// SPDX-License-Identifier: LGPL-3.0-or-other // Copyright (C) 2021 Contributors to the SLS Detector Package #ifndef JUNGFRAULGADSTRIXELSDATA_H #define JUNGFRAULGADSTRIXELSDATA_H #ifdef CINT #include "sls/sls_detector_defs_CINT.h" #else #include "sls/sls_detector_defs.h" #endif #include "slsDetectorData.h" // #define VERSION_V2 /** @short structure for a Detector Packet or Image Header @li frameNumber is the frame number @li expLength is the subframe number (32 bit eiger) or real time exposure time in 100ns (others) @li packetNumber is the packet number @li bunchId is the bunch id from beamline @li timestamp is the time stamp with 10 MHz clock @li modId is the unique module id (unique even for left, right, top, bottom) @li xCoord is the x coordinate in the complete detector system @li yCoord is the y coordinate in the complete detector system @li zCoord is the z coordinate in the complete detector system @li debug is for debugging purposes @li roundRNumber is the round robin set number @li detType is the detector type see :: detectorType @li version is the version number of this structure format */ #include #include #include namespace strixelSingleChip { constexpr int nc_rawimg = 1024; // for full images //256; constexpr int nr_rawimg = 512; constexpr int nr_chip = 256; constexpr int gr = 9; // Group 1: 25um pitch, groups of 3, 1 column of square pixels constexpr int g1_ncols{(nc_rawimg - (2 * gr) - 1) / 3}; // 79 constexpr int g1_nrows{((nr_chip / 4) - gr) * 3}; // 165 // Group 2: 15um pitch, groups of 5, 3 columns of square pixels constexpr int g2_ncols{(nc_rawimg - (2 * gr) - 3) / 5}; // 47 constexpr int g2_nrows{(nr_chip / 4) * 5}; // 320 // Group 3: 18.75um pitch, groups of 4, 2 columns of square pixels (double the // size of the other groups) constexpr int g3_ncols{(nc_rawimg - (2 * gr) - 2) / 4}; // 59 constexpr int g3_nrows{(((nr_chip / 4) * 2) - gr) * 4}; // 476 constexpr int nc_strixel = 2 * gr + 1 + g1_ncols; // group 1 is the "longest" group in x and has one // extra square pixel constexpr int nr_strixel = 2 * gr + g1_nrows + g2_nrows + g3_nrows; // chip and group boundaries in ASIC coordinates (pixels at both bounds are // included in the group) y does NOT take into account the shifts for M408! constexpr int c1g1_xstart = 256 + gr + 1; // 266 constexpr int c1g2_xstart = 256 + gr + 3; // 268 constexpr int c1g3_xstart = 256 + gr + 2; // 267 constexpr int c1_xend = 255 + 256 - gr; // 502 constexpr int c1g1_ystart = gr; // 9 constexpr int c1g1_yend = 63; // 63 constexpr int c1g2_ystart = c1g1_yend + 1; // 64 constexpr int c1g2_yend = c1g1_yend + 64; // 127 constexpr int c1g3_ystart = c1g2_yend + 1; // 128 constexpr int c1g3_yend = c1g2_yend + 2 * 64 - gr; // 246 constexpr int c6_xstart = 256 + 256 + gr; // 521 constexpr int c6g1_xend = 255 + 2 * 256 - gr - 1; // 757 constexpr int c6g2_xend = 256 + 2 * 256 - gr - 3; // 755 constexpr int c6g3_xend = 256 + 2 * 256 - gr - 2; // 756 constexpr int c6g3_ystart = 256 + gr; // 265 constexpr int c6g3_yend = 255 + 2 * 64; // 383 constexpr int c6g2_ystart = c6g3_yend + 1; // 384 constexpr int c6g2_yend = c6g3_yend + 64; // 447 constexpr int c6g1_ystart = c6g2_yend + 1; // 448 constexpr int c6g1_yend = c6g2_yend + 64 - gr; // 502 // y shift due to faulty bonding (relevant for M408) constexpr int bond_shift_y = 0; // CHANGE IF YOU CHANGE MODULE! } // namespace strixelSingleChip typedef struct { uint64_t bunchNumber; /**< is the frame number */ uint64_t pre; /**< something */ } jf_header; // Aldo's header using namespace strixelSingleChip; class jungfrauLGADStrixelsData : public slsDetectorData { private: int iframe; int mchip; int chip_x0; int chip_y0; int x0, y0, x1, y1, shifty; struct { uint16_t xmin; uint16_t xmax; uint16_t ymin; uint16_t ymax; int nc; } globalROI; int getMultiplicator(const int group) { int multiplicator; switch (group) { default: