EIGER- short manual

September 28, 2018

Contents

1 Usage

1.1 Short description

Figure 7?7 show the readout board basic components on an Eiger half module.
An half module can read up to 4 readout chips.

1.2 Mandatory setup - Hardware
An EIGER single module (500 kpixels) needs:

e A chilled (water—+alcohol) at 21 °C for a single module (500k pixels), which
needs to dissipate 85 W (every module, i.e. for two half boards). For the
9M, 1.5M, a special cooling liquid is required: 2/3 deionized water and 1/3
ESA Type 48. This is important as the high temperature generated by the
boards accelerate the corrosion due to Cu/Al reaction and the blockage
of the small channels where the liquid flows, in particular near the face of
the detector and if it is a parallel flow and not a single loop. The 9M and
1.5M run at 19 °C.

e A power supply (12 V, 8 A). For the 9 M, a special cpu is give to remotely
switch on and off the detector: see section ?77.

e 2x1 Gb/s Ethernet connectors to control the detector and, optionally,
receive data at low rate. A DHCP server that gives IPs to the 1 Gb/s
connectors of the detector is needed. Note that flow control has to be
enabled on the switch you are using, if you plan to read the data out from
there. If not, you need to implement delays in the sending out of the data.

e 2x10 Gb/s transceivers to optionally, receive data at high rate. The
10Gb/s transceiver need to match the wavelength (long/short range) of
the fibers chosen by the beamline infrastructure.

PAUL SCHERRER INSTITHT

The EIGER Detector — Readout Hardware

Front End Back End

\ 2x SO-DIMM DDR2 10GbE

Read out chips connectors Memory
2 chips per FE-FPGA Paged

Figure 1: Picture with most relevant components of the EIGER readout system.
The readout system starts with the Front End Boards (FEB) which performs
data descrambling (also converts the packets from 12 — 16 bits) and rate correc-
tion. The BackEndBoard (BEB) has 2x2GB DDR2 memories and can perform
data buffering (storing images on board) and data summation (16 bit — 32
bits). The controls to the detector are passed through the 1Gb, while in most
installations, the data are sent out through the 10GB ethernet connection.

The equipment scales linearly with the number of modules. Figure 77 shows
the relationship between the Client (which sits on a beamline control PC), the
Receiver (which can run in multiple instances on one or more PCs which receive
data from the detector. The receiver(s) does not necessary have to be running
on the same PC as the client.) The username under which the receiver runs is
the owner of the data files, if using our implementation. It is important that
the receiver is closely connected to the detector (they have to be on the same
network). Note that if you implement the 1Gb/s readout only: client, receiver
and detector have to be all three in the same network. If you implement the
10Gb/s readout, then client, the 1 GbE of the detector and the receiver have
to stay on the 1GbE. But the receiver data receiving device and the 10GbE
detector can be on their private network, minimizing the missing packets.

Controls

T ~
\::::\ //f/\j TCP/IP = -
Control PC (c]jent‘ il 1<:::> Data receiver
! A 5
. \}%v ’/I 0y

> |

/
Controls f’_| '
_ I UDP
‘ Detector /II 1Gb/s or
- 10 Gb/s

Figure 2: Communications protocol between the Client PC, the receiver PC and
the detector.

The Client talks to control over 1 Gb Ethernet connection using TCP/IP to
the detector and to the receiver. The detector sends data in UDP packets to
the receiver. This data sending can be done over 1 Gb/s or 10 Gb/s.

e Switch on the detector only after having started the chiller: the
500k single module and the 1.5M at cSAXS/OMNY have a hard-
ware temperature sensor, which will power off the boards if the
temperature is too high. Note that the detector will be power
on again as soon as the temperature has been lowered. The 9M
will not boot up without the correct waterflow and temperature
has it has an integrated flowmeter.

e Switch on the detector only after having connected all the cables
and network. EIGER is unable to get IP address after it has
been switched on without a proper network set up. In that case
switch off and on the detector again.

1.2.1 9M power supply interface: bchip100

So the bchip100, which is a blackfin cpu, is located on the top side of the 9M
and needs to be connected over 1Gb, to the same or a different network as the
detector 1 GbE.

telnet bchipl00
cd 9m/

The directory contains some executables that are needed to make your detector
to work:

./on #to switch modules on
./off #to switch modules off
./hvget #gets the current HV value

./waterflow #returns the current waterflow returned by the flowmeter

./temp #returns the water temperature returned by the flowmeter

A watchdog is running on bchip100 to check for the flow and temperature. If
outside of parameters (flow< 80 dl/min, temperature #21+2), the detector
will be switched off. Here is an explanation of the LED color scheme of the
bchip100:

e NO LED Main Power off or Blackfin not ready, yet.

e RED Too high temperature or too less water flow Detector is shut down
and locked. Detector will be unlocked (YELLOW) automatically when
conditions are good again.

e YELLOW Detector is off and unlocked. Ready to be turned on.
e GREEN Detector is on

You can also Check temperatures and water flow in a browser (from the same
subnet where the 9M is: http://bchip100/status.cgi

1.3 Mandatory setup - Receiver

The receiver is a process run on a PC closely connected to the detector. Open
one receiver for every half module board (remember, a module has two re-
ceivers!!!) . Go to slsDetectorsPackage/build/bin/, slsReceiver should be
started on the machine expected to receive the data from the detector.

e ./slsReceiver --rx_tcpport xxxx

e ./slsReceiver --rx_tcpport yyyy

where xxxx, yyyy are the tcp port numbers. Use 1955 and 1956 for example.
The receiver for the bottom is open without arguments but still in the configu-
ration file one needs to write n:flippeddatax 1, where 2n+1 indicated the half
module number, 1 if it is a module.

Open as many receiver as half module boards. A single module has two half
module boards.

From the software version 3.0.1, one can decide weather start a zmq callback
from the receiver to the client (for example to visualize data in the slsDetec-
torGui or another gui). If the zmq steam is not required (cased of the command
line for example, one can switch off the streaming with ./sls_detector_put
rx_datastream 0, enable it with ./sls_detector_put rx_datastream 1. In
the case of inizialising the stream to use the slsDetectorGui, nothing needs to
be taken care of by the user. If instead you want to stream the streaming

on different channels, the zmq port of the client can be set stealing from the
slsDetectorGui stream having ./sls_detector_put zmgport 300y. Note that
if this is done globally (not for every half module n independently, then the
client automatically takes into account that for every half module, there are 2
zmq stream. The receiver stream ./sls_detector_put rx_zmgport 300y has
to match such that the GUI can work. If one desires to set the zmqport manu-
ally, he offset has to be taken into account: ./sls_detector_put 0:rx_zmgport
300y, ./sls_detector_put 1:rx_zmgport 300y+2 and so on..

There is an example code that can be compiled in manual/manual-api/mainReceiver.cpp
and gives the executable ./detReceiver, use it with two or more receivers
to open all receivers in one single terminal: ./detReceiver startTCPPort
numReceivers withCallback, where startTCPPort assumes the other ports
are consecutively increased.

1.4 Mandatory setup - Client

The command line interface consists in these main functions:
sls_detector_acquire to acquire data from the detector
sls_detector_put to set detector parameters
sls_detector_get to retrieve detector parameters

First, your detector should always be configured for each PC that you might
want to use for controlling the detector. All the examples given here show the
command 0-, which could be omitted for the EIGER system 0. In the case more
EIGER systems are controlled at once, the call of 1-,.. becomes compulsory.

