// SPDX-License-Identifier: LGPL-3.0-or-other // Copyright (C) 2021 Contributors to the SLS Detector Package #ifndef JUNGFRAULGADSTRIXELSDATA_H #define JUNGFRAULGADSTRIXELSDATA_H #ifdef CINT #include "sls/sls_detector_defs_CINT.h" #else #include "sls/sls_detector_defs.h" #endif #include "slsDetectorData.h" // #define VERSION_V2 /** @short structure for a Detector Packet or Image Header @li frameNumber is the frame number @li expLength is the subframe number (32 bit eiger) or real time exposure time in 100ns (others) @li packetNumber is the packet number @li bunchId is the bunch id from beamline @li timestamp is the time stamp with 10 MHz clock @li modId is the unique module id (unique even for left, right, top, bottom) @li xCoord is the x coordinate in the complete detector system @li yCoord is the y coordinate in the complete detector system @li zCoord is the z coordinate in the complete detector system @li debug is for debugging purposes @li roundRNumber is the round robin set number @li detType is the detector type see :: detectorType @li version is the version number of this structure format */ namespace strixelSingleChip { constexpr int nc_rawimg = 1024; // for full images //256; constexpr int nr_rawimg = 512; constexpr int nr_chip = 256; constexpr int gr = 9; // Group 1: 25um pitch, groups of 3, 1 column of square pixels constexpr int g1_ncols{(nc_rawimg - (2 * gr) - 1) / 3}; // 79 constexpr int g1_nrows{((nr_chip / 4) - gr) * 3}; // 165 // Group 2: 15um pitch, groups of 5, 3 columns of square pixels constexpr int g2_ncols{(nc_rawimg - (2 * gr) - 3) / 5}; // 47 constexpr int g2_nrows{(nr_chip / 4) * 5}; // 320 // Group 3: 18.75um pitch, groups of 4, 2 columns of square pixels (double the // size of the other groups) constexpr int g3_ncols{(nc_rawimg - (2 * gr) - 2) / 4}; // 59 constexpr int g3_nrows{(((nr_chip / 4) * 2) - gr) * 4}; // 476 constexpr int nc_strixel = 2 * gr + 1 + g1_ncols; // group 1 is the "longest" group in x and has one // extra square pixel constexpr int nr_strixel = 2 * gr + g1_nrows + g2_nrows + g3_nrows; // chip and group boundaries in ASIC coordinates (pixels at both bounds are // included in the group) y does NOT take into account the shifts for M408! constexpr int c1g1_xstart = 256 + gr + 1; // 266 constexpr int c1g2_xstart = 256 + gr + 3; // 268 constexpr int c1g3_xstart = 256 + gr + 2; // 267 constexpr int c1_xend = 255 + 256 - gr; // 502 constexpr int c1g1_ystart = gr; // 9 constexpr int c1g1_yend = 63; // 63 constexpr int c1g2_ystart = c1g1_yend + 1; // 64 constexpr int c1g2_yend = c1g1_yend + 64; // 127 constexpr int c1g3_ystart = c1g2_yend + 1; // 128 constexpr int c1g3_yend = c1g2_yend + 2 * 64 - gr; // 246 constexpr int c6_xstart = 256 + 256 + gr; // 521 constexpr int c6g1_xend = 255 + 2 * 256 - gr - 1; // 757 constexpr int c6g2_xend = 256 + 2 * 256 - gr - 3; // 755 constexpr int c6g3_xend = 256 + 2 * 256 - gr - 2; // 756 constexpr int c6g3_ystart = 256 + gr; // 265 constexpr int c6g3_yend = 255 + 2 * 64; // 383 constexpr int c6g2_ystart = c6g3_yend + 1; // 384 constexpr int c6g2_yend = c6g3_yend + 64; // 447 constexpr int c6g1_ystart = c6g2_yend + 1; // 448 constexpr int c6g1_yend = c6g2_yend + 64 - gr; // 502 // y shift due to faulty bonding (relevant for M408) constexpr int bond_shift_y = 1; // CHANGE IF YOU CHANGE MODULE! } // namespace strixelSingleChip typedef struct { uint64_t bunchNumber; /**< is the frame number */ uint64_t pre; /**< something */ } jf_header; // Aldo's header using namespace strixelSingleChip; class jungfrauLGADStrixelsData : public slsDetectorData { private: int iframe; int mchip; int chip_x0; int chip_y0; int x0, y0, x1, y1, shifty; int getMultiplicator(const int group) { int multiplicator; switch (group) { default: case 1: multiplicator = 3; break; case 2: multiplicator = 5; break; case 3: multiplicator = 4; break; } return multiplicator; } void setMappingShifts(const int group) { if (mchip == 1) { chip_x0 = 256; chip_y0 = bond_shift_y; // because of bump bonding issues(+1 row) on M408 switch (group) { default: case 1: x0 = 10 + chip_x0; // 9 gr + 1 sq pixel x1 = 246 + chip_x0; y0 = 9 + chip_y0; y1 = 63 + chip_y0; shifty = 0; break; case 2: x0 = 12 + chip_x0; x1 = 247 + chip_x0; y0 = 64 + chip_y0; y1 = 127 + chip_y0; shifty = g1_nrows; break; case 3: x0 = 11 + chip_x0; x1 = 247 + chip_x0; y0 = 128 + chip_y0; y1 = 246 + chip_y0; shifty = g2_nrows + g1_nrows; break; } } if (mchip == 6) { chip_x0 = 512; chip_y0 = 256 - bond_shift_y; // should be 256 but is 255 because of bump // bonding issues (+1 row) on M408 switch (group) { default: case 1: x0 = 9 + chip_x0; // 9 gr sq pixel x1 = 245 + chip_x0; // was 246 y0 = 192 + chip_y0; y1 = 246 + chip_y0; shifty = g1_nrows + 2 * g2_nrows + 2 * g3_nrows; break; case 2: x0 = 9 + chip_x0; x1 = 243 + chip_x0; //was 244 y0 = 128 + chip_y0; y1 = 191 + chip_y0; shifty = g1_nrows + g2_nrows + 2 * g3_nrows; ; break; case 3: x0 = 9 + chip_x0; x1 = 244 + chip_x0; y0 = 9 + chip_y0; y1 = 127 + chip_y0; shifty = g1_nrows + g2_nrows + g3_nrows; break; } } } void remapGroup(const int group) { int multiplicator = getMultiplicator(group); //int shiftx; int ix, iy = 0; setMappingShifts(group); // remapping loop for (int ipy = y0; ipy <= y1; ipy++) { for (int ipx = x0; ipx <= x1; ipx++) { ix = int((ipx - x0) / multiplicator); for (int m = 0; m < multiplicator; m++) { if ((ipx - x0) % multiplicator == m) iy = (ipy - y0) * multiplicator + m + shifty; } // if (iy< 40) cout << iy << " " << ix < ymax) std::cout << "Error ymax - normal for G3 since ROI only 64 row" << std::endl; if (x0 < xmin) std::cout << "Error xmin" << std::endl; if (x1 > xmax) std::cout << "Error xmax" << std::endl; // remapping loop int ix, iy = 0; for (int ipy = y0; ipy <= y1; ++ipy) { for (int ipx = x0; ipx <= x1; ++ipx) { ix = int((ipx - x0 /*-xmin*/) / multiplicator); for (int m = 0; m < multiplicator; m++) { if ((ipx - x0 /*-xmin*/) % multiplicator == m) iy = (ipy - y0 /*-ymin*/) * multiplicator + m + shifty; } // if (iy< 40) cout << iy << " " << ix <( /*nc_strixel*/ g1_ncols, /*nr_strixel*/ 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows, g1_ncols * (2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows) * 2 + sizeof(header)) { std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl; // Fill all strixels with dummy values for (int ix = 0; ix != g1_ncols; ++ix) { for (int iy = 0; iy != 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows; ++iy) { dataMap[iy][ix] = sizeof(header); } } std::cout << "sizeofheader = " << sizeof(header) << std::endl; std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl; if (xmin < xmax && ymin < ymax) { dataSize = (xmax - xmin + 1) * (ymax - ymin + 1) * 2 + sizeof(header); std::cout << "datasize " << dataSize << std::endl; remapROI(xmin, xmax, ymin, ymax); } else { mchip = 1; for (int group=1; group!=4; ++group) remapGroup(group); mchip = 6; for (int group=1; group!=4; ++group) remapGroup(group); } iframe = 0; std::cout << "data struct created" << std::endl; }; /** Returns the value of the selected channel for the given dataset as double. \param data pointer to the dataset (including headers etc) \param ix pixel number in the x direction \param iy pixel number in the y direction \returns data for the selected channel, with inversion if required as double */ virtual double getValue(char *data, int ix, int iy = 0) { uint16_t val = getChannel(data, ix, iy) & 0x3fff; return val; }; /** Returns the frame number for the given dataset. Purely virtual func. \param buff pointer to the dataset \returns frame number */ int getFrameNumber(char *buff) { #ifdef ALDO // VH return ((jf_header *)buff)->bunchNumber; // VH #endif // VH return ((header *)buff)->detHeader.frameNumber; }; /** Returns the packet number for the given dataset. purely virtual func \param buff pointer to the dataset \returns packet number number */ int getPacketNumber(char *buff) { #ifdef ALDO // VH // uint32_t fakePacketNumber = 1000; // return fakePacketNumber; //VH //TODO: Keep in mind in case of bugs! // //This is definitely bad! return 1000; #endif // VH return ((header *)buff)->detHeader.packetNumber; }; char *readNextFrame(std::ifstream &filebin) { int ff = -1, np = -1; return readNextFrame(filebin, ff, np); }; char *readNextFrame(std::ifstream &filebin, int &ff) { int np = -1; return readNextFrame(filebin, ff, np); }; char *readNextFrame(std::ifstream &filebin, int &ff, int &np) { char *data = new char[dataSize]; char *d = readNextFrame(filebin, ff, np, data); if (d == NULL) { delete[] data; data = NULL; } return data; }; char *readNextFrame(std::ifstream &filebin, int &ff, int &np, char *data) { //char *retval = 0; //int nd; //int fnum = -1; np = 0; //int pn; //std::cout << dataSize << std::endl; //if (ff >= 0) { // fnum = ff; } if (filebin.is_open()) { if (filebin.read(data, dataSize)) { std::cout << "*"; ff = getFrameNumber(data); np = getPacketNumber(data); return data; } std::cout << "#"; } else { std::cout << "File not open" << std::endl; } return NULL; }; /* Loops over a memory slot until a complete frame is found (i.e. all */ /* packets 0 to nPackets, same frame number). purely virtual func \param */ /* data pointer to the memory to be analyzed \param ndata reference to * the */ /* amount of data found for the frame, in case the frame is incomplete at */ /* the end of the memory slot \param dsize size of the memory slot to be */ /* analyzed \returns pointer to the beginning of the last good frame * (might */ /* be incomplete if ndata smaller than dataSize), or NULL if no frame is */ /* found */ /* *\/ */ virtual char *findNextFrame(char *data, int &ndata, int dsize) { if (dsize < dataSize) ndata = dsize; else ndata = dataSize; return data; }; // int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;}; }; #endif