#ifndef PICASSOD #include "server_defs.h" #else #include "picasso_defs.h" #endif #include "firmware_funcs.h" #include "mcb_funcs.h" #include "registers.h" #ifdef SHAREDMEMORY #include "sharedmemory.h" #endif #include #include #include #include //for memory mapping u_int64_t CSP0BASE; FILE *debugfp, *datafp; int fr; int wait_time; int *fifocntrl; int *values; int *statusreg; const int nModY=1; int nModBoard; int nModX=NMAXMOD; int dynamicRange=32; int dataBytes=NMAXMOD*NCHIP*NCHAN*4; int storeInRAM=0; int *ram_values=NULL; char *now_ptr=NULL; int ram_size=0; int64_t totalTime=1; u_int32_t progressMask=0; int ififostart, ififostop, ififostep, ififo; int masterMode=NO_MASTER, syncMode=NO_SYNCHRONIZATION, timingMode=AUTO_TIMING; enum externalSignalFlag signals[4]={GATE_IN_ACTIVE_HIGH, TRIGGER_IN_RISING_EDGE, SIGNAL_OFF, SIGNAL_OFF}; #ifdef MCB_FUNCS extern const int nChans; extern const int nChips; extern const int nDacs; extern const int nAdcs; #endif #ifndef MCB_FUNCS const int nChans=NCHAN; const int nChips=NCHIP; const int nDacs=NDAC; const int nAdcs=NADC; #endif //int mybyte; //int mysize=dataBytes/8; int mapCSP0(void) { printf("Mapping memory\n"); #ifndef VIRTUAL int fd; fd = open("/dev/mem", O_RDWR | O_SYNC, 0); if (fd == -1) { printf("\nCan't find /dev/mem!\n"); return FAIL; } printf("/dev/mem opened\n"); CSP0BASE = (u_int32_t)mmap(0, MEM_SIZE, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, fd, CSP0); if (CSP0BASE == (u_int32_t)MAP_FAILED) { printf("\nCan't map memmory area!!\n"); return FAIL; } printf("CSP0 mapped\n"); #endif #ifdef VIRTUAL CSP0BASE = malloc(MEM_SIZE); printf("memory allocated\n"); #endif #ifdef SHAREDMEMORY if ( (res=inism(SMSV))<0) { printf("error attaching shared memory! %i",res); return FAIL; } #endif printf("CSPOBASE=from %08x to %x\n",CSP0BASE,CSP0BASE+MEM_SIZE); values=(u_int32_t*)(CSP0BASE+FIFO_DATA_REG_OFF); printf("values=%08x\n",values); fifocntrl=(u_int32_t*)(CSP0BASE+FIFO_CNTRL_REG_OFF); printf("fifcntrl=%08x\n",fifocntrl); statusreg=(u_int32_t*)(CSP0BASE+STATUS_REG); printf("statusreg=%08x\n",statusreg); return OK; } u_int32_t bus_w(u_int32_t offset, u_int32_t data) { u_int32_t *ptr1; ptr1=(u_int32_t*)(CSP0BASE+offset); *ptr1=data; return OK; } u_int32_t bus_r(u_int32_t offset) { u_int32_t *ptr1; ptr1=(u_int32_t*)(CSP0BASE+offset); return *ptr1; } // direct pattern output u_int32_t putout(char *s, int modnum) { int i; u_int32_t pat; int addr; if (strlen(s)<16) { fprintf(stdout," *** putout error: incorrect pattern length ***\n"); fprintf(stdout," %s \n",s); return FAIL; } pat=0; for (i=0;i<16;i++) { if (s[i]=='1') pat=pat+(1<>CLK_DIVIDER_OFFSET); } u_int32_t getClockDivider() { u_int32_t