To make sure the shared memory is cleaned, before starting, one should do:

sls_detector_get O-free
To do that:
sls_detector_put O-config mydetector.config

In the config file, if client, receiver and detector are using 1GbE the following
lines are mandatory (see slsDetectorsPackage/examples/eiger_1Gb.config):

detsizechan 1024 512 #detector geometry, long side of the module first
hostname beb059+beb058+ #1Gb detector hostname for controls
:rx_tcpport 1991 #tcpport for the first halfmodule

:rx_udpport 50011 #udp port first quadrant, first halfmodule
:rx_udpport2 50012 #udp port second quadrant, first halfmodule
:rx_tcpport 1992 #tcpport for the second halfmodule

:rx_udpport 50013 #udp port first quadrant, second halfmodule
:rx_udpport2 50014 #udp port second quadrant, second halfmodule
rx_hostname x12sa-vcons #1Gb receiver pc hostname

outdir /sls/X12SA/data/x12saop/Datal0/Eiger0.5M

threaded 1

= = =2 O O O

In the config file, if client, receiver and detector commands are on 1Gb,
but detector data to receiver are sent using 10GbE the following lines are
mandatory (see slsDetectorsPackage/examples/eiger_-10Gb.config):

detsizechan 1024 512 #detector geometry, long side of the module first
hostname beb059+beb058+ #1Gb detector hostname for controls
:rx_tcpport 1991 #tcpport for the first halfmodule
:rx_udpport 50011 #udp port first quadrant, first halfmodule
:rx_udpport2 50012 #udp port second quadrant, first halfmodule
:rx_udpip 10.0.30.210 #udp IP of the receiver over 10Gb
:detectorip 10.0.30.100 #first half module 10 Gb IP
:rx_tcpport 1992 #tcpport for the second halfmodule
:rx_udpport 50013 #udp port first quadrant, second halfmodule
:rx_udpport2 50014 #udp port second quadrant, second halfmodule
:rx_udpip 10.0.40.210 #udp IP of the receiver over 10Gb,

can be the same or different from O:rx_udpip
1:detectorip 10.0.40.101 #second half module 10 Gb IP
rx_hostname x12sa-vcons #1Gb receiver pc hostname
outdir /sls/X12SA/data/x12saop/DatalO/Eiger0.5M
threaded 1

B P, R P2, OO0 O0O0OO0

In the case you are developing your own receiver, then you need to remove
the 1Gb receiver hostname rx_hostname and substitute it with the mac address
of the device:

configuremac O
rx_udpmac XX:XX:...

One can configure all the detector settings in a parameter file setup.det,
which is loaded by doing;:

sls_detector_put O-parameters setup.det

In the case of EIGER, the proper bias voltage of the sensor has to be setup,
i.e. the setup.det file needs to contain the line vhighvoltage 150. Other
detector functionality, which are rarely changed can be setup here. Other im-
portant settings that are configured in the setup.det file are:

e tengiga 0/1, which sets whether the detector is enabled to send data
through the 1 or the 10 Gb Ethernet.

e flags parallel/mnonparallel, which sets whether the detector is set in
parallel acquisition and readout or in sequential mode. This changes the
readout time of the chip and affects the frame rate capability (faster is
parallel, with higher noise but needed when the frame rate is > 2 kHz.

e dr 32/16/8/4 sets the detector in autosumming mode (32 bit counter or
not autosumming, 12 bit out of the chip). This is strictly connected to
what is required for the readout clock of chip. See next point.

e clkdivider 0/1/2. Changes the readout clock: 200, 100, 50 MHz (also
referred to as full, half, quarter speed). Note that autosumming mode
(dr 32 only works at clkdivider 2=quarter speed). By selecting Refer to
readout timing specifications in section?? for how to set the detector.

e flags continuous/storeinram. Allows to take frame continuously or
storing them on memory. Users should use the continuous flags. Enabling
the stroreinram flag makes the data to be sent out all at the end of the
acquisition. Refer to readout timing specifications in section ?? for how
to set the detector. Examples will be given in section ?77.

One should notice that, by default, by choosing the option dr 32, then the
software automatically sets the detector to clkdivider 2. By choosing the
option dr 16, the software automatically sets the detector to clkdivider 1.
One needs to choose clkdivider O after setting the dr 16 option to have the
fastest frame rate. We would recommend expert users (beamline people) to
write their parameters file for the users.

2 API versioning

The eigerDetectorServer running on the boards has a versioning API scheme
that will make it crash if used with a wrong firmware. You can also check your
versioning by hand with the code:

sls_detector_get softwareversion

gets the server (slsDetectorSoftware) version (answer is something like: softwareversion
111920160722.

sls_detector_get thisversion
returns the client version. The answer can be thisversion 111220160718.
/sls_detector_get detectorversion

returns the firmware version . The answer can be detectorversion 11. Killing
and starting the server on the boards allows you to check the firmware version
you have and also if your board is a top/bottom/master /slave.

3 Setting up the threshold

sls_detector_put O-trimen N xxxx yyyy
sls_detector_put O-settings standard
sls_detector_put O-threshold energy_in_eV standard

The first line requires to specify how many (N) and at which energies in eV
{ttxxxx, yyyy, zzzz and so on) trimmed files were generated (to allow for an in-
terpolation). This line should normally be included into the mydetector.config

file and should be set for you by one of the detector group. NORMALLY, in
this new calibration scheme, only settings standard will be provided to you,
unless specific cases to be discussed. The threshold at 6000 eV , for example
would be set as:sls_detector_put O-threshold 6000 standard.

For EIGER, at the moment normally only standard settings are possible.
lowgain, verylowgain, veryhighgain and highgain are theoretically possible,
but we never calibrate like this. They could be implemented later if needed.

Notice that setting the threshold actually loads the trimbit files (and inter-
polate them between the closest calibration energies) so it is time consuming.
The threshold is expressed in (eV) as the proper threshold setting, i.e. normally
is set to 50% of the beam energy.

We have added a special command, thresholdnotb, which allows to scan
the threshold energy without reloading the trimbits at every stage. One can
either keep the trimbits at a specific value (es.32 if the range of energies to scan
is large) or use the trimbits from a specific energy (like a central energy).

sls_detector_put O-thresholdnotb energy_in_eV

4 Standard acquisition

After you setup the setting and the threshold, you need to specify the exposure
time, the number of real time frames and eventually how many real time frames
should be acquired:

sls_detector_put O-exptime 1[time_is_s]
sls_detector_put O-frames 10
sls_detector_put O-period O[time_is_s]

In this acquisition 10 consecutive 1 s frames will be acquired. Note that period
defines the sum of the acquisition time and the desired dead time before the
next frame. If period is set to 0, then the next frame will start as soon as the
detector is ready to take another acquisition.

You need to setup where the files will be written to

sls_detector_put O-outdir /scratch
sls_detector_put O-fname run
sls_detector_put O-index O

this way your files will all be named /scratch/run_dj_i.raw where j is relative
to each specific half module, ¢ in the index starts from 0 when starting the
detector the first time and is automatically incremented. The next acquisition
index will be 1. One can reset the index to what wished.

To acquire simply type:

sls_detector_acquire O-

Note that acquiring is blocking. You can poll the status of the detector with:

sls_detector_get status

If the detector is still acquiring, the answer will return running. If the detector
has finished and ready for the next acquisition, then it will return idle. You
can also ask for the status of the receiver, to know when it has returned and
finished getting the data with:

sls_detector_get receiver

There is a more complex way of performing an acquisition, that is useful for
debugging and in case one wants a non blocking behavior:

You can then reset to zero the number of frames caught, then start the
receiver and the detector:

1. sls_detector_put O-resetframescaught O

2. sls_detector_put O-receiver start

3. sls_detector_put O-status start

You can poll the detector status using:
sls_detector_get O-status

When the detector is idle, then the acquisition is done but the receiver could
still be receiving data. If you want, you can check if the receiver is finished
receiving as many frames as you were expecting (this is optional but required
for many many frames acquisition or when using some delays to send data at
very high frame rate.

