
Gotthard-I Documentation
Release 0.3

A. Mozzanica and J. Zhang

November 03, 2016

CONTENTS

1 Introduction to Gotthard-I 3
1.1 Introduction . 3

2 Softwares 5
2.1 The software package . 5
2.2 Install softwares . 5
2.3 Upgrade softwares . 8

3 Detector set-up and configuration 9
3.1 Connect the detector . 9
3.2 Configure the system . 10
3.3 Exit after measurements . 12
3.4 CLI mode . 12
3.5 Setup file . 17
3.6 Configure two detectors . 17

4 Use GUI to perform measurement 19
4.1 Usage of GUI . 19
4.2 Examples to set-up measurements . 23
4.3 Examples to set-up timings . 24

5 Characterization and calibration 27
5.1 Gains & offsets in “fixed” gain mode . 27
5.2 Gains & offsets in dynamic gain mode . 28
5.3 Noise . 29
5.4 Energy conversion . 30

6 Data processing 31
6.1 Data structure . 31
6.2 Conversion gain . 32
6.3 Pedestal and noise . 34
6.4 Mask generation . 36
6.5 Energy conversion . 37
6.6 Callables . 38
6.7 Last words . 43

7 Routines 45
7.1 Python routines . 45

8 Indices and tables 57

i

ii

Gotthard-I Documentation, Release 0.3

This is a webpage documenting the Gotthard-I module information. For more details about the sen-
sor, ASIC and readout of Gotthard-I, please refer to A. Mozzanica et al., JINST 7, C01019 (2012):
http://iopscience.iop.org/article/10.1088/1748-0221/7/01/C01019.

This document gives a more practical information on the usage and characterization of the detector.

Document version: 0.3

Document contribution and revision:

A. Mozzanica (PSI), A. Parenti (XFEL.EU), D. Thattil (PSI), M. Turcato (XFEL.EU), J. Zhang (PSI)

Document history:

• V03: Add introduction of trigger signal and measurement with trigger

• V02: Formal release after corrections

• V01: Internal release

Contents:

CONTENTS 1

http://iopscience.iop.org/article/10.1088/1748-0221/7/01/C01019

Gotthard-I Documentation, Release 0.3

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO GOTTHARD-I

1.1 Introduction

Gotthard-I is a charge-integrating silicon micro-strip detector with a pitch of 50 um (or optionally 25 um), and 1280
strips in total. It can be operated at < 1 MHz frame rate in burst mode and 40 kHz in continuous mode. The schematic
of Gotthard-I ASIC can be seen as below:

Gotthard-I has a dynamic gain switching pre-amplifier to achieve high dynamic range, and a CDS stage to remove
reset noise charge of the pre-amplifier. In dynamic gain switching mode, the CDS works before gain switching and
is bypassed once gain switching happened. The detector can also work in a “fixed” gain mode, in which case only a
constant gain applies. In “fixed” gain mode, the feedback capacitance of the pre-amplifier is fixed according to the
input by users for detector operation, and the CDS stage is activated all the time.

In the following, the detailed information about how to configure and set-up the detector module, how to perform
measurements and get data, and how to perform data analysis with basic routines will be introduced.

3

Gotthard-I Documentation, Release 0.3

4 Chapter 1. Introduction to Gotthard-I

CHAPTER

TWO

SOFTWARES

The SLS detectors software is intended to control the detectors developed by the SLS Detectors group. It provides a
command line interface (text client), a graphical user interface(GUI) as well as an API that can be embedded in your
acquisitions system, some tools for detector calibration and the software to receive the data from detector with high
data throughput (e.g. Gotthard).

2.1 The software package

The SLS detector software (slsDetectorPackage) can be downloaded through: https://www.psi.ch/detectors/users-
support. The complete software package is composed of several programs which can be installed (or locally compiled)
depending on the needs:

• The slsDetector shared and static libraries which are necessary for all user interfaces.

• The command line interfaces which are provided to communicate with the detectors using the command line
and eventually to the data receiver

• The data receiver (slsReceiver), which can be run on a different machine, receives the data from the detector and
interfaces to the control software via TCP/IP for defining e.g. the file name, output path and return status and
progress of the acquisition

• The graphical user interface (slsDetectorGUI) which provides a user friendly way of operating the detectors
with online data preview

• The calibration wizards (energyCalibrationWizard, angularCalibrationWizard) to analyze the data and produce
the energy or angular calibration files (only for photon-counting detector and thus not an interest for Gotthard
users)

• The Gotthard virtual servers to simulate the detectors behavior (however only control commands work, not the
data acquisition itself)

2.2 Install softwares

1. Prerequisites for using the softwares

The software is written in C/C++. It needs to be able to access the shared memeory of the control PC and
communicate to the detectors over TCP/IP. Therefore the detector should receive a proper IP address (either
DHCP or static) and no firewall should be present between th control PC and the detector.

For installing the slsDetector shared and static libraries and the slsDetectorClient software, any Linux installa-
tion with a working gcc should be fine. The slsDetectorGUI is based on Qt4 with Qwt libraries. The calibration
wizards are based on the CERN Root data analysis framework.

5

https://www.psi.ch/detectors/users-support
https://www.psi.ch/detectors/users-support

Gotthard-I Documentation, Release 0.3

To compile the software you will need the whole Qt4, Qwt and Root installation, including the header files. To
run the software, it is enough to have the Qt4, Qwt or Root libraries appended to the LD_LIBRARY_PATH.
CERN Root is not mandatory if users perform data analysis with another program language.

For detector configuration and data acquisition, the minimal requirements can be summarized below:

• slsDetectorPackage: All detector related executables and libraries

• Qt-4.8.2, qwt-6.0.1 and Qwt3D: Necessary for the GUI

In addition to slsDetectorPackage, the Qt-4.8.2 software can be downloaded: ftp://ftp.qt.nokia.com/qt/source/qt-
everywhere-opensource-src-4.8.1.tar.gz (or alternatively at http://doc.qt.io/qt-4.8), qwt-6.0.1:
https://svn.code.sf.net/p/qwt/code/branches/qwt-6.0/, and Qwt3D: http://qwtplot3d.sourceforge.net/.

Installation of Qt-4.8.2:

> gunzip [qt_file_name].tar.gz
> tar xvf [qt_file_name].tar
> ./configure
> make
> make install

Installation of Qwt-related packages:

> svn co https://svn.code.sf.net/p/qwt/code/branches/qwt-6.0
> cd qwt-6.0
> qmake
> make
> make install

More information about the software installation can be found at the following link:
https://www.psi.ch/detectors/UsersSupportEN/slsDetectorInstall.pdf

PS: If there are repositories including Qt-4.8.2 and Qwt existing, instead of using the fore-mentioned standard
installation, simply try “yum install qt-devel qwt-devel root” for Scientific Linux, “apt-get install libqt4-dev
libqwt4-dev root-system” for Ubuntu.

2. Export the libraries and executables through command line after software installation:

• Qt library:

> export QTDIR=[.../.../]Qt-4.8.2
> export LD_LIBRARY_PATH=$QTDIR:$LD_LIBRARY_PATH
> export PATH=$QTDIR/bin:$PATH

• g++ directory:

> export QMAKESPEC=$QTDIR/mkspecs/linux-g++

• qwt directory:

> export QWTDIR=[.../.../]qwt-6.0.1
> export LD_LIBRARY_PATH=$QWTDIR:$LD_LIBRARY_PATH

• Qwt3D:

> export QWT3D=[.../]qwtplot3d
> export LD_LIBRARY_PATH=$QWT3D:$LD_LIBRARY_PATH

It is also recommended to put them into the ”.bashrc” file so that they do not have to be input for each start.

3. Compile slsDetectorPackage

The slsReceiver and slsDetectorGui executables should be compiled before using:

6 Chapter 2. Softwares

ftp://ftp.qt.nokia.com/qt/source/qt-everywhere-opensource-src-4.8.1.tar.gz
ftp://ftp.qt.nokia.com/qt/source/qt-everywhere-opensource-src-4.8.1.tar.gz
http://doc.qt.io/qt-4.8
https://svn.code.sf.net/p/qwt/code/branches/qwt-6.0/
http://qwtplot3d.sourceforge.net/
https://www.psi.ch/detectors/UsersSupportEN/slsDetectorInstall.pdf

Gotthard-I Documentation, Release 0.3

> cd [.../.../]slsDetectorPackage
> make clean; make

Then export the libraries and executables:

> cd bin
> export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH
> export PATH=$PWD:$PATH

The method mentioned above is the minimal effort to compile the slsDetectorPackage. Other compilation meth-
ods:

• make -> compile the library, the command line interface and the receiver

• make lib -> compile only the library

• make slsDetectorClient -> compile the command line interface (and the library, since it is required)

• make slsDetectorClient_static -> static compile the command line interface statically linking the library
(and the library, since it is required)

• make slsReceiver -> compile the data reciever (and the library, since it is required)

• make slsReceiver_static -> compile the data reciever statically linking the library (and the library, since it
is required)

• make slsDetectorGUI -> compile slsDetectorGUI - requires a working Qt4 and Qwt installation

• make calWiz -> compile the calibration wizards - requires a working root installation

• make doc -> compile documentation in pdf format

• make htmldoc -> compile documentation in html format

• make install_lib -> installs the libraries, the text clients, the documentation and the includes for the API

• make install -> installs all software, including the gui, the cal wizards and the includes for the API

• make confinstall -> installs all software, including the gui, the cal wizards and the includes for the API,
prompting for the install paths

• make clean -> remove object files and executables

• make help -> lists possible targets

• make gotthard_virtual -> compile a virtual GOTTHARD detector server (works for control commands,
not for data taking)

The path where the files binaries, libraries, documentation and includes will be installed can either be defined
interactively by sourcing the configure script (not executing!) or during compilation using make confinstall or
defined on the command line deifning one (or all) the following variables (normally INSTALLROOT is enough):

• INSTALLROOT -> Directory where you want to install the software. Defaults to PWD

• BINDIR -> Directory where you want to install the binaries. Defaults to bin/

• INCDIR -> Directory where you want to pute the header files. Defaults to include

• LIBDIR -> Directory where you want to install the libraries. Defaults to bin/

• DOCDIR Directory where you want to copy the documentation. Defaults to doc/

To be able to run the executables, append the BINDIR directory to your PATH and LIBDIR to the
LD_LIBRARY_PATH. To run the GUI, you also need to add to your LD_LIBRARY_PATH the Qt4 and Qwt
libraries, without the need to install the whole Qt and Qwt developer package:

• libqwt.so.6

2.2. Install softwares 7

Gotthard-I Documentation, Release 0.3

• libQtGui.so.4

• libQtCore.so.4

• libQtSvg.so.4

More options and information about software installation can be found in
https://www.psi.ch/detectors/UsersSupportEN/slsDetectorInstall.pdf.

