
char* src = 0;
char* dst = 0;
// copying line by line
src = image;
dst = gpImage;
for (int row = 0; row < nychip; ++row) { // for each chip in a row
for (int ichipy = 0; ichipy < b1chipy; ++ichipy) { //for each row in a chip
for (int col = 0; col < nxchip; ++col) {
memcpy(dst, src, b1chipx);
src += b1chipx;
dst += b1chipx;
if ((col + 1) % 4)
++dst;
}
}
dst += (2 * nxb);
}
// vertical filling of values
{
uint8_t temp, g1, g2;
int mod;
dst = gpImage;
for (int row = 0; row < nychip; ++row) { // for each chip in a row
for (int ichipy = 0; ichipy < b1chipy; ++ichipy) { //for each row in a chip
for (int col = 0; col < nxchip; ++col) {
dst += b1chipx;
mod = (col + 1) % 4;
// copy gap pixel(chip 0, 1, 2)
if (mod) {
// neighbouring gap pixels to left
temp = (*((uint8_t*)(dst - 1)));
g1 = ((temp & 0xF) / 2);
(*((uint8_t*)(dst - 1))) = (temp & 0xF0) + g1;
// neighbouring gap pixels to right
temp = (*((uint8_t*)(dst + 1)));
g2 = ((temp >> 4) / 2);
(*((uint8_t*)(dst + 1))) = (g2 << 4) + (temp & 0x0F);
// gap pixels
(*((uint8_t*)dst)) = (g1 << 4) + g2;
// increment to point to proper chip destination
++dst;
}
}
}
dst += (2 * nxb);
}
}
//return gapdatabytes;
// horizontal filling
{
uint8_t temp, g1, g2;
char* dst_prevline = 0;
dst = gpImage;
for (int row = 0; row < nychip; ++row) { // for each chip in a row
dst += (b1chipy * nxb);
// horizontal copying of gap pixels from neighboring past line (bottom parts)
if (row < nychip - 1) {
dst_prevline = dst - nxb;
for (int gapline = 0; gapline < nxb; ++gapline) {
temp = (*((uint8_t*)dst_prevline));
g1 = ((temp >> 4) / 2);
g2 = ((temp & 0xF) / 2);
(*((uint8_t*)dst_prevline)) = (g1 << 4) + g2;
(*((uint8_t*)dst)) = (*((uint8_t*)dst_prevline));
++dst;
++dst_prevline;
}
}
// horizontal copying of gap pixels from neihboring future line (top part)
if (row > 0) {
dst -= ((b1chipy + 1) * nxb);
dst_prevline = dst + nxb;
for (int gapline = 0; gapline < nxb; ++gapline) {
temp = (*((uint8_t*)dst_prevline));
g1 = ((temp >> 4) / 2);
g2 = ((temp & 0xF) / 2);
temp = (g1 << 4) + g2;
(*((uint8_t*)dst_prevline)) = temp;
(*((uint8_t*)dst)) = temp;
++dst;
++dst_prevline;
}
dst += ((b1chipy + 1) * nxb);
}
dst += nxb;
}
}
return gapdatabytes;
}
int multiSlsDetector::enableWriteToFile(int enable, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->enableWriteToFile(enable);
}
// multi
auto r = parallelCall(&slsDetector::enableWriteToFile, enable);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::overwriteFile(int enable, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->overwriteFile(enable);
}
// multi
auto r = parallelCall(&slsDetector::overwriteFile, enable);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverStreamingFrequency(int freq, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverStreamingFrequency(freq);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverStreamingFrequency, freq);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverStreamingTimer(int time_in_ms, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverStreamingTimer(time_in_ms);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverStreamingTimer, time_in_ms);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::enableDataStreamingToClient(int enable) {
if (enable >= 0) {
//destroy data threads
if (!enable)
createReceivingDataSockets(true);
//create data threads
else {
if (createReceivingDataSockets() == FAIL) {
FILE_LOG(logERROR) << "Could not create data threads in client.";
detectors[0]->setErrorMask((detectors[0]->getErrorMask()) |
(DATA_STREAMING));
//only for the first det as theres no general one
setErrorMask(getErrorMask() | (1 << 0));
}
}
}
return client_downstream;
}
int multiSlsDetector::enableDataStreamingFromReceiver(int enable, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->enableDataStreamingFromReceiver(enable);