4. sls_detector_get framescaught
Then you can stop the receiver as well now:
5. sls_detector_put O-receiver stop

The detector will not accept other commands while acquiring. If an acqui-
sition wishes to be properly aborted, then:

e sls_detector_put O-status stop

this same command can be used after a non proper abortion of the acquisition
to reset to normal status the detector.

5 Readout timing- maximum frame rate

IMPORTANT: to have faster readout and smaller dead time, one can configure
clkdivider, i.e. the speed at which the data are read, i.e. 200/100/50 MHz for
clkdivider 0/1/2 and the dead time between frames through flags parallel,
i.e. acquire and read at the same time or acquire and then read out. The config-
uration of this timing variables allows to achieve different frame rates. NOTE

GbE | dynamic range | continuos maximum frame rate(Hz) | minimum period (us)
1 16 256 3901
1 32 128 7820
10 16 2560 391
10 32 1280 782
10 8 5120 196
10 4 10240 98

Table 1: Frame rate limits for the CONTINUOS streaming out of images, i.e.
the data rate out is just below 1Gb/s or 10Gb/s.

dynamic range | images
4 30000
8 15000
16 7600

Table 2: Amount of images that can be stored on board. As while we store
them, we start to send them out, the effective number of images could be larger
than this, but it will depend on the network setup (how fats you stream out
images).

THAT IN EIGER, WHATEVER YOU DO, THE FRAME RATE LIMITA-
TIONS COME FROM THE NETWORK BOTTLENECK AS THE HARD-
WARE GOES FASTER THAN THE DATA OUT.

In the case of REAL CONTINUOUS readout, i.e. continuous acquire and
readout from the boards (independent on how the chip is set), the continuous
frame rates are listed in table 7?. Note that in the continuous flag mode, some
buffering is still done on the memories, so a higher frame rate than the proper
real continuous one can be achieved. Still, this extra buffering is possible till
the memories are not saturated. The number of images that can be stored on
the DDR2 on board memories are listed in table 77.

The maximum frame rate achievable with 10 GbE, dr 16, flags continuous,
flags parallel,clkdivider 0, 6.1 kHz. This is currently limited by the con-
nection between the Front End Board and the Backend board. We expect the
32 bit mode limit, internally, to be 2 kHz (clkdivider 2). In dynamic range
dr 8 the frame rate is 11 kHz and fordr 4 is 22 kHz. For 4 and 8 bit mode
the frame rate are directly limited by the speed of the detector chip and not by
the readout boards.

5.1 Minimum time between frames and Maximum frame
rate

We need to leave enough time between an exposure and the following. This time
is a combination of the time required by the chip, by the readout boards and
eventually extra time to reduce some appearance of cross talk noise between

10

dr clkdivider | expected chip readout t(us) | measured chip readout t(us)
4 0 41 40
4 1 82 84
4 2 123 172
8 0 82 82
8 1 164 167
8 2 328 336
12 0 123 122
12 1 246 251
12 2 491 500

Table 3: Readout time required from the chip to readout the pixels. The num-
bers are obtained using equation ?7.

the digital and analog parts of the chip. It is essential to set the period
of the detector, defined as the exptime plus an extra time, that needs
to be at least the chip/board readout time. If this is set wrong (it
is < exptime plus chip/board readout time), then the detector takes
the minimum time it can, but you are in a not controlled frame rate
situation.

The expected time difference between frames given by the pure chip readout
time is in Table ?7.

The period is s is defined as:

period = exptime + minimum time between frames (1)

where the 'minimum time between frames’ and the minimum period will be
discussed in Table ?77.

As if you run too fast, the detector could become noisier, it is
important to match the detector settings to your frame rate. This
can be done having more parameters files and load the one suitable
with your experiment. We experienced that with low energy settings could
not reach 6 kHz and no noise.

In 16 bit mode, it could make sense, in case of noise and low threshold to
either reduce the frame rate:

new period = exptime 4+ minimum time between frames + (10—20 us) (2)

to let the signal settle or, if the frame rate is important, leave the period at
the same value but reduce the exptime:

new exptime = old exptime — (10—20 us) (3)

In general, choose first the desired dead time: this will tell you if you want
to run in parallel or non parallel mode, although most likely it is parallel mode.

11

dr clkdivider flags t between frames(us) max frame rate (kHz) min period (us) max imgs (nominal/our network)
4 0 parallel 34 22 44 30k /50k
4 1 parallel 6 10.5 92 30k,/100k
4 2 parallel 11.2 5.4 197 infinite
8 0 parallel 34 11.1 89 15k/24k
8 1 parallel 6.1 5.7 181 15k /52k
8 2 parallel 11.2 2.9 342 infinite
16 0 parallel 34 6.1 (126438)* =164 8k/12k
16 0 nonparallel 126 5.6 (1264+52)*= 179 8k/23k
16 1 parallel 6.1 3.9 257 8k/28k
16 1 nonparallel 255 3.3 303 infinite
16 2 parallel 11 1.9 526 infinite
16 2 nonparallel 504 1.8 555 infinite

Table 4: Readout settings. The min exptime possible is 5—10 us. This is due to the
time to pass the pixel enable signal in the whole chip. The time between frames
has been measured with the oscilloscope and the maximum frames rate has been
tested with an external gating from a pulse generator at known frequence. The
minimum period is obtained as 1/max frame rate.

Then, choose the maximum frame rate you want to aim, not exceeding what
you aim for not to increase the noise. In 4 and 8 bit modes it makes no sense
to run nonparallel as the exposure time is too small compared to the readout
time.

5.1.1 4 and 8 bit mode

In parallel mode, the minimum time between frames is due to the time re-
quired to latch the values of the counter with capacitors. These values are
determined in firmware and they can be estimated as:

time between frames, parallel = 4us - (clkdivider + 1) (4)

This time is independent on the dr.

In nonparallel mode, it is easily possible to calculate the required asic
readout time. Indeed a block of (8*256) pixels are readout, the bits pixel are
the dr and the speed of readout is 5ns/bit *(clkdivider+1) :

asics readout time = 5ns /bit - 2(¢RAVIder) | g (8% 956) + dpus - (clkdivider 4 1)

(5)

While we expose the next frame, we still need to readout the previous frame,

so we need to guarantee that the period is large enough at least to readout

the frame. So the maximum frame rate has to be 1/(asic readout time). The
minimum period has to be equal to the asic readout time.

12

dr clkdivider flags t difference between subframes(us) | max internal subframe rate (kHz)

maximum frame rate (Hz)

32 2 parallel 12 2

170

32 2 nonparallel 504 <2

160

Table 5: Timing for the 32bit case. The maximum frame rate has been computed
assuming 2 subframes of default subexptime of 2.62144 ms.

5.1.2 16 bit mode

A similar situation happens in 16 bit mode, where this is more complicated
because of three things:

1. The chip actual dr is 12 bit

2. The chip is readout as 12-bit/pixel, but the FEB inflates the pixel values
to 16-bits when it passes to the BEB. This means that effectively the FEB
to BEB connection limits the data throughput in the same way as if the
dr of the chip would really be 16 bits.

3. While in 4 and 8 bit mode it makes no sense to run in nonparallel
mode as the exptime/dead time ratio would be not advantageous, in 16
bit mode, one can choose how to run more freely.

If we are in parallel mode, the dead time between frames, is also here de-
scribed by equation ??. If we are in nonparallel mode, the dead time between
frames is defined by 7?7 ONLY for clkdivider 1 and 2. So the maximum frame
rate has to be 1/(chip readout time) in this case. Only for clkdivider 0 we hit
some limitation in the bandwidth of The FEB — BEB connection. In this case,
the maximum frame rate is lowered compared to what expected.

