mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-04-29 01:20:02 +02:00
127 lines
4.5 KiB
HTML
127 lines
4.5 KiB
HTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
|
|
|
|
<!--Converted with LaTeX2HTML 2012 (1.2)
|
|
original version by: Nikos Drakos, CBLU, University of Leeds
|
|
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
|
|
* with significant contributions from:
|
|
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
|
|
<HTML>
|
|
<HEAD>
|
|
<TITLE>Zero-skipping average</TITLE>
|
|
<META NAME="description" CONTENT="Zero-skipping average">
|
|
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
|
|
<META NAME="resource-type" CONTENT="document">
|
|
<META NAME="distribution" CONTENT="global">
|
|
|
|
<META NAME="Generator" CONTENT="LaTeX2HTML v2012">
|
|
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
|
|
|
|
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
|
|
|
|
<LINK REL="next" HREF="node57.html">
|
|
<LINK REL="previous" HREF="node55.html">
|
|
<LINK REL="up" HREF="node54.html">
|
|
<LINK REL="next" HREF="node57.html">
|
|
</HEAD>
|
|
|
|
<BODY >
|
|
<!--Navigation Panel-->
|
|
<A NAME="tex2html885"
|
|
HREF="node57.html">
|
|
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
|
|
SRC="file:/usr/share/latex2html/icons/next.png"></A>
|
|
<A NAME="tex2html881"
|
|
HREF="node54.html">
|
|
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
|
|
SRC="file:/usr/share/latex2html/icons/up.png"></A>
|
|
<A NAME="tex2html875"
|
|
HREF="node55.html">
|
|
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
|
|
SRC="file:/usr/share/latex2html/icons/prev.png"></A>
|
|
<A NAME="tex2html883"
|
|
HREF="node1.html">
|
|
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
|
|
SRC="file:/usr/share/latex2html/icons/contents.png"></A>
|
|
<BR>
|
|
<B> Next:</B> <A NAME="tex2html886"
|
|
HREF="node57.html">Weighted average: definition and</A>
|
|
<B> Up:</B> <A NAME="tex2html882"
|
|
HREF="node54.html">Average vs. weighted average</A>
|
|
<B> Previous:</B> <A NAME="tex2html876"
|
|
HREF="node55.html">Simple average</A>
|
|
<B> <A NAME="tex2html884"
|
|
HREF="node1.html">Contents</A></B>
|
|
<BR>
|
|
<BR>
|
|
<!--End of Navigation Panel-->
|
|
|
|
<H3><A NAME="SECTION00625200000000000000">
|
|
Zero-skipping average</A>
|
|
</H3>
|
|
|
|
<P>
|
|
In some cases, in order to avoid possible singularities,
|
|
values <IMG
|
|
WIDTH="52" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img148.png"
|
|
ALT="$ C_j=0$">
|
|
are skipped. Then if <!-- MATH
|
|
$N_{\mathrm{obs}}^*$
|
|
-->
|
|
<IMG
|
|
WIDTH="37" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img149.png"
|
|
ALT="$ N_{\mathrm{obs}}^*$">
|
|
is the number of non-zero data points,
|
|
we can evaluate the 'zero-skipping' average as
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
x=\langle x\rangle^*={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}^*}}}}}}}
|
|
\mathop{\sum}_ {\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
C_j={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}^*}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}\langle x\rangle
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="382" HEIGHT="78" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img150.png"
|
|
ALT="$\displaystyle x=\langle x\rangle^*={\ensuremath{\displaystyle{\frac{{\ensuremat...
|
|
...obs}}}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}\langle x\rangle
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
The standard deviation is then
|
|
<P><!-- MATH
|
|
\begin{displaymath}
|
|
\sigma_{x^*}= {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}\sigma_x = \sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}}
|
|
\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x\rangle}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}}=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x\rangle^*}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}}
|
|
\end{displaymath}
|
|
-->
|
|
</P>
|
|
<DIV ALIGN="CENTER">
|
|
<IMG
|
|
WIDTH="300" HEIGHT="68" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img151.png"
|
|
ALT="$\displaystyle \sigma_{x^*}= {\ensuremath{\displaystyle{\frac{{\ensuremath{\disp...
|
|
...e{\langle x\rangle^*}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}}
|
|
$">
|
|
</DIV><P>
|
|
</P>
|
|
Note that the s.d. is evaluated exactly as if the non-zero <IMG
|
|
WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
|
SRC="img152.png"
|
|
ALT="$ C_j$">
|
|
were the only observations,
|
|
whilst the average is overestimated by the fraction of zero-counting events.
|
|
|
|
<P>
|
|
<BR><HR>
|
|
<ADDRESS>
|
|
Thattil Dhanya
|
|
2018-09-28
|
|
</ADDRESS>
|
|
</BODY>
|
|
</HTML>
|