#include "slsDetector.h" #include "usersFunctions.h" #include "slsDetectorCommand.h" #include #include #include #include #include int slsDetector::initSharedMemory(detectorType type, int id) { /** the shared memory key is set to DEFAULT_SHM_KEY+id */ key_t mem_key=DEFAULT_SHM_KEY+id; int shm_id; int nch, nm, nc, nd; int sz; //shmId=-1; switch(type) { case MYTHEN: nch=128; // complete mythen system nm=24; nc=10; nd=6; // dacs+adcs break; case PICASSO: nch=128; // complete mythen system nm=24; nc=12; nd=6; // dacs+adcs break; case GOTTHARD: nch=128; nm=1; nc=10; nd=13; // dacs+adcs break; case EIGER: nch=65535; // one EIGER module nm=1; //modules/detector nc=8; //chips nd=16; //dacs+adcs default: nch=0; // one EIGER module nm=0; //modules/detector nc=0; //chips nd=0; //dacs+adcs } /** The size of the shared memory is: size of shared structure + ffcoefficents +fferrors + modules+ dacs+adcs+chips+chans */ sz=sizeof(sharedSlsDetector)+nm*(2*nch*nc*sizeof(float)+sizeof(sls_detector_module)+sizeof(int)*nc+sizeof(float)*nd+sizeof(int)*nch*nc); #ifdef VERBOSE std::cout<<"Size of shared memory is "<< sz << "(type " << type << " - id " << mem_key << ")"<< std::endl; #endif shm_id = shmget(mem_key,sz,IPC_CREAT | 0666); // allocate shared memory if (shm_id < 0) { std::cout<<"*** shmget error (server) ***"<< shm_id << std::endl; return shm_id; } /** thisDetector pointer is set to the memory address of the shared memory */ thisDetector = (sharedSlsDetector*) shmat(shm_id, NULL, 0); /* attach */ if (thisDetector == (void*)-1) { std::cout<<"*** shmat error (server) ***" << std::endl; return shm_id; } /** shm_id returns -1 is shared memory initialization fails */ //shmId=shm_id; return shm_id; } int slsDetector::freeSharedMemory() { // Detach Memory address if (shmdt(thisDetector) == -1) { perror("shmdt failed\n"); return FAIL; } printf("Shared memory %d detached\n", shmId); // remove shared memory if (shmctl(shmId, IPC_RMID, 0) == -1) { perror("shmctl(IPC_RMID) failed\n"); return FAIL; } printf("Shared memory %d deleted\n", shmId); return OK; } slsDetector::slsDetector(int id) :slsDetectorUtils(), thisDetector(NULL), detId(id), shmId(-1), controlSocket(NULL), stopSocket(NULL), dataSocket(NULL), ffcoefficients(NULL), fferrors(NULL), detectorModules(NULL), dacs(NULL), adcs(NULL), chipregs(NULL), chanregs(NULL) { detectorType type=(detectorType)getDetectorType(id); while (shmId<0) { /**Initlializes shared memory \sa initSharedMemory if it fails the detector id is incremented until it succeeds */ shmId=initSharedMemory(type,id); id++; } id--; #ifdef VERBOSE std::cout<< "Detector id is " << id << std::endl; #endif detId=id; /**Initializes the detector stucture \sa initializeDetectorSize */ initializeDetectorSize(type); }; slsDetector::slsDetector(detectorType type, int id): slsDetectorUtils(), thisDetector(NULL), detId(id), shmId(-1), controlSocket(NULL), stopSocket(NULL), dataSocket(NULL), ffcoefficients(NULL), fferrors(NULL), detectorModules(NULL), dacs(NULL), adcs(NULL), chipregs(NULL), chanregs(NULL) { while (shmId<0) { /**Initlializes shared memory \sa initSharedMemory if it fails the detector id is incremented until it succeeds */ shmId=initSharedMemory(type,id); id++; } id--; #ifdef VERBOSE std::cout<< "Detector id is " << id << " type is " << type << std::endl; #endif detId=id; /**Initializes the detector stucture \sa initializeDetectorSize */ initializeDetectorSize(type); } slsDetector::~slsDetector(){ // Detach Memory address if (shmdt(thisDetector) == -1) { perror("shmdt failed\n"); printf("Could not detach shared memory %d\n", shmId); } else printf("Shared memory %d detached\n", shmId); }; slsDetector::slsDetector(char *name, int id, int cport) : slsDetectorUtils(), thisDetector(NULL), detId(id), shmId(-1), controlSocket(NULL), stopSocket(NULL), dataSocket(NULL), ffcoefficients(NULL), fferrors(NULL), detectorModules(NULL), dacs(NULL), adcs(NULL), chipregs(NULL), chanregs(NULL) { detectorType type=(detectorType)getDetectorType(name, cport); while (shmId<0) { /**Initlializes shared memory \sa initSharedMemory if it fails the detector id is incremented until it succeeds */ shmId=initSharedMemory(type,id); id++; } id--; #ifdef VERBOSE std::cout<< "Detector id is " << id << std::endl; #endif detId=id; /**Initializes the detector stucture \sa initializeDetectorSize */ initializeDetectorSize(type); setTCPSocket(name, cport); updateDetector(); } slsDetectorDefs::detectorType slsDetector::getDetectorType(char *name, int cport) { int retval=FAIL; detectorType t=GENERIC; int fnum=F_GET_DETECTOR_TYPE; MySocketTCP *s= new MySocketTCP(name, cport); char m[100]; #ifdef VERBOSE cout << "Getting detector type " << endl; #endif if (s->Connect()>=0) { s->SendDataOnly(&fnum,sizeof(fnum)); s->ReceiveDataOnly(&retval,sizeof(retval)); if (retval!=FAIL) { s->ReceiveDataOnly(&t,sizeof(t)); #ifdef VERBOSE cout << "Detector type is "<< t << endl; #endif } else { s->ReceiveDataOnly(m,sizeof(m)); std::cout<< "Detector returned error: " << m << std::endl; } s->Disconnect(); } else { cout << "Cannot connect to server " << name << " over port " << cport << endl; } delete s; return t; } int slsDetector::exists(int id) { key_t mem_key=DEFAULT_SHM_KEY+id; int shm_id; int sz; sz=sizeof(sharedSlsDetector); #ifdef VERBOSE cout << "getDetectorType: generic shared memory of size " << sz << endl; #endif shm_id = shmget(mem_key,sz,IPC_CREAT | 0666); // allocate shared memory if (shm_id < 0) { std::cout<<"*** shmget error (server) ***"<< shm_id << std::endl; return -1; } /** thisDetector pointer is set to the memory address of the shared memory */ sharedSlsDetector* det = (sharedSlsDetector*) shmat(shm_id, NULL, 0); /* attach */ if (det == (void*)-1) { std::cout<<"*** shmat error (server) ***" << std::endl; return -1; } /** shm_id returns -1 is shared memory initialization fails */ //shmId=shm_id; if (det->alreadyExisting==0) { // Detach Memory address if (shmdt(det) == -1) { perror("shmdt failed\n"); return 0; } #ifdef VERBOSE printf("Shared memory %d detached\n", shm_id); #endif // remove shared memory if (shmctl(shm_id, IPC_RMID, 0) == -1) { perror("shmctl(IPC_RMID) failed\n"); return 0; } #ifdef VERBOSE printf("Shared memory %d deleted\n", shm_id); #endif return 0; } return 1; } slsDetectorDefs::detectorType slsDetector::getDetectorType(int id) { detectorType t=GENERIC; key_t mem_key=DEFAULT_SHM_KEY+id; int shm_id; int sz; sz=sizeof(sharedSlsDetector); #ifdef VERBOSE cout << "getDetectorType: generic shared memory of size " << sz << endl; #endif shm_id = shmget(mem_key,sz,IPC_CREAT | 0666); // allocate shared memory if (shm_id < 0) { std::cout<<"*** shmget error (server) ***"<< shm_id << std::endl; return t; } /** thisDetector pointer is set to the memory address of the shared memory */ sharedSlsDetector* det = (sharedSlsDetector*) shmat(shm_id, NULL, 0); /* attach */ if (det == (void*)-1) { std::cout<<"*** shmat error (server) ***" << std::endl; return t; } /** shm_id returns -1 is shared memory initialization fails */ //shmId=shm_id; t=det->myDetectorType; if (det->alreadyExisting==0) { // Detach Memory address if (shmdt(det) == -1) { perror("shmdt failed\n"); return t; } #ifdef VERBOSE printf("Shared memory %d detached\n", shm_id); #endif // remove shared memory if (shmctl(shm_id, IPC_RMID, 0) == -1) { perror("shmctl(IPC_RMID) failed\n"); return t; } #ifdef VERBOSE printf("Shared memory %d deleted\n", shm_id); #endif } #ifdef VERBOSE cout << "Detector type is " << t << endl; #endif return t; } int slsDetector::initializeDetectorSize(detectorType type) { char *goff; goff=(char*)thisDetector; /** if the shared memory has newly be created, initialize the detector variables */ if (thisDetector->alreadyExisting==0) { /** set hostname to default */ strcpy(thisDetector->hostname,DEFAULT_HOSTNAME); /** set client ip address */ strcpy(thisDetector->clientIP,"none"); /** set