5.1.3 32 bit mode

The autosumming mode of Eiger is the intended for long exposure times (frame
rate of order of 100Hz, PILATUS like). A single acquisition is broken down
into many smaller 12-bit acquisitions, each of a subexptime of 2.621440 ms by
default. Normally, this is a good default value to sustain an intensity of 10°
photons/pixel/s with no saturation. To change the value of subexptime see
section ?77.

The time between 12-bit subframes are listed in table 77.

The exposure time brokend up rounding up to the full next com-
plete subframe that can be started. The number of subframes composing
a single 32bit acquisition can be calculated as:

exptime (s)

subframes = (int)(+0.5)

(6)

subexptime (s) + difference between frames (s)

13

Figure 3: Trigger INPUT (looking at a single module from the back, top) is
the rightmost, down.

This also means that exptime<subexptime will be rounded tosubexptime. If
you want shorter acquisitions, either reduce the subexptime or switch two 16-bit
mode (you can always sum offline if needed).

The UDP header will contain, after you receive the data, the effective number
of subframe per image (see section ?7) as ”SubFrame Num or Exp Time”, i.e.
the number of subframes recorded (32 bit eiger). The effective time the detector
has recorded data can be computed as:

effective exptime = (subexptime) - (# subframes) (7)

In the future release, a configurable extra time difference between subframes
will be introduced for the parallel mode, so that some noise appearing in de-
tectors at low threshold can be removed. This will enlarge the time difference
between frames form the default 12 us to something configurable, expected to
be 15-40 us (for the 9M it is currently 200 us due to a noisier module).

6 External triggering options

The detector can be setup such to receive external triggers. Connect a LEMO
signal to the TRIGGER IN connector in the Power Distribution Board (see
Fig.). The logic 0 for the board is passed by low level 0—0.7 V| the logic 1 is
passed to the board with a signal between 1.2—5 V. Eiger is 50 2 terminated.
By default the positive polarity is used (negative should not be passed to the
board).

sls_detector_put O-timing [auto/trigger/burst_trigger/gating]
sls_detector_put O-frames x

sls_detector_put O-cycles y

sls_detector_acquire O-

14

No timeout is expected between the start of the acquisition and the arrival of
the first trigger.
Here are the implemented options so far:

e auto is the software controlled acquisition (does not use triggers), where
exptime and period have to be set. Set number of cycles (i.e. triggers)
to 1 using cycles. Set number of frames using frames.

e trigger 1 frame taken for 1 trigger. Your frames needs to be 1 always,
cycles can be changed and defines how many triggers are considered.
exptime needs to be set. In the GUI this is called trigger exposure series.

e burst_trigger gets only 1 trigger, but allows to take many frames. With
frames one can change the number of frames. cycles needs to be 1.
exptime and period have to be set. In the gui it is called trigger readout.

e gating allows to get a frame only when the trigger pulse is gating. Note
that in this case the exp time and period only depend on the gating signal.
cycles allows to select how many gates to consider. Set number of frames
to 1 using frames.

Hardware-wise, the ENABLE OUT signal outputs when the chips are really
acquiring. This means that the single subframes will be output in 32 bit mode.
The TRIGGER OUT outputs the sum-up-signal at the moment (which is use-
less). This will be changed in the future to output the envelop of the enable
signal.

We are planning to change some functionality, i.e. unify the trigger and
burst trigger modes and make both frames and cycles configurable at the
same time.

7 Autosumming and rate corrections

In the case of autosumming mode, i.e, dr 32, the acquisition time (exptime
is broken in as many subframes as they fit into the acquisition time minus all
the subframes readout times. By default the subexptime is set to 2.621440 ms.
This implies that 12 bit counter of EIGER will saturate when the rate is above
or equal to 1.57 MHz/pixel. The minimum value is of order of 10 ns (although
as explained values smaller than 500 ps do not make sense). The maximum
value is 5.2 s.
The subframe length can be changed by the user by doing:

sls_detector_put O-subexptime [time_in_s]

One needs to realize that the readout time, for each subframe is 10.5 us
if the detector is in parallel mode. 500 ws if the detector is in non paral-
lel mode. Note that in dr 32, as the single frame readout from the chip is
500 ps, no subexptime<500 us can be set in parallel mode. To have smaller
subexptime, you need the nonparallel mode, although this will have a larger

15

deadtime than the acquisition time.

Rate corrections are possible online (and the came procedure can be used
offline) by creating a look-up table between the theoretically incident counter
value ¢; and the detected counter value ¢4. In the EIGER on board server, this
look-up table is generated assuming that the detected rate ng can be modeled
as a function of the incident rate n; according to the paralyzable counter model:

ng = n; - GIP(*W : 7’)7 (8)

where 7 represents an effective parameter for the dead time and the loss in
efficiency. The look-up table is necessary as we are interested to obtain ¢;(cq)
and equation ?7 is not invertible. One needs to notice that the paralyzable
counter model to create a look-up tables applies only if photons arrive with
a continuous pattern (like at the SLS). If photons are structured in fewer but
intenser bunches, deviations may arise. This is the case for some operation
modes at the ESRF. For those cases we are studying how to correct, probably
from a simulated correction tables if an analytical curve cannot be found. In
the new calibration scheme, 7 is given as a function of the energy. It
is loaded from the trimbit files and interpolation between two trimbit
files are performed. One needs to make sure the appropriate 7 value is
written in the trimbit files, then need to load the appropriate settings and
vthreshold before.

Online rate corrections can be activated for dr=32. They are particularly
useful in the autosumming mode as every single subframe is corrected before
summing it. To correct for rate, the subframe duration has to be known to the
correction algorithm. Rate corrections for dr=16 will be activated as well in the
next firmware release. To activate the rate corrections, one should do:

sls_detector_put O-ratecorr [tauval_in_ns]
To deactivate:
sls_detector_put O-ratecorr O

Now to activate the rate corrections with the value written in the trimbit
file or interpolated from there, once would do:

sls_detector_put O-ratecorr -1

Every time either the rate corrections are activated, 7 is changed or the
subframe length is changed, then a new correction table is evaluated. Note that
computing the correction table is time consuming.

8 Dependent parameters and limits

Here is a list of dependent parameters:

16

1.

dr changes clkdivider: dr 16 — clkdivider 1. You can change it to (0,
1, 2); the frame rate changes accordingly to table ??. Setting the dr to
32 changes clkdivider to 2. Only way dr 32 can work.

Here is a list of "ignored” parameters, meaning that if the parameters are
not what the detector expects, it will ignore them, but there is no guarantee
that you get what you think you are asking:

1.

period. Assuming that you set the correct exptime according to the
table 7?7, the period to be used by the detector has to be >= exp-
time+readout time (table ??7). Otherwise the detector will take data at
the minimum possible period, which is exptime-+readout times. period
is not changed by the detector after the acquisition.

Here is a list of limits that should be checked:

1.

If dr is 32 and clkdivider is not 2, whatever the detector gets out is
wrong (the boards cannot properly keep up)

If the variable frames is greater than what the memory can store (ta-
ble ??) and the frame rate exceed the continuos streaming (table 77),
limits on the maximum number of images need to be implemented if the
period is lower than the one listed in table 7?. Check table 7?7 to see the
different cases.

Running at a speed that does not support the frame rate you are ask-
ing: see table 7?7 to check if the frame rate (period) you are asking is
compatible with the clkdivider you are asking.

Running at a readout time that does not support the frame rate you are
asking. Check table ?? to check if the frame rate (period) you are asking
is compatible with the flags you are asking.

The minimum allowed value for exptime should be 10 us.

By default the subexptime is set to 2.621440 ms. Values smaller than
500 us do not make sense. The maximum value is 5.2 s. This limits should
be checked.

Here is a list of parameters that should be reset:

1.

resetframescaught should be reset to zero after every acquisition taken
with receiver start,status start,receiver stop. If the acquisition
is taken with sls_detector_acquire, there is no need to reset this.