clk_div; clk_div=((bus_r(SPEED_REG)&CLK_DIVIDER_MASK)>>CLK_DIVIDER_OFFSET); return clk_div; } u_int32_t setSetLength(int d) { u_int32_t c; c=bus_r(SPEED_REG); bus_w(SPEED_REG,(d<>SET_LENGTH_OFFSET); } u_int32_t getSetLength() { u_int32_t clk_div; clk_div=((bus_r(SPEED_REG)& SET_LENGTH_MASK)>>SET_LENGTH_OFFSET); return clk_div; } u_int32_t setWaitStates(int d1) { u_int32_t c; int d=d1-2; //int d=d1-3; char cmd[100]; if (d1<=0xf) { sprintf(cmd,"bus -a 0xb0000000 -w 0x%x0008",d1); c=bus_r(SPEED_REG); bus_w(SPEED_REG,(d<>WAIT_STATES_OFFSET)+2; } u_int32_t getWaitStates() { u_int32_t clk_div; clk_div=((bus_r(SPEED_REG)& WAIT_STATES_MASK)>>WAIT_STATES_OFFSET); return clk_div+2; } u_int32_t setTotClockDivider(int d) { u_int32_t c; c=bus_r(SPEED_REG); bus_w(SPEED_REG,(d<>TOTCLK_DIVIDER_OFFSET); } u_int32_t getTotClockDivider() { u_int32_t clk_div; clk_div=((bus_r(SPEED_REG)&TOTCLK_DIVIDER_MASK)>>TOTCLK_DIVIDER_OFFSET); return clk_div; } u_int32_t setTotDutyCycle(int d) { u_int32_t c; c=bus_r(SPEED_REG); bus_w(SPEED_REG,(d<>TOTCLK_DUTYCYCLE_OFFSET); } u_int32_t getTotDutyCycle() { u_int32_t clk_div; clk_div=((bus_r(SPEED_REG)&TOTCLK_DUTYCYCLE_MASK)>>TOTCLK_DUTYCYCLE_OFFSET); return clk_div; } u_int32_t setExtSignal(int d, enum externalSignalFlag mode) { // int modes[]={EXT_SIG_OFF, EXT_GATE_IN_ACTIVEHIGH, EXT_GATE_IN_ACTIVELOW,EXT_TRIG_IN_RISING,EXT_TRIG_IN_FALLING,EXT_RO_TRIG_IN_RISING, EXT_RO_TRIG_IN_FALLING,EXT_GATE_OUT_ACTIVEHIGH, EXT_GATE_OUT_ACTIVELOW, EXT_TRIG_OUT_RISING, EXT_TRIG_OUT_FALLING, EXT_RO_TRIG_OUT_RISING, EXT_RO_TRIG_OUT_FALLING}; u_int32_t c; // int off=d*SIGNAL_OFFSET; c=bus_r(EXT_SIGNAL_REG); if (d>=0 && d<4) { signals[d]=mode; #ifdef VERBOSE printf("settings signal variable number %d to value %04x\n", d, signals[d]); #endif // if output signal, set it! switch (mode) { case GATE_IN_ACTIVE_HIGH: case GATE_IN_ACTIVE_LOW: if (timingMode==GATE_FIX_NUMBER || timingMode==GATE_WITH_START_TRIGGER) setFPGASignal(d,mode); else setFPGASignal(d,SIGNAL_OFF); break; case TRIGGER_IN_RISING_EDGE: case TRIGGER_IN_FALLING_EDGE: if (timingMode==TRIGGER_EXPOSURE || timingMode==GATE_WITH_START_TRIGGER) setFPGASignal(d,mode); else setFPGASignal(d,SIGNAL_OFF); break; case RO_TRIGGER_IN_RISING_EDGE: case RO_TRIGGER_IN_FALLING_EDGE: if (timingMode==TRIGGER_READOUT) setFPGASignal(d,mode); else setFPGASignal(d,SIGNAL_OFF); break; case MASTER_SLAVE_SYNCHRONIZATION: setSynchronization(syncMode); break; default: setFPGASignal(d,mode); } setTiming(GET_EXTERNAL_COMMUNICATION_MODE); } return getExtSignal(d); } u_int32_t setFPGASignal(int d, enum externalSignalFlag mode) { int