client mac address */ strcpy(thisDetector->clientMAC,"none"); /** set server mac address */ strcpy(thisDetector->serverMAC,"00:aa:bb:cc:dd:ee"); /** sets onlineFlag to OFFLINE_FLAG */ thisDetector->onlineFlag=OFFLINE_FLAG; /** set ports to defaults */ thisDetector->controlPort=DEFAULT_PORTNO; thisDetector->stopPort=DEFAULT_PORTNO+1; thisDetector->dataPort=DEFAULT_PORTNO+2; /** set thisDetector->myDetectorType to type and according to this set nChans, nChips, nDacs, nAdcs, nModMax, dynamicRange, nMod*/ thisDetector->myDetectorType=type; switch(thisDetector->myDetectorType) { case MYTHEN: thisDetector->nChans=128; thisDetector->nChips=10; thisDetector->nDacs=6; thisDetector->nAdcs=0; thisDetector->nModMax[X]=24; thisDetector->nModMax[Y]=1; thisDetector->dynamicRange=24; break; case PICASSO: thisDetector->nChans=128; thisDetector->nChips=12; thisDetector->nDacs=6; thisDetector->nAdcs=0; thisDetector->nModMax[X]=6; thisDetector->nModMax[Y]=1; thisDetector->dynamicRange=24; break; case GOTTHARD: thisDetector->nChans=128; thisDetector->nChips=10; thisDetector->nDacs=8; thisDetector->nAdcs=5; thisDetector->nModMax[X]=1; thisDetector->nModMax[Y]=1; thisDetector->dynamicRange=16; break; default: thisDetector->nChans=0; thisDetector->nChips=0; thisDetector->nDacs=0; thisDetector->nAdcs=0; thisDetector->nModMax[X]=0; thisDetector->nModMax[Y]=0; thisDetector->dynamicRange=32; } thisDetector->nModsMax=thisDetector->nModMax[0]*thisDetector->nModMax[1]; /** number of modules is initally the maximum number of modules */ thisDetector->nMod[X]=thisDetector->nModMax[X]; thisDetector->nMod[Y]=thisDetector->nModMax[Y]; thisDetector->nMods=thisDetector->nModsMax; /** calculates the expected data size */ thisDetector->timerValue[PROBES_NUMBER]=0; thisDetector->timerValue[FRAME_NUMBER]=1; thisDetector->timerValue[CYCLES_NUMBER]=1; if (thisDetector->dynamicRange==24 || thisDetector->timerValue[PROBES_NUMBER]>0) thisDetector->dataBytes=thisDetector->nMod[X]*thisDetector->nMod[Y]*thisDetector->nChips*thisDetector->nChans*4; else thisDetector->dataBytes=thisDetector->nMod[X]*thisDetector->nMod[Y]*thisDetector->nChips*thisDetector->nChans*thisDetector->dynamicRange/8; /** set trimDsdir, calDir and filePath to default to home directory*/ strcpy(thisDetector->settingsDir,getenv("HOME")); strcpy(thisDetector->calDir,getenv("HOME")); strcpy(thisDetector->filePath,getenv("HOME")); /** sets trimbit file */ strcpy(thisDetector->settingsFile,"none"); /** set fileName to default to run*/ strcpy(thisDetector->fileName,"run"); /** set fileIndex to default to 0*/ thisDetector->fileIndex=0; /** set progress Index to default to 0*/ thisDetector->progressIndex=0; /** set total number of frames to be acquired to default to 1*/ thisDetector->totalProgress=1; /** set number of trim energies to 0*/ thisDetector->nTrimEn=0; /** set correction mask to 0*/ thisDetector->correctionMask=0; /** set deat time*/ thisDetector->tDead=0; /** sets bad channel list file to none */ strcpy(thisDetector->badChanFile,"none"); /** sets flat field correction directory */ strcpy(thisDetector->flatFieldDir,getenv("HOME")); /** sets flat field correction file */ strcpy(thisDetector->flatFieldFile,"none"); /** set number of bad chans to 0*/ thisDetector->nBadChans=0; /** set number of bad flat field chans to 0*/ thisDetector->nBadFF=0; /** set angular direction to 1*/ thisDetector->angDirection=1; /** set fine offset to 0*/ thisDetector->fineOffset=0; /** set global offset to 0*/ thisDetector->globalOffset=0; /** set number of rois to 0*/ thisDetector->nROI=0; /** set readoutflags to none*/ thisDetector->roFlags=NORMAL_READOUT; /** set current settings to uninitialized*/ thisDetector->currentSettings=UNINITIALIZED; /** set threshold to -1*/ thisDetector->currentThresholdEV=-1; // /** set clockdivider to 1*/ // thisDetector->clkDiv=1; /** set number of positions to 0*/ thisDetector->numberOfPositions=0; /** sets angular conversion file to none */ strcpy(thisDetector->angConvFile,"none"); /** set binsize*/ thisDetector->binSize=0; thisDetector->stoppedFlag=0; thisDetector->threadedProcessing=1; thisDetector->actionMask=0; for (int ia=0; iaactionScript[ia],"none"); strcpy(thisDetector->actionParameter[ia],"none"); } for (int iscan=0; iscanscanMode[iscan]=0; strcpy(thisDetector->scanScript[iscan],"none"); strcpy(thisDetector->scanParameter[iscan],"none"); thisDetector->nScanSteps[iscan]=0; thisDetector->scanPrecision[iscan]=0; } /** calculates the memory offsets for flat field coefficients and errors, module structures, dacs, adcs, chips and channels */ thisDetector->ffoff=sizeof(sharedSlsDetector); thisDetector->fferroff=thisDetector->ffoff+sizeof(float)*thisDetector->nChans*thisDetector->nChips*thisDetector->nModsMax; thisDetector->modoff= thisDetector->fferroff+sizeof(float)*thisDetector->nChans*thisDetector->nChips*thisDetector->nModsMax; thisDetector->dacoff=thisDetector->modoff+sizeof(sls_detector_module)*thisDetector->nModsMax; thisDetector->adcoff=thisDetector->dacoff+sizeof(float)*thisDetector->nDacs*thisDetector->nModsMax; thisDetector->chipoff=thisDetector->adcoff+sizeof(float)*thisDetector->nAdcs*thisDetector->nModsMax; thisDetector->chanoff=thisDetector->chipoff+sizeof(int)*thisDetector->nChips*thisDetector->nModsMax; } /** also in case thisDetector alread existed initialize the pointer for flat field coefficients and errors, module structures, dacs, adcs, chips and channels */ ffcoefficients=(float*)(goff+thisDetector->ffoff); fferrors=(float*)(goff+thisDetector->fferroff); detectorModules=(sls_detector_module*)(goff+ thisDetector->modoff); #ifdef VERBOSE // for (int imod=0; imod< thisDetector->nModsMax; imod++) // std::cout<< hex << detectorModules+imod << dec <dacoff); adcs=(float*)(goff+thisDetector->adcoff); chipregs=(int*)(goff+thisDetector->chipoff); chanregs=(int*)(goff+thisDetector->chanoff); if (thisDetector->alreadyExisting==0) { /** if thisDetector is new, initialize its structures \sa initializeDetectorStructure(); */ initializeDetectorStructure(); /** set thisDetector->alreadyExisting=1 */ thisDetector->alreadyExisting=1; } #ifdef VERBOSE cout << "passing pointers" << endl; #endif getPointers(&thisDetector->stoppedFlag, \ &thisDetector->threadedProcessing, \ &thisDetector->actionMask, \ thisDetector->actionScript, \ thisDetector->actionParameter, \ thisDetector->nScanSteps, \ thisDetector->scanMode, \ thisDetector->scanScript, \ thisDetector->scanParameter, \ thisDetector->scanSteps, \ thisDetector->scanPrecision, \ &thisDetector->numberOfPositions, \ thisDetector->detPositions, \ thisDetector->angConvFile, \ &thisDetector->correctionMask, \ &thisDetector->binSize, \ &thisDetector->fineOffset, \ &thisDetector->globalOffset, \ &thisDetector->angDirection, \ thisDetector->flatFieldDir, \ thisDetector->flatFieldFile, \ thisDetector->badChanFile, \ thisDetector->timerValue, \ &thisDetector->currentSettings, \ &thisDetector->currentThresholdEV, \ thisDetector->filePath, \ thisDetector->fileName, \ &thisDetector->fileIndex); #ifdef VERBOSE cout << "done" << endl; #endif // #ifdef VERBOSE // cout << "filling bad channel mask" << endl; // #endif // /** fill the BadChannelMask \sa fillBadChannelMask */ // fillBadChannelMask(); // #ifdef VERBOSE // cout << "done" << endl; // #endif /** modifies the last PID accessing the detector */ thisDetector->lastPID=getpid(); #ifdef VERBOSE cout << "Det size initialized " << endl; #endif return OK; } int slsDetector::initializeDetectorStructure() { sls_detector_module *thisMod; char *p2; p2=(char*)thisDetector; /** for each of the detector modules up to the maximum number which can be installed initlialize the sls_detector_module structure \sa ::sls_detector_module*/ for (int imod=0; imodnModsMax; imod++) { thisMod=detectorModules+imod; thisMod->module=imod; /** sets the size of the module to nChans, nChips etc. */ thisMod->nchan=thisDetector->nChans*thisDetector->nChips; thisMod->nchip=thisDetector->nChips; thisMod->ndac=thisDetector->nDacs; thisMod->nadc=thisDetector->nAdcs; /** initializes the serial number and register to 0 */ thisMod->serialnumber=0; thisMod->reg=0; /** initializes the dacs values to 0 */ for (int idac=0; idacnDacs; idac++) { *(dacs+idac+thisDetector->nDacs*imod)=0.; } /** initializes the adc values to 0 */ for (int iadc=0; iadcnAdcs; iadc++) { *(adcs+iadc+thisDetector->nAdcs*imod)=0.; } /** initializes the chip registers to 0 */ for (int ichip=0; ichipnChips; ichip++) { *(chipregs+ichip+thisDetector->nChips*imod)=-1; } /** initializes the channel registers to 0 */ for (int ichan=0; ichannChans*thisDetector->nChips; ichan++) { *(chanregs+ichan+thisDetector->nChips*thisDetector->nChans*imod)=-1; } /** initialize gain and offset to -1 */ thisMod->gain=-1.; thisMod->offset=-1.; } return 0; } slsDetectorDefs::sls_detector_module* slsDetector::createModule() { sls_detector_module *myMod=(sls_detector_module*)malloc(sizeof(sls_detector_module)); float *dacs=new float[thisDetector->nDacs]; float *adcs=new float[thisDetector->nAdcs]; int *chipregs=new int[thisDetector->nChips]; int *chanregs=new int[thisDetector->nChips*thisDetector->nChans]; myMod->ndac=thisDetector->nDacs; myMod->nadc=thisDetector->nAdcs; myMod->nchip=thisDetector->nChips; myMod->nchan=thisDetector->nChips*thisDetector->nChans; myMod->dacs=dacs; myMod->adcs=adcs; myMod->chipregs=chipregs; myMod->chanregs=chanregs; return myMod; } void slsDetector::deleteModule(sls_detector_module *myMod) { delete [] myMod->dacs; delete [] myMod->adcs; delete [] myMod->chipregs; delete [] myMod->chanregs; delete myMod; } int slsDetector::sendChannel(sls_detector_channel *myChan) { return controlSocket->SendDataOnly(myChan, sizeof(sls_detector_channel)); } int slsDetector::sendChip(sls_detector_chip *myChip) { int ts=0; ts+=controlSocket->SendDataOnly(myChip,sizeof(sls_detector_chip)); #ifdef VERY_VERBOSE std::cout<< "chip structure sent" << std::endl; std::cout<< "now sending " << myChip->nchan << " channles" << std::endl; #endif ts=controlSocket->SendDataOnly(myChip->chanregs,sizeof(int)*myChip->nchan ); #ifdef VERBOSE std::cout<< "chip's channels sent " <SendDataOnly(myMod,sizeof(sls_detector_module)); ts+=controlSocket->SendDataOnly(myMod->dacs,sizeof(float)*(myMod->ndac)); ts+=controlSocket->SendDataOnly(myMod->adcs,sizeof(float)*(myMod->nadc)); ts+=controlSocket->SendDataOnly(myMod->chipregs,sizeof(int)*(myMod->nchip)); ts+=controlSocket->SendDataOnly(myMod->chanregs,sizeof(int)*(myMod->nchan)); return ts; } int slsDetector::receiveChannel(sls_detector_channel *myChan) { return controlSocket->ReceiveDataOnly(myChan,sizeof(sls_detector_channel)); } int slsDetector::receiveChip(sls_detector_chip* myChip) { int *ptr=myChip->chanregs; int nchanold=myChip->nchan; int ts=0; int nch; ts+=controlSocket->ReceiveDataOnly(myChip,sizeof(sls_detector_chip)); myChip->chanregs=ptr; if (nchanold<(myChip->nchan)) { nch=nchanold; printf("number of channels received is too large!\n"); } else nch=myChip->nchan; ts+=controlSocket->ReceiveDataOnly(myChip->chanregs,sizeof(int)*nch); return ts; } int slsDetector::receiveModule(sls_detector_module* myMod) { float *dacptr=myMod->dacs; float *adcptr=myMod->adcs; int *chipptr=myMod->chipregs; int *chanptr=myMod->chanregs; int ts=0; ts+=controlSocket->ReceiveDataOnly(myMod,sizeof(sls_detector_module)); myMod->dacs=dacptr; myMod->adcs=adcptr; myMod->chipregs=chipptr; myMod->chanregs=chanptr; #ifdef VERBOSE std::cout<< "received module " << myMod->module << " of size "<< ts << " register " << myMod->reg << std::endl; #endif ts+=controlSocket->ReceiveDataOnly(myMod->dacs,sizeof(float)*(myMod->ndac)); #ifdef VERBOSE std::cout<< "received dacs " << myMod->module << " of size "<< ts << std::endl; #endif ts+=controlSocket->ReceiveDataOnly(myMod->adcs,sizeof(float)*(myMod->nadc)); #ifdef VERBOSE std::cout<< "received adcs " << myMod->module << " of size "<< ts << std::endl; #endif ts+=controlSocket->ReceiveDataOnly(myMod->chipregs,sizeof(int)*(myMod->nchip)); #ifdef VERBOSE std::cout<< "received chips " << myMod->module << " of size "<< ts << std::endl; #endif ts+=controlSocket->ReceiveDataOnly(myMod->chanregs,sizeof(int)*(myMod->nchan)); #ifdef VERBOSE std::cout<< "nchans= " << thisDetector->nChans << " nchips= " << thisDetector->nChips; std::cout<< "mod - nchans= " << myMod->nchan << " nchips= " <nchip; std::cout<< "received chans " << myMod->module << " of size "<< ts << std::endl; #endif #ifdef VERBOSE std::cout<< "received module " << myMod->module << " of size "<< ts << " register " << myMod->reg << std::endl; #endif return ts; } int slsDetector::setOnline(int off) { if (off!=GET_ONLINE_FLAG) { thisDetector->onlineFlag=off; if (thisDetector->onlineFlag==ONLINE_FLAG) setTCPSocket(); } return thisDetector->onlineFlag; } /* configure the socket communication and check that the server exists enum communicationProtocol{ TCP, UDP }{}; */ int slsDetector::setTCPSocket(string const name, int const control_port, int const stop_port, int const data_port){ char thisName[MAX_STR_LENGTH]; int thisCP, thisSP, thisDP; int retval=OK; if (strcmp(name.c_str(),"")!=0) { #ifdef VERBOSE std::cout<< "setting hostname" << std::endl; #endif strcpy(thisName,name.c_str()); strcpy(thisDetector->hostname,thisName); if (controlSocket) { delete controlSocket; controlSocket=NULL; } if (stopSocket) { delete stopSocket; stopSocket=NULL; } if (dataSocket){ delete dataSocket; dataSocket=NULL; } } else strcpy(thisName,thisDetector->hostname); if (control_port>0) { #ifdef VERBOSE std::cout<< "setting control port" << std::endl; #endif thisCP=control_port; thisDetector->controlPort=thisCP; if (controlSocket) { delete controlSocket; controlSocket=NULL; } } else thisCP=thisDetector->controlPort; if (stop_port>0) { #ifdef VERBOSE std::cout<< "setting stop port" << std::endl; #endif thisSP=stop_port; thisDetector->stopPort=thisSP; if (stopSocket) { delete stopSocket; stopSocket=NULL; } } else thisSP=thisDetector->stopPort; if (data_port>0) { #ifdef VERBOSE std::cout<< "setting data port" << std::endl; #endif thisDP=data_port; thisDetector->dataPort=thisDP; if (dataSocket){ delete dataSocket; dataSocket=NULL; } } else thisDP=thisDetector->dataPort; if (!controlSocket) { controlSocket= new MySocketTCP(thisName, thisCP); if (controlSocket->getErrorStatus()){ #ifdef VERBOSE std::cout<< "Could not connect Control socket " << thisName << " " << thisCP << std::endl; #endif delete controlSocket; controlSocket=NULL; retval=FAIL; } #ifdef VERYVERBOSE else std::cout<< "Control socket connected " <getErrorStatus()){ #ifdef VERBOSE std::cout<< "Could not connect Stop socket "<getErrorStatus()){ #ifdef VERBOSE std::cout<< "Could not connect Data socket "<Connect()<0) { controlSocket->SetTimeOut(5); thisDetector->onlineFlag=OFFLINE_FLAG; delete controlSocket; controlSocket=NULL; retval=FAIL; #ifdef VERBOSE std::cout<< "offline!" << std::endl; #endif } else { thisDetector->onlineFlag=ONLINE_FLAG; controlSocket->SetTimeOut(100); controlSocket->Disconnect(); #ifdef VERBOSE std::cout<< "online!" << std::endl; #endif } } else { thisDetector->onlineFlag=OFFLINE_FLAG; #ifdef VERBOSE std::cout<< "offline!" << std::endl; #endif } return retval; }; /** connect to the control port */ int slsDetector::connectControl() { if (controlSocket) return controlSocket->Connect(); return FAIL; } /** disconnect from the control port */ int slsDetector::disconnectControl() { if (controlSocket) controlSocket->Disconnect(); return OK; } /** connect to the data port */ int slsDetector::connectData() { if (dataSocket) return dataSocket->Connect(); return FAIL; }; /** disconnect from the data port */ int slsDetector::disconnectData(){ if (dataSocket) dataSocket->Disconnect(); return OK; } ; /** connect to the stop port */ int slsDetector::connectStop() { if (stopSocket) return stopSocket->Connect(); return FAIL; }; /** disconnect from the stop port */ int slsDetector::disconnectStop(){ if (stopSocket) stopSocket->Disconnect(); return OK; } ; /* Communication to server */ // General purpose functions /* executes a system command on the server e.g. mount an nfs disk, reboot and returns answer etc. */ int slsDetector::execCommand(string cmd, string answer){ char arg[MAX_STR_LENGTH], retval[MAX_STR_LENGTH]; int fnum=F_EXEC_COMMAND; int ret=FAIL; strcpy(arg,cmd.c_str()); #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Sending command " << arg << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { if (controlSocket->SendDataOnly(&fnum,sizeof(fnum))>=0) { if (controlSocket->SendDataOnly(arg,MAX_STR_LENGTH)>=0) { if (controlSocket->ReceiveDataOnly(retval,MAX_STR_LENGTH)>=0) { ret=OK; answer=retval; } } } controlSocket->Disconnect(); } } #ifdef VERBOSE std::cout<< "Detector answer is " << answer << std::endl; #endif } return ret; }; // Detector configuration functions /* the detector knows what type of detector it is enum detectorType{ GET_DETECTOR_TYPE, GENERIC, MYTHEN, PILATUS, EIGER, GOTTHARD, AGIPD }; */ int slsDetector::setDetectorType(detectorType const type){ int arg, retval=FAIL; int fnum=F_GET_DETECTOR_TYPE; arg=int(type); detectorType retType=type; char mess[100]; strcpy(mess,"dummy"); #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Setting detector type to " << arg << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); if (retval!=FAIL) controlSocket->ReceiveDataOnly(&retType,sizeof(retType)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (retval==FORCE_UPDATE) updateDetector(); } } } else { if (type==GET_DETECTOR_TYPE) retType=thisDetector->myDetectorType; else { retType=type; thisDetector->myDetectorType=type; } retval=OK; } #ifdef VERBOSE std::cout<< "Detector type set to " << retType << std::endl; #endif if (retval==FAIL) { std::cout<< "Set detector type failed " << std::endl; retType=GENERIC; } else thisDetector->myDetectorType=retType; return retType; }; int slsDetector::setDetectorType(string const stype){ return setDetectorType(getDetectorType(stype)); }; string slsDetector::getDetectorType(){ return getDetectorType(thisDetector->myDetectorType); } /* needed to set/get the size of the detector */ // if n=GET_FLAG returns the number of installed modules, int slsDetector::setNumberOfModules(int n, dimension d){ int arg[2], retval; int fnum=F_SET_NUMBER_OF_MODULES; int ret=FAIL; char mess[100]; arg[0]=d; arg[1]=n; if (dY) { std::cout<< "Set number of modules in wrong dimension " << d << std::endl; return ret; } #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Setting number of modules of dimension "<< d << " to " << n << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); } else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } else { ret=OK; if (n==GET_FLAG) ; else { if (n<=0 || n>thisDetector->nModMax[d]) { ret=FAIL; } else { thisDetector->nMod[d]=n; } } retval=thisDetector->nMod[d]; } #ifdef VERBOSE std::cout<< "Number of modules in dimension "<< d <<" is " << retval << std::endl; #endif if (ret==FAIL) { std::cout<< "Set number of modules failed " << std::endl; } else { thisDetector->nMod[d]=retval; thisDetector->nMods=thisDetector->nMod[X]*thisDetector->nMod[Y]; int dr=thisDetector->dynamicRange; if (dr==24) dr=32; if (thisDetector->timerValue[PROBES_NUMBER]==0) { thisDetector->dataBytes=thisDetector->nMod[X]*thisDetector->nMod[Y]*thisDetector->nChips*thisDetector->nChans*dr/8; } else { thisDetector->dataBytes=thisDetector->nMod[X]*thisDetector->nMod[Y]*thisDetector->nChips*thisDetector->nChans*4; } #ifdef VERBOSE std::cout<< "Data size is " << thisDetector->dataBytes << std::endl; std::cout<< "nModX " << thisDetector->nMod[X] << " nModY " << thisDetector->nMod[Y] << " nChips " << thisDetector->nChips << " nChans " << thisDetector->nChans<< " dr " << dr << std::endl; #endif } return thisDetector->nMod[d]; }; int slsDetector::getMaxNumberOfModules(dimension d){ int retval; int fnum=F_GET_MAX_NUMBER_OF_MODULES; int ret=FAIL; char mess[100]; if (dY) { std::cout<< "Get max number of modules in wrong dimension " << d << std::endl; return ret; } #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Getting max number of modules in dimension "<< d <onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&d,sizeof(d)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Deterctor returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } else { ret=OK; retval=thisDetector->nModMax[d]; } #ifdef VERBOSE std::cout<< "Max number of modules in dimension "<< d <<" is " << retval << std::endl; #endif if (ret==FAIL) { std::cout<< "Get max number of modules failed " << std::endl; return retval; } else { thisDetector->nModMax[d]=retval; thisDetector->nModsMax=thisDetector->nModMax[0]*thisDetector->nModMax[1]; } return thisDetector->nModMax[d]; }; /* This function is used to set the polarity and meaning of the digital I/O signals (signal index) enum externalSignalFlag { GET_EXTERNAL_SIGNAL_FLAG, SIGNAL_OFF, GATE_ACTIVE_HIGH, GATE_ACTIVE_LOW, TRIGGER_RISING_EDGE, TRIGGER_FALLING_EDGE }{}; */ slsDetectorDefs::externalSignalFlag slsDetector::setExternalSignalFlags(externalSignalFlag pol, int signalindex){ int arg[2]; externalSignalFlag retval; int ret=FAIL; int fnum=F_SET_EXTERNAL_SIGNAL_FLAG; char mess[100]; arg[0]=signalindex; arg[1]=pol; retval=GET_EXTERNAL_SIGNAL_FLAG; #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Setting signal "<< signalindex << " to flag" << pol << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } else { retval=GET_EXTERNAL_SIGNAL_FLAG; ret=FAIL; } #ifdef VERBOSE std::cout<< "Signal "<< signalindex << " flag set to" << retval << std::endl; if (ret==FAIL) { std::cout<< "Set signal flag failed " << std::endl; } #endif return retval; }; /* this function is used to select wether the detector is triggered or gated and in which mode enum externalCommunicationMode{ GET_EXTERNAL_COMMUNICATION_MODE, AUTO, TRIGGER_EXPOSURE, TRIGGER_READOUT, TRIGGER_COINCIDENCE_WITH_INTERNAL_ENABLE, GATE_FIX_NUMBER, GATE_FIX_DURATION, GATE_WITH_START_TRIGGER, GATE_COINCIDENCE_WITH_INTERNAL_ENABLE }; */ slsDetectorDefs::externalCommunicationMode slsDetector::setExternalCommunicationMode( externalCommunicationMode pol){ int arg[1]; externalCommunicationMode retval; int fnum=F_SET_EXTERNAL_COMMUNICATION_MODE; char mess[100]; arg[0]=pol; int ret=FAIL; retval=GET_EXTERNAL_COMMUNICATION_MODE; #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Setting communication to mode " << pol << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } else { retval=GET_EXTERNAL_COMMUNICATION_MODE; ret=FAIL; } #ifdef VERBOSE std::cout<< "Communication mode "<< " set to" << retval << std::endl; #endif if (ret==FAIL) { std::cout<< "Setting communication mode failed" << std::endl; } return retval; }; // Tests and identification /* Gets versions enum idMode{ MODULE_SERIAL_NUMBER, MODULE_FIRMWARE_VERSION, DETECTOR_SERIAL_NUMBER, DETECTOR_FIRMWARE_VERSION, DETECTOR_SOFTWARE_VERSION }{}; */ int64_t slsDetector::getId( idMode mode, int imod){ int64_t retval=-1; int fnum=F_GET_ID; int ret=FAIL; char mess[100]; #ifdef VERBOSE std::cout<< std::endl; if (mode==MODULE_SERIAL_NUMBER) std::cout<< "Getting id of "<< imod << std::endl; else std::cout<< "Getting id type "<< mode << std::endl; #endif if (mode==THIS_SOFTWARE_VERSION) { ret=OK; retval=thisSoftwareVersion; } else { if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&mode,sizeof(mode)); if (mode==MODULE_SERIAL_NUMBER) controlSocket->SendDataOnly(&imod,sizeof(imod)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } else ret=FAIL; } else { ret=FAIL; } } } if (ret==FAIL) { std::cout<< "Get id failed " << std::endl; return ret; } else { #ifdef VERBOSE if (mode==MODULE_SERIAL_NUMBER) std::cout<< "Id of "<< imod <<" is " << hex <onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&mode,sizeof(mode)); if ((mode==CHIP_TEST)|| (mode==DIGITAL_BIT_TEST)) controlSocket->SendDataOnly(&imod,sizeof(imod)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } else { ret=FAIL; } #ifdef VERBOSE std::cout<< "Id "<< mode <<" is " << retval << std::endl; #endif if (ret==FAIL) { std::cout<< "Get id failed " << std::endl; return ret; } else return retval; }; /* analog test of the modules enum analogTestMode { COUNT_CALIBRATION_PULSES, I_DON_T_KNOW }{}; */ /* int* slsDetector::analogTest(analogTestMode mode){ std::cout<< "function not yet implemented " << std::endl; }; */ /* enable analog output of channel */ /* int slsDetector::enableAnalogOutput(int ichan){ int imod=ichan/(nChans*nChips); ichan-=imod*(nChans*nChips); int ichip=ichan/nChans; ichan-=ichip*(nChans); enableAnalogOutput(imod,ichip,ichan); }; int slsDetector::enableAnalogOutput(int imod, int ichip, int ichan){ std::cout<< "function not yet implemented " << std::endl; }; */ /* give a train of calibration pulses */ /* int slsDetector::giveCalibrationPulse(float vcal, int npulses){ std::cout<< "function not yet implemented " << std::endl; }; */ // Expert low level functions /* write or read register */ int slsDetector::writeRegister(int addr, int val){ int retval; int fnum=F_WRITE_REGISTER; int ret=FAIL; char mess[100]; int arg[2]; arg[0]=addr; arg[1]=val; #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Writing to register "<< hex<onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } #ifdef VERBOSE std::cout<< "Register returned "<< retval << std::endl; #endif if (ret==FAIL) { std::cout<< "Write to register failed " << std::endl; } return retval; }; int slsDetector::readRegister(int addr){ int retval; int fnum=F_READ_REGISTER; int ret=FAIL; char mess[100]; int arg; arg=addr; #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Reading register "<< hex<onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } #ifdef VERBOSE std::cout<< "Register returned "<< retval << std::endl; #endif if (ret==FAIL) { std::cout<< "Read register failed " << std::endl; } return retval; }; // Expert initialization functions /* set dacs or read ADC for the module enum dacIndex { TRIMBIT_SIZE, THRESHOLD, SHAPER1, SHAPER2, CALIBRATION_PULSE, PREAMP, TEMPERATURE, HUMIDITY, }{}; */ float slsDetector::setDAC(float val, dacIndex index, int imod){ float retval; int fnum=F_SET_DAC; int ret=FAIL; char mess[100]; int arg[2]; arg[0]=index; arg[1]=imod; #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Setting DAC "<< index << " of module " << imod << " to " << val << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(arg,sizeof(arg)); controlSocket->SendDataOnly(&val,sizeof(val)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); if (index < thisDetector->nDacs){ if (dacs) { if (imod>=0) { *(dacs+index+imod*thisDetector->nDacs)=retval; } else { for (imod=0; imodnModsMax; imod++) *(dacs+index+imod*thisDetector->nDacs)=retval; } } } } else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } #ifdef VERBOSE std::cout<< "Dac set to "<< retval << std::endl; #endif if (ret==FAIL) { std::cout<< "Set dac failed " << std::endl; } return retval; }; float slsDetector::getADC(dacIndex index, int imod){ float retval; int fnum=F_GET_ADC; int ret=FAIL; char mess[100]; int arg[2]; arg[0]=index; arg[1]=imod; #ifdef VERBOSE std::cout<< std::endl; std::cout<< "Getting ADC "<< index << " of module " << imod << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); if (adcs) { *(adcs+index+imod*thisDetector->nAdcs)=retval; } } else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } #ifdef VERBOSE std::cout<< "ADC returned "<< retval << std::endl; #endif if (ret==FAIL) { std::cout<< "Get ADC failed " << std::endl; } return retval; }; /* configure single channel enum channelRegisterBit { COMPARATOR_ENABLE_OFF, ANALOG_SIGNAL_ENABLE_OFF, CALIBRATION_ENABLE_OFF, TRIMBIT_OFF // should always be the last! } */ int slsDetector::setChannel(int64_t reg, int ichan, int ichip, int imod){ sls_detector_channel myChan; #ifdef VERBOSE std::cout<< "Setting channel "<< ichan << " " << ichip << " " << imod << " to " << reg << std::endl; #endif //int mmin=imod, mmax=imod+1, chimin=ichip, chimax=ichip+1, chamin=ichan, chamax=ichan+1; int ret; /* if (imod==-1) { mmin=0; mmax=thisDetector->nModsMax; } if (ichip==-1) { chimin=0; chimax=thisDetector->nChips; } if (ichan==-1) { chamin=0; chamax=thisDetector->nChans; }*/ // for (int im=mmin; imonlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); sendChannel(&chan); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); } else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } if (ret!=FAIL) { if (chanregs) { int mmin=imod, mmax=imod+1, chimin=ichip, chimax=ichip+1, chamin=ichan, chamax=ichan+1; if (imod==-1) { mmin=0; mmax=thisDetector->nModsMax; } if (ichip==-1) { chimin=0; chimax=thisDetector->nChips; } if (ichan==-1) { chamin=0; chamax=thisDetector->nChans; } for (int im=mmin; imnChans*thisDetector->nChips+ichi*thisDetector->nChips+icha)=retval; } } } } } #ifdef VERBOSE std::cout<< "Channel register returned "<< retval << std::endl; #endif return retval; } slsDetectorDefs::sls_detector_channel slsDetector::getChannel(int ichan, int ichip, int imod){ int fnum=F_GET_CHANNEL; sls_detector_channel myChan; int arg[3]; int ret=FAIL; char mess[100]; arg[0]=ichan; arg[1]=ichip; arg[2]=imod; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) { receiveChannel(&myChan); } else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } if (ret!=FAIL) { if (chanregs) { *(chanregs+imod*thisDetector->nChans*thisDetector->nChips+ichip*thisDetector->nChips+ichan)=myChan.reg; } } #ifdef VERBOSE std::cout<< "Returned channel "<< ichan << " " << ichip << " " << imod << " " << myChan.reg << std::endl; #endif return myChan; } /* configure chip enum chipRegisterBit { ENABLE_ANALOG_OUTPUT, OUTPUT_WIDTH // should always be the last }{}; */ int slsDetector::setChip(int reg, int ichip, int imod){ sls_detector_chip myChip; #ifdef VERBOSE std::cout<< "Setting chip "<< ichip << " " << imod << " to " << reg << std::endl; #endif int chregs[thisDetector->nChans]; int mmin=imod, mmax=imod+1, chimin=ichip, chimax=ichip+1; int ret=FAIL; if (imod==-1) { mmin=0; mmax=thisDetector->nModsMax; } if (ichip==-1) { chimin=0; chimax=thisDetector->nChips; } myChip.nchan=thisDetector->nChans; myChip.reg=reg; for (int im=mmin; imnChans+im*thisDetector->nChans*thisDetector->nChips); else { for (int i=0; inChans; i++) chregs[i]=-1; myChip.chanregs=chregs; } ret=setChip(myChip); } } return ret; } int slsDetector::setChip(sls_detector_chip chip){ int fnum=F_SET_CHIP; int retval; int ret=FAIL; char mess[100]; int ichi=chip.chip; int im=chip.module; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); sendChip(&chip); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); } else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } if (ret!=FAIL) { if (chipregs) *(chipregs+ichi+im*thisDetector->nChips)=retval; } #ifdef VERBOSE std::cout<< "Chip register returned "<< retval << std::endl; #endif return retval; }; slsDetectorDefs::sls_detector_chip slsDetector::getChip(int ichip, int imod){ int fnum=F_GET_CHIP; sls_detector_chip myChip; int chanreg[thisDetector->nChans]; int ret=FAIL; char mess[100]; myChip.chip=ichip; myChip.module=imod; myChip.nchan=thisDetector->nChans; myChip.chanregs=chanreg; int arg[2]; arg[0]=ichip; arg[1]=imod; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) { receiveChip(&myChip); } else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } if (ret!