}
// multi
auto r = parallelCall(&slsDetector::enableDataStreamingFromReceiver, enable);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::enableTenGigabitEthernet(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->enableTenGigabitEthernet(i);
}
// multi
auto r = parallelCall(&slsDetector::enableTenGigabitEthernet, i);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverFifoDepth(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverFifoDepth(i);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverFifoDepth, i);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setReceiverSilentMode(int i, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setReceiverSilentMode(i);
}
// multi
auto r = parallelCall(&slsDetector::setReceiverSilentMode, i);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setCTBPattern(std::string fname, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBPattern(fname);
}
// multi
int addr = 0;
FILE* fd = fopen(fname.c_str(), "r");
if (fd <= 0) {
FILE_LOG(logERROR) << "Could not open file";
setErrorMask(getErrorMask() | MULTI_OTHER_ERROR);
return -1;
}
uint64_t word;
while (fread(&word, sizeof(word), 1, fd)) {
serialCall(&slsDetector::setCTBWord, addr, word);
++addr;
}
fclose(fd);
return addr;
}
uint64_t multiSlsDetector::setCTBWord(int addr, uint64_t word, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBWord(addr, word);
}
// multi
auto r = parallelCall(&slsDetector::setCTBWord, addr, word);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setCTBPatLoops(int level, int& start, int& stop, int& n, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBPatLoops(level, start, stop, n);
}
// multi
std::vector<int> r;
for (auto* it : detectors) {
r.push_back(it->setCTBPatLoops(level, start, stop, n));
}
return sls::allEqualTo(r, static_cast<int>(OK)) ? OK : FAIL;
}
int multiSlsDetector::setCTBPatWaitAddr(int level, int addr, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBPatWaitAddr(level, addr);
}
// multi
auto r = parallelCall(&slsDetector::setCTBPatWaitAddr, level, addr);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::setCTBPatWaitTime(int level, uint64_t t, int detPos) {
// single
if (detPos >= 0) {
return detectors[detPos]->setCTBPatWaitTime(level, t);
}
// multi
auto r = parallelCall(&slsDetector::setCTBPatWaitTime, level, t);
return sls::minusOneIfDifferent(r);
}
int multiSlsDetector::retrieveDetectorSetup(std::string const fname1, int level){
slsDetectorCommand *cmd;
int skip=0;
std::string fname;
std::string str;
std::ifstream infile;
int iargval;
int interrupt=0;
char *args[10];
char myargs[10][1000];
;
std::string sargname, sargval;
int iline=0;
if (level==2) {
#ifdef VERBOSE
std::cout << "config file read" << std::endl;
#endif
fname=fname1+std::string(".det");
} else
fname=fname1;
infile.open(fname.c_str(), std::ios_base::in);
if (infile.is_open()) {
cmd=new slsDetectorCommand(this);
while (infile.good() and interrupt==0) {
sargname="none";
sargval="0";
getline(infile,str);
iline++;
#ifdef VERBOSE
std::cout<< str << std::endl;
#endif
if (str.find('#')!=std::string::npos) {
#ifdef VERBOSE
std::cout<< "Line is a comment " << std::endl;
std::cout<< str << std::endl;
#endif
continue;
} else {
std::istringstream ssstr(str);
iargval=0;
while (ssstr.good()) {
ssstr >> sargname;
// if (ssstr.good()) {
strcpy(myargs[iargval],sargname.c_str());
args[iargval]=myargs[iargval];
#ifdef VERBOSE
std::cout<< args[iargval] << std::endl;
#endif
iargval++;
// }
skip=0;
}
if (level!=2) {
if (std::string(args[0])==std::string("trimbits"))
skip=1;
}
if (skip==0)
cmd->executeLine(iargval,args,PUT_ACTION);
}
iline++;
}
delete cmd;
infile.close();
} else {
std::cout<< "Error opening " << fname << " for reading" << std::endl;
return FAIL;
}