case 1: multiplicator = 3; break; case 2: multiplicator = 5; break; case 3: multiplicator = 4; break; } return multiplicator; } void setMappingShifts(const int group) { if (mchip == 1) { chip_x0 = 256; chip_y0 = bond_shift_y; // because of bump bonding issues(+1 row) on M408 switch (group) { default: case 1: x0 = 10 + chip_x0; // 9 gr + 1 sq pixel x1 = 246 + chip_x0; y0 = 9 + chip_y0; y1 = 63 + chip_y0; shifty = 0; break; case 2: x0 = 12 + chip_x0; x1 = 247 + chip_x0; y0 = 64 + chip_y0; y1 = 127 + chip_y0; shifty = g1_nrows; break; case 3: x0 = 11 + chip_x0; x1 = 247 + chip_x0; y0 = 128 + chip_y0; y1 = 246 + chip_y0; shifty = g2_nrows + g1_nrows; break; } } if (mchip == 6) { chip_x0 = 512; chip_y0 = 256 - bond_shift_y; // should be 256 but is 255 because of bump // bonding issues (+1 row) on M408 switch (group) { default: case 1: x0 = 9 + chip_x0; // 9 gr sq pixel x1 = 245 + chip_x0; // was 246 y0 = 192 + chip_y0; y1 = 246 + chip_y0; shifty = g1_nrows + 2 * g2_nrows + 2 * g3_nrows; break; case 2: x0 = 9 + chip_x0; x1 = 243 + chip_x0; //was 244 y0 = 128 + chip_y0; y1 = 191 + chip_y0; shifty = g1_nrows + g2_nrows + 2 * g3_nrows; ; break; case 3: x0 = 9 + chip_x0; x1 = 244 + chip_x0; y0 = 9 + chip_y0; y1 = 127 + chip_y0; shifty = g1_nrows + g2_nrows + g3_nrows; break; } } } void remapGroup(const int group) { int multiplicator = getMultiplicator(group); //int shiftx; int ix, iy = 0; setMappingShifts(group); // remapping loop for (int ipy = y0; ipy <= y1; ipy++) { for (int ipx = x0; ipx <= x1; ipx++) { ix = int((ipx - x0) / multiplicator); for (int m = 0; m < multiplicator; m++) { if ((ipx - x0) % multiplicator == m) iy = (ipy - y0) * multiplicator + m + shifty; } // if (iy< 40) cout << iy << " " << ix < adjustROItoLimits(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax, uint16_t lim_roi_xmin, uint16_t lim_roi_xmax, uint16_t lim_roi_ymin, uint16_t lim_roi_ymax) { uint16_t xmin_roi, xmax_roi, ymin_roi, ymax_roi; if ( xmin < lim_roi_xmin) xmin_roi = lim_roi_xmin; else xmin_roi = xmin; if ( xmax > lim_roi_xmax ) xmax_roi = lim_roi_xmax; else xmax_roi = xmax; if ( ymin < lim_roi_ymin ) ymin_roi = lim_roi_ymin; else ymin_roi = ymin; if ( ymax > lim_roi_ymax ) ymax_roi = lim_roi_ymax; else ymax_roi = ymax; return std::make_tuple(xmin_roi, xmax_roi, ymin_roi, ymax_roi); } std::vector < std::tuple< int, int, uint16_t, uint16_t, uint16_t, uint16_t > > mapSubROIs(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax) { bool chip_1_1 = false; bool chip_1_2 = false; bool chip_1_3 = false; bool chip_6_1 = false; bool chip_6_2 = false; bool chip_6_3 = false; for ( int x=xmin; x!=xmax+1; ++x ) { for ( int y=ymin; y!=ymax; ++y ) { if ( c1g1_xstart<=x && x<=c1_xend && (c1g1_ystart+bond_shift_y)<=y && y<=(c1g1_yend+bond_shift_y) ) chip_1_1 = true; if ( c1g2_xstart<=x && x<=c1_xend && (c1g2_ystart+bond_shift_y)<=y && y<=(c1g2_yend+bond_shift_y) ) chip_1_2 = true; if ( c1g3_xstart<=x && x<=c1_xend && (c1g3_ystart+bond_shift_y)<=y && y<=(c1g3_yend+bond_shift_y) ) chip_1_3 = true; if ( c6_xstart<=x && x<=c6g1_xend && (c6g1_ystart-bond_shift_y)<=y && y<=(c6g1_yend-bond_shift_y) ) chip_6_1 = true; if ( c6_xstart<=x && x<=c6g2_xend && (c6g2_ystart-bond_shift_y)<=y && y<=(c6g2_yend-bond_shift_y) ) chip_6_2 = true; if ( c6_xstart<=x && x<=c6g3_xend && (c6g3_ystart-bond_shift_y)<=y && y<=(c6g3_yend-bond_shift_y) ) chip_6_3 = true; } } uint16_t xmin_roi{}, xmax_roi{}, ymin_roi{}, ymax_roi{}; //[ chip, group, xmin, xmax, ymin, ymax ] std::vector < std::tuple< int, int, uint16_t, uint16_t, uint16_t, uint16_t > > rois{}; if (chip_1_1) { std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) = adjustROItoLimits( xmin, xmax, ymin, ymax, c1g1_xstart, c1_xend, 0, c1g1_yend+bond_shift_y ); rois.push_back( std::make_tuple( 1, 1, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) ); } if (chip_1_2) { std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) = adjustROItoLimits( xmin, xmax, ymin, ymax, c1g2_xstart, c1_xend, c1g2_ystart+bond_shift_y, c1g2_yend+bond_shift_y ); rois.push_back( std::make_tuple( 1, 2, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) ); } if (chip_1_3) { std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) = adjustROItoLimits( xmin, xmax, ymin, ymax, c1g3_xstart, c1_xend, c1g3_ystart+bond_shift_y, c1g3_yend+bond_shift_y ); rois.push_back( std::make_tuple( 1, 3, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) ); } if (chip_6_3) { std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) = adjustROItoLimits( xmin, xmax, ymin, ymax, c6_xstart, c6g3_xend, c6g3_ystart-bond_shift_y, c6g3_yend-bond_shift_y ); rois.push_back( std::make_tuple( 6, 3, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) ); } if (chip_6_2) { std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) = adjustROItoLimits( xmin, xmax, ymin, ymax, c6_xstart, c6g2_xend, c6g2_ystart-bond_shift_y, c6g2_yend-bond_shift_y ); rois.push_back( std::make_tuple( 6, 2, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) ); } if (chip_6_1) { std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) = adjustROItoLimits( xmin, xmax, ymin, ymax, c6_xstart, c6g1_xend, c6g1_ystart-bond_shift_y, 511 ); rois.push_back( std::make_tuple( 6, 1, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) ); } return rois; } void remapROI(std::tuple< int, int, uint16_t, uint16_t, uint16_t, uint16_t > roi) { // determine group and chip selected by ROI int group, xmin, xmax, ymin, ymax; std::tie( mchip, group, xmin, xmax, ymin, ymax ) = roi; /* if (ymax <= c1g1_yend + bond_shift_y) { group = 1; mchip = 1; } else if (ymax <= c1g2_yend + bond_shift_y) { group = 2; mchip = 1; } else if (ymax <= c1g3_yend + bond_shift_y) { group = 3; mchip = 1; } else if (ymax <= c6g3_yend - bond_shift_y) { group = 3; mchip = 6; } else if (ymax <= c6g2_yend - bond_shift_y) { group = 2; mchip = 6; } else if (ymax <= c6g1_yend - bond_shift_y) { group = 1; mchip = 6; } else if (ymax <= 511) { group = 1; mchip = 6; } else { //to fix compiler warning group = -1; mchip = -1; } */ int multiplicator = getMultiplicator(group); setMappingShifts(group); std::cout << "remapping chip: " << mchip << ", group: " << group << ", m: " << multiplicator << ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0 << ", y1: " << y1 << std::endl; std::cout << "Adjusted roi: [" << xmin << ", " << xmax << ", " << ymin << ", " << ymax << "]" << std::endl; // make sure loop bounds are correct /* if (y0 < ymin) std::cout << "Error ymin" << std::endl; if (y1 > ymax) std::cout << "Error ymax - normal for G3 since ROI only 64 row" << std::endl; if (x0 < xmin) std::cout << "Error xmin" << std::endl; if (x1 > xmax) std::cout << "Error xmax" << std::endl; */ // remapping loop int ix, iy = 0; for (int ipy = y0; ipy <= y1; ++ipy) { for (int ipx = x0; ipx <= x1; ++ipx) { ix = int((ipx - x0 /*-xmin*/) / multiplicator); for (int m = 0; m < multiplicator; m++) { if ((ipx - x0 /*-xmin*/) % multiplicator == m) iy = (ipy - y0 /*-ymin*/) * multiplicator + m + shifty; } // if (iy< 40) cout << iy << " " << ix <=xmin && ipx<=xmax && ipy>=ymin && ipy <=ymax ) dataMap[iy][ix] = sizeof(header) + (globalROI.nc * (ipy - globalROI.ymin) + (ipx - globalROI.xmin)) * 2; else dataMap[iy][ix] = sizeof(header); groupmap[iy][ix] = group - 1; } } } public: int groupmap[512 * 5][1024 / 3]; using header = sls::defs::sls_receiver_header; jungfrauLGADStrixelsData(uint16_t xmin = 0, uint16_t xmax = 0, uint16_t ymin = 0, uint16_t ymax = 0) : slsDetectorData( /*nc_strixel*/ g1_ncols, /*nr_strixel*/ 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows, g1_ncols * (2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows) * 2 + sizeof(header)) { std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl; // Fill