#ifndef EIGERMODULEDATA_H #define EIGERMODULEDATA_H #include "slsReceiverData.h" class eigerHalfModuleData : public slsReceiverData { public: /** Implements the slsReceiverData structure for the eiger prototype read out by a half module i.e. using the slsReceiver (256*256 pixels, 512 packets for 16 bit mode, 256 for 8, 128 for 4, 1024 for 32, 1040 etc.) \param d dynamic range \param c crosstalk parameter for the output buffer */ eigerHalfModuleData(int dr, int np, int bsize, int dsize, bool top, double c=0): slsReceiverData(xpixels, ypixels, np, bsize), xtalk(c), bufferSize(bsize), actualDataSize(dsize), dynamicRange(dr), numberOfPackets(np), top(top){ int **dMap; uint32_t **dMask; dMap=new int*[ypixels]; dMask=new uint32_t*[ypixels]; for (int i = 0; i < ypixels; i++) { dMap[i] = new int[xpixels]; dMask[i] = new uint32_t[xpixels]; } //Map int totalNumberOfBytes = 1040 * dynamicRange * 16 *2; //for both 1g and 10g int iPacket1 = 8; int iPacket2 = bufferSize + 8; int iData1 = 0, iData2 = 0; int increment = (dynamicRange/8); int ic_increment = 1; if (dynamicRange == 4) { increment = 1; ic_increment = 2; } int iPort; if(top){ for (int ir=0; ir= actualDataSize){ iPacket1 += (bufferSize + 8); iData1 = 0; } }else{ dMap[ir][ic] = iPacket2; iPacket2 += increment; iData2 += increment; //increment header if(iData2 >= actualDataSize){ iPacket2 += (bufferSize + 8); iData2 = 0; } } } } } //bottom else{ iData1 = 0; iData2 = 0; int numbytesperlineperport = 1024; if (dynamicRange == 8) numbytesperlineperport = 512; else if (dynamicRange == 4) numbytesperlineperport = 256; else if (dynamicRange == 32) numbytesperlineperport = 2048; iPacket1 = (totalNumberOfBytes/2) - numbytesperlineperport - 8; iPacket2 = totalNumberOfBytes - numbytesperlineperport - 8; if (dynamicRange == 32){ iPacket1 -= 16; iPacket2 -= 16; } for (int ir=0; irnum1)); }; /** gets the packets number \param buff pointer to the memory \returns packet number */ int getPacketNumber(char *buff){ #ifdef VERY_DEBUG cprintf(RED, "\n0x%x - %d - %d", (*(uint8_t*)(((eiger_packet_header *)((char*)(buff)))->num3)),//port and dr (*(uint8_t*)(((eiger_packet_header *)((char*)(buff)))->num4)),//non 32 bit packet# (*(uint16_t*)(((eiger_packet_header *)((char*)(buff)))->num2)));//32 bit packet# #endif return ((*(uint16_t*)(((eiger_packet_header *)((char*)buff))->num2))); /* //both ports have same packet numbers, so reconstruct //16 bit packet number written in num2 for 32 bit mode if(dynamicRange == 32){ if((*(uint8_t*)(((eiger_packet_header *)((char*)buff))->num3)) & 0x1) return ((*(uint16_t*)(((eiger_packet_header *)((char*)buff))->num2))+(numberOfPackets/2) +1); else return ((*(uint16_t*)(((eiger_packet_header *)((char*)buff))->num2))+1); } else{ if((*(uint8_t*)(((eiger_packet_header *)((char*)buff))->num3)) &0x1) return ((*(uint8_t*)(((eiger_packet_header *)((char*)buff))->num4))+(numberOfPackets/2) +1); else return ((*(uint8_t*)(((eiger_packet_header *)((char*)buff))->num4))+1); }*/ }; /** gets the dynamic range for offline processing \param buff pointer to the memory \returns dynamic range */ static int getDynamicRange(char *buff){ #ifdef VERY_DEBUG cprintf(RED, "\n0x%x", (*(uint8_t*)(((eiger_packet_header *)((char*)(buff)))->num3))); #endif return (*(uint8_t*)(((eiger_packet_header *)((char*)buff))->num3)) >> 2; }; /** returns the pixel value as double correcting for the output buffer crosstalk \param data pointer to the memory \param ix coordinate in the x direction \param iy coordinate in the y direction \returns channel value as double */ double getValue(char *data, int ix, int iy=0) { // cout << "##" << (void*)data << " " << ix << " " <=0 && ix=0 && iy=0 && dataMap[iy][ix]num3)); //cprintf(GREEN,"num3 0x%x\n",t); //check if missing packet if(t & 0x02){ cprintf(RED,"missing packet\n"); return -1; } }else{ cprintf(RED,"outside limits\n"); return -99; } //little endian n = ((uint32_t)(*((uint32_t*)(((char*)data)+(dataMap[iy][ix]))))); if(dr == 4) return (n & 0xf)^m; else if(dr == 8) return (n & 0xff)^m; else if(dr == 16) return (n & 0xffff)^m; else return (n & 0xffffffff)^m; }; /** sets the output buffer crosstalk correction parameter \param c output buffer crosstalk correction parameter to be set \returns current value for the output buffer crosstalk correction parameter */ double setXTalk(double c) {xtalk=c; return xtalk;} /** gets the output buffer crosstalk parameter \returns current value for the output buffer crosstalk correction parameter */ double getXTalk() {return xtalk;} private: double xtalk; /**