#ifdef VERBOSE
std::cout<< "Read " << iline << " lines" << std::endl;
#endif
if (getErrorMask())
return FAIL;
return OK;
}
int multiSlsDetector::dumpDetectorSetup(std::string const fname, int level){
slsDetectorCommand *cmd;
detectorType type = getDetectorsType();
std::string names[100];
int nvar=0;
// common config
names[nvar++]="fname";
names[nvar++]="index";
names[nvar++]="enablefwrite";
names[nvar++]="overwrite";
names[nvar++]="dr";
names[nvar++]="settings";
names[nvar++]="exptime";
names[nvar++]="period";
names[nvar++]="frames";
names[nvar++]="cycles";
names[nvar++]="measurements";
names[nvar++]="timing";
switch (type) {
case EIGER:
names[nvar++]="flags";
names[nvar++]="clkdivider";
names[nvar++]="threshold";
names[nvar++]="ratecorr";
names[nvar++]="trimbits";
break;
case GOTTHARD:
names[nvar++]="delay";
break;
case JUNGFRAU:
names[nvar++]="delay";
names[nvar++]="clkdivider";
break;
case JUNGFRAUCTB:
names[nvar++]="dac:0";
names[nvar++]="dac:1";
names[nvar++]="dac:2";
names[nvar++]="dac:3";
names[nvar++]="dac:4";
names[nvar++]="dac:5";
names[nvar++]="dac:6";
names[nvar++]="dac:7";
names[nvar++]="dac:8";
names[nvar++]="dac:9";
names[nvar++]="dac:10";
names[nvar++]="dac:11";
names[nvar++]="dac:12";
names[nvar++]="dac:13";
names[nvar++]="dac:14";
names[nvar++]="dac:15";
names[nvar++]="adcvpp";
names[nvar++]="adcclk";
names[nvar++]="clkdivider";
names[nvar++]="adcphase";
names[nvar++]="adcpipeline";
names[nvar++]="adcinvert"; //
names[nvar++]="adcdisable";
names[nvar++]="patioctrl";
names[nvar++]="patclkctrl";
names[nvar++]="patlimits";
names[nvar++]="patloop0";
names[nvar++]="patnloop0";
names[nvar++]="patwait0";
names[nvar++]="patwaittime0";
names[nvar++]="patloop1";
names[nvar++]="patnloop1";
names[nvar++]="patwait1";
names[nvar++]="patwaittime1";
names[nvar++]="patloop2";
names[nvar++]="patnloop2";
names[nvar++]="patwait2";
names[nvar++]="patwaittime2";
break;
default:
break;
}
int iv=0;
std::string fname1;
std::ofstream outfile;
char *args[4];
for (int ia=0; ia<4; ia++) {
args[ia]=new char[1000];
}
if (level==2) {
fname1=fname+std::string(".config");
writeConfigurationFile(fname1);
fname1=fname+std::string(".det");
} else
fname1=fname;
outfile.open(fname1.c_str(),std::ios_base::out);
if (outfile.is_open()) {
cmd=new slsDetectorCommand(this);
for (iv=0; iv<nvar; iv++) {
strcpy(args[0],names[iv].c_str());
outfile << names[iv] << " " << cmd->executeLine(1,args,GET_ACTION) << std::endl;
}
delete cmd;
outfile.close();
}
else {
std::cout<< "Error opening parameters file " << fname1 << " for writing" << std::endl;
return FAIL;
}
#ifdef VERBOSE
std::cout<< "wrote " <<iv << " lines to "<< fname1 << std::endl;
#endif
return OK;
}
void multiSlsDetector::registerAcquisitionFinishedCallback(int( *func)(double,int, void*), void *pArg) {
acquisition_finished=func;
acqFinished_p=pArg;
}
void multiSlsDetector::registerMeasurementFinishedCallback(int( *func)(int,int, void*), void *pArg) {
measurement_finished=func;
measFinished_p=pArg;
}
void multiSlsDetector::registerProgressCallback(int( *func)(double,void*), void *pArg) {
progress_call=func;
pProgressCallArg=pArg;
}
void multiSlsDetector::registerDataCallback(int( *userCallback)(detectorData*, int, int, void*),
void *pArg) {
dataReady = userCallback;
pCallbackArg = pArg;
if (setReceiverOnline() == slsDetectorDefs::ONLINE_FLAG) {
enableDataStreamingToClient(1);
enableDataStreamingFromReceiver(1);
}
}
int multiSlsDetector::setTotalProgress() {
int nf=1, nc=1, ns=1, nm=1;
if (thisMultiDetector->timerValue[FRAME_NUMBER])
nf=thisMultiDetector->timerValue[FRAME_NUMBER];
if (thisMultiDetector->timerValue[CYCLES_NUMBER]>0)
nc=thisMultiDetector->timerValue[CYCLES_NUMBER];
if (thisMultiDetector->timerValue[STORAGE_CELL_NUMBER]>0)
ns=thisMultiDetector->timerValue[STORAGE_CELL_NUMBER]+1;