all strixels with dummy values for (int ix = 0; ix != g1_ncols; ++ix) { for (int iy = 0; iy != 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows; ++iy) { dataMap[iy][ix] = sizeof(header); } } globalROI.xmin = xmin; globalROI.xmax = xmax; globalROI.ymin = ymin; globalROI.ymax = ymax; std::cout << "sizeofheader = " << sizeof(header) << std::endl; std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl; if (xmin < xmax && ymin < ymax) { // get ROI raw image number of columns globalROI.nc = xmax - xmin + 1; std::cout << "nc_roi = " << globalROI.nc << std::endl; dataSize = (xmax - xmin + 1) * (ymax - ymin + 1) * 2 + sizeof(header); std::cout << "datasize " << dataSize << std::endl; //[ chip, group, xmin, xmax, ymin, ymax ] auto rois = mapSubROIs(xmin, xmax, ymin, ymax); //function to fill vector of rois from globalROI for ( auto roi : rois ) remapROI(roi); } else { mchip = 1; for (int group=1; group!=4; ++group) remapGroup(group); mchip = 6; for (int group=1; group!=4; ++group) remapGroup(group); } iframe = 0; std::cout << "data struct created" << std::endl; }; /** Returns the value of the selected channel for the given dataset as double. \param data pointer to the dataset (including headers etc) \param ix pixel number in the x direction \param iy pixel number in the y direction \returns data for the selected channel, with inversion if required as double */ virtual double getValue(char *data, int ix, int iy = 0) { uint16_t val = getChannel(data, ix, iy) & 0x3fff; return val; }; /** Returns the frame number for the given dataset. Purely virtual func. \param buff pointer to the dataset \returns frame number */ int getFrameNumber(char *buff) { #ifdef ALDO // VH return ((jf_header *)buff)->bunchNumber; // VH #endif // VH return ((header *)buff)->detHeader.frameNumber; }; /** Returns the packet number for the given dataset. purely virtual func \param buff pointer to the dataset \returns packet number number */ int getPacketNumber(char *buff) { #ifdef ALDO // VH // uint32_t fakePacketNumber = 1000; // return fakePacketNumber; //VH //TODO: Keep in mind in case of bugs! // //This is definitely bad! return 1000; #endif // VH return ((header *)buff)->detHeader.packetNumber; }; char *readNextFrame(std::ifstream &filebin) { int ff = -1, np = -1; return readNextFrame(filebin, ff, np); }; char *readNextFrame(std::ifstream &filebin, int &ff) { int np = -1; return readNextFrame(filebin, ff, np); }; char *readNextFrame(std::ifstream &filebin, int &ff, int &np) { char *data = new char[dataSize]; char *d = readNextFrame(filebin, ff, np, data); if (d == NULL) { delete[] data; data = NULL; } return data; }; char *readNextFrame(std::ifstream &filebin, int &ff, int &np, char *data) { //char *retval = 0; //int nd; //int fnum = -1; np = 0; //int pn; //std::cout << dataSize << std::endl; //if (ff >= 0) { // fnum = ff; } if (filebin.is_open()) { if (filebin.read(data, dataSize)) { std::cout << "*"; ff = getFrameNumber(data); np = getPacketNumber(data); return data; } std::cout << "#"; } else { std::cout << "File not open" << std::endl; } return NULL; }; /* Loops over a memory slot until a complete frame is found (i.e. all */ /* packets 0 to nPackets, same frame number). purely virtual func \param */ /* data pointer to the memory to be analyzed \param ndata reference to * the */ /* amount of data found for the frame, in case the frame is incomplete at */ /* the end of the memory slot \param dsize size of the memory slot to be */ /* analyzed \returns pointer to the beginning of the last good frame * (might */ /* be incomplete if ndata smaller than dataSize), or NULL if no frame is */ /* found */ /* *\/ */ virtual char *findNextFrame(char *data, int &ndata, int dsize) { if (dsize < dataSize) ndata = dsize; else ndata = dataSize; return data; }; // int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;}; }; #endif