// SPDX-License-Identifier: LGPL-3.0-or-other // Copyright (C) 2021 Contributors to the SLS Detector Package #ifndef JUNGFRAULGADSTRIXELSDATAQUADH5_H #define JUNGFRAULGADSTRIXELSDATAQUADH5_H #ifdef CINT #include "sls/sls_detector_defs_CINT.h" #else #include "sls/sls_detector_defs.h" #endif #include "slsDetectorData.h" //This needs to be linked correctly #include "HDF5File.h" //this includes hdf5.h and hdf5_hl.h #include "HDF5File.cpp" // #define VERSION_V2 /** @short structure for a Detector Packet or Image Header @li frameNumber is the frame number @li expLength is the subframe number (32 bit eiger) or real time exposure time in 100ns (others) @li packetNumber is the packet number @li bunchId is the bunch id from beamline @li timestamp is the time stamp with 10 MHz clock @li modId is the unique module id (unique even for left, right, top, bottom) @li xCoord is the x coordinate in the complete detector system @li yCoord is the y coordinate in the complete detector system @li zCoord is the z coordinate in the complete detector system @li debug is for debugging purposes @li roundRNumber is the round robin set number @li detType is the detector type see :: detectorType @li version is the version number of this structure format */ //#include #include #include namespace strixelQuad { constexpr int nc_rawimg = 1024; // for full images //256; constexpr int nc_quad = 512; constexpr int nr_rawimg = 512; constexpr int nr_chip = 256; constexpr int gr = 9; //shift due to extra pixels constexpr int shift_x = 2; //left constexpr int nc_strixel = ( nc_quad - shift_x - 2*gr ) / 3; //164 constexpr int nr_strixel = ( nr_chip - 1 - gr ) * 3; //one half (-1 because double sided pixel) //738 constexpr int nr_center = 12; //double sided pixels to be skipped // boundaries in ASIC coordinates (pixels at both bounds are included) constexpr int xstart = 256 + gr; // 265 constexpr int xend = 255 + nc_quad - gr; // 758 constexpr int bottom_ystart = gr; // 9 constexpr int bottom_yend = nr_chip - 2; // 254 constexpr int top_ystart = nr_chip + 1; // 257 constexpr int top_yend = nr_chip*2 - gr - 1; // 502 // x shift because of 2-pixel strixels on one side constexpr int shift = 2; } // namespace strixelQuad //to account for module rotation enum rotation { NORMAL = 0, INVERSE = 1 }; const int rota = NORMAL; typedef struct { uint64_t bunchNumber; /**< is the frame number */ uint64_t pre; /**< something */ } jf_header; // Aldo's header using namespace strixelQuad; class jungfrauLGADStrixelsDataQuadH5 : public slsDetectorData { private: int iframe; int x0, y0, x1, y1, shifty; struct { uint16_t xmin; uint16_t xmax; uint16_t ymin; uint16_t ymax; int nc; } globalROI; //to account for the inverted routing of the two different quad halfs enum location { BOTTOM = 0, TOP = 1 }; int multiplicator = 3; std::vector mods{ 0, 1, 2 }; void reverseVector( std::vector& v ) { std::reverse( v.begin(), v.end() ); std::cout << "mods reversed "; for ( auto i : v ) std::cout << i << " "; std::cout << '\n'; } void setMappingShifts( const int rot, const int half ) { x0 = xstart; x1 = xend; if (rot==NORMAL) { x0 += shift; } else { x1-=shift; reverseVector(mods); } if (half==BOTTOM) { y0 = bottom_ystart; y1 = bottom_yend; shifty = 0; } else { y0 = top_ystart; y1 = top_yend; reverseVector(mods); shifty = nr_strixel + nr_center; //double-sided pixels in the center have to be jumped } } void remap( int xmin=0, int xmax=0, int ymin=0, int ymax=0 ) { int ix, iy = 0; // remapping loop for (int ipy = y0; ipy <= y1; ++ipy) { for (int ipx = x0; ipx <= x1; ++ipx) { ix = int((ipx - x0) / multiplicator); for (int m = 0; m < multiplicator; ++m) { if ((ipx - x0) % multiplicator == m) iy = (ipy - y0) * multiplicator + mods[m] + shifty; } // if (iy< 40) cout << iy << " " << ix <=xmin && ipx<=xmax && ipy>=ymin && ipy <=ymax ) dataMap[iy][ix] = (globalROI.nc * (ipy - globalROI.ymin) + (ipx - globalROI.xmin)) * 2; } else { dataMap[iy][ix] = (nc_rawimg * ipy + ipx) * 2; } } } } void remapQuad(const int rot) { setMappingShifts( rot, BOTTOM ); remap(); setMappingShifts( rot, TOP ); remap(); } std::tuple< uint16_t, uint16_t, uint16_t, uint16_t > adjustROItoLimits(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax, uint16_t lim_roi_xmin, uint16_t lim_roi_xmax, uint16_t lim_roi_ymin, uint16_t lim_roi_ymax) { uint16_t xmin_roi, xmax_roi, ymin_roi, ymax_roi; if ( xmin < lim_roi_xmin) xmin_roi = lim_roi_xmin; else xmin_roi = xmin; if ( xmax > lim_roi_xmax ) xmax_roi = lim_roi_xmax; else xmax_roi = xmax; if ( ymin < lim_roi_ymin ) ymin_roi = lim_roi_ymin; else ymin_roi = ymin; if ( ymax > lim_roi_ymax ) ymax_roi = lim_roi_ymax; else ymax_roi = ymax; return std::make_tuple(xmin_roi, xmax_roi, ymin_roi, ymax_roi); } std::vector < std::tuple< int, uint16_t, uint16_t, uint16_t, uint16_t > > mapSubROIs(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax) { bool bottom = false; bool top = false; for ( int x=xmin; x!=xmax+1; ++x ) { for ( int y=ymin; y!=ymax; ++y ) { if ( xstart<=x && x<=xend && bottom_ystart<=y && y<=bottom_yend ) bottom = true; if ( xstart<=x && x<=xend && top_ystart<=y && y<=top_yend ) top = true; } } uint16_t xmin_roi{}, xmax_roi{}, ymin_roi{}, ymax_roi{}; std::vector < std::tuple< int, uint16_t, uint16_t, uint16_t, uint16_t > > rois{}; if (bottom) { std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) = adjustROItoLimits( xmin, xmax, ymin, ymax, xstart, xend, bottom_ystart, bottom_yend ); rois.push_back( std::make_tuple( BOTTOM, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) ); } if (top) { std::tie( xmin_roi, xmax_roi, ymin_roi, ymax_roi ) = adjustROItoLimits( xmin, xmax, ymin, ymax, xstart, xend, top_ystart, top_yend ); rois.push_back( std::make_tuple( TOP, xmin_roi, xmax_roi, ymin_roi, ymax_roi ) ); } return rois; } void remapROI(std::tuple< int, uint16_t, uint16_t, uint16_t, uint16_t > roi, const int rot ) { int half, xmin, xmax, ymin, ymax; std::tie( half, xmin, xmax, ymin, ymax ) = roi; setMappingShifts(rot, half); std::cout << "remapping roi: " << ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0 << ", y1: " << y1 << std::endl; std::cout << "Adjusted roi: [" << xmin << ", " << xmax << ", " << ymin << ", " << ymax << "]" << std::endl; remap( xmin, xmax, ymin, ymax ); } //The following functions are pure virtual in the base class. But I don't want them to be accessible here! //Implement the functions as private (to satisfy the linker) //int getFrameNumber(char* buff){return 0;} //This is actually needed because the cluster finder writes the framenumber int getPacketNumber(char* buff){return 0;} //Not provided //Mark overwritten functions as override final char* readNextFrame( std::ifstream &filebin ) override final {return nullptr;} public: using header = sls::defs::sls_receiver_header; jungfrauLGADStrixelsDataQuadH5(uint16_t xmin = 0, uint16_t xmax = 0, uint16_t ymin = 0, uint16_t ymax = 0) : slsDetectorData( //nc_strixel, //nr_strixel * 2 + nr_center, //nc_strixel * ( nr_strixel * 2 + nr_center ) * 2 512/2, 1024*2, 512 * 1024 * 2 ) { std::cout << "Jungfrau strixels quad with full module data " << std::endl; // Fill all strixels with dummy values //for (int ix = 0; ix != nc_strixel; ++ix) { // for (int iy = 0; iy != nr_strixel * 2 + nr_center; ++iy) { for (int ix = 0; ix != 512/2; ++ix) { for (int iy = 0; iy != 1024*2; ++iy) { dataMap[iy][ix] = sizeof(header); //maybe another value is safer } } globalROI.xmin = xmin; globalROI.xmax = xmax; globalROI.ymin = ymin; globalROI.ymax = ymax; //std::cout << "sizeofheader = " << sizeof(header) << std::endl; std::cout << "Jungfrau strixels quad with full module data " << std::endl; if (xmin < xmax && ymin < ymax) { // get ROI raw image number of columns globalROI.nc = xmax - xmin + 1; std::cout << "nc_roi = " << globalROI.nc << std::endl; dataSize = (xmax - xmin + 1) * (ymax - ymin + 1) * 2; std::cout << "datasize " << dataSize << std::endl; auto rois = mapSubROIs(xmin, xmax, ymin, ymax); //function to fill vector of rois from globalROI for ( auto roi : rois ) remapROI(roi, rota); } else { remapQuad( rota ); } iframe = 0; std::cout << "data struct created" << std::endl; }; /** Returns the value of the selected channel for the given dataset as double. \param data pointer to the dataset (including headers etc) \param ix pixel number in the x direction \param iy pixel number in the y direction \returns data for the selected channel, with inversion if required as double */ virtual double getValue(char* data, int ix, int iy = 0) { uint16_t val = getChannel(data, ix, iy) & 0x3fff; return val; }; char* readNextFrame( HDF5File& hfile ) { int fn = 0; std::vector h5offset(1); return readNextFrame(hfile, fn, h5offset); }; char* readNextFrame( HDF5File& hfile, int& fn ) { std::vector h5offset(1); return readNextFrame(hfile, fn, h5offset); }; char* readNextFrame( HDF5File& hfile, int& fn, std::vector& h5offset ) { // Ensure dataSize is a valid size for allocation if (dataSize <= 0) { // Handle error case appropriately, e.g., log an error message return nullptr; } char* data = new char[dataSize]; char* readResult = readNextFrame(hfile, fn, h5offset, data); // Check if reading failed if (readResult == nullptr) { delete[] data; // Free allocated memory data = nullptr; // Set to nullptr to avoid dangling pointer } return data; //returning data is equivalent to returning reinterpret_cast(data_ptr) as they both point to the same memory }; /* * This is the most recent function. This is used in the cluster finder! * The overloads are legacy! * Note that caller has to allocate and deallocate memory for data! * \param hfile object of type HDF5File (reader class) * \param framenumber frame number as read from the HDF5 file * \param h5offset vector defining offset parameters for HDF5 hyperslab selection (dimensions Z and S), incremented automatially * \param data pointer to image buffer (converted to hold uint16_t by definition of HDF5File) */ char* readNextFrame( HDF5File& hfile, int& framenumber, std::vector& h5offset, char* data ) { if (framenumber >= 0) { std::cout << "*"; //Storing the reinterpret_cast in the variable data_ptr ensures that I can pass it to a function that expects at uint16_t* uint16_t* data_ptr = reinterpret_cast(data); //now data_ptr points where data points (thus modifies the same memory) framenumber = hfile.ReadImage( data_ptr, h5offset ); iframe = h5offset[0]; //iframe is a class member! return data; // return reinterpret_cast(data_ptr); // Equivalent } std::cout << "#"; return nullptr; }; int getFrameNumber(char* buff){return iframe;} //Provided via public method readNextFrame //It is debatable if one might not instead want to provide the "real" frame number as read from the file here //For now, this is the frame offset counter (that always has to start at 0 for each new file) /* Loops over a memory slot until a complete frame is found (i.e. all */ /* packets 0 to nPackets, same frame number). purely virtual func \param */ /* data pointer to the memory to be analyzed \param ndata reference to * the */ /* amount of data found for the frame, in case the frame is incomplete at */ /* the end of the memory slot \param dsize size of the memory slot to be */ /* analyzed \returns pointer to the beginning of the last good frame * (might */ /* be incomplete if ndata smaller than dataSize), or NULL if no frame is */ /* found */ /* *\/ */ virtual char* findNextFrame(char* data, int& ndata, int dsize) { if (dsize < dataSize) ndata = dsize; else ndata = dataSize; return data; }; // int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;}; }; #endif