if (thisMultiDetector->timerValue[MEASUREMENTS_NUMBER]>0)
nm=thisMultiDetector->timerValue[MEASUREMENTS_NUMBER];
totalProgress=nm*nf*nc*ns;
#ifdef VERBOSE
std::cout << "nm " << nm << std::endl;
std::cout << "nf " << nf << std::endl;
std::cout << "nc " << nc << std::endl;
std::cout << "ns " << ns << std::endl;
std::cout << "Set total progress " << totalProgress << std::endl;
#endif
return totalProgress;
}
double multiSlsDetector::getCurrentProgress() {
pthread_mutex_lock(&mp);
#ifdef VERBOSE
std::cout << progressIndex << " / " << totalProgress << std::endl;
#endif
double p=100.*((double)progressIndex)/((double)totalProgress);
pthread_mutex_unlock(&mp);
return p;
}
void multiSlsDetector::incrementProgress() {
pthread_mutex_lock(&mp);
progressIndex++;
std::cout << std::fixed << std::setprecision(2) << std::setw (6)
<< 100.*((double)progressIndex)/((double)totalProgress) << " \%";
pthread_mutex_unlock(&mp);
#ifdef VERBOSE
std::cout << std::endl;
#else
std::cout << "\r" << std::flush;
#endif
}
void multiSlsDetector::setCurrentProgress(int i){
pthread_mutex_lock(&mp);
progressIndex=i;
std::cout << std::fixed << std::setprecision(2) << std::setw (6)
<< 100.*((double)progressIndex)/((double)totalProgress) << " \%";
pthread_mutex_unlock(&mp);
#ifdef VERBOSE
std::cout << std::endl;
#else
std::cout << "\r" << std::flush;
#endif
}
int multiSlsDetector::acquire(){
//ensure acquire isnt started multiple times by same client
if (isAcquireReady() == FAIL)
return FAIL;
#ifdef VERBOSE
struct timespec begin,end;
clock_gettime(CLOCK_REALTIME, &begin);
#endif
//in the real time acquisition loop, processing thread will wait for a post each time
sem_init(&sem_newRTAcquisition,1,0);
//in the real time acquistion loop, main thread will wait for processing thread to be done each time (which in turn waits for receiver/ext process)
sem_init(&sem_endRTAcquisition,1,0);
bool receiver = (setReceiverOnline()==ONLINE_FLAG);
progressIndex=0;
thisMultiDetector->stoppedFlag=0;
void *status;
setJoinThread(0);
int nm=thisMultiDetector->timerValue[MEASUREMENTS_NUMBER];
if (nm<1)
nm=1;
// verify receiver is idle
if(receiver){
pthread_mutex_lock(&mg);
if(getReceiverStatus()!=IDLE)
if(stopReceiver() == FAIL)
thisMultiDetector->stoppedFlag=1;
pthread_mutex_unlock(&mg);
}
// start processing thread
if (thisMultiDetector->threadedProcessing)
startProcessingThread();
//resets frames caught in receiver
if(receiver){
pthread_mutex_lock(&mg);
if (resetFramesCaught() == FAIL)
thisMultiDetector->stoppedFlag=1;
pthread_mutex_unlock(&mg);
}
// loop through measurements
for(int im=0;im<nm;++im) {
if (thisMultiDetector->stoppedFlag)
break;
// start receiver
if(receiver){
pthread_mutex_lock(&mg);
if(startReceiver() == FAIL) {
std::cout << "Start receiver failed " << std::endl;
stopReceiver();
thisMultiDetector->stoppedFlag=1;
pthread_mutex_unlock(&mg);
break;
}
pthread_mutex_unlock(&mg);
//let processing thread listen to these packets
sem_post(&sem_newRTAcquisition);
}
// detector start
startAndReadAll();
if (thisMultiDetector->threadedProcessing==0){
processData();
}
// stop receiver
if(receiver){
pthread_mutex_lock(&mg);
if (stopReceiver() == FAIL) {
thisMultiDetector->stoppedFlag = 1;
pthread_mutex_unlock(&mg);
} else {
pthread_mutex_unlock(&mg);
if (thisMultiDetector->threadedProcessing && dataReady)
sem_wait(&sem_endRTAcquisition); // waits for receiver's external process to be done sending data to gui
}
}
int findex = 0;
pthread_mutex_lock(&mg);
findex = incrementFileIndex();
pthread_mutex_unlock(&mg);
if (measurement_finished){
pthread_mutex_lock(&mg);
measurement_finished(im,findex,measFinished_p);
pthread_mutex_unlock(&mg);
}
if (thisMultiDetector->stoppedFlag) {
break;
}
}//end measurements loop im
// waiting for the data processing thread to finish!
