%\begin{figure}[!h] %\centering %\includegraphics[width=0.98\textwidth]{AngConv} %\caption{Schematics of the scattering geometry in the diffraction plane. A Mythen II module is shown. $R_m$ is the distance from the module sensor plane (orthogonal to the diffraction plane) to the sample position $S$; $D_m$ the distance from the center of pixel $j=0$ to point $Q$, counted positively as the arrow on the module plane goes (\emph{i.e.}, oppositely to the direction of increasing $j$); $\Phi_m$ is the angle of the module plane normal with the beam direction, positive counterclockwise. $\alpha_{jm}$ is the angular position of the $j$-th pixel center with respect to the beam direction, positive counterclockwise.} %\label{acon} %\end{figure} Mythen II modules are composed by 1280 pixels, each having width p=0.05~mm, and numbered with j=0,..,1279. Angles are counted counterclockwise from the beam direction. For the m-th module, the angle $\alpha_{jm}$ of its j-th pixel center can be determined using the three geometric parameters $R_m$~[mm], $\Phi_m$~[deg], $D_m$~[mm], as in \fref{acon}. The detector group uses instead the 3 parameters center $c_m$~[\ ], offset $o_m$~[deg], conversion $k_m$~[\ ]. The law with the 3 geometric parameter is \begin{equation} \alpha_{jm}=\Phi_m-\lrb{\DSF{180}{\pi}}\arctan\lrb{\DSF{D_m-pj}{R_m}} \end{equation} The corresponding law using DG's parameters is \begin{equation} \alpha_{jm}=o_m+\lrb{\DSF{180}{\pi}}c_mk_m+\lrb{\DSF{180}{\pi}}\arctan\lrs{\lrb{j-c_m}k_m} \end{equation} One can convert the two forms by equating separately the term out of the arctan and the argument of arctan for two different values of j. It results \begin{eqnarray} c_m&=&\DSF{D_m}{p};\\ k_m&=&\DSF{p}{R_m};\\ o_m&=&\Phi_m-\DSF{180}{\pi}\DSF{D_m}{R_m}. \end{eqnarray} Conversely, \begin{eqnarray} \Phi_m&=&o_m+\DSF{180}{\pi}c_mk_m;\\ R_m&=&\DSF{p}{k_m};\\ D_m&=&c_m p. \end{eqnarray}