2.3 Upgrade softwares

The softwares are released through the following webpage: https://www.psi.ch/detectors/users-support.
It is recommended to check the new release there. The client, receiver and detector server have to be
updated at the same time. To update the detector server, follow the instruction below:

1. Server binary preparation

First, check the location of the tftp directory:

> more /etc/xinetd.d/tftp

The tftpboot directory will be shown after the “server_args”. Here in the test machine, it is “/tftp-
boot”. If no tftp exists, download and install it: http://askubuntu.com/questions/201505/how-do-i-
install-and-run-a-tftp-server.

The, copy the server binary to tftp directory:

> cp [.../.../]slsDetectorPackage/slsDetectorSoftware/gotthardDetectorServer/
/gotthardDetectorServer /tftpboot/

2. Update the detector server

After powering on the detector, do the following in the command line:

> telnet bchip050 (either the hostname or the IP address of the detector)
> ps (list the running processes)
> killall gotthardDetectorServer (stop the currently running server)
> tftp -r pc_name gotthardDetectorServer -g
> chmod 777 gotthardDetectorServer
> ./gotthardDetectorServer & (start the new server)

Note that the bchip050 should be replaced by the hostname of the specific detector module.

8 Chapter 2. Softwares

https://www.psi.ch/detectors/UsersSupportEN/slsDetectorInstall.pdf
https://www.psi.ch/detectors/users-support
http://askubuntu.com/questions/201505/how-do-i-install-and-run-a-tftp-server
http://askubuntu.com/questions/201505/how-do-i-install-and-run-a-tftp-server

CHAPTER

THREE

DETECTOR SET-UP AND CONFIGURATION

The information about how to set-up the Gotthard-I detector and configure the detector has been summarized as below.

3.1 Connect the detector

There are one power plug, two Ethernet ports, and four lemo connectors.

The suply power requires +5 V as input.

The two Ethernet ports: One for detector control, the other for data transmission. Two options of connection between
the detector, control PC and receiver can be found below.

9

Gotthard-I Documentation, Release 0.3

The command can be sent through a control PC to the detector directly or through a receiver(refer to the figures above)
and the data received by the receiver through 1 GbEthernet link under UDP protocal.

The four lemo connectors (labeled 1-4): 1 is used to receive triggers for the detector, 2 is the trigger sent-out from
the detector. The lemo connectors 2 always generates trigger signals by the detector in case the other devices need to
synchronize with it. In order to trigger the detector by an external signal, refer to the section “Edit the configuration
file”. Connectors 3 and 4 are normally not in use.

For the input external trigger for connector 1, it should be 3.3 V LVTTL signal with ~100 ns pulse width.

3.2 Configure the system

1. Edit the configuration file

The configuration file ends with an extension of ”.config”. In the whole text, the file name “bchip.config” is
used.

1 type Gotthard+
2 0:hostname 10.42.0.35
3 #0:port 1952
4 #0:stopport 1953
5 #0:rx_tcpport 1954
6 0:settingsdir /home/wp74diag/slsDetectorsPackage/settingsdir/gotthard
7 0:angdir 1.000000
8 0:moveflag 0.000000
9 0:lock 0

10 0:caldir /home/wp74diag/slsDetectorsPackage/settingsdir/gotthard

10 Chapter 3. Detector set-up and configuration

Gotthard-I Documentation, Release 0.3

11 0:ffdir /home/wp74diag
12 0:extsig:0 off
13 0:extsig:1 off
14 0:extsig:2 off
15 0:extsig:3 off
16 0:detectorip 10.42.0.2
17 0:detectormac 00:aa:bb:cc:dd:ee
18 0:rx_udpport 50004
19 0:rx_hostname 10.42.0.1
20 0:outdir /home/wp74diag/data/gotthard
21 0:vhighvoltage 120
22 0:frames 1000
23 0:exptime 0.0001
24 0:period 0.0100
25 master -1
26 sync none
27 outdir /home/wp74diag/data/gotthard
28 ffdir /home/wp74diag
29 headerbefore none
30 headerafter none
31 headerbeforepar none
32 headerafterpar none
33 badchannels none
34 angconv none
35 globaloff 0.000000
36 binsize 0.001000
37 threaded 1

The following line should be changed accordingly for each detector module or PC connection:

• L2: hostname or IP address for the detector

• L5: the communication port between client and receiver, 1954 by default

• L6 & L10: setting directory based on the location of slsDetectorsPackage folder

• L11, L20, L27 & L28: output directory of data

• L12: set to “trigger_in_rising_edge” if a trigger will be used. It is suggested to set it all the time. With this,
it is also possible to work with “Auto” mode without triggers. The setting of different modes, e.g. “Auto”
or “Trigger Exposure Series”, can be done from the “Timing Mode” box inside “Measurement” tab of the
SLS Detector GUI. The details for setting GUI can be found in the Section “Usage of GUI” of Chapter
“Use GUI to perform measurement”.

• L16: the ip address of the detector for the UPD interface with the receiver

• L17: the mac address of the detector upd interface to mac is configurable; any unique mac address can be
set

• L18: the udp port of the receiver for data receiving

• L19: host name or IP address of the receiver for the TCP/IP interface with the client

• L21: bias voltage of the sensor; 200 V is recommended for operation

In addtion, the “rx_udpip” can also be set if several internet connections exist:

• rx_udpip: the ip address of the receiver for the UDP interface with the detector; it has to be on the same
internet as L16

2. Power on the detector module first and start the detector server

The detector server will automatically start for users. If not, type the following in the command line:

3.2. Configure the system 11

Gotthard-I Documentation, Release 0.3

> ping bchip050
> telnet bchip050
> killall gotthardDetectorServer
root:>./gotthardDetectorServer

Note that “bchip050” is the name of specific module! Try to ping the module and see whether it has been
connected and then start the server.

3. Start receiver

To start the receiver on the PC, enter the “slsDetectorsPackage/bin” folder and type the following in the com-
mand line:

> which slsReceiver (if path is configured correctly, it's in the right bin folder)
> slsReceiver (Note: or ./slsReceiver)

The libSlsDetector.so and libSlsReceiver.so project libraries, and project executatbles should be added before
starting receiver server. See chapter section-2.2.

4. Start GUI

To start GUI for detector control and data display, type the following in the command line:

> slsDetectorGui --f [.../.../]bchip.config

The -f option is only needed if the detector and receiver are not configured.

In the GUI pop-up, the “developer” tab will not be activated and thus the DAC values cannot be changed in the
GUI (only in command line in this case). If a DAC value needs to be changed, the “developer” tab should be
activated and the following command should be used:

> slsDetectorGui -df [.../.../]bchip.config

In such case, the DAC values can be changed in-situ and the temperature of the FPGA can be readout. Only do
this if DAC values need to be changed.

Note that “export” has to be done to run any project executables.

3.3 Exit after measurements

1. Stop the receiver first:

> CTRL + C

2. Stop the detector server

This automatically done when powering off the detector.

3.4 CLI mode

The detector can also be ran and controlled without using GUI. In this case, the make file needs to be modified. This
is useful if the QWT is not available on the system. To compile without GUI using: “make client; “make receiver;
make” in the command line.

Some useful executables in such mode:

12 Chapter 3. Detector set-up and configuration

Gotthard-I Documentation, Release 0.3

> sls_detector_put (Note: set a value of a parameter)
> sls_detector_get (Note: get a value of a parameter)
> sls_detector_help (Note: get help on something)
> sls_detector_acquire (Note: acquire images)

The syntax of commands is:

> sls_detector_put [id]:command [argument] (for using sls detector class)
> sls_detector_put [id]-command [arguments] (for using multi-detector class)

Initialization commands:

Acquisition commands:

3.4. CLI mode 13

Gotthard-I Documentation, Release 0.3

Debugging commands:

General commands:

14 Chapter 3. Detector set-up and configuration

Gotthard-I Documentation, Release 0.3

Commands for configuring network (these are normally not used independently, since a configuration file is loaded):

3.4. CLI mode 15

Gotthard-I Documentation, Release 0.3

Example of using commands:

16 Chapter 3. Detector set-up and configuration

Gotthard-I Documentation, Release 0.3

More useful commands can be found in https://www.psi.ch/detectors/UsersSupportEN/slsDetectorClientHowTo.pdf.

In this mode, the configuration file should be loaded manually at least once:

> sls_detector_put config [.../.../]bchip.config

3.5 Setup file

This is a set-up file for setting a specific measurement. It can be loaded from “Utilities->Load setup file” inside SLS
Detector GUI. However, all these settings can be input and changed in the GUI.

1 fname run
2 index 0
3 dr 16
4 settings veryhighgain
5 exptime 0.000002990
6 period 0.000025
7 delay 0.999999968
8 gates 1
9 frames 3000000

10 cycles 1.000000000
11 timing auto
12 fineoff 0.000000
13 flatfield none
14 badchannels none

3.6 Configure two detectors

Here below is an example of configuration file for running two modules in parallel, which have been successfully
tested with a laptop of EU.XFEL.