. After changing the timing mode of the detector, one should reset to ’1’ the

unused value, in that specific timing mode, between frames and cycles.
See section 7?7 for how to use the timing. At the present moment the
detector will acquire more frames than planned if the variable not used
between frames and cycles is not reset. In future releases, the unused
variable will be ignored. Still resetting is a good practice.

17

Figure 4: 1 and 10GB LEDs position.

9 1Gb/s, 10Gb/s links

9.1 Checking the 1Gb/s, 10Gb/s physical links
LEDs on the backpanel board at the back of each half module signal:

e the 1Gb/s physical link is signaled by the most external LED (should
be green). For top half modules is at the extreme left. For bottom half
modules is at the extreme right.

e the 10Gb/s physical link is signaled by the second most external LED next
to the 1Gb/s one (should be green).

9.2 Delays in sending for 1Gb/s, 10Gb/s, 10Gb flow con-
trol, receiver fifo

Extremely advanced options allow to:
o Activate the flow control for 10 Gb/s E (by default the 1 Gb/s E is always
active and cannot be switched off:

./sls_detector_put flowcontrol_10g 1

e Delay the transmission of the left port. This delay option is useful in
the case of many simultaneous receivers running, such that it reduces the
throughput to the receivers all at the same time. To be used board by
board (i.e X:, Y:,etc.. with different units:

18

./sls_detector_put X:txndelay_left xxxx

e Transmission delay of the right port, same as above. The value here should
be different from the left port to spread the transmission even more

./sls_detector_put X:txndelay_right yyyy
As example:

for X in $(seq 0 4); do ./sls_detector_put $X:txndelay_left $((X*100000)); done

./sls_detector_put $X:txndelay_right $((X*100000)); X=$((X+1)); done

e Set transmission delay of the entire frame. This is required as you want
to finish sending the first frame to all receivers before starting sending the
second frame to the receivers with shorter delay time. This value has to
be greater than the maximum of the transmission delays of each port.

./sls_detector_put txndelay_frame zzzz

In the example before, it would be: zzzz=4*100000-+ 100000

e Readjust the size of the fifo of the receiver between listening and writing
(useful when writing is limited)

./sls_detector_put rx_fifodepth xxxx

xxxx is 100 images by default.

e Deactivate a half module (for ROI or debugging). Note that the MASTER
module SHOULD NOT be deactivated:

./sls_detector_put X:activate 0

where X is the half module you want to deactivate. The receiver at this
point will return fake data (overflow) for this module. If you wish to
eliminate the receiver overall for this module, then you need to run a
configuration file where this module has been removed. To activate back

a module, do:

./sls_detector_put X:activate 1

19

O:rx_udpport 50011 | O:rx_udpport2 50012
1:rx_udpport 50013 | 1:rx_udpport2 50014

Table 6: UDP port geometry for a single module, 4 UDP ports.

9.3 Setting up 10Gb correctly: experience so far
For configuring well the 10Gb card not to loose packets,

e MTU must be set up to 9000 (jumbo frames) on all the involved sides:
detector, switch, server NIC

e you should set up static MAC address tables with separated VLANs
As root, also do:
ethtool -G xthl rx 4096, ethtool -C xthl rx-usecs 100

where xthl can be replaced with the correct 10Gb device. To minimise loosing
packets, priorities are set better as root user, so have the receiver as root. To
try to bypass being root, we trued something like this:

/etc/security/limits.conf username rtprio 99

but somehow it did not fully worked so we kept the trick of being root.
Very important is to activate the flow control in 10Gb (in 1Gb it is on by
default and not configurable)

./sls_detector_put flowcontrol_10g 1

Set the transmission delays as explained in the manual.
It can help to increase the fifo size of the receiver to rx_fifodepth to 1000
images

./sls_detector_put rx_fifodepth 1000

One needs to keep into account that in 16 bit mode for 1 image we expect each
slsReceiver to allocate 0.5MB. So for 1000 images, we expect 500MB memory
for each receiver. This can be monitored in Linux with ”top” or ”free -m”.

10 Offline processing and monitoring

10.1 Data out of the detector: UDP packets

The current UDP header format is described in figure 77.

10.2 Data out of the slsReceiver

For a module, the geometry of the ports are as in table ??: white the option
n:flippeddatax 1, which flips in vertical the content of the module. By con-
vection, we usually use 1:flippeddatax 1, but one could flip the top instead.

20

Byte o 1 2 3 4 5| 5] 7

Bits 7.0 15...8 23..16 31..24 39...32 47..40 53..48 63...54
Frame Nurmber (8 bytes)
SubFrame Num or ExpTime in 10ns steps (4 bytes) | Packet Number (4 bytes)

Bunch ID (8 bytes)
Time Code in 100ns steps (8 bytes)

Module ID (2 bytes) | X coordinate (2 bytes) | ¥ coordinate (2 bytes) Z coordinate (2 bytes)
Debug (4 bytes) |R0ul1d Robin addr (2 bytes)|Det (1byte) \Hdr (1by)
Frame Nurmber the frame ID this UDP packet belongs to
SubFrame Num or ExpTime in 10ns steps (EIGER) On EIGER it is the subframe number in summing mode. For non summing mode this is 1.
SubFrame Num or ExpTime in 10ns steps (Non-EIGER) Exposure time in 100ns steps
Packet Number the packet ID within the frame
Bunch ID Ehe bunch 1D when the image was taken, for EIGER 0
Time Code in 100ns steps The time when the image was taken. This is not an absolute time value
Module ID From which module of the detector the packet comes from
XIYIZ coordinates the X/¥/Z coordinate of the detector module
debug debug information, should be 0 in non-debug firmware
Round Robin pointer to the round rebin address table in the detector
Det Detector type (3 Eiger. 8 Jungfrau). see sls_receiver_defs.n, enum detectorType
Hdr Header version, for now it's 1
Byte Order 1lis @1 00.80, 256is 00 01 00 00.00

Figure 5: UDP header out of EIGER

10.3 “raw” files

If you use the option of writing raw files, you will have a raw file for each UDP
port (meaning most likely 2 chips), 4 files per module. In addition to the raw
files, you will get also a “master” file, containing in ascii some detector general
parameters and the explanation of how to interpret the data from the raw files.

The master file is named: filename master_0.raw and for version “3.0” of
the slsDetectorSoftware looks like:

Version : 1.0

Dynamic Range : 16

Ten Giga 1

Image Size 1 262144 bytes
X : 512 pixels

y : 256 pixels
Total Frames 01

Exptime (ns) : 1000000000
SubExptime (ns) 1 2621440
Period (ns) : 1000000000
Timestamp : Thu Aug 17 10:55:19 2017

#Frame Header

Frame Number : 8 bytes
SubFrame Number : 4 bytes
Packet Number : 4 bytes
Bunch ID : 8 bytes

21

Timestamp : 8 bytes
Module Id : 2 bytes
X Coordinate : 2 bytes
Y Coordinate : 2 bytes
Z Coordinate : 2 bytes
Debug : 4 bytes
Round Robin Number : 2 bytes
Detector Type 1 byte
Header Version 1 byte

Note that if one wants to reconstruct the real time the detector was acquiring
in 32 bit (autosumming mode), one would have to multiply the SubExptime (ns)
for the SubFrame Number.

10.4 Offline image reconstruction

The offline image reconstructionslsImageReconstruction is not part of the
package anymore.

The detector writes 2 raw files per receiver. An offline image reconstruction
executable has been written to collate the possible files together and produce
cbf files. The executable uses the CBFlib-0.9.5 library (downloaded from the
web as it download some architecture dependent packages at installation).
At ¢SAXS, the CBF1ib-0.9.5 has been compiled -such that the required packages are
downloaded in /sls/X12SA/data/x12saop/EigerPackage/CBFlib-0.9.5.