modes[]={SIGNAL_OFF, GATE_IN_ACTIVE_HIGH, GATE_IN_ACTIVE_LOW,TRIGGER_IN_RISING_EDGE, TRIGGER_IN_FALLING_EDGE,RO_TRIGGER_IN_RISING_EDGE, RO_TRIGGER_IN_FALLING_EDGE, GATE_OUT_ACTIVE_HIGH, GATE_OUT_ACTIVE_LOW, TRIGGER_OUT_RISING_EDGE, TRIGGER_OUT_FALLING_EDGE, RO_TRIGGER_OUT_RISING_EDGE,RO_TRIGGER_OUT_FALLING_EDGE}; // int modes[]={EXT_SIG_OFF, EXT_GATE_IN_ACTIVEHIGH, EXT_GATE_IN_ACTIVELOW,EXT_TRIG_IN_RISING,EXT_TRIG_IN_FALLING,EXT_RO_TRIG_IN_RISING, EXT_RO_TRIG_IN_FALLING,EXT_GATE_OUT_ACTIVEHIGH, EXT_GATE_OUT_ACTIVELOW, EXT_TRIG_OUT_RISING, EXT_TRIG_OUT_FALLING, EXT_RO_TRIG_OUT_RISING, EXT_RO_TRIG_OUT_FALLING}; u_int32_t c; int off=d*SIGNAL_OFFSET; c=bus_r(EXT_SIGNAL_REG); if (mode<=RO_TRIGGER_OUT_FALLING_EDGE && mode>=0) { #ifdef VERBOSE printf("writing signal register number %d mode %04x\n",d, modes[mode]); #endif bus_w(EXT_SIGNAL_REG,((modes[mode])<>off); */ /* if (mode=0 && d<4) { #ifdef VERBOSE printf("gettings signal variable number %d value %04x\n", d, signals[d]); #endif return signals[d]; } else return -1; } int getFPGASignal(int d) { int modes[]={SIGNAL_OFF, GATE_IN_ACTIVE_HIGH, GATE_IN_ACTIVE_LOW,TRIGGER_IN_RISING_EDGE, TRIGGER_IN_FALLING_EDGE,RO_TRIGGER_IN_RISING_EDGE, RO_TRIGGER_IN_FALLING_EDGE, GATE_OUT_ACTIVE_HIGH, GATE_OUT_ACTIVE_LOW, TRIGGER_OUT_RISING_EDGE, TRIGGER_OUT_FALLING_EDGE, RO_TRIGGER_OUT_RISING_EDGE,RO_TRIGGER_OUT_FALLING_EDGE}; int off=d*SIGNAL_OFFSET; int mode=((bus_r(EXT_SIGNAL_REG)&(SIGNAL_MASK<>off); if (mode<=RO_TRIGGER_OUT_FALLING_EDGE) { if (modes[mode]!=SIGNAL_OFF && signals[d]!=MASTER_SLAVE_SYNCHRONIZATION) signals[d]=modes[mode]; #ifdef VERBOSE printf("gettings signal register number %d value %04x\n", d, modes[mode]); #endif return modes[mode]; } else return -1; } /* enum externalCommunicationMode{ GET_EXTERNAL_COMMUNICATION_MODE, AUTO, TRIGGER_EXPOSURE_SERIES, TRIGGER_EXPOSURE_BURST, TRIGGER_READOUT, TRIGGER_COINCIDENCE_WITH_INTERNAL_ENABLE, GATE_FIX_NUMBER, GATE_FIX_DURATION, GATE_WITH_START_TRIGGER, GATE_COINCIDENCE_WITH_INTERNAL_ENABLE }; */ int setTiming(int ti) { int ret=GET_EXTERNAL_COMMUNICATION_MODE; int g=-1, t=-1, rot=-1; int i; printf("*********************************Setting timing mode %d!\n", ti); switch (ti) { case AUTO_TIMING: timingMode=ti; // disable all gates/triggers in except if used for master/slave synchronization for (i=0; i<4; i++) { if (getFPGASignal(i)>0 && getFPGASignal(i)=0 && t>=0 && rot<0) { ret=GATE_WITH_START_TRIGGER; } else if (g<0 && t>=0 && rot<0) { ret=TRIGGER_EXPOSURE; } else if (g>=0 && t<0 && rot<0) { ret=GATE_FIX_NUMBER; } else if (g<0 && t<0 && rot>0) { ret=TRIGGER_READOUT; } else if (g<0 && t<0 && rot<0) { ret=AUTO_TIMING; } // timingMode=ret; return ret; } int setConfigurationRegister(int d) { #ifdef VERBOSE printf("Setting configuration register to %x",d); #endif if (d>=0) { bus_w(CONFIG_REG,d); } #ifdef VERBOSE printf("configuration register is %x", bus_r(CONFIG_REG)); #endif return bus_r(CONFIG_REG); } int setToT(int d) { // int ret=0; int reg; #ifdef VERBOSE printf("Setting ToT to %d\n",d); #endif reg=bus_r(CONFIG_REG); #ifdef VERBOSE printf("Before: ToT is %x\n", reg); #endif if (d>0) { bus_w(CONFIG_REG,reg|TOT_ENABLE_BIT); } else if (d==0) { bus_w(CONFIG_REG,reg&(~TOT_ENABLE_BIT)); } reg=bus_r(CONFIG_REG); #ifdef VERBOSE printf("ToT is %x\n", reg); #endif if (reg&TOT_ENABLE_BIT) return 1; else return 0; } int setContinousReadOut(int d) { // int ret=0; int reg; #ifdef VERBOSE printf("Setting Continous readout to %d\n",d); #endif reg=bus_r(CONFIG_REG); #ifdef VERBOSE printf("Before: Continous readout is %x\n", reg); #endif if (d>0) { bus_w(CONFIG_REG,reg|CONT_RO_ENABLE_BIT); } else if (d==0) { bus_w(CONFIG_REG,reg&(~CONT_RO_ENABLE_BIT)); } reg=bus_r(CONFIG_REG); #ifdef VERBOSE printf("Continous readout is %x\n", reg); #endif if (reg&CONT_RO_ENABLE_BIT) return 1; else return 0; } u_int64_t getMcsNumber() { FILE *fp=NULL; u_int64_t res; char line[150]; int a[6]; int n=0, i; //u_int64_t a0,a1,a2,a3,a4,a5,n=0; fp=fopen("/etc/conf.d/mac","r"); if (fp==NULL) { printf("could not ope MAC file\n");; return -1; } while (fgets(line,150,fp)) { //MAC="00:40:8C:CD:00:00" printf(line); if (strstr(line,"MAC=")) n=sscanf(line,"MAC=\"%x:%x:%x:%x:%x:%x\"",a+5,a+4,a+3,a+2,a+1,a); } fclose(fp); if (n!=6){ printf("could not scan MAC address\n");; return -1; } res=0; for (i=0; i=(FPGA_VERSION_VAL&0x00ffffff)) { printf("FPGA version ok!! %06x\n",val); } else { printf("FPGA version too old! %06x\n",val); return FAIL; } //dummy register val=0xF0F0F0F0; bus_w(DUMMY_REG, val); val=bus_r(DUMMY_REG); if (val==0xF0F0F0F0) { printf("FPGA dummy register ok!! %x\n",val); } else { printf("FPGA dummy register wrong!! %x instead of 0xF0F0F0F0 \n",val); result=FAIL; // return FAIL; } //dummy register val=0x0F0F0F0F; bus_w(DUMMY_REG, val); val=bus_r(DUMMY_REG); if (val==0x0F0F0F0F) { printf("FPGA dummy register ok!! %x\n",val); } else { printf("FPGA dummy register wrong!! %x instead of 0x0F0F0F0F \n",val); result=FAIL; // return FAIL; } // } return result; } // for fpga test u_int32_t testRAM(void) { int result=OK; int i=0; allocateRAM(); // while(i<100000) { memcpy(ram_values, values, dataBytes); printf ("%d: copied fifo %x to memory %x size %d\n",i++, values, ram_values, dataBytes); // } return result; } int getNModBoard() { int nmodboard; u_int32_t val; val=bus_r(FPGA_VERSION_REG)&0xff000000; // printf("version register %08x\n",val); nmodboard=val >> 24; #ifdef VERY_VERBOSE printf("The board hosts %d modules\n",nmodboard); #endif