• Two-module configuration file:

1 detsizechan 2560 1
2 hostname 10.42.0.35+10.42.0.37+
3 #0:port 1952
4 #0:stopport 1953
5 #0:rx_tcpport 1956 must also have this in receiver config file
6 0:settingsdir /home/wp74diag/slsDetectorsPackage/settingsdir/gotthard
7 0:angdir 1.000000
8 0:moveflag 0.000000
9 0:lock 0

10 0:caldir /home/wp74diag/slsDetectorsPackage/settingsdir/gotthard
11 0:ffdir /home/wp74diag
12 0:extsig:0 off
13 0:extsig:1 off
14 0:extsig:2 off
15 0:extsig:3 off
16 0:detectorip 10.42.0.2
17 0:detectormac 00:aa:bb:cc:dd:ee
18 0:rx_udpport 50004
19 0:rx_udpip 10.42.0.1
20 0:rx_hostname 10.42.0.1
21 0:outdir /home/wp74diag/data/gotthard
22 0:vhighvoltage 120

3.5. Setup file 17

https://www.psi.ch/detectors/UsersSupportEN/slsDetectorClientHowTo.pdf

Gotthard-I Documentation, Release 0.3

23 0:frames 1000
24 0:exptime 0.0001
25 0:period 0.0100
26

27 #1:port 1952
28 #1:stopport 1953
29 #1:rx_tcpport 1956 must also have this in receiver config file
30 1:settingsdir /home/wp74diag/slsDetectorsPackage/settingsdir/gotthard
31 1:angdir 1.000000
32 1:moveflag 0.000000
33 1:lock 0
34 1:caldir /home/wp74diag/slsDetectorsPackage/settingsdir/gotthard
35 1:ffdir /home/wp74diag
36 1:extsig:0 off
37 1:extsig:1 off
38 1:extsig:2 off
39 1:extsig:3 off
40 1:rx_tcpport 1720
41 1:detectorip 10.42.0.3
42 1:detectormac 01:aa:bb:cc:dd:e1
43 1:rx_udpport 50005
44 1:rx_udpip 10.42.0.1
45 1:rx_hostname 10.42.0.1
46 1:outdir /home/wp74diag/data/gotthard
47 1:vhighvoltage 120
48 1:frames 1000
49 1:exptime 0.0001
50 1:period 0.0100
51

52

53 master -1
54 sync none
55 outdir /home/wp74diag/data/gotthard
56 ffdir /home/wp74diag
57 headerbefore none
58 headerafter none
59 headerbeforepar none
60 headerafterpar none
61 badchannels none
62 angconv none
63 globaloff 0.000000
64 binsize 0.001000
65 threaded 1

18 Chapter 3. Detector set-up and configuration

CHAPTER

FOUR

USE GUI TO PERFORM MEASUREMENT

4.1 Usage of GUI

As introduced in previous chapter, the GUI can be started with the following in the command line:

> slsDetectorGui --f [.../.../]bchip.config

The GUI includes several tabs for detector control and data acquisition.

• The “Measurement” tab:

In this tab, it is possible to specify the following parameters:

– Number of measurements: Each measurement includes a number of frames input on the right of
the window

– Run index: The file name ends up with the index number, for example
“run_f000000000000_RunIndex.raw”

19

Gotthard-I Documentation, Release 0.3

– Number of frames: The total number of frames to be measured for each measurement

– Timing mode: “Auto” or “Trigger Exposure Series”. The former does not trigger whereas the
latter uses a trigger.

– Exposure time: Time of integration

– Acquisition period: Period per frame. The frame rate is given by 1 divided by the acquisition
period, for example 1 ms input gives a frame rate of 1 kHz. In burst mode with trigger it refers
to the period of two burst frames: it should be > 1.25 us (1/800 kHz); in continuous mode
without trigger, it has to be larger than the exposure time at least and > 23-25 us (1/40 kHz);
in continuous mode with trigger, it is suggested to be 23-25 us to make sure the triggers will
not be overlooked in case the trigger rate is higher than the acquisition frequency (1/acquisition
period).

– Number of triggers: Perform a number of frames for each trigger and total frames given by
number of frames multiplying number of triggers for each measurement. For continous mode
with trigger, the number of frames has to be set 1; for burst mode with trigger, the number of
frames refer to the number of burst images for each trigger and maximal at 128 due to the limit
of the memory in FPGA!

– Delay after trigger: Delay time to start taking data after receiving a trigger signal. For any
numnber < 32 ns, the setting cannot work; thus a setting value > 32 ns is necessary for the delay
of acquisition after receiving trigger.

Note that in order to use the trigger mode, the line “0:extsig:0 off” in the configuration file has to
be changed to “0:extsig:0 trigger_in_rising_edge”. The #1 of the lemo connectors is used to receive
trigger signals. #2-4 are the trigger signals from the detector which can be used to synchronize the
other devices when they need to be triggered by the detector, as explained in the previous chapter.

Only when the trigger mode is selected from the “Timing Mode” block, the input for “Number of
triggers” and “Delay after trigger” area can be activated.

20 Chapter 4. Use GUI to perform measurement

Gotthard-I Documentation, Release 0.3

• The “Setting” tab:

– Settings: Select operating mode either “fixed” gain or dynamic gain switching

* High gain: Single photons regime low noise, working up to a few tens of 12 keV photons

* Very high gain: Single photons regime and very low noise, working up to a couple tens of
12 keV photons

* Medium gain: No single photon sensitivity, working for photons between a few tens to
hundreds

* Low gain: No single photon sensitivity, working for photons from a few hundreds to ten
thousand

* Dynamic gain: Dynamically switch gain, working for single photon up to ten thousand
photons

• The “Data Output” tab: Choose the folder for output data

4.1. Usage of GUI 21

Gotthard-I Documentation, Release 0.3

• The “Plot” tab:

The refresh rate of the plot in “Plotting window” can be set here. In addtion, pedestal subtracted

22 Chapter 4. Use GUI to perform measurement

Gotthard-I Documentation, Release 0.3

results can be shown in the “Plotting window” by perform an on-line pedestal subtration through
“1D plot option 1” dialog.

• The other tabs:

Since the other tabs are irrelevant for users’ setting, they will not be discussed here.

4.2 Examples to set-up measurements

• Measurements without trigger:

– Choose “Auto” in “Timing Mode” of “Measurement” tab

– In “Settings”, select an operation gain in measurement: “Very High Gain”, “High Gain”, “Medium Gain”,
“Low Gain”, or “Dynamic Gain”

– Enter the “Exposure Time” in “Measurement” tab: With “Very High Gain” and “High Gain” mode, the
“Exposure Time” should not exceed a few tens of microsecond, otherwise the ADU saturates due to leakage
current.

– Enter the “Acquision Period” in “Measurement” tab: 100 microseciond or 1 milisecond and so on, depend-
ing on the required frame rate.

– Set “Number of frames” in “Measurement” tab and “Number of Measurements”: The total frames given
by “Number of frames” multiplied by “Number of Measurements”.

– Set the “File Name” and “Run Index”

– Press the “Start” button in “Measurement” tab to start taking data

• Measurements with trigger:

– In the configuration file, change “0:extsig:0 off” to “0:extsig:0 trigger_in_rising_edge”; and then load the
configuration file again from GUI: “Utilities” -> “Load Configuration File”

– Choose “Trigger Exposure Series” in “Timing Mode” of “Measurement” tab

– Input “Number of Triggers” to be received by the detector in the “Measurement” tab

– Input the delays through “Delay After Trigger” in the “Measurement” tab: The measurement starts with
this delay after receiving trigger signal

– In “Settings”, select an operation gain in measurement: “Very High Gain”, “High Gain”, “Medium Gain”,
“Low Gain” or “Dynamic Gain”

– Enter the “Exposure Time” in “Measurement” tab: With “Very High Gain” and “High Gain” mode, the
“Exposure Time” should not exceed a few tens of microsecond, otherwise the ADU saturates due to leakage
current.

– Enter the “Acquision Period” in “Measurement” tab: 100 microseciond or 1 milisecond and so on, de-
pending on the required frame rate and running mode. For continuous mode with trigger, the setting is
suggested to be 23-25 us and longer setting may overlook pulses with repetition rate higher than acquisi-
tion rate (1/acquisition period); however for burst mode, this input defines the period between two burst
images and can be shorter than 23-25 us but has to be > 1.25 us (800 kHz maximum).

– Set “Number of frames” in “Measurement” tab and “Number of Measurements”: The total frames given
by “Number of frames” multiplied by “Number of Measurements” and “Number of Triggers”. For burst
mode, it refers to the number of burst images per trigger and thus should not be exceeded 128; for contin-
uous mode, it should be 1 (1 trigger gives 1 image).

– Set the “File Name” and “Run Index”

4.2. Examples to set-up measurements 23

Gotthard-I Documentation, Release 0.3

– Press the “Start” button in “Measurement” tab to start taking data

• Note that the dark measurement, X-ray flurescence measurement with lab X-ray source can be done with “Auto”
mode; whereas measurements with the single shot laser and synchrotron beam/FEL should be done with “Trig-
ger” mode.

4.3 Examples to set-up timings

The explanation of setting up time related input can be summarized below.

For continous mode without external trigger (“Auto” option in “Timing Mode” of “Measurement” tab):

For continous mode with external trigger (“Trigger Exposure Series” option in “Timing Mode” of “Measurement”
tab):

For burst mode with external trigger (“Trigger Exposure Series” option in “Timing Mode” of “Measurement” tab):

24 Chapter 4. Use GUI to perform measurement

Gotthard-I Documentation, Release 0.3

4.3. Examples to set-up timings 25

Gotthard-I Documentation, Release 0.3

26 Chapter 4. Use GUI to perform measurement

CHAPTER

FIVE

CHARACTERIZATION AND CALIBRATION

To get correct photon energy from measurements with a charge-integrating detector (Gotthard), proper characterization
and calibration is necessary. This chapter will introduce the basic concept of detector calibration.

Usually, the following need to be characterized/calibrated:

• Gains and offsets in “fixed” gain mode (HG0, G0, G1 and G2)

• Gains and offsets in dynamic gain mode (G0, G1 and G2)

• Noise

The conversion of measured ADU to photon energy in a measurement will be based on the calibration results men-
tioned above.

5.1 Gains & offsets in “fixed” gain mode

The gain and offset (also called “pedestal” sometimes) for very high gain (HG0) and high gain (G0) can be measured
with X-ray fluorescence from an X-ray tube. However the gains for medium gain (G1) and low gain (G2) can only be
measured with synchrotron/FEL beam instead of a lab X-ray source.