=FAIL) { if (chipregs) *(chipregs+ichip+imod*thisDetector->nChips)=myChip.reg; if (chanregs) { for (int ichan=0; ichannChans; ichan++) *(chanregs+imod*thisDetector->nChans*thisDetector->nChips+ichip*thisDetector->nChans+ichan)=*((myChip.chanregs)+ichan); } } #ifdef VERBOSE std::cout<< "Returned chip "<< ichip << " " << imod << " " << myChip.reg << std::endl; #endif return myChip; }; /* configure module enum moduleRegisterBit { I_DON_T_KNOW, OUTPUT_WIDTH // should always be the last }{}; */ int slsDetector::setModule(int reg, int imod){ sls_detector_module myModule; #ifdef VERBOSE std::cout << "slsDetector set module " << std::endl; #endif int charegs[thisDetector->nChans*thisDetector->nChips]; int chiregs[thisDetector->nChips]; float das[thisDetector->nDacs], ads[thisDetector->nAdcs]; int mmin=imod, mmax=imod+1; int ret=FAIL; if (imod==-1) { mmin=0; mmax=thisDetector->nModsMax; } for (int im=mmin; imnChans; myModule.nchip=thisDetector->nChips; myModule.ndac=thisDetector->nDacs; myModule.nadc=thisDetector->nAdcs; myModule.reg=reg; if (detectorModules) { myModule.gain=(detectorModules+im)->gain; myModule.offset=(detectorModules+im)->offset; myModule.serialnumber=(detectorModules+im)->serialnumber; } else { myModule.gain=-1; myModule.offset=-1; myModule.serialnumber=-1; } for (int i=0; inAdcs; i++) ads[i]=-1; if (chanregs) myModule.chanregs=chanregs+im*thisDetector->nChips*thisDetector->nChans; else { for (int i=0; inChans*thisDetector->nChips; i++) charegs[i]=-1; myModule.chanregs=charegs; } if (chipregs) myModule.chipregs=chanregs+im*thisDetector->nChips; else { for (int ichip=0; ichipnChips; ichip++) chiregs[ichip]=-1; myModule.chipregs=chiregs; } if (dacs) myModule.dacs=dacs+im*thisDetector->nDacs; else { for (int i=0; inDacs; i++) das[i]=-1; myModule.dacs=das; } if (adcs) myModule.adcs=adcs+im*thisDetector->nAdcs; else { for (int i=0; inAdcs; i++) ads[i]=-1; myModule.adcs=ads; } ret=setModule(myModule); } return ret; }; int slsDetector::setModule(sls_detector_module module){ int fnum=F_SET_MODULE; int retval; int ret=FAIL; char mess[100]; int imod=module.module; #ifdef VERBOSE std::cout << "slsDetector set module " << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); sendModule(&module); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); } else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } if (ret!=FAIL) { if (detectorModules) { if (imod>=0 && imodnMod[X]*thisDetector->nMod[Y]) { (detectorModules+imod)->nchan=module.nchan; (detectorModules+imod)->nchip=module.nchip; (detectorModules+imod)->ndac=module.ndac; (detectorModules+imod)->nadc=module.nadc; thisDetector->nChips=module.nchip; thisDetector->nChans=module.nchan/module.nchip; thisDetector->nDacs=module.ndac; thisDetector->nAdcs=module.nadc; for (int ichip=0; ichipnChips; ichip++) { if (chipregs) chipregs[ichip+thisDetector->nChips*imod]=module.chipregs[ichip]; if (chanregs) { for (int i=0; inChans; i++) { chanregs[i+ichip*thisDetector->nChans+thisDetector->nChips*thisDetector->nChans*imod]=module.chanregs[ichip*thisDetector->nChans+i]; } } } if (dacs) { for (int i=0; inDacs; i++) dacs[i+imod*thisDetector->nDacs]=module.dacs[i]; } if (adcs) { for (int i=0; inAdcs; i++) adcs[i+imod*thisDetector->nAdcs]=module.adcs[i]; } (detectorModules+imod)->gain=module.gain; (detectorModules+imod)->offset=module.offset; (detectorModules+imod)->serialnumber=module.serialnumber; (detectorModules+imod)->reg=module.reg; } } } #ifdef VERBOSE std::cout<< "Module register returned "<< retval << std::endl; #endif return retval; }; slsDetectorDefs::sls_detector_module *slsDetector::getModule(int imod){ #ifdef VERBOSE std::cout << "slsDetector get module " << std::endl; #endif int fnum=F_GET_MODULE; sls_detector_module *myMod=createModule(); //char *ptr, *goff=(char*)thisDetector; // int chanreg[thisDetector->nChans*thisDetector->nChips]; //int chipreg[thisDetector->nChips]; //float dac[thisDetector->nDacs], adc[thisDetector->nAdcs]; int ret=FAIL; char mess[100]; // int n; #ifdef VERBOSE std::cout<< "getting module " << imod << std::endl; #endif myMod->module=imod; // myMod.nchan=thisDetector->nChans*thisDetector->nChips; //myMod.chanregs=chanreg; //myMod.nchip=thisDetector->nChips; //myMod.chipregs=chipreg; //myMod.ndac=thisDetector->nDacs; //myMod.dacs=dac; //myMod.ndac=thisDetector->nAdcs; //myMod.dacs=adc; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&imod,sizeof(imod)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) { receiveModule(myMod); } else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } if (ret!=FAIL) { if (detectorModules) { if (imod>=0 && imodnMod[X]*thisDetector->nMod[Y]) { (detectorModules+imod)->nchan=myMod->nchan; (detectorModules+imod)->nchip=myMod->nchip; (detectorModules+imod)->ndac=myMod->ndac; (detectorModules+imod)->nadc=myMod->nadc; thisDetector->nChips=myMod->nchip; thisDetector->nChans=myMod->nchan/myMod->nchip; thisDetector->nDacs=myMod->ndac; thisDetector->nAdcs=myMod->nadc; for (int ichip=0; ichipnChips; ichip++) { if (chipregs) chipregs[ichip+thisDetector->nChips*imod]=myMod->chipregs[ichip]; if (chanregs) { for (int i=0; inChans; i++) { chanregs[i+ichip*thisDetector->nChans+thisDetector->nChips*thisDetector->nChans*imod]=myMod->chanregs[ichip*thisDetector->nChans+i]; } } } if (dacs) { for (int i=0; inDacs; i++) dacs[i+imod*thisDetector->nDacs]=myMod->dacs[i]; } if (adcs) { for (int i=0; inAdcs; i++) adcs[i+imod*thisDetector->nAdcs]=myMod->adcs[i]; } (detectorModules+imod)->gain=myMod->gain; (detectorModules+imod)->offset=myMod->offset; (detectorModules+imod)->serialnumber=myMod->serialnumber; (detectorModules+imod)->reg=myMod->reg; } } } else { deleteModule(myMod); myMod=NULL; } return myMod; } // calibration functions /* really needed? int slsDetector::setCalibration(int imod, detectorSettings isettings, float gain, float offset){ std::cout<< "function not yet implemented " << std::endl; return OK; } int slsDetector::getCalibration(int imod, detectorSettings isettings, float &gain, float &offset){ std::cout<< "function not yet implemented " << std::endl; } */ /* calibrated setup of the threshold */ int slsDetector::getThresholdEnergy(int imod){ int fnum= F_GET_THRESHOLD_ENERGY; int retval; int ret=FAIL; char mess[100]; #ifdef VERBOSE std::cout<< "Getting threshold energy "<< std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&imod,sizeof(imod)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { std::cout<< "Detector returned error: "<< std::endl; controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< mess << std::endl; } else { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); thisDetector->currentThresholdEV=retval; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return thisDetector->currentThresholdEV; }; int slsDetector::setThresholdEnergy(int e_eV, int imod, detectorSettings isettings){ int fnum= F_SET_THRESHOLD_ENERGY; int retval; int ret=FAIL; char mess[100]; #ifdef VERBOSE std::cout<< "Getting threshold energy "<< std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&e_eV,sizeof(e_eV)); controlSocket->SendDataOnly(&imod,sizeof(imod)); controlSocket->SendDataOnly(&isettings,sizeof(isettings)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { std::cout<< "Detector returned error: "<< std::endl; controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< mess << std::endl; } else { #ifdef VERBOSE std::cout<< "Detector returned OK "<< std::endl; #endif controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); thisDetector->currentThresholdEV=retval; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } else { thisDetector->currentThresholdEV=e_eV; } return thisDetector->currentThresholdEV; }; /* select detector settings */ slsDetectorDefs::detectorSettings slsDetector::getSettings(int imod){ int fnum=F_SET_SETTINGS; int ret=FAIL; char mess[100]; int retval; int arg[2]; arg[0]=GET_SETTINGS; arg[1]=imod; #ifdef VERBOSE std::cout<< "Getting settings "<< std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else{ controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); thisDetector->currentSettings=(detectorSettings)retval; #ifdef