if (thisMultiDetector->threadedProcessing) {
setJoinThread(1);
//let processing thread continue and checkjointhread
sem_post(&sem_newRTAcquisition);
pthread_join(dataProcessingThread, &status);
}
if(progress_call)
progress_call(getCurrentProgress(),pProgressCallArg);
if (acquisition_finished)
acquisition_finished(getCurrentProgress(),getRunStatus(),acqFinished_p);
sem_destroy(&sem_newRTAcquisition);
sem_destroy(&sem_endRTAcquisition);
#ifdef VERBOSE
clock_gettime(CLOCK_REALTIME, &end);
std::cout << "Elapsed time for acquisition:" << (( end.tv_sec - begin.tv_sec ) + ( end.tv_nsec - begin.tv_nsec ) / 1000000000.0) << " seconds" << std::endl;
#endif
setAcquiringFlag(false);
return OK;
}
int multiSlsDetector::setThreadedProcessing(int enable) {
if (enable>=0)
thisMultiDetector->threadedProcessing=enable;
return thisMultiDetector->threadedProcessing;
}
void multiSlsDetector::startProcessingThread() {
setTotalProgress();
#ifdef VERBOSE
std::cout << "start thread stuff" << std::endl;
#endif
pthread_attr_t tattr;
int ret;
sched_param param, mparam;
int policy= SCHED_OTHER;
// set the priority; others are unchanged
//newprio = 30;
mparam.sched_priority =1;
param.sched_priority =1;
/* Initialize and set thread detached attribute */
pthread_attr_init(&tattr);
pthread_attr_setdetachstate(&tattr, PTHREAD_CREATE_JOINABLE);
ret = pthread_setschedparam(pthread_self(), policy, &mparam);
ret = pthread_create(&dataProcessingThread, &tattr,startProcessData, (void*)this);
if (ret)
printf("ret %d\n", ret);
pthread_attr_destroy(&tattr);
// scheduling parameters of target thread
ret = pthread_setschedparam(dataProcessingThread, policy, &param);
}
void* multiSlsDetector::startProcessData(void *n) {
((multiSlsDetector*)n)->processData();
return n;
}
void* multiSlsDetector::processData() {
if(setReceiverOnline()==OFFLINE_FLAG){
return 0;
} //receiver
else{
//cprintf(RED,"In post processing threads\n");
if(dataReady) {
readFrameFromReceiver();
}
//only update progress
else{
int caught = -1;
char c;
int ifp;
while(true){
// set only in startThread
if (thisMultiDetector->threadedProcessing==0)
setTotalProgress();
// to exit acquire by typing q
ifp=kbhit();
if (ifp!=0){
c=fgetc(stdin);
if (c=='q') {
std::cout<<"Caught the command to stop acquisition"<<std::endl;
stopAcquisition();
}
}
//get progress
if(setReceiverOnline() == ONLINE_FLAG){
pthread_mutex_lock(&mg);
caught = getFramesCaughtByReceiver(0);
pthread_mutex_unlock(&mg);
}
//updating progress
if(caught!= -1){
setCurrentProgress(caught);
#ifdef VERY_VERY_DEBUG
std::cout << "caught:" << caught << std::endl;
#endif
}
// exiting loop
if (thisMultiDetector->threadedProcessing==0)
break;
if (checkJoinThread()){
break;
}
usleep(100 * 1000); //20ms need this else connecting error to receiver (too fast)
}
}
}
return 0;
}
int multiSlsDetector::checkJoinThread() {
int retval;
pthread_mutex_lock(&mp);
retval=jointhread;
pthread_mutex_unlock(&mp);
return retval;
}
void multiSlsDetector::setJoinThread( int v) {
pthread_mutex_lock(&mp);
jointhread=v;
pthread_mutex_unlock(&mp);
}
int multiSlsDetector::kbhit() {
struct timeval tv;
fd_set fds;
tv.tv_sec = 0;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(STDIN_FILENO, &fds); //STDIN_FILENO is 0
select(STDIN_FILENO+1, &fds, NULL, NULL, &tv);
return FD_ISSET(STDIN_FILENO, &fds);
}
bool multiSlsDetector::isDetectorIndexOutOfBounds(int detPos) {
// position exceeds multi list size
if (detPos >= (int)detectors.size()) {
FILE_LOG(logERROR) << "Position " << detPos << " is out of bounds with "
"a detector list of " << detectors.size();
setErrorMask(getErrorMask() | MULTI_POS_EXCEEDS_LIST);
return true;
}
return false;
}