nModBoard=nmodboard; //getNModBoard()=nmodboard; return nmodboard; } int setNMod(int n) { // int fifo; // int ifsta, ifsto, ifste; int imod; int rval; int reg; int nf=0; int shiftfifo=SHIFTFIFO; int ntot=getNModBoard(); if (getProbes()==0) { switch (dynamicRange) { case 16: shiftfifo=SHIFTFIFO-1; break; case 8: shiftfifo=SHIFTFIFO-2; break; case 4: shiftfifo=SHIFTFIFO-3; break; case 1: shiftfifo=SHIFTFIFO-5; break; default: shiftfifo=SHIFTFIFO; } } else shiftfifo=SHIFTFIFO; #ifdef VERBOSE printf("SetNMod called arg %d -- dr %d shiftfifo %d\n",n,dynamicRange,shiftfifo); #endif if (n>=0 && n<=ntot) { nModX=n; /*d isable the fifos relative to the unused modules */ for (ififo=0; ififo>FIFO_NM_OFF, (reg&FIFO_NC_MASK)>>FIFO_NC_OFF, FIFO_COUNTR_REG_OFF+(ififo<>FIFO_NM_OFF, (reg&FIFO_NC_MASK)>>FIFO_NC_OFF, FIFO_COUNTR_REG_OFF+(ififo<> 32; vMSB=v64&(0xffffffff); bus_w(aMSB,vMSB); } return get64BitReg(aLSB, aMSB); } int64_t get64BitReg(int aLSB, int aMSB){ int64_t v64; u_int32_t vLSB,vMSB; vMSB=bus_r(aMSB); vLSB=bus_r(aLSB); v64=vMSB; v64=(v64<<32) | vLSB; #ifdef VERBOSE printf("MSB %08x LSB %08x, %016llx\n", vMSB, vLSB, v64); #endif return v64; } int64_t setFrames(int64_t value){ return set64BitReg(value, SET_FRAMES_LSB_REG, SET_FRAMES_MSB_REG); } int64_t getFrames(){ return get64BitReg(GET_FRAMES_LSB_REG, GET_FRAMES_MSB_REG); } int64_t setExposureTime(int64_t value){ /* time is in ns */ if (value!=-1) value*=(1E-9*CLK_FREQ); if (masterMode==IS_SLAVE && syncMode==MASTER_GATES) setGates(1); return set64BitReg(value,SET_EXPTIME_LSB_REG, SET_EXPTIME_MSB_REG)/(1E-9*CLK_FREQ); } int64_t getExposureTime(){ return get64BitReg(GET_EXPTIME_LSB_REG, GET_EXPTIME_MSB_REG)/(1E-9*CLK_FREQ); } int64_t setGates(int64_t value){ return set64BitReg(value, SET_GATES_LSB_REG, SET_GATES_MSB_REG); } int64_t getGates(){ return get64BitReg(GET_GATES_LSB_REG, GET_GATES_MSB_REG); } int64_t setPeriod(int64_t value){ /* time is in ns */ if (value!=-1) { value*=(1E-9*CLK_FREQ); } return set64BitReg(value,SET_PERIOD_LSB_REG, SET_PERIOD_MSB_REG)/(1E-9*CLK_FREQ); } int64_t getPeriod(){ return get64BitReg(GET_PERIOD_LSB_REG, GET_PERIOD_MSB_REG)/(1E-9*CLK_FREQ); } int64_t setDelay(int64_t value){ /* time is in ns */ if (value!=-1) { value*=(1E-9*CLK_FREQ); } return set64BitReg(value,SET_DELAY_LSB_REG, SET_DELAY_MSB_REG)/(1E-9*CLK_FREQ); } int64_t getDelay(){ return get64BitReg(GET_DELAY_LSB_REG, GET_DELAY_MSB_REG)/(1E-9*CLK_FREQ); } int64_t setTrains(int64_t value){ return set64BitReg(value, SET_TRAINS_LSB_REG, SET_TRAINS_MSB_REG); } int64_t getTrains(){ return get64BitReg(GET_TRAINS_LSB_REG, GET_TRAINS_MSB_REG); } int64_t setProbes(int64_t value){ int ow; int