VERBOSE std::cout<< "Settings are "<< retval << std::endl; #endif } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return thisDetector->currentSettings; }; slsDetectorDefs::detectorSettings slsDetector::setSettings( detectorSettings isettings, int imod){ #ifdef VERBOSE std::cout<< "slsDetector setSettings "<< std::endl; #endif sls_detector_module *myMod=createModule(); int modmi=imod, modma=imod+1, im=imod; string settingsfname, calfname; string ssettings; detectorSettings minsettings, maxsettings; switch(thisDetector->myDetectorType){ case GOTTHARD: minsettings = HIGHGAIN; maxsettings = VERYHIGHGAIN; break; default: minsettings = STANDARD; maxsettings = HIGHGAIN; } if (isettings>=minsettings && isettings<=maxsettings) { switch (isettings) { case STANDARD: ssettings="/standard"; thisDetector->currentSettings=STANDARD; break; case FAST: ssettings="/fast"; thisDetector->currentSettings=FAST; break; case HIGHGAIN: ssettings="/highgain"; thisDetector->currentSettings=HIGHGAIN; break; case DYNAMICGAIN: ssettings="/dynamicgain"; thisDetector->currentSettings=DYNAMICGAIN; break; case LOWGAIN: ssettings="/lowgain"; thisDetector->currentSettings=LOWGAIN; break; case MEDIUMGAIN: ssettings="/mediumgain"; thisDetector->currentSettings=MEDIUMGAIN; break; case VERYHIGHGAIN: ssettings="/veryhighgain"; thisDetector->currentSettings=VERYHIGHGAIN; break; default: std::cout<< "Unknown settings!" << std::endl; } if (imod<0) { modmi=0; // modma=thisDetector->nModMax[X]*thisDetector->nModMax[Y]; modma=thisDetector->nMod[X]*thisDetector->nMod[Y]; } for (im=modmi; immodule=im; //create file names switch(thisDetector->myDetectorType){ case GOTTHARD: //settings is saved in myMod.reg for gotthard myMod->reg=thisDetector->currentSettings; ostfn << thisDetector->settingsDir << ssettings <<"/settings.sn";// << setfill('0') << setw(3) << hex << getId(MODULE_SERIAL_NUMBER, im) << setbase(10); oscfn << thisDetector->calDir << ssettings << "/calibration.sn";// << setfill('0') << setw(3) << hex << getId(MODULE_SERIAL_NUMBER, im) << setbase(10); #ifdef VERBOSE std::cout<< thisDetector->settingsDir<calDir <settingsDir << ssettings <<"/noise.sn" << setfill('0') << setw(3) << hex << getId(MODULE_SERIAL_NUMBER, im) << setbase(10); oscfn << thisDetector->calDir << ssettings << "/calibration.sn" << setfill('0') << setw(3) << hex << getId(MODULE_SERIAL_NUMBER, im) << setbase(10); } settingsfname=ostfn.str(); #ifdef VERBOSE cout << "the settings name is "<gain, myMod->offset); setModule(*myMod); } else { ostringstream ostfn,oscfn; switch(thisDetector->myDetectorType){ case GOTTHARD: ostfn << thisDetector->settingsDir << ssettings << ssettings << ".settings"; break; default: ostfn << thisDetector->settingsDir << ssettings << ssettings << ".trim"; } oscfn << thisDetector->calDir << ssettings << ssettings << ".cal"; calfname=oscfn.str(); settingsfname=ostfn.str(); #ifdef VERBOSE cout << settingsfname << endl; cout << calfname << endl; #endif if (readSettingsFile(settingsfname,myMod)) { calfname=oscfn.str(); readCalibrationFile(calfname,myMod->gain, myMod->offset); setModule(*myMod); } } } } deleteModule(myMod); switch(thisDetector->myDetectorType==MYTHEN){ if (thisDetector->correctionMask&(1<-1 && isett<3) { thisDetector->tDead=t[isett]; } } } return getSettings(imod); }; int slsDetector::updateDetectorNoWait() { // int ret=OK; enum detectorSettings t; int thr, n, nm; // int it; int64_t retval;// tns=-1; char lastClientIP[INET_ADDRSTRLEN]; n = controlSocket->ReceiveDataOnly(lastClientIP,sizeof(lastClientIP)); #ifdef VERBOSE cout << "Updating detector last modified by " << lastClientIP << std::endl; #endif n = controlSocket->ReceiveDataOnly(&nm,sizeof(nm)); thisDetector->nMod[X]=nm; n = controlSocket->ReceiveDataOnly( &nm,sizeof(nm)); thisDetector->nMod[Y]=nm; thisDetector->nMods=thisDetector->nMod[Y]*thisDetector->nMod[X]; n = controlSocket->ReceiveDataOnly( &nm,sizeof(nm)); thisDetector->dynamicRange=nm; n = controlSocket->ReceiveDataOnly( &nm,sizeof(nm)); thisDetector->dataBytes=nm; //t=setSettings(GET_SETTINGS); n = controlSocket->ReceiveDataOnly( &t,sizeof(t)); thisDetector->currentSettings=t; if(thisDetector->myDetectorType!= GOTTHARD){ //thr=getThresholdEnergy(); n = controlSocket->ReceiveDataOnly( &thr,sizeof(thr)); thisDetector->currentThresholdEV=thr; } //retval=setFrames(tns); n = controlSocket->ReceiveDataOnly( &retval,sizeof(int64_t)); thisDetector->timerValue[FRAME_NUMBER]=retval; // retval=setExposureTime(tns); n = controlSocket->ReceiveDataOnly( &retval,sizeof(int64_t)); thisDetector->timerValue[ACQUISITION_TIME]=retval; //retval=setPeriod(tns); n = controlSocket->ReceiveDataOnly( &retval,sizeof(int64_t)); thisDetector->timerValue[FRAME_PERIOD]=retval; //retval=setDelay(tns); n = controlSocket->ReceiveDataOnly( &retval,sizeof(int64_t)); thisDetector->timerValue[DELAY_AFTER_TRIGGER]=retval; // retval=setGates(tns); n = controlSocket->ReceiveDataOnly( &retval,sizeof(int64_t)); thisDetector->timerValue[GATES_NUMBER]=retval; //retval=setProbes(tns); if(thisDetector->myDetectorType!= GOTTHARD){ n = controlSocket->ReceiveDataOnly( &retval,sizeof(int64_t)); thisDetector->timerValue[PROBES_NUMBER]=retval; } //retval=setTrains(tns); n = controlSocket->ReceiveDataOnly( &retval,sizeof(int64_t)); thisDetector->timerValue[CYCLES_NUMBER]=retval; return OK; } int slsDetector::updateDetector() { int fnum=F_UPDATE_CLIENT; int ret=OK; char mess[100]; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else updateDetectorNoWait(); controlSocket->Disconnect(); } } } return ret; } // Acquisition functions /* change these funcs accepting also ok/fail */ int slsDetector::startAcquisition(){ int fnum=F_START_ACQUISITION; int ret=FAIL; char mess[100]; #ifdef VERBOSE std::cout<< "Starting acquisition "<< std::endl; #endif thisDetector->stoppedFlag=0; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return ret; }; int slsDetector::stopAcquisition(){ int fnum=F_STOP_ACQUISITION; int ret=FAIL; char mess[100]; #ifdef VERBOSE std::cout<< "Stopping acquisition "<< std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (stopSocket) { if (stopSocket->Connect()>=0) { stopSocket->SendDataOnly(&fnum,sizeof(fnum)); stopSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { stopSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } stopSocket->Disconnect(); } } } thisDetector->stoppedFlag=1; return ret; }; int slsDetector::startReadOut(){ int fnum=F_START_READOUT; int ret=FAIL; char mess[100]; #ifdef VERBOSE std::cout<< "Starting readout "<< std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return ret; }; slsDetectorDefs::runStatus slsDetector::getRunStatus(){ int fnum=F_GET_RUN_STATUS; int ret=FAIL; char mess[100]; runStatus retval=ERROR; #ifdef VERBOSE std::cout<< "Getting status "<< std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (stopSocket) { if (stopSocket->Connect()>=0) { stopSocket->SendDataOnly(&fnum,sizeof(fnum)); stopSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { stopSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { stopSocket->ReceiveDataOnly(&retval,sizeof(retval)); } stopSocket->Disconnect(); } } } return retval; }; int* slsDetector::readFrame(){ int fnum=F_READ_FRAME; int* retval=NULL; #ifdef VERBOSE std::cout<< "slsDetector: Reading frame "<< std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); retval=getDataFromDetector(); if (retval) { dataQueue.push(retval); controlSocket->Disconnect(); } } } } return retval; }; int* slsDetector::getDataFromDetector(int *retval){ int nel=thisDetector->dataBytes/sizeof(int); int n; int *r=retval; // int* retval=new int[nel]; if (retval==NULL) retval=new int[nel]; int ret=FAIL; char mess[100]="Nothing"; #ifdef VERBOSE std::cout<< "getting data "<< thisDetector->dataBytes << " " << nel<< std::endl; #endif controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); #ifdef VERBOSE cout << "ret=" << ret << endl; #endif if (ret!