For example, in case a lab X-ray tube is used, the X-ray fluorescence from a Cu, Mo or other targets can be measured
using Gotthard detector by putting it in front of the target. For this measurement, an exposure time (also called
“integration time” sometimes) of a few microsecond, an acquisition period of 1 ms and “fixed” gain with either high
gain (G0) or very high gain (HG0) shall be set. 2 us, 5 us and 10 us are commonly used as exposure time and >500
000 frames recommended to obtain enough data.

After the measurement, the histogram/occurance of ADU values for each strip can be plotted and peak positions can
be extracted. As seen below, it is the histogram from a strip (Strip-64) in ameasurement using X-ray fluorescence from
a Cu-target (Ka line at 8.05 keV). The 0, 1, ..., up to 4 photon peaks can be seen and their peak positions extracted and
plotted as function of energy from different number of coincident photons.

27

Gotthard-I Documentation, Release 0.3

The straight line fit gives the slope (gain in a unit of ADU/keV) and offset (in a unit of ADU). The gains for HG0 and
G0 are different.

Since the medium gain and low gain are very small, it is not possible to get separated peak in the histogram using
X-ray fluorescence. In this case, multiple coincident photons from synchrotron/FEL beam should be used to calibrate
G1 and G2.

The offsets (pedestals) for HG0, G0, G1 and G2 can be obtained from measurements using the same settings but
without any X-rays. The mean or the center of a gaussian fit to the hitogram represents the offset (pedestal) for the
specific gain setting used in the measurement.

5.2 Gains & offsets in dynamic gain mode

In dynamic gain mode, the high gain (G0) is used as the initial gain stage. The gain [ADU/keV] and offset [ADU] of
high gain stage in dynamic gain mode are identical to the ones in “fixed” gain mode. That is, with X-ray fluorescence,
the histogram for dynamic range mode and “fixed” gain mode using “high gain” are the same; however, the gains
and offsets of medium and low gains are different between dynamic gain mode and “fixed” gain mode. Thus, it is
necessary to calibrate the medium gain and low gain in dynamic range mode independent of the calibration of medium
gain and low gain in “fixed” gain mode. Similarly, these can be measured with either strong X-ray source (synchrotron
or FEL) or laser.

For lab tests using a laser, one can select the dynamic gain in the setting. By scanning the laser intensity, it is possible
to obtain the dynamic range curve of a strip into which laser injects. The laser intensity can be converted to number
of photons or keV based on a conversion rate between the slope in high gain region and the high gain (G0) measured
with X-ray fluorescence. The dynamic range curve from laser measurement is shown below:

28 Chapter 5. Characterization and calibration

Gotthard-I Documentation, Release 0.3

Based on the fore-mentioned conversion, the medium and low gain region can be fit by staight lines separated and then
gains and offsets extracted as indicated in the figure.

Note that all numbers indicate in the figures are from a prototype instead of a detector module and thus it can be
different from the results obtained with a detector module.

5.3 Noise

Noise is a key factor indicating the best separation of two different photon energies in a measurement. For example, for
a noise of 300 e- (corresponding to 1 keV), a good energy separation can be achieved for 5 keV when counting 5 sigma.
The noise is related to the exposure time and temperature. For a “fixed” experimental condition where exposure time
and temperature do not change, the noise can also be measured through “dark” measurement: Operating the detector
in a light-tight environment without X-rays. The settings for exposure time and acquisition period can be identical to
the ones in X-ray measurement but not mandatory. The number of frames can be less, for example ~ 10 000 frames in
total.

After the measurement, the histogram/occurance of ADU values for each strip shall be calculated. The distribution
of histogram is fited by a gaussian function with mean value the offset (pedestal) as mentioned before and the sigma
(unit: ADU) the noise related parameter. Then the noise can be calculated based on the following formula:

Noise[E.N.C.]=Sigmal[ADU]/gain[ADU/keV]*1000/3.6[eV]

Here below is an example of noise measurement with very high gain and high gain:

5.3. Noise 29

Gotthard-I Documentation, Release 0.3

It is recommended to perform this measurement with the same settings used for an experiment.

5.4 Energy conversion

Once the gains and offsets calibrated, the conversion can be done with:

photon_energy=(Analog[ADU]-offset[ADU])/gain[ADU/keV]

using offset (pedestal) and gain values for specific gain stages.

30 Chapter 5. Characterization and calibration

CHAPTER

SIX

DATA PROCESSING

For data processing, a few routines and functions have been prepared as a starting point.

For data analysis with provided routines, the following are essential:

• python 2.7 or 3.3

• numpy

• scipy

• matplotlib

• peakutils

• h5py

• lmfit

For python related routines, one solution is to install ANACONDA: https://www.continuum.io/downloads. It includes
all necessary python-related packages for scientific calculation except lmfit module. For Anaconda python users, the
lmfit module can be installed through:

> conda install -c conda-forge lmfit
> conda install -c newville lmfit

Standard installation from XFEL.EU calibration package is also enough.

To show the examples in this text, Jupyter Notebook is used. It is also fine to run the code in python script (”.py” file).

6.1 Data structure

The data structure for each frame can be summarize as below, each data point is 16-bit:

| a | b | c | c | data for 1280/2-1 channles | a+1 | b | data for 1280/2+1 channels |

Here “a” refers to index number, “b” time related number, “c” flag. The data for 1280 channels/strips will divide into
two parts, thus it is necessary to make sure the continuity of index number for per 1280 channels in order to avoid data
misalignment due to data packets loss.

The 16-bit data for each channel include both the gain bit and analog information: The first 2 bits give the gain stage
used and the last 14 bits analog ADU value. For the first 2 bits, “00” for high (G0) or very high gain (HG0), “01” for
medium gain (G1) and “11” for low gain (G2).

The gain bit information is particularly important when using dynamic gain mode.

31

https://www.continuum.io/downloads

Gotthard-I Documentation, Release 0.3

6.2 Conversion gain

The gain for very high gain (HG0) and high gain (G0) can be calculated based on X-ray fluorescence data with
the function: calGain_Xray(Folder, Run_index, binsize=5, E_xray=8.05, half_region=10, thres=0.2, min_dist=40,
channels=linspace(1,1280,1280), common_correction=”No”). The input parameters are:

• Folder: where the data file located

• Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of measurement files.

• binsize: the bin size to generate the histogram

• E_xray: energy of the X-ray fluorescence

• half_region: half of the fitting region per peak

• thres: threshold to consider as a peak in its histogram

• min_dist: minimal distance between two peaks

• channels: input channels to be calcuated

• common_correction: whether a common mode correction is mode or not

It calls function index_peaks() using “thres” and “min_dist” as input defined in PeakUtils module. More information
about this module can be found at http://pythonhosted.org/PeakUtils/.

Below is an example about how to use the function calGain_Xray(). Download the example at
https://desycloud.desy.de/index.php/s/E2n1uRYXogabLhA.

32 Chapter 6. Data processing

http://pythonhosted.org/PeakUtils/
https://desycloud.desy.de/index.php/s/E2n1uRYXogabLhA

Gotthard-I Documentation, Release 0.3

6.2. Conversion gain 33

Gotthard-I Documentation, Release 0.3

Another function can also be called for gain calculation using lmfit module with a method of multi-peak fitting:
calGain_Xray_lmfit(Folder, Run_index, binsize=5, Exray=8.05, gain_guess=10.0, sigma_guess=15, prob_1ph=0.4,
channels=linspace(1,1280,1280), common_correction=”No”). The input parameters are:

• Folder: where the data file located

• Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of measurement files.

• binsize: the bin size to generate the histogram

• E_xray: energy of the X-ray fluorescence

• gain_guess: initial guess of gain value in terms of ADU/keV

• sigma_guess: initial guess of sigma value of gaussian fitting to noise and single photon peak

• prob_1ph: initial guess of single photon probability per channel per frame

• channels: input channels to be calcuated

• common_correction: whether a common correction is mode or not

It is recommended to run both functions separately and merge the gain data, especially for the channels with failed
fitting. If the convergence is not good enough, the program should run a few times till satisfication reached. The
example for gain data merging can be downloaded at https://desycloud.desy.de/index.php/s/vBIZ2hZqkKHVksP.

6.3 Pedestal and noise

The pedestal (offset) and noise can be calculated for dark measurement in a light-tight box with the function: cal-
Noise_ADU(Folder, Run_index, binsize=5, common_correction=”No”, nbits=14). The input parameters are:

• Folder: where the data file located

• Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of measurement files.

34 Chapter 6. Data processing

https://desycloud.desy.de/index.php/s/vBIZ2hZqkKHVksP

Gotthard-I Documentation, Release 0.3

• binsize: the bin size to fill in the histogram

• common_correction: whether a common correction is mode or not

• nbits: the number of bits for analogue ADU value. Use 14 for the consistent gain in a measurement and 16 for
a changed gain in a measurement.

The calculated noise in terms of ADU can be converted to equivalent noise charge (E.N.C.) with the function convert-
Noise(noise_ADU, gain). The input:

• noise_ADU: the output from calNoise_ADU() function

• gain: the output from calGain_Xray() function

Below is an example about how to use the function calNoise_ADU() and convertNoise(). Download the example at
https://desycloud.desy.de/index.php/s/T2XCi9orhNv1MDl.

6.3. Pedestal and noise 35

https://desycloud.desy.de/index.php/s/T2XCi9orhNv1MDl

Gotthard-I Documentation, Release 0.3

6.4 Mask generation

For dead channels and noisy channels, it is possible to generate a mask which can be used to mask out the bad data
when converting measurement to photon energy. The function for generating mask: genMask(data, boundary_low,
boundary_high), with

• data: either gain result or noise result

• boundary_low: channel with data below this boundary to be considered as a bad channel to be masked

• boundary_high: channel with data above this boundary to be considered as a bad channel to be masked

Below is an example about how to use the function genMask(). Download the example at
https://desycloud.desy.de/index.php/s/gVJQ49QinjpXf0Q.

36 Chapter 6. Data processing

https://desycloud.desy.de/index.php/s/gVJQ49QinjpXf0Q

Gotthard-I Documentation, Release 0.3

6.5 Energy conversion

Measurement data can be converted to photon energy [keV] using the pedestal data and gain data. The conversion is
done with the function: convertEnergy(Folder, Run_index, pedestal, gain, mask), with

• Folder: where the data file located

• Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of measurement files.