To use it for a single module:
cbfMaker [filename with dir]

eg. cbfMaker /scratch/run_63_d1_f000000000000_3.raw

To use it for a 1.5 multi modules:
cbfMaker [filename] [pixels x] [pixels y] ([singlemodulelongside_x] [start det])

eg. cbfMaker /scratch/run 63_d0_f000000000000_3.raw 3072 512 1 O.

The [singlemodulelongside x] [option to interpolate gap pixels] param
are optional. Defaults are “1”, the detector long side is on the x coordinate and
start to reconstruct from module 0. The executables:

bcfMaker1.5M [file_name_with_dir]
bcfMaker9M [file_name_with_dir]

contain the hardcoded geometry for the 1.5M (3 modules horizontal on the long
side) and for the 9M at ¢SAXS: 6(short side)x3 (long side) modules.
Missing packets in a frame and border pixels (x2 and x4 are given with value
—1 at the present time.

It is important to know, that the pixels at the edge between 2 chips count
more as double size. We can virtually introduced 1 virtual pixel per double

22

larger pixel, so to have an even number of counts everywhere. Virtual pixels
(not filled) between module gaps are also inserted.

GapPixelsBetweenChips_x =
GapPixelsBetweenChips_y
GapPixelsBetweenModules_x
GapPixelsBetweenModules_y

I
NN
w 0o
O v

10.5 Read temperatures/HV from boards

With an updated kernel on the linux boards (ask to the SLS detector group for
specifications), it is possible to monitor the temperature on the boards:

temp_fpga #gets the temperature of the fpga

temp_fpgaext #gets the temperature close to the fpga

temp_10ge #gets the temperature close to the 10GE

temp_dcdc #gets the temperature close to the dc dc converter
temp_sodl #gets the temperature close to the left so-dimm memory
temp_sodr #gets the temperature close to the right so-dimm memory
temp_fpgafl #gets the temperature of the left front end board fpga
temp_fpgafr #gets the temperature of the right front end board fpga

You need to use the command specifying from which board you desire the
temperature readings, for example:

./sls_detector_get O:temp_fpga
./sls_detector_get 1:temp_fpga

In 500k—2M pixel systems there is a hardware temperature safety switch, which
will cut power to the BEBs when reaching a too high temperature. For the
9M system, there is a temperature sensor read by the bchip100 PCU which will
shutdown the detector when above a certain temperature.

The HV can also be set and read through the software:

./sls_detector_put vhighvoltage 150
./sls_detector_get vhighvoltage

Note that the get vhighvoltage would return the measured HV from the master
module only. If getting the vhighvoltage for individual halfmodules, only the
master will have a value different from -999.

A Kill the server, copy a new server, start the
server

All the below operations are form a terminal and assume you login to the boards.
Kill current server:

23

ssh root@bebxxx #password is root
killall eigerDetectorServer # kill server and stopserver

Copy a new version of the server (if necessary, otherwise skip it):

cd executables

scp user@pc:/path/eigerDetectorServerNewVersion .
chmod 777 eigerDetectorServerNewVersion

mv eigerDetectorServerNewVersion eigerDetectorServer
sync

Start the server again:
./eigerDetectorServer &

Note that the server appropriate for the software version used is lo-

cated inside the package: slsDetectorsPackage/serverBin/eigerDetectorServerxx.yy..
To copy the detector server on many boards, a script can be implemented

on the lines of:

for i in bebl1ll beb070;

do ssh root@$i killall eigerDetectorServer;

scp eigerDetectorServer root@$i:~/executables/eigerDetectorServer ;
ssh root@$i sync; done

B Loading firmware bitfiles

A bcp executable (which needs tftp installed on the PC, is needed.

1. Manual way: you need to press something on the detector. To program
bitfiles (firmware files), do a hard reset with a pin/thin stuff in the holes
at the very back of the module. They are between the top 7 LED and
the bottom 1 and opposite for the other side. Push hard till all LEDs are
alternating green and red.

2. Software way (possible only if you have the correct programs copied on
your board. If not, as the sls detector group).

ssh root@bebxxx
cd executables
./boot_recovery

In both case, after booting, only the central LED should be on green and red
alternating.
From a terminal, do:

nc -p 3000 -u bebxxx 3000

24

where xxx is the board number. It is enough top monitor with nc only one board.
Pres enter twice (till you see a prompt with the board hostname printed) and
keep this terminal to monitor. It takes a bit of time to load the bitfiles, but the
terminal tells you.

From another terminal you do:

./bcp feb_left.bit bebxxx:/febl

sleep 300; #or till the screen over netcat has told you Successful
./bcp feb_right.bit bebxxx:/febr

sleep 300; #or till the screen over netcat has told you Successful
./bcp download.bit bebxxx:/fw0

sleep 300; #or till the screen over netcat has told you Successful

If you need to program a new kernel (only needed when told to do so):

./bcp kernel_local bebxxx:/kernel
sleep 300; #or till the screen over netcat has told you Successful

do the same for the other boards. You can program in parallel many boards,
but you cannot load two bitfiles on the same board till loading and copying one
process has finished. So load all left febs together, then proceed to the right
febs, then the bebs. Power off completely everything. Power it on.

C Pulsing the detector

There are two ways to pulse the detector:

e Pulse digitally: when you are interested to the output readout and do
not care about the analog response from the pixels:

sls_detector_put vthreshold 4000

sls_detector_put vtr 4000

sls_detector_put pulsechip N #to pulse N

sls_detector_put pulsechip -1 #to get out of testing mode

Note that the answer will be 2 - N + 2 in this case.

e Pulse analogically: You want to really check the analogical part of the
detector, not just the readout.

sls_detector_put vcall 3600
sls_detector_put vthreshold 1700
sls_detector_put vrf 3100

for i in $(seq 0 7) ;

do px=$((-255+1));
sls_detector_put pulse 0 $px O;
for j in $(seq 0 255) ; do

25

sls_detector_put pulsenmove N O 1;
done;

done;

sls_detector_p resmat O
sls_detector_acquire

You read N in every pixel if you are setup correctly.

D Load a noise pattern with shape

For debug purposes, we have created a noise pattern with a shape. If you recon-
struct correctly your image, you should be able to read ”.EIGER” in the same
direction for both the top and bottom in normal human readable orientation. To
load the special noise file look at settingsdir/eiger/standard/eigernoise.sn0xx
in the package.

sls_detector_put trimbits ../settingsdir/eiger/standard/eigernoise

E Troubleshooting

E.1 Cannot successfully finish an acquisition
E.1.1 Only master module return from acquisition

When no packets are received AND detector states in 'running status’. Widest
list of causes. Query the status of each half module till the maximum number
N, for i in $(seq O N); do sls_detector_get $i:status; done, to check
if there are half modules that are still running.

If only the master modules return but ALL the other half modules do not:

e FEB LED 1 and or 3 become red while trying to acquire an image: recon-
nect or change the DDR2 memories. Technically it is a FIFO problem to
communicate the data to the rest of the chain.

e It can be that the master cable is not connected, check.

e It can be that the synchronization cable is not connected or the termina-
tion board at the synchronization does not work. Check.

E.1.2 A few modules do not return from acquisition

If only a few modules are still running but the others return, it is a real problem
with a backend board or a synchronization bug. If you can, ssh into the board,
kill and start the eigerDetectorServer again (see Section ?? for how to do this).
Keep the terminal with the output from the eigerDetectorServer and repeat the
acquisition.