nm=setNMod(-1); switch (getDynamicRange()) { case 32: ow=1; break; case 16: ow=2; break; case 8: ow=3; break; case 4: ow=4; break; case 1: ow=5; break; default: ow=1; } if (value>=0) { setCSregister(ALLMOD); initChipWithProbes(0, ow,value, ALLMOD); putout("0000000000000000",ALLMOD); setNMod(nm); getDynamicRange(); // needed to change dataBytes } return getProbes(); } int64_t setProgress() { //????? eventually call after setting the registers return 100; } int64_t getProgress() { //should be done in firmware!!!! return 0; } int64_t getActualTime(){ return get64BitReg(GET_ACTUAL_TIME_LSB_REG, GET_ACTUAL_TIME_MSB_REG)/(1E-9*CLK_FREQ); } int64_t getMeasurementTime(){ int64_t v=get64BitReg(GET_MEASUREMENT_TIME_LSB_REG, GET_MEASUREMENT_TIME_MSB_REG); int64_t mask=0x8000000000000000; if (v & mask ) { #ifdef VERBOSE printf("no measurement time left\n"); #endif return -1E+9; } else return v/(1E-9*CLK_FREQ); } int64_t getProbes(){ u_int32_t shiftin=bus_r(GET_SHIFT_IN_REG); u_int32_t np=(shiftin >>PROBES_OFF) & PROBES_MASK; #ifdef VERYVERBOSE printf("%08x ",shiftin); printf("probes==%01x\n",np); #endif return np; } int setDACRegister(int idac, int val, int imod) { u_int32_t addr, reg, mask; int off; #ifdef VERBOSE printf("Settings dac %d module %d register to %d\n",idac,imod,val); #endif if ((idac%2)==0) { addr=MOD_DACS1_REG; } else { addr=MOD_DACS2_REG; } off=(idac%3)*10; mask=~((0x3ff)<=0 && val>off)&0x3ff; #ifdef VERBOSE printf("Dac %d module %d register is %d\n",idac,imod,val); #endif return val; } u_int32_t runBusy(void) { return bus_r(STATUS_REG)&RUN_BUSY_BIT; } u_int32_t dataPresent(void) { return bus_r(LOOK_AT_ME_REG); } u_int32_t runState(void) { int s=bus_r(STATUS_REG); #ifdef SHAREDMEMORY if (s&RUN_BUSY_BIT) write_status_sm("Running"); else write_status_sm("Stopped"); write_istatus_sm(s); #endif #ifdef VERBOSE printf("status %08x\n",s); #endif return s; } // State Machine u_int32_t startStateMachine(){ #ifdef VERBOSE printf("Starting State Machine\n"); #endif fifoReset(); now_ptr=(char*)ram_values; #ifdef SHAREDMEMORY write_stop_sm(0); write_status_sm("Started"); #endif #ifdef MCB_FUNCS setCSregister(ALLMOD); clearSSregister(ALLMOD); #endif putout("0000000000000000",ALLMOD); bus_w(CONTROL_REG, START_ACQ_BIT | START_EXPOSURE_BIT); return OK; } u_int32_t stopStateMachine(){ #ifdef VERBOSE printf("Stopping State Machine\n"); #endif #ifdef SHAREDMEMORY write_stop_sm(1); write_status_sm("Stopped"); #endif bus_w(CONTROL_REG, STOP_ACQ_BIT); usleep(500); if (!runBusy()) return OK; else return FAIL; } u_int32_t startReadOut(){ u_int32_t status; #ifdef VERBOSE printf("Starting State Machine Readout\n"); #endif status=bus_r(STATUS_REG)&RUN_BUSY_BIT; #ifdef DEBUG