• pedestal: pedestal data for all strips

• gain: conversion gain data for all strips

• mask: mask to be used to discard bad channels

6.5. Energy conversion 37

Gotthard-I Documentation, Release 0.3

By applying this function, a series of files in hdf5 format named “convertEnergy_XXX.nxs” will be generated, each
max.20 GB with converted photon energy saved. The saved file with photon energy can be open with hdfview.

Below is an example about how to use the function convertEnergy(). Download the example at
https://desycloud.desy.de/index.php/s/hss5kkxhtHN9JO8.

6.6 Callables

Here below will list the functions written in python, which can be called directly after importing the
“func_GotthardI.py” module.

• getHist(Folder, Run_index, i_strip, binsize, common_correction, nbits)

– This function will return the histogram for a specific strip.

– Input:

38 Chapter 6. Data processing

https://desycloud.desy.de/index.php/s/hss5kkxhtHN9JO8

Gotthard-I Documentation, Release 0.3

* Folder: where the data file located

* Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of mea-
surement files

* i_strip: get the histogram for which strip

* binsize: bin size in terms of ADU to get the histogram

* common_correction: whether a common mode correction is preferred

* nbits: number of bits for measurement data

– Return:

* bins

* occurance

• plotHist(Folder, Run_index, i_strip, binsize, common_correction, nbits)

– This function will run getHist first and plot the histogram

– Input:

* Folder: where the data file located

* Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of mea-
surement files

* i_strip: get the histogram for which strip

* binsize: bin size in terms of ADU to get the histogram

* common_correction: whether a common correction is preferred

* nbits: number of bits for measurement data

– Return:

* bins

* occurance

• getGain_Xray(bins, occurance, E_xray, half_region, thres, min_dist)

– This function will calculate the gain according to the input histogram and energy of X-ray

– Input:

* bins: the bins from output of getHist() or plotHist()

* occurance: the occurance for each bin from the output of getHist() or plotHist()

* E_xray: energy of X-ray characteristic line

* half_region: half of peak region to be fit with Gaussian

* thres: the threshold counts as a peak

* min_dist: minimal distance between two peaks

– Return:

* gain: calculated gain from the input histogram

* offset: offset/pedestal of the histogram

* gain_error: error of calculated gain

* peak_pos: the peak positions

6.6. Callables 39

Gotthard-I Documentation, Release 0.3

* E_peaks: the corresponding peak energies

• getGain_Xray_lmfit(bins, occurance, Exray, gain_guess, sigma_guess, prob_1ph)

– This function will calculate the gain according to the input histogram and energy of X-ray using lmfit
module

– Input:

* bins: the bins from output of getHist() or plotHist()

* occurance: the occurance for each bin from the output of getHist() or plotHist()

* Exray: energy of X-ray characteristic line

* gain_guess: initial guess of conversion gain

* sigma_guess: initial guess of sigma for a gaussian fitting

* prob_1ph: probability of seeing 1 photon per channel per frame

– Return:

* gain: calculated gain from the input histogram

* offset: offset/pedestal of the histogram

* gain_error: error of calculated gain, 0 given at the moment

* peak_pos: the peak positions

* E_peaks: the corresponding peak energies

• calGain_Xray(Folder, Run_index, binsize, E_xray, half_region, thres, min_dist, common_correction)

– This function will calculate the gains for all strips/channels

– Input:

* Folder: where the data file located

* Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of mea-
surement files.

* binsize: the bin size to generate the histogram

* E_xray: energy of the X-ray fluorescence

* half_region: half of the fitting region per peak

* thres: threshold to consider as a peak in its histogram

* min_dist: minimal distance between two peaks

* common_correction: whether a common mode correction is preferred

– Return:

* gain: calculated gain for all strips

* offset: offset/pedestal for all strips

* gain_error: error of gain for each strip

• calGain_Xray_lmfit(Folder, Run_index, binsize, Exray, gain_guess, sigma_guess, prob_1ph, com-
mon_correction)

– This function will calculate the gains for all strips/channels based on lmfit module

– Input:

40 Chapter 6. Data processing

Gotthard-I Documentation, Release 0.3

* Folder: where the data file located

* Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of mea-
surement files.

* binsize: the bin size to generate the histogram

* Exray: energy of X-ray characteristic line

* gain_guess: initial guess of conversion gain

* sigma_guess: initial guess of sigma for a gaussian fitting

* prob_1ph: probability of seeing 1 photon per channel per frame

* common_correction: whether a common mode correction is preferred

– Return:

* gain: calculated gain for all strips

* offset: offset/pedestal for all strips

* gain_error: error of gain for each strip

• getNoise_ADU(bins, occurance)

– This function will calculate the noise in terms of ADU for a specific input histogram

– Input:

* bins: the bins from output of getHist() or plotHist()

* occurance: the occurance for each bin from the output of getHist() or plotHist()

– Return:

* sigma: the noise in terms of ADU

* pedestal: offset/pedestal from the noise measurement

* sigma_error: error of noise in terms of ADU

* pedestal_error: error of offset/pedestal

• calNoise_ADU(Folder, Run_index, binsize, common_correction, nbits)

– This function will calculate the noise in ADU for all strips

– Input:

* Folder: where the data file located

* Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of mea-
surement files

* binsize: bin size in terms of ADU to get the histogram

* common_correction: whether a common mode correction is preferred

* nbits: number of bits for measurement data

– Return:

* sigma: the noise in terms of ADU

* pedestal: offset/pedestal from the noise measurement

* sigma_error: error of noise in terms of ADU

* pedestal_error: error of offset/pedestal

6.6. Callables 41

Gotthard-I Documentation, Release 0.3

• convertNoise(noise_ADU, gain)

– This function will convert the noise in ADU to equivalent electron charge (E.N.C.)

– Input:

* noise_ADU: the calculated noise in [ADU]

* gain: the calculated gain in [ADU/keV]

– Return:

* noise_e: noise E.N.C. [e-]

• genMask(data, boundary_low, boundary_high)

– This function will generate a mask according to input data and boundaries

– Input:

* data: either gain or noise

* boundary_low: the low boundary for reliable data

* boundary_high: the high boundary for reliable data

– Return:

* mask: the mask for strips. 1 -> good strip/channel, 0 -> masked strip/channel

• convertEnergy(Folder, Run_index, pedestal, gain, mask)

– This function will convert the measurement into photon energy and save the data into a file with hdf format

– Input:

* Folder: where the data file located

* Run_index: the input index number in GUI. This number is in front of ”.raw” in the name of mea-
surement files.

* pedestal: pedestal data for all strips

* gain: conversion gain data for all strips

* mask: mask to be used to discard bad channels

– Return:

* No data return but all saved into a hdf file automatically

• file_merger_const(Path_open, File_base_in, index_i, N_files, Path_save)

– This function will merge different measurement files into one

– Input:

* Path_open: where the data files located

* File_base_in: the file base in front of the index and the file extension

* index_i: the index of the first file

* N_files: number files following an increment of the index

* Path_save: the path or folder to save the merged data

– Return:

* No data return but a merged file saved automatically into the specified folder

42 Chapter 6. Data processing

Gotthard-I Documentation, Release 0.3

6.7 Last words

All routines and functions provided are only served as a basis for understanding the data process and analysis. The
choise of programming language and software is up to the users.

6.7. Last words 43

Gotthard-I Documentation, Release 0.3

44 Chapter 6. Data processing

CHAPTER

SEVEN

ROUTINES

7.1 Python routines

There is a python module called “func_GotthardI.py”, in which the basic functions are defined and can be called by
importing this module. The file can be downloaded at https://desycloud.desy.de/index.php/s/VbhSuBmlIM18GHx.

1 """
2 # A collection of functions for Gotthard-I module
3 Changes:
4 - 2016-11-02 Function file_merger_const() added to merge binary files together
5 - 2016-10-18 Function getHist() does not separate the gain bit and analog info any more, both will be count as a 16 bit number
6 - 2016-10-18 Function histogram_array(data_array, binsize=5, nbits=14) implemented with new input nbits
7 - 2016-08-09 Common mode correction with Gaussian fit to get the mean value per frame
8 - 2016-08-05 Add common mode correction for function getHist() and plotHist() and calNoise_ADU()
9 - 2016-08-05 Add functions calGain_Xray_lmfit() and getGain_Xray_lmfit() using lmfit module for gain calculation as an option and compensation for mis-calculation by calGain_Xray() and getGain_Xray()

10 - 2016-08-04 Add error handling for function calNoise_ADU()
11 - 2016-08-03 Solve the run_index non-umbiguous problem for function getHist() and convertEnergy()
12 - 2016-08-03 Merge with the modification by Andrea
13 - 2016-08-03 Correct the threshold input error for function index_peaks()
14 - 2016-07-28 Change the way of file sorting
15 - 2016-07-25 Decode gain bit in fixed gain mode for functions: getHist() and convertEnergy()
16 - 2016-07-21 First creation
17

18 # Created by jiaguo.zhang@psi.ch
19 """
20

21 #!/usr/bin/env python
22 # ld elements in base 2, 10, 16.
23

24 import os,sys
25 from numpy import *
26 from matplotlib.pyplot import *
27 from pylab import *
28 from scipy.optimize import curve_fit
29 import peakutils
30 from lmfit.models import GaussianModel, ExponentialModel
31 from lmfit import minimize, Minimizer, Parameters, Parameter, report_fit
32

33

34

35 ############### FUNCTION COLLECTIONS FOR DATA CONVERSION ###############
36 # global definition
37 # base = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F]
38 base = [str(x) for x in range(10)] + [chr(x) for x in range(ord('A'),ord('A')+6)]
39

45

https://desycloud.desy.de/index.php/s/VbhSuBmlIM18GHx

Gotthard-I Documentation, Release 0.3

40 # bin2dec
41 def bin2dec(string_num):
42 return str(int(string_num, 2))
43

44 # hex2dec
45 def hex2dec(string_num):
46 return str(int(string_num.upper(), 16))
47