26

e Check if the acquisition returned from the server or not. In case seek help
from the SLSDetectorGroup.

e In the server you read something along the lines of ”cannot read top right
address”. It is communication between the front and backend board. Or
FEB FPGA is not programmed. Try to program again FPGA, and make
sure you program FPGA bit files 70x, if you have 70x FPGAs, or 30x, if
you have 30x FPGAs. If still fails, tell the SLSDetectorGroup as it could
be a hardware permanent failure.

E.2 No packets (or very little) are received

In both cases running wireshark set to receive UDP packets on the ethernet
interface of the receiver (filter the UDPport>=xxxx, where xxxx is written in
the configuration file) can help you understanding if NO packets are seen or
some packets are seen. You have to set the buffer size of the receiving device in
wireshark to 100Mbyte minimum. If no packets are received, check that your
receiving interface and detector UDPIPs are correct (if in 10Gb). Most of the
time in this case it is a basic configuration problem. It can help looking at the
receiver output, shown in an example here:

Missing Packets 1 224064
Complete Frames : 3499
Last Frame Caught : 3499

The Last Frame Caught, meaning the packet from the last frame that was
sent out by the detector, can help in understanding the problem:

1. If some packets are received, but not all, it could be a network optimization
problem. In this case, the Last Frame Caught will be a value close to the
expected number of frames with missing frames distributed over the whole
frame range. In this case:

e For receiving data over 1Gb, the switch must have FLOW CON-
TROL enabled

e If using 10GbE, check that the 10Gb link is active on the backpanel
board. Then refer to Section ??7 to see how to configure the 10Gb
ports on the receiving machine correctly.

2. If the Last Frame Caught value is much lower than the expected frames
and you are missing a bunch of frames from a point onwards, and you
are using receiver start, status start: then it can be that you are
stopping the receiver too early. In particular when you are using delay
it might be that there is some time between when the detector is already
done and in idle state but the receiver is still receiving data. Check with
./sls_detector_get framescaught if the receiver is already done before
doing ./sls_detector_put receiver stop.

27

3. If the Last Frame Caught value is much lower than the expected frames
and you are missing a bunch of frames from a point onwards and you
are running at a higher frame rate than the continuous framerate (see
table ??) with more images than the size of the memory (see table 77).
It might be that you are running out of memory to store images. There
is no protection for this. see point 77?7

E.3 ’Got Frame Number Zero from Firmware’

In this case, you have run out of memory size (see table ?? for the size) on the
boards so you are trying to store on the DDR2 memories more images that they
can contain and the network is not fast enough to send everything out from the
10GbE. So if you see:

Got Frame Number Zero from Firmware. Discarding Packet

it means that you run out of memory at the previous acquisition. The cure is
taking 2 or 3 SINGLE images in a raw to clear out the memories.

E.4 The module seems dead, no lights on BEBs, no IP
addresses

e Check the 2 fuses on the power distribution board. If one of the fuses is
in shortcuircuit, then exchange it. Nominal values are 7 A and 5 A. Old
modules with 5 A and 3 A could trip.

e The module is not properly cooled and the temperature safety switch has
killed the power to the backend boards.

E.5 The module seems powered but no IP addresses
If the 1G LED (see Section ??) on the backpanel board is not green:
e Check that the 1Gb cable is plugged in.
e Check that there is a DCHP server assigning IP addresses to the board.

e The IP address is assigned only at booting up of the boards. Try to reboot
in case the board booted before it could have an IP address.

e Check that you did not run out of IP addresses

Check that the board is not in recovery mode (i.e. the central LED on the back
is stable green, see Fig ?7). In this case reboot the board with the soft reset or

power cycle it.
If the 1Gb LED on the backpanel board is green (see Section ?7?):

e Check that the IP address has been refreshed on the PC you are trying to
communicate to the detector from. Run on the PC as root the following
command to update the DNS cache: nscd -i hosts

28

E.6 Receiver cannot open socket

It is connected to the TCPport which the receiver uses:

e The port is already in use by the same receiver already opened somewhere
or by another process: check with ps -uxc your processes

e In rare cases, it might be that the TCP port crashes. To find out which
process uses the TCPPOrt do: netstat -nlp — grep xxxx, where xxxx
is the tcpport number. To display open ports and established TCP con-
nections, enter: netstat -vatn. Kill the process.

E.7 The client ignores the commands

Make sure that in the configuration file you do not have lock 1 activated, as
this will let only one username from one IP address talk to the detector. To
deactivate it, you need to run lock O from the client session where you locked
it.

E.8 Zmq socket is blocked

It is connected to the TCPport which is used. In rare cases, it might be that the
TCP port crashes. To find out which process uses the TCPPOrt do: netstat
-nlp — grep xxxx, where xxxx is the tcpport number. To display open ports
and established TCP connections, enter: netstat -vatn. Kill the process.

E.9 Client has shmget error

Note that occasionally if there is a shared memory of a different size (from an
older software version), it will return also a line like this:

x% shmget error (server) *x*-1

This needs to be cleaned with ipcs -m and then ipcrm -M xxx, where xxx are
the keys with nattch 0. Alternative in the main slsDetectorFolder there is a
script that can be used as sh cleansharedmemory.sh. Note that you need to
run the script with the account of the client user, as the shared memory belongs
to the client. It is good procedure to implement an automatic cleanup of the
shared memory if the client user changes often.

E.10 Measure the HV

For every system:

o Software-wise measure it (now the software returns the measured value),
with sls_detector_get vhighvoltage. The returned value is the HV
(for proper Eiger setting is approximately 150 V) if it is correctly set. If
two master modules are presents (multi systems), the average is returned

29

(still to be tested). If one asks for the individual n half module bias voltage
through sls_detector_get n:vhighvoltage, if the n module is a master,
the actual voltage will be returned. If it is a slave, -999 will be returned.

e Hardware-wise (opening the detector) measure value of HV on C14 on the
power distribution board. Check also that the small HV connector cable
is really connected.

The 2M system at ESRF has a HV enable signal that needs to be shortcut
in order to overwrite vacuum protections (when not in vacuum). The 1.5M for
OMNY has a relay system that enables HV only when the vacuum is good. For
both systems, it makes sense not to set the HV while running the configuration
file but set it at a later stage when sure about the vacuum.

E.11 The image now has a vertical line

Check if the vertical line has a length of 256 pixels and a width of 8 columns.
In this case it is a dataline being bad. It can be either a wirebond problem or
a frontend board problem. try to read the FEB temperature (see Section 77?)
and report the problem to the SLSDetector group. Most likely it will be a long
term fix by checking the hardware.

E.12 The image now has more vertical lines

If you see strange lines in vertical occurring at period patterns, it is a memory
problem. The pattern is 4 columns periodic in 16 bit mode, 8 columns periodic
in 8 bit mode and 2 columns periodic in 32 bit mode. Try to switch on and off
(sometimes it is a strange initialization problem).

E.13 ssh to the boards takes long

Depending on your network setup, to speed up the ssh to the boards from a pc
with internal dhcp server running: iptables -t nat -A POSTROUTING -o
ethl -j MASQUERADE; echo ”1” ; /proc/sys/net/ipv4/ip_forward,
where ethl has to be the 1Gb network device on the pc

E.14 Check firmware version installed on BEB

You can either ask in the client as described in section ??, or login to the boards
directly. Follow some steps described in Section 77.

ssh root@bebxxx #password is root

killall eigerDetectorServer # kill server and stopserver
cd executables/

./eigerDetectorServer&

Scroll up in the terminal till you find Firmware Version: =xx

30

E.15 Check if half-module is a master, a slave, a top or a
bottom

Follow some steps described in Section ?7.

ssh root@bebxxx #password is root

killall eigerDetectorServer # kill server and stopserver
cd executables/

./eigerDetectorServer&

Scroll up in the terminal till you find:
Rk \ASTER /SLAVE #tssttttsiin
koot NORMAL/SPECIAL stk

E.16 ’Cannot connect to socket’

This error is typically due to the detector server not running. For why, see
section ?77.

E.17 Detector server is not running

The detector server could not be running: either the detector was powered off,
or it powered off itself due to too high temperature or, in the case of the 9M,
if the waterflow sensor detected no flux and powered it off (the chiller stops
occasionally as ¢cSAXS).

If the powering and the temperature are OK, instead, it can be that the
firmware version is incompatible to the server version and/or the client software
version. So check the consistency of firmware/software/server versions.

E.18 ’Acquire has already started’ error message

If you see the client returning the following error message:

“Acquire has already started. If previous acquisition terminated unexpectedly,
reset busy flag to restart.(sls_detector_put busy 0)”

You need to run the command:

./sls_detector_put busy O

E.19 There is noise running the detector in 32-bit

Short story (for now): You are running in parallel mode, switch flags to
non nonparallel mode. Long story: If you are running the detector in 32-
bit (autosumming), there might be some noise, particularly at lower thereshold
energies. This is due to the fact that the analog part of the chips require some
latency time to settle which is larger than the redout time. At the present
moment it is possible to run the detector only in parallel or nonparallel

31

mode, respectively with readout times between frames of 12 us and 504 us.
If you switch flags to non nonparallel mode you will giveenough time for
teh signals to settle. For future realeas we are planning to introduce some
configurable delay, such that you can remain with the parallel flag, but can
obtain a configurable dead time between frames in the range 12—504 us.

E.20 There is noise running the detector at high frame
rate(4,8,16 bit)

If are running in parallel mode, in particular at low thereshold energies, you
might encounter some noise. The reason is that the analog part of the chips
require some latency time to settle which is larger than the redout time.

1. You can lower the frame rate and relax requirements on period: At low
frame rate, you normally leave enough time between the end of the acqui-
sition and the starting of the next, so you should not see this effect. In any
case setting a period=exptime+readout time from Table 7?7 +extra 20us
cures the problem. The 20us could also be 10 us, they are very hardware
dependent.

2. The frame rate requirement are stingent (as for time resolved measure-
ments): the only option here is to reduce the exptime to let the extra
20 ps (or 10) us. The period remains the same.

F Client checks - command line

Guide on returned strings:

1. sls_detector_get free

Returns a list of shared memories cleaned (variable number depending on
detector):

Shared memory 273612805 deleted
Shared memory 276922374 deleted
Shared memory 270270468 deleted

free freed

Note that occasionally if there is a shared memory of a different size (from
an older software version), it will return also a line like this:

*x** shmget error (server) **x-1

This needs to be cleaned with ipcs -m and then ipcrm -M xxx, where
xxx are the keys with nattch 0.

32

10.

11.

12.

sls_detector_get settings
settings standard

standard is only if correct. undefined or anything else is wrong.

sls_detector_get threshold
threshold xxxx

Returns a string (xxxx) that can be interpreted as the threshold in eV. If
it fails to set it, returns the last threshold it was set (which the detector
still has). If settings are not defined or different trimbits are chosen, it
will return ”undefined”.

. sls_detector_get fname

fname string

sls_detector_get exptime

exptime number

where number is a string to be interpreted as a float in (s).
sls_detector_get period

period number

where nuymber is a string to be interpreted as a float in (s).
sls_detector_get frames

frames number

where number is a string to be interpreted as an integer.
sls_detector_get cycles

cycles number

where number is a string to be interpreted as an integer.
sls_detector_get status

status string

where string can be idle or running.

sls_detector_get index

status number

where number is a string to be interpreted as an integer.
sls_detector_get dr

dr number

where number is a string that should be interpreted as an integer (4/8/16/32).
sls_detector_get clkdivider
clkdivider number

where number is a string that should be interpreted as an integer (0/1/2/3).

33

13.

14.

15.

16.

17.

18.

19.

20.

sls_detector_get flags
flags stringl string2

where stringl is a string should be always continous and string2 can
be either nonparallel or parallel.

sls_detector_get timing
timing string

where string is a string which can be auto/trigger/burst_trigger/gating.

sls_detector_get enablefwrite
enablefwrite number

where number is a string which should be interpreted as an integer ”0” or
” 177 .

sls_detector_get framescaught
framescaught number

where number is a string which should be interpreted as an integer of the
complete frames got by the receiver.

sls_detector_get frameindex
frameindex number

where number is a string which should be interpreted as an integer of the
last frame number read from firmware. It comes from the receiver, though
and reset after every acquisition series.

sls_detector_get subexptime
subexptime number

where number is a string that should be interpreted as a float in s. The
default value is 0.002621440.

sls_detector_get ratecorr
ratecorr number

where number is a string that should be interpreted as a float in s. 0.000000
means correction off. Values above zero are the value of 7 in ns.

sls_detector_get vhighvoltage
vhighvoltage number

where number is a string that should be interpreted as an int and for
proper Eiger setting is approximately 150 V if it is correctly set. If two
master modules are presents (multi systems), the average is returned (still
to be tested). If one asks for the individual n half module bias voltage
through sls_detector_get n:vhighvoltage, if the n module is a master,
the actual voltage will be returned. If it is a slave, -999 will be returned.

34

dr clkdivider flags readout t(us) | max frame rate (kHz) | min period (us) | max imgs (nominal/our network)
4 0 parallel 34 22 44 30k/50k
4 0 nonparallel 44 21 49 30k /50k
4 1 parallel 6 10.5 92 30k/100k
4 1 nonparallel 88.7 10.5 93 30k/100k
4 2 parallel 11.2 5.4 197 infinite
4 2 nonparallel 176.5 5.4 180 infinite
8 0 parallel 3.4 11.1 89 15k /24k
8 0 nonparallel 85.7 11.1 91 15k /24k
8 1 parallel 6.1 5.7 181 15k /52k
8 1 nonparallel 170.5 5.7 175 15k /52k
8 2 parallel 11.2 2.9 342 infinite
8 2 nonparallel 340.3 2.9 344 infinite
16 0 parallel 34 6.1 164 8k/12k
16 0 nonparallel 126 5.6 179 8k/23k
16 1 parallel 6.1 3.9 257 8k/28k
16 1 nonparallel 255 3.3 303 infinite
16 2 parallel 11 1.9 526 infinite
16 2 nonparallel 504 1.8 555 infinite
32 2 parallel 11 2

32 2 nonparallel 504 <2

Table 7: Readout settings. The min exptime possible is 5—10 ps. This is due to

the time to pass the pixel enable signal in the whole chip.

21. sls_detector_get busy
busy number

where number is a string that should be interpreted as an int for 0/1
meaning no/yes. This command tells if the sharedmemory has in memory
that an acquisition has been started or not. It should allows to use the
non blocking acquire, regardless of any delay to the detector getting into
‘running’ mode.

G Complete data out rate tables

In table 77 is a list of all the readout times in the different configurations.
Table 7?7 shows the bandwidth of data trasnferring between the FEB and
the GTX lanes are only capable of
25.6 Gbit/s. This limits the 12/16 bit frame rate. The 2x DDR2 memories have
a bandwidth or 2-25.6 Gb/s=51.2 Gb/s. Due to this memory access bandwidth,
the 32 bit autosumming mode can only run in clkdivider 2.

BEB and of the DDR2 memory access.

35

Max Rate 25.6 51.2 10

4Bit 24 22 51.2 > 24rFEB+10NET 10
8Bit 24 11 51.2 > 24FeB+10NET 10
12/168Bit 32 5.9 51.2 > 25.6FEB+10NET 10
Ssumming - 2 51.2 << 51.2FEB+51.2MEM 10
(32Bit) +10NET

Figure 6: Transmission bandwidth for the FEB —BEB transfer (second column)
and the DDR2 memories (fourth column).

36