printf("State machine status is %08x\n",bus_r(STATUS_REG)); #endif bus_w(CONTROL_REG, START_ACQ_BIT |START_READOUT_BIT); // start readout return OK; } // fifo routines u_int32_t fifoReset(void) { #ifdef DEBUG printf("resetting fifo\n"); #endif bus_w(FIFO_CNTRL_REG_OFF+(ALLFIFO<128) printf("chip %d ch %d %d\n",ichip/128, ichip%128, (fifoReadCounter(ichip/128)&FIFO_COUNTER_MASK)); #endif } //#endif */ #ifdef VERYVERBOSE printf("Copying to ptr %x %d\n",now_ptr, dataBytes); printf("after readout %08x %08x\n", runState(), bus_r(LOOK_AT_ME_REG)); for (ichip=0; ichip0) { now_ptr+=dataBytes; } return ram_values; } u_int32_t* decode_data(int *datain) { u_int32_t *dataout; // const char one=1; const int bytesize=8; char *ptr=(char*)datain; //int nbits=dynamicRange; int ipos=0, ichan=0;; //int nch, boff=0; int ibyte;//, ibit; char iptr; #ifdef VERBOSE printf("Decoding data for DR %d\n",dynamicRange); #endif dataout=malloc(nChans*nChips*nModX*4); ichan=0; switch (dynamicRange) { case 1: for (ibyte=0; ibyte>(ipos))&0x1; ichan++; } } break; case 4: for (ibyte=0; ibyte>(ipos*4))&0xf; ichan++; } } break; case 8: for (ichan=0; ichan0) { nm=setNMod(-1); if (dr==1) { dynamicRange=1; ow=5; } else if (dr<=4) { dynamicRange=4; ow=4; } else if (dr<=8) { dynamicRange=8; ow=3; } else if (dr<=16) { dynamicRange=16; ow=2; } else { dynamicRange=32; ow=0; //or 1? } setCSregister(ALLMOD); initChipWithProbes(0, ow,np, ALLMOD); putout("0000000000000000",ALLMOD); setNMod(nm); } return getDynamicRange(); } int getDynamicRange() { int dr; u_int32_t shiftin=bus_r(GET_SHIFT_IN_REG); u_int32_t outmux=(shiftin >> OUTMUX_OFF) & OUTMUX_MASK; u_int32_t probes=(shiftin >> PROBES_OFF) & PROBES_MASK; #ifdef VERYVERBOSE printf("%08x ",shiftin); printf("outmux=%02x probes=%d\n",outmux,probes); #endif switch (outmux) { case 2: dr=16; break; case 4: dr=8; break; case 8: dr=4; break; case 16: dr=1; break; default: dr=32; } dynamicRange=dr; if (probes==0) { dataBytes=nModX*nModY*NCHIP*NCHAN*dynamicRange/8; } else { dataBytes=nModX*nModY*NCHIP*NCHAN*4;/// } #ifdef VERBOSE printf("Number of data bytes %d - probes %d dr %d\n", dataBytes, probes, dr); #endif if (allocateRAM()==OK) { ; } else printf("ram not allocated\n"); return dynamicRange; } int testBus() { u_int32_t j; u_int64_t i, n, nt; //char cmd[100]; u_int32_t val=0x0; int ifail=OK; // printf("%s\n",cmd); // system(cmd); i=0; n=1000000; nt=n/100; printf("testing bus %d times\n",n); while (i0) storeInRAM=1; else storeInRAM=0; return allocateRAM(); } int allocateRAM() { size_t size; u_int32_t nt, nf; nt=setTrains(-1); nf=setFrames(-1); if (nt==0) nt=1; if (nf==0) nf=1; // ret=clearRAM(); if (storeInRAM) { size=dataBytes*nf*nt; if (size