48 # dec2bin
49 def dec2bin(string_num):
50 num = int(string_num)
51 mid = []
52 while True:
53 if num == 0: break
54 num,rem = divmod(num, 2)
55 mid.append(base[rem])
56

57 return ''.join([str(x) for x in mid[::-1]])
58

59 # dec2hex
60 def dec2hex(string_num):
61 num = int(string_num)
62 mid = []
63 while True:
64 if num == 0: break
65 num,rem = divmod(num, 16)
66 mid.append(base[rem])
67

68 return ''.join([str(x) for x in mid[::-1]])
69

70 # hex2tobin
71 def hex2bin(string_num):
72 return dec2bin(hex2dec(string_num.upper()))
73

74 # bin2hex
75 def bin2hex(string_num):
76 return dec2hex(bin2dec(string_num))
77 ##
78

79

80

81 ################### DEFINE FUNCTIONS FOR FITTING #######################
82 # Define fitting functions
83 # Gaussian
84 def func_gauss(x, A, xbar, sigma):
85 return A*exp(-(x-xbar)**2/(2*sigma**2))
86 # Linear
87 def func_lin(x, k, b):
88 return k*x+b
89

90 # Sqrt
91 def func_sqrt(x, k, b):
92 return k*sqrt(x)+b
93

94 # Sqrt all component
95 def func_sqrt_all(x, k, b):
96 return sqrt(k*x+b)
97

46 Chapter 7. Routines

Gotthard-I Documentation, Release 0.3

98 # Log10
99 def func_log10(x, k, b):

100 return k*log10(x+1)+b
101

102 # Linear + exponential
103 def func_lin_exp(x, k, b, A, tau):
104 return k*x+b-A*exp(-x/tau)
105

106 # Pure exponential
107 def func_exp_pure(x, A, tau):
108 return A*exp(-x/tau)
109

110 # Exponential with shift
111 def func_exp_shift(x, A, tau, xbar):
112 return A*exp((x-xbar)/tau)
113 ##
114

115

116 ############################## Histogram related #######################
117 # Plot the distribution of ADU in histogram
118 def plot_histogram(data_array, binsize=5, style="-", label=""):
119 """
120 # Use hist from matplotlib function
121 n, bins, patches = hist(data_array, bins=16385/binsize, range=(0,16385), histtype="step", align = "mid")
122 print(len(n), len(bins))
123 """
124 # Use histogram from numpy function
125 range_ADU = linspace(0, 16385, 16386)
126 bins = range_ADU[0::binsize]
127 occurance = histogram(data_array, bins)[0]
128 plot(bins[1:], occurance, style, label=label, drawstyle="steps-mid", linewidth=2.0)
129 legend(loc=1, frameon=False, fontsize=10)
130 grid(True)
131 xlim(0,16000)
132 xlabel("ADU")
133 ylabel("Occurance")
134 return bins[1:], occurance, std(data_array), mean(data_array)
135

136 # Generate the histogram for input data array
137 def histogram_array(data_array, binsize=5, nbits=14):
138 nint = 2**nbits/binsize
139 if mod(2**nbits,binsize) != 0:
140 nint = nint + 1
141 range_ADU = linspace(0, nint*binsize, nint*binsize+1)
142 bins = range_ADU[0::binsize]
143 occurance = histogram(data_array, bins)[0]
144 return bins[1:], occurance
145

146 # Generate the histogram for input data array
147 def histogram_array_ADC(data_array, nbits=12, binsize=5):
148 range_ADU = linspace(0, 2**nbits, 2**nbits+1)-binsize/2.0
149 bins = range_ADU[0::binsize]
150 occurance = histogram(data_array, bins)[0]
151 return bins[1:], occurance
152

153 # Generate the histogram for input data array
154 def histogram_array_range(data_array, bins):
155 occurance = histogram(data_array, bins)[0]

7.1. Python routines 47

Gotthard-I Documentation, Release 0.3

156 return bins[1:], occurance
157 ##
158

159

160

161 ######################## Fitting related func ############################
162 # Get mean and sigma from a gaussian fitting
163 def para_gauss_fit(xdata, ydata, p0, thr=0):
164 ydata_thr = ydata[where(ydata>=thr)[0]]
165 xdata_thr = xdata[where(ydata>=thr)[0]]
166 if len(ydata_thr) > 1:
167 try:
168 popt, pcov = curve_fit(func_gauss, xdata_thr, ydata_thr, p0=p0)
169 except RuntimeError:
170 popt = zeros(3, dtype="uint32")
171 popt[0] = max(ydata_thr)
172 popt[1] = xdata_thr[where(ydata_thr==max(ydata_thr))[0]]
173 popt[2] = 0
174 pcov = zeros((3,3))
175 return popt, pcov
176 else:
177 popt = ydata_thr[0], xdata_thr[0], 0
178 #popt = 0, 0, 0
179 pcov = zeros((3,3))
180 return popt, pcov
181

182 # Get mean and sigma from a gaussian fitting, the curve_fit function with errors input for data
183 def para_gauss_fit_error_in(xdata, ydata, p0, thr=0, sigma=None, absolute_sigma=False):
184 ydata_thr = ydata[where(ydata>=thr)[0]]
185 xdata_thr = xdata[where(ydata>=thr)[0]]
186 sigma_thr = sigma[where(ydata>=thr)[0]]
187 if len(ydata_thr) > 1:
188 try:
189 popt, pcov = curve_fit(func_gauss, xdata_thr, ydata_thr, p0=p0, sigma=sigma_thr, absolute_sigma=absolute_sigma)
190 except RuntimeError:
191 popt = zeros(3, dtype="uint32")
192 popt[0] = max(ydata_thr)
193 if len(where(ydata_thr==max(ydata_thr))[0])==1:
194 popt[1] = xdata_thr[where(ydata_thr==max(ydata_thr))[0]]
195 else:
196 popt[1] = xdata_thr[where(ydata_thr==max(ydata_thr))[0][0]]
197 popt[2] = 0
198 pcov = zeros((3,3))
199 return popt, pcov
200 else:
201 popt = ydata_thr[0], xdata_thr[0], 0
202 pcov = zeros((3,3))
203 return popt, pcov
204

205 # Get parameters from a linear fit, the curve_fit function with errors input for data
206 def para_lin_fit_error_in(xdata, ydata, p0, sigma=None, absolute_sigma=False):
207 if len(ydata) > 1:
208 try:
209 popt, pcov = curve_fit(func_lin, xdata, ydata, p0=p0, sigma=sigma, absolute_sigma=absolute_sigma)
210 except RuntimeError:
211 popt = zeros(2)
212 pcov = zeros((2,2))
213 return popt, pcov

48 Chapter 7. Routines

Gotthard-I Documentation, Release 0.3

214 else:
215 popt = zeros(2)
216 pcov = zeros((2,2))
217 return popt, pcov
218

219

220 # Peak indexes of distributions using peakutils packages
221 # Input: thres - in percentage of peak value
222 # min_dist - in difference of index numbers
223 def index_peaks(data_array, thres=0.01, min_dist=40):
224 return peakutils.indexes(data_array, thres=thres, min_dist=min_dist)
225

226

227 # Moving average
228 def moving_average(a, n=2) :
229 ret = cumsum(a, dtype=float)
230 ret[n:] = ret[n:] - ret[:-n]
231 return ret[n - 1:] / n
232

233

234 # Moving sum
235 def moving_sum(a, n=2) :
236 ret = cumsum(a, dtype=float)
237 ret[n:] = ret[n:] - ret[:-n]
238 return ret[n - 1:]
239 ##
240

241

242 ######################## High level functions ##########################
243 # Get histogram from X-ray measurement
244 def getHist(Folder, Run_index, i_strip=500, binsize=5, common_correction="No", nbits=14):
245

246 # Get all files with this index
247 files = []
248 files += [each for each in os.listdir(Folder) if each.endswith("_"+str(Run_index)+'.raw')]
249 # Sort files by generation time
250 #files.sort(key=lambda x: os.path.getmtime(x)) # Opt-1
251 files.sort() # Opt-2
252 #print(files)
253

254 N_channels = 1280 # Number of channels
255 Header = 6 # x 16 bits (2 bytes)
256 Header_odd = 4
257 Header_even = 2
258

259 Frame_length = Header + N_channels
260 Frame_halflength = int(Frame_length/2)
261

262 # loop all files
263 for i in range(len(files)):
264 #print("It is processing", i+1, "th file...")
265 Filepath = Folder + files[i]
266

267 Data = fromfile(Filepath, dtype=uint16, count=-1)
268

269 nPackets = len(Data)/Frame_halflength
270 #print("The number of packets received:", nPackets)
271 #print(Data[:Frame_halflength])

7.1. Python routines 49

Gotthard-I Documentation, Release 0.3

272 #print(Data[Frame_halflength:2*Frame_halflength])
273

274 # Index of packets
275 Index_packets = Data[0::Frame_halflength]
276 #print(Index_packets)
277

278 # Index for odd and even number of indexes
279 Index_packets_odd = where(mod(Index_packets,2)==1)[0]
280 Index_packets_even = where(mod(Index_packets,2)==0)[0]
281 #print(Index_packets_odd, Index_packets_even)
282

283 # Give a specific strip
284 if i_strip <= N_channels/2 - 2 + 1: # data in odd number of index
285 Data_i_strip_file = Data[Index_packets_odd*Frame_halflength+i_strip+Header_odd-1]
286 else: # data in even number of index
287 Data_i_strip_file = Data[Index_packets_even*Frame_halflength+i_strip-int(N_channels/2-2)+Header_even-1-1]
288

289 # Get rid of the gain bit of data
290 # 2016-10-18 Comment out to take the gain bit info together with the real data
291 #Data_i_strip_file[where(Data_i_strip_file<2**14)[0]] = Data_i_strip_file[where(Data_i_strip_file<2**14)[0]]
292 #Data_i_strip_file[concatenate((where(Data_i_strip_file>=2**14)[0], where(Data_i_strip_file<2**15+2**14)[0]))] = Data_i_strip_file[concatenate((where(Data_i_strip_file>=2**14)[0], where(Data_i_strip_file<2**15+2**14)[0]))] - 2**14
293 #Data_i_strip_file[where(Data_i_strip_file>=2**15+2**14)[0]] = Data_i_strip_file[where(Data_i_strip_file>=2**15+2**14)[0]] - (2**15+2**14)
294