=OK) { n= controlSocket->ReceiveDataOnly(mess,sizeof(mess)); if (ret==FAIL) { thisDetector->stoppedFlag=1; std::cout<< "Detector returned: " << mess << " " << n << std::endl; } else { ; #ifdef VERBOSE std::cout<< "Detector successfully returned: " << mess << " " << n << std::endl; #endif } if (r==NULL) { delete [] retval; } return NULL; } else { n=controlSocket->ReceiveDataOnly(retval,thisDetector->dataBytes); #ifdef VERBOSE std::cout<< "Received "<< n << " data bytes" << std::endl; #endif if (n!=thisDetector->dataBytes) { std::cout<< "wrong data size received: received " << n << " but expected " << thisDetector->dataBytes << std::endl; thisDetector->stoppedFlag=1; ret=FAIL; if (r==NULL) { delete [] retval; } return NULL; } } return retval; }; int* slsDetector::readAll(){ int fnum=F_READ_ALL; int* retval; // check what we return! int i=0; #ifdef VERBOSE std::cout<< "Reading all frames "<< std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); while ((retval=getDataFromDetector())){ i++; #ifdef VERBOSE std::cout<< i << std::endl; //#else //std::cout << "-" << flush ; #endif dataQueue.push(retval); } controlSocket->Disconnect(); } } } #ifdef VERBOSE std::cout<< "received "<< i<< " frames" << std::endl; //#else // std::cout << std::endl; #endif return dataQueue.front(); // check what we return! }; int slsDetector::readAllNoWait(){ int fnum= F_READ_ALL; #ifdef VERBOSE std::cout<< "Reading all frames "<< std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); return OK; } } } return FAIL; }; int* slsDetector::startAndReadAll(){ int* retval; int i=0; startAndReadAllNoWait(); //#ifdef VERBOSE // std::cout<< "started" << std::endl; //#endif while ((retval=getDataFromDetector())){ i++; #ifdef VERBOSE std::cout<< i << std::endl; //#else //std::cout<< "-" << flush; #endif dataQueue.push(retval); } controlSocket->Disconnect(); #ifdef VERBOSE std::cout<< "received "<< i<< " frames" << std::endl; //#else // std::cout << std::endl; #endif return dataQueue.front(); // check what we return! /* while ((retval=getDataFromDetectorNoWait())) i++; #ifdef VERBOSE std::cout<< "Received " << i << " frames"<< std::endl; #endif return dataQueue.front(); // check what we return! */ }; int slsDetector::startAndReadAllNoWait(){ int fnum= F_START_AND_READ_ALL; #ifdef VERBOSE std::cout<< "Starting and reading all frames "<< std::endl; #endif thisDetector->stoppedFlag=0; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { //std::cout<< "connected" << std::endl; controlSocket->SendDataOnly(&fnum,sizeof(fnum)); return OK; } } } return FAIL; }; // int* slsDetector::getDataFromDetectorNoWait() { // int *retval=getDataFromDetector(); // if (thisDetector->onlineFlag==ONLINE_FLAG) { // if (controlSocket) { // if (retval==NULL){ // controlSocket->Disconnect(); // #ifdef VERBOSE // std::cout<< "Run finished "<< std::endl; // #endif // } else { // #ifdef VERBOSE // std::cout<< "Frame received "<< std::endl; // #endif // } // } // } // return retval; // check what we return! // }; /* set or read the acquisition timers enum timerIndex { FRAME_NUMBER, ACQUISITION_TIME, FRAME_PERIOD, DELAY_AFTER_TRIGGER, GATES_NUMBER, PROBES_NUMBER CYCLES_NUMBER, GATE_INTEGRATED_TIME } */ int64_t slsDetector::setTimer(timerIndex index, int64_t t){ int fnum=F_SET_TIMER; int64_t retval; uint64_t ut; char mess[100]; int ret=OK; int n=0; #ifdef VERBOSE std::cout<< "Setting timer "<< index << " to " << t << "ns" << std::endl; #endif ut=t; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&index,sizeof(index)); n=controlSocket->SendDataOnly(&t,sizeof(t)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); thisDetector->timerValue[index]=retval; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } else { //std::cout<< "offline " << std::endl; if (t>=0) thisDetector->timerValue[index]=t; } #ifdef VERBOSE std::cout<< "Timer " << index << " set to "<< thisDetector->timerValue[index] << "ns" << std::endl; #endif if (index==PROBES_NUMBER) { setDynamicRange(); //cout << "Changing probes: data size = " << thisDetector->dataBytes <timerValue[index]; }; int slsDetector::lockServer(int lock) { int fnum=F_LOCK_SERVER; int retval=-1; int ret=OK; char mess[100]; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&lock,sizeof(lock)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return retval; } string slsDetector::getLastClientIP() { int fnum=F_GET_LAST_CLIENT_IP; char clientName[INET_ADDRSTRLEN]; char mess[100]; int ret=OK; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { controlSocket->ReceiveDataOnly(clientName,sizeof(clientName)); } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return string(clientName); } int slsDetector::setPort(portType index, int num){ int fnum=F_SET_PORT; int retval; // uint64_t ut; char mess[100]; int ret=FAIL; int n=0; MySocketTCP *s; if (num>1024) { switch(index) { case CONTROL_PORT: s=controlSocket; retval=thisDetector->controlPort; #ifdef VERBOSE cout << "s="<< s<< endl; cout << thisDetector->controlPort<< " " << thisDetector->dataPort << " " << thisDetector->stopPort << endl; #endif if (s==NULL) { #ifdef VERBOSE cout << "s=NULL"<< endl; cout << thisDetector->controlPort<< " " << thisDetector->dataPort << " " << thisDetector->stopPort << endl; #endif setTCPSocket("",DEFAULT_PORTNO); } if (controlSocket) { s=controlSocket; } else { #ifdef VERBOSE cout << "still cannot connect!"<< endl; cout << thisDetector->controlPort<< " " << thisDetector->dataPort << " " << thisDetector->stopPort << endl; #endif setTCPSocket("",retval); } break; case DATA_PORT: s=dataSocket; retval=thisDetector->dataPort; if (s==NULL) setTCPSocket("",-1,-1,DEFAULT_PORTNO+2); if (dataSocket) s=dataSocket; else setTCPSocket("",-1,-1,retval); break; case STOP_PORT: s=stopSocket; retval=thisDetector->stopPort; if (s==NULL) setTCPSocket("",-1,DEFAULT_PORTNO+1); if (stopSocket) s=stopSocket; else setTCPSocket("",-1,retval); break; default: s=NULL; } if (thisDetector->onlineFlag==ONLINE_FLAG) { if (s) { if (s->Connect()>=0) { s->SendDataOnly(&fnum,sizeof(fnum)); s->SendDataOnly(&index,sizeof(index)); n=s->SendDataOnly(&num,sizeof(num)); s->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { s->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { s->ReceiveDataOnly(&retval,sizeof(retval)); } s->Disconnect(); } } } if (ret!=FAIL) { switch(index) { case CONTROL_PORT: thisDetector->controlPort=retval; break; case DATA_PORT: thisDetector->dataPort=retval; break; case STOP_PORT: thisDetector->stopPort=retval; break; default: ; } #ifdef VERBOSE cout << "ret is ok" << endl; #endif } else { switch(index) { case CONTROL_PORT: thisDetector->controlPort=num; break; case DATA_PORT: thisDetector->dataPort=num; break; case STOP_PORT: thisDetector->stopPort=num; break; default: ; } } } switch(index) { case CONTROL_PORT: retval=thisDetector->controlPort; break; case DATA_PORT: retval=thisDetector->dataPort; break; case STOP_PORT: retval=thisDetector->stopPort; break; default: retval=-1; } // setTCPSocket(); #ifdef VERBOSE cout << thisDetector->controlPort<< " " << thisDetector->dataPort << " " << thisDetector->stopPort << endl; #endif return retval; }; int slsDetector::setTotalProgress() { int nf=1, npos=1, nscan[MAX_SCAN_LEVELS]={1,1}, nc=1; if (thisDetector->timerValue[FRAME_NUMBER]) nf=thisDetector->timerValue[FRAME_NUMBER]; if (thisDetector->timerValue[CYCLES_NUMBER]>0) nc=thisDetector->timerValue[CYCLES_NUMBER]; if (thisDetector->numberOfPositions>0) npos=thisDetector->numberOfPositions; if ((thisDetector->nScanSteps[0]>0) && (thisDetector->actionMask & (1 << MAX_ACTIONS))) nscan[0]=thisDetector->nScanSteps[0]; if ((thisDetector->nScanSteps[1]>0) && (thisDetector->actionMask & (1 << (MAX_ACTIONS+1)))) nscan[1]=thisDetector->nScanSteps[1]; thisDetector->totalProgress=nf*nc*npos*nscan[0