2018-09-28 11:47:25 +02:00

265 lines
7.6 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2012 (1.2)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Weighted average: definition and relationship with </TITLE>
<META NAME="description" CONTENT="Weighted average: definition and relationship with ">
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2012">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
<LINK REL="next" HREF="node58.html">
<LINK REL="previous" HREF="node56.html">
<LINK REL="up" HREF="node54.html">
<LINK REL="next" HREF="node58.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html897"
HREF="node58.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html893"
HREF="node54.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html887"
HREF="node56.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html895"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html898"
HREF="node58.html">Straight Poisson (zero-skipping) weighted</A>
<B> Up:</B> <A NAME="tex2html894"
HREF="node54.html">Average vs. weighted average</A>
<B> Previous:</B> <A NAME="tex2html888"
HREF="node56.html">Zero-skipping average</A>
&nbsp; <B> <A NAME="tex2html896"
HREF="node1.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION00625300000000000000">
Weighted average: definition and relationship with <IMG
WIDTH="22" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img1.png"
ALT="$ \chi ^2$">
</A>
</H3>
<P>
A weighted average is the result of the special case of a data fitting to a model function which is a constant.
It is easy to see that minimizing w.r.t <IMG
WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img144.png"
ALT="$ x$">
<P><!-- MATH
\begin{displaymath}
\chi^2 = \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left({x-O_j}\right)}}^2
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="143" HEIGHT="67" ALIGN="MIDDLE" BORDER="0"
SRC="img153.png"
ALT="$\displaystyle \chi^2 = \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
{\ensuremath{\dis...
...h{\left({x-O_j}\right)}}^2
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}}
$">
</DIV><P>
</P>
yields
<P><!-- MATH
\begin{displaymath}
x= \langle x \rangle_{\!\mathrm{w}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{O_j
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}}
}}}}{{\ensuremath{\displaystyle{
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}}
}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="141" HEIGHT="126" ALIGN="MIDDLE" BORDER="0"
SRC="img154.png"
ALT="$\displaystyle x= \langle x \rangle_{\!\mathrm{w}}={\ensuremath{\displaystyle{\f...
...th{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}}
}}}}}}}
$">
</DIV><P>
</P>
The good-faith s.d. (square-root of twice the inverse of the second derivative of <IMG
WIDTH="22" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img1.png"
ALT="$ \chi ^2$">
at the minimum)
is then
<P><!-- MATH
\begin{displaymath}
\sigma_{\langle x \rangle_{\!\mathrm{w}}} = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
1
}}}}{{\ensuremath{\displaystyle{\sqrt{
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}}
}}}}}}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="130" HEIGHT="122" ALIGN="MIDDLE" BORDER="0"
SRC="img155.png"
ALT="$\displaystyle \sigma_{\langle x \rangle_{\!\mathrm{w}}} = {\ensuremath{\display...
...h{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}}
}}}}}}}}
$">
</DIV><P>
</P>
I use the term 'good-faith' to indicate the case when it is really appropriate to use a constant as a model functions,
i.e. when the observations are truly different observations of the same observable.
When this is not the case but we do not know what to do better we can at least increase the s.d.
In fact, there is a correction factor for the s.d., given - in this case - by
<P><!-- MATH
\begin{displaymath}
\mathsf{GoF}=
\sqrt{
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{O_j^2
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}}
-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
{\ensuremath{\left[{
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{O_j
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}}
}\right]}}^2
}}}}{{\ensuremath{\displaystyle{ \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
\sigma_j^2
}}}}}}} }}}}}}}
}}}}{{\ensuremath{\displaystyle{
N_{\mathrm{obs}}-1
}}}}}}}
}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="230" HEIGHT="267" ALIGN="MIDDLE" BORDER="0"
SRC="img156.png"
ALT="$\displaystyle \mathsf{GoF}=
\sqrt{
{\ensuremath{\displaystyle{\frac{{\ensuremat...
...
}}}}}}} }}}}}}}
}}}}{{\ensuremath{\displaystyle{
N_{\mathrm{obs}}-1
}}}}}}}
}
$">
</DIV><P>
</P>
so that
<P><!-- MATH
\begin{displaymath}
{\sigma}_{\langle x \rangle_{\!\mathrm{w}}}^{\mathrm{corrected}} = \mathsf{GoF}\ \sigma_{\langle x \rangle_{\!\mathrm{w}}}
\end{displaymath}
-->
</P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="154" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img157.png"
ALT="$\displaystyle {\sigma}_{\langle x \rangle_{\!\mathrm{w}}}^{\mathrm{corrected}} = \mathsf{GoF}\ \sigma_{\langle x \rangle_{\!\mathrm{w}}}
$">
</DIV><P>
</P>
<P>
Specializing now to the two cases above,
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html897"
HREF="node58.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="file:/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html893"
HREF="node54.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="file:/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html887"
HREF="node56.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
<A NAME="tex2html895"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html898"
HREF="node58.html">Straight Poisson (zero-skipping) weighted</A>
<B> Up:</B> <A NAME="tex2html894"
HREF="node54.html">Average vs. weighted average</A>
<B> Previous:</B> <A NAME="tex2html888"
HREF="node56.html">Zero-skipping average</A>
&nbsp; <B> <A NAME="tex2html896"
HREF="node1.html">Contents</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
Thattil Dhanya
2018-09-28
</ADDRESS>
</BODY>
</HTML>