295 # Accumulate the data for each file
296 #Data_i_strip.append(Data_i_strip_file)
297 #print(i, len(files))
298

299 # Check whether the common mode correction is on or not
300 if common_correction == "No":
301 Data_i_strip_file = Data_i_strip_file
302 elif common_correction == "Yes":
303 if len(Index_packets_odd) != len(Index_packets_even):
304 print("Packets lost! Watch out the correctness of the common mode correction!")
305

306 CM_corr = []
307 for iPacket in range(len(Index_packets_odd)):
308 data_1Packet = Data[Index_packets_odd[iPacket]*Frame_halflength+Header_odd:Index_packets_odd[iPacket]*Frame_halflength+Header_odd+int(N_channels/2-1)]
309 data_2Packet = Data[Index_packets_even[iPacket]*Frame_halflength+Header_even:Index_packets_even[iPacket]*Frame_halflength+Header_even+int(N_channels/2+1)]
310 data_frame = concatenate((data_1Packet, data_2Packet))
311

312 # Opt-1: Use a mean value of each frame to make common correction
313 CM_corr = append(CM_corr, mean(data_frame))
314 """
315 # Opt-2: Use a gaussian fitting to get the mean of gaussian
316 bins_frame, occurance_frame = histogram_array(data_frame, binsize=binsize)
317 sigma_frame, pedestal_frame, sigma_error_frame, pedestal_error_frame = getNoise_ADU(bins_frame, occurance_frame)
318 CM_corr = append(CM_corr, pedestal_frame)
319 """
320

321 # Take the first frame as reference
322 if len(CM_corr) != 0:
323 CM_corr = CM_corr - CM_corr[0]
324 Data_i_strip_file = Data_i_strip_file - CM_corr
325 else:
326 print("The input for common_correction should be either Yes or No.")
327

328 # Accumulate the accurrance
329 bins, occurance_file = histogram_array(Data_i_strip_file, binsize=binsize, nbits=nbits)

50 Chapter 7. Routines

Gotthard-I Documentation, Release 0.3

330 if i == 0:
331 occurance = occurance_file
332 else:
333 occurance = occurance + occurance_file
334

335 return bins, occurance
336

337

338 # Plot the histogram from Xray
339 def plotHist(Folder, Run_index, i_strip=500, binsize=5, common_correction="No", nbits=14):
340

341 bins, occurance = getHist(Folder, Run_index, i_strip=i_strip, binsize=binsize, common_correction=common_correction, nbits=nbits)
342

343 # plot it
344 figure("histogram")
345 plot(bins, occurance, drawstyle="steps-pre", linewidth=1.0)
346 grid(True)
347 #xlim(0,16000)
348 xlim(bins[where(occurance>1)[0]].min(), bins[where(occurance>1)[0]].max())
349 ylim(1,)
350 yscale("log")
351 xlabel("ADU")
352 ylabel("Occurance")
353 show()
354

355 return bins, occurance
356

357

358 # Calculate gain from X-ray fluorescence measurement using peakutils and curve_fit of scipy
359 def getGain_Xray(bins, occurance, E_xray=8.05, half_region=10, thres=0.2, min_dist=40):
360

361 # Do peak finding and linear fitting here
362 # Peak finding
363 peak_index_guess = index_peaks(where(occurance>1, occurance, 1), thres=thres, min_dist=min_dist)
364 #print("The index of peak position:", peak_index_guess)
365 n_peaks = len(peak_index_guess)
366

367 if n_peaks!= 0:
368 E_peaks = linspace(0, n_peaks-1, n_peaks)*E_xray
369 E_plot = linspace(-1, n_peaks, 100)*E_xray # Generate a series energy points for plotting
370 peak_pos_i_strip = zeros(n_peaks)
371 peak_pos_error_i_strip = zeros(n_peaks)
372 # Peak fitting
373 for i in range(n_peaks):
374 popt, pcov = para_gauss_fit_error_in(bins[peak_index_guess[i]-half_region:peak_index_guess[i]+half_region], occurance[peak_index_guess[i]-half_region:peak_index_guess[i]+half_region], p0=[occurance[peak_index_guess[i]], bins[peak_index_guess[i]], 20.0], thr=thres, sigma=sqrt(occurance[peak_index_guess[i]-half_region:peak_index_guess[i]+half_region]), absolute_sigma=True)
375 #popt, pcov = para_gauss_fit_error_in(bins[peak_index_guess[i]-half_region:peak_index_guess[i]+half_region], occurance_i_strip[peak_index_guess[i]-half_region:peak_index_guess[i]+half_region], p0=[occurance_i_strip[peak_index_guess[i]], bins[peak_index_guess[i]], 20.0], thr=0)
376 peak_pos_i_strip[i] = popt[1]
377 peak_pos_error_i_strip[i] = sqrt(pcov[1][1])
378

379

380 # Calculate gain for the input strip from one ADC
381 popt, pcov = para_lin_fit_error_in(E_peaks, peak_pos_i_strip, p0=[35.0, peak_pos_i_strip[0]], sigma=peak_pos_error_i_strip, absolute_sigma=True)
382 gain_i_strip = popt[0]
383 offset_i_strip = popt[1]
384 gain_error_i_strip = sqrt(pcov[0][0])
385

386 return gain_i_strip, offset_i_strip, gain_error_i_strip, peak_pos_i_strip, E_peaks
387

7.1. Python routines 51

Gotthard-I Documentation, Release 0.3

388 else: # For the channel dead
389 print("No proper value find by peakutils! A dead channel?")
390 gain_i_strip = 0
391 offset_i_strip = 0
392 gain_error_i_strip = 0
393 peak_pos_i_strip = 0
394 E_peaks = 0
395

396 return gain_i_strip, offset_i_strip, gain_error_i_strip, peak_pos_i_strip, E_peaks
397

398

399 # Calculate gain from X-ray fluorescence measurement using lmfit package
400 # Exray: X-ray energy
401 # gain_guess: guess value of gain in unit of ADU/keV
402 # sigma_guess: guess value of sigma in Gaussian fit
403 # prob_1ph: probably of seeing a single photon in a frame for peak value guess
404 def getGain_Xray_lmfit(bins, occurance, Exray=8.05, gain_guess=10.0, sigma_guess=15, prob_1ph=0.4):
405

406 ADU_guess = gain_guess*Exray
407

408 # Get the noise peak location
409 if len(where(occurance==max(occurance))[0]) > 1:
410 noise_peak_loc = bins[where(occurance==max(occurance))[0][0]]
411 else:
412 noise_peak_loc = bins[where(occurance==max(occurance))[0]]
413 # Get the occurance of noise peak
414 noise_peak_val = max(occurance)
415

416 #print(noise_peak_loc, noise_peak_val)
417

418 gauss1 = GaussianModel(prefix='g1_')
419 pars = gauss1.make_params()
420 #pars.update(gauss1.make_params())
421

422 pars['g1_center'].set(noise_peak_loc, min=noise_peak_loc-3*sigma_guess, max=noise_peak_loc+3*sigma_guess)
423 pars['g1_sigma'].set(sigma_guess)
424 pars['g1_amplitude'].set(noise_peak_val)
425

426 gauss2 = GaussianModel(prefix='g2_')
427

428 pars.update(gauss2.make_params())
429

430 pars['g2_center'].set(noise_peak_loc+ADU_guess, min=noise_peak_loc+3*sigma_guess)
431 pars['g2_sigma'].set(sigma_guess)
432 pars['g2_amplitude'].set(noise_peak_val*prob_1ph)
433

434 mod = gauss1 + gauss2
435

436 # Get the fit
437 out = mod.fit(occurance, pars, x=bins)
438

439 # Calculate gain
440 gain = abs(out.best_values["g1_center"] - out.best_values["g2_center"])/Exray
441 offset = min(out.best_values["g1_center"], out.best_values["g2_center"])
442 gain_error = 0.0
443 peak_pos = array([min(out.best_values["g1_center"], out.best_values["g2_center"]), max(out.best_values["g1_center"], out.best_values["g2_center"])])
444 E_peaks = array([0.0, Exray])
445

52 Chapter 7. Routines

Gotthard-I Documentation, Release 0.3

446 return gain, offset, gain_error, peak_pos, E_peaks
447

448

449

450 # Calculate conversion gains for all strips
451 def calGain_Xray(Folder, Run_index, binsize=5, E_xray=8.05, half_region=10, thres=0.2, min_dist=40, channels=linspace(1,1280,1280), common_correction="No"):
452

453 #N_channels = 1280 # Number of channels
454 N_channels = len(channels)
455 Header = 6 # x 16 bits (2 bytes)
456 Header_odd = 4
457 Header_even = 2
458

459 gain = zeros(N_channels)
460 gain_error = zeros(N_channels)
461 offset = zeros(N_channels, dtype="uint16")
462 # Loop all strips by calling getHist() and getGain_Xray() functions
463 i = 0
464 for i_strip in channels.astype("uint16"):
465 bins, occurance = getHist(Folder, Run_index, i_strip=i_strip, binsize=binsize, common_correction=common_correction)
466 gain[i], offset[i], gain_error[i], dummy1, dummy2 = getGain_Xray(bins, occurance, E_xray=E_xray, half_region=half_region, thres=thres, min_dist=min_dist)
467 if mod(i,N_channels/10) == 0:
468 print("Channel:", i_strip,", gain:", int(gain[i]*10)/10.0, "ADU/keV...")
469 i = i + 1
470 return gain, offset, gain_error
471

472

473 # Calculate conversion gains for all strips based on lmfit method
474 def calGain_Xray_lmfit(Folder, Run_index, binsize=5, Exray=8.05, gain_guess=10.0, sigma_guess=15, prob_1ph=0.4, channels=linspace(1,1280,1280), common_correction="No"):
475

476 #N_channels = 1280 # Number of channels
477 N_channels = len(channels)
478 #print(N_channels)
479 Header = 6 # x 16 bits (2 bytes)
480 Header_odd = 4
481 Header_even = 2
482

483 gain = zeros(N_channels)
484 gain_error = zeros(N_channels)
485 offset = zeros(N_channels, dtype="uint16")
486 # Loop all strips by calling getHist() and getGain_Xray() functions
487 i = 0
488 for i_strip in channels.astype("uint16"):
489 #print(i)
490 bins, occurance = getHist(Folder, Run_index, i_strip=i_strip, binsize=binsize, common_correction=common_correction)
491 gain[i], offset[i], gain_error[i], dummy1, dummy2 = getGain_Xray_lmfit(bins, occurance, Exray=Exray, gain_guess=gain_guess, sigma_guess=sigma_guess, prob_1ph=prob_1ph)
492 if mod(i,N_channels/10) == 0:
493 print("Channel:", i_strip,", gain:", int(gain[i]*10)/10.0, "ADU/keV...")
494 i = i + 1
495 return gain, offset, gain_error
496

497

498 # Calculate noise in terms of ADU from dark measurement
499 # Run getHist() first to get bins and occurance for the specific channel and run getNoise_ADU()
500 def getNoise_ADU(bins, occurance):
501 # Fit the histogram
502 # The initial guess
503 occ_max = max(occurance)

7.1. Python routines 53

Gotthard-I Documentation, Release 0.3

504 pos_max = bins[where(occurance==max(occurance))[0]]
505 if len(pos_max) > 1:
506 popt, pcov = para_gauss_fit(bins, occurance, p0=[occ_max, pos_max[0], 10.0], thr=0.1)
507 else:
508 popt, pcov = para_gauss_fit(bins, occurance, p0=[occ_max, pos_max, 10.0], thr=0.1)
509 pedestal = popt[1]
510 sigma = popt[2]
511 pedestal_error = sqrt(pcov[1][1])
512 sigma_error = sqrt(pcov[2][2])
513

514 return sigma, pedestal, sigma_error, pedestal_error
515

516 # Calculate noise in terms of ADU for all strips
517 def calNoise_ADU(Folder, Run_index, binsize=5, common_correction="No", nbits=14):
518

519 N_channels = 1280 # Number of channels
520 Header = 6 # x 16 bits (2 bytes)
521 Header_odd = 4
522 Header_even = 2
523

524 sigma = zeros(N_channels)
525 sigma_error = zeros(N_channels)
526 pedestal = zeros(N_channels, dtype="uint16")
527 pedestal_error = zeros(N_channels, dtype="uint16")
528

529 # Loop all strips by calling getNoise_ADU() and getHist() functions
530 for i in range(N_channels):
531 bins, occurance = getHist(Folder, Run_index, i_strip=i+1, binsize=binsize, common_correction=common_correction, nbits=nbits)
532 try:
533 sigma[i], pedestal[i], sigma_error[i], pedestal_error[i] = getNoise_ADU(bins, occurance)
534 except ValueError:
535 sigma[i], pedestal[i], sigma_error[i], pedestal_error[i] = [0, 0, 0, 0]
536 if mod(i+1, 1) == 0:
537 print("Channel:", i+1, ", noise in ADU:", int(sigma[i]*10)/10.0, "ADU...")
538

539 return sigma, pedestal, sigma_error, pedestal_error
540

541 # Convert noise in ADU to noise in electrons
542 # Keep the noise_ADU and gain the same dimension
543 def convertNoise(noise_ADU, gain):
544 noise_e = noise_ADU/gain*1000/3.6
545 return noise_e
546

547 # Generate a mask for data correction
548 # Noise or gain data can be input, the lower and upper boundary defined for good data, others masked out
549 def genMask(data, boundary_low=-1, boundary_high=inf):
550 # define an intial mask: 1 representing good strip, 0 for bad
551 mask = ones(len(data))
552 mask[concatenate((where(data<boundary_low)[0],where(data>boundary_high)[0]))] = 0
553

554 return mask
555

556

557 # Convert the measurement data into photon energy on a basis of per frame and save a copy into a hdf file
558 def convertEnergy(Folder, Run_index, pedestal, gain, mask=ones(1280)):
559

560 # Get all files with this index
561 files = []

54 Chapter 7. Routines

Gotthard-I Documentation, Release 0.3

562 files += [each for each in os.listdir(Folder) if each.endswith("_"+str(Run_index)+'.raw')]
563 # Sort files by generation time
564 files.sort(key=lambda x: os.path.getmtime(os.path.join(Folder, x)))
565

566 N_channels = 1280 # Number of channels
567 Header = 6 # x 16 bits (2 bytes)
568 Header_odd = 4
569 Header_even = 2
570

571 Frame_length = Header + N_channels
572 Frame_halflength = int(Frame_length/2)
573

574

575 import h5py
576 # The output file creation
577 #f5 = h5py.File(Folder + "/convertEnergy.hdf", "w")
578 f5 = h5py.File(Folder + "/"+ "convertEnergy_%03i.nxs", "w", driver="family",memb_size=20*1024**3)
579 grp_frames = f5.create_group("Frames")
580 dset = grp_frames.create_dataset('data', (1,N_channels), maxshape=(None,N_channels), dtype=float, compression='gzip',compression_opts=2, chunks=(1,N_channels))
581 dsequence = grp_frames.create_dataset("sequence_number", (1,1,), maxshape=(None,1,), dtype=np.uint32)
582

583 mycnt=0
584 # loop all files
585 for i in range(len(files)):
586

587 Filepath = Folder + files[i]
588

589 Data = fromfile(Filepath, dtype=uint16, count=-1)
590

591 nPackets = len(Data)/Frame_halflength
592 nFrames = nPackets/2
593 #print("The number of packets received:", nPackets)
594 #print(Data[:Frame_halflength])
595 #print(Data[Frame_halflength:2*Frame_halflength])
596

597 # Index of packets
598 Index_packets = Data[0::Frame_halflength]
599 #print(Index_packets)
600

601 # Index for odd and even number of indexes
602 Index_packets_odd = where(mod(Index_packets,2)==1)[0]
603 Index_packets_even = where(mod(Index_packets,2)==0)[0]
604 #print(Index_packets_odd, Index_packets_even)
605

606 # Pre-define data arrays
607 data_frame_1st_half = zeros(Frame_halflength-Header_odd)
608 data_frame_2nd_half = zeros(Frame_halflength-Header_even)
609

610

611 # Loop the packets
612 for j in range(len(Index_packets)):
613

614 if mod(Index_packets[j],2) == 1:
615 if Index_packets[j+1]-Index_packets[j] == 1:
616 data_frame_1st_half = Data[j*Frame_halflength+Header_odd:(j+1)*Frame_halflength]
617 data_frame_2nd_half = Data[(j+1)*Frame_halflength+Header_even:(j+2)*Frame_halflength]
618

619 data_merge = concatenate((data_frame_1st_half, data_frame_2nd_half))

7.1. Python routines 55

Gotthard-I Documentation, Release 0.3

620

621 # Get rid of the gain bit of data
622 data_merge[where(data_merge<2**14)[0]] = data_merge[where(data_merge<2**14)[0]]
623 data_merge[concatenate((where(data_merge>=2**14)[0], where(data_merge<2**15+2**14)[0]))] = data_merge[concatenate((where(data_merge>=2**14)[0], where(data_merge<2**15+2**14)[0]))] - 2**14
624 data_merge[where(data_merge>=2**15+2**14)[0]] = data_merge[where(data_merge>=2**15+2**14)[0]] - (2**15+2**14)
625

626 data_corrected = (data_merge - pedestal)/gain
627

628 # mask out the bad data
629 data_corrected[where(mask==0)[0]] = 0
630

631 # Create dateset and merge the two packets
632 #data_corrected_frame = grp_frames.create_dataset(str(int(floor(j/2)+1)), (N_channels,), dtype = "float")
633 #data_corrected_frame[:] = data_corrected
634 #del data_corrected_frame
635

636 # New method to write in data
637 mycnt+=1
638 if mycnt > 1:
639 dset.resize((mycnt,N_channels))
640 dsequence.resize((mycnt,1))
641 dset[mycnt-1,:] = data_corrected
642 dsequence[mycnt-1,:] = mycnt
643

644 # Close the hdf5 file
645 f5.close()
646 del f5
647 del dset
648 del dsequence
649

650

651 # Merge several files into one
652 # Merge binary files: all files must include same number of frames with same size
653 def file_merger_const(Path_open, File_base_in, index_i, N_files, Path_save):
654 # Open the first file and detect its length
655 #File_open = Path_open+"/"+File_base_in+str(index_i)+".bin"
656 File_open = Path_open+"/"+File_base_in+str(index_i)+".raw"
657 data_length = len(fromfile(File_open, dtype=uint16, count=-1))
658 data_out = zeros(data_length*N_files, dtype="uint16")
659 for j in range(N_files):
660 #File_open = Path_open+"/"+File_base_in+str(index_i+j)+".bin"
661 File_open = Path_open+"/"+File_base_in+str(index_i+j)+".raw"
662 data_file = fromfile(File_open, dtype=uint16, count=-1)
663 data_out[j*data_length:(j+1)*data_length] = data_file
664 del data_file
665 print str(j+1), "th file out of", str(N_files), " files;"
666 #File_save = Path_save+"/"+File_base_in+"merge.bin"
667 File_save = Path_save+"/"+File_base_in+"merge.raw"
668 fd = open(File_save, "w")
669 data_out.astype(uint16).tofile(fd)
670 fd.close()
671 ##

56 Chapter 7. Routines

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

57

	Introduction to Gotthard-I
	Introduction

	Softwares
	The software package
	Install softwares
	Upgrade softwares

	Detector set-up and configuration
	Connect the detector
	Configure the system
	Exit after measurements
	CLI mode
	Setup file
	Configure two detectors

	Use GUI to perform measurement
	Usage of GUI
	Examples to set-up measurements
	Examples to set-up timings

	Characterization and calibration
	Gains & offsets in ``fixed'' gain mode
	Gains & offsets in dynamic gain mode
	Noise
	Energy conversion

	Data processing
	Data structure
	Conversion gain
	Pedestal and noise
	Mask generation
	Energy conversion
	Callables
	Last words

	Routines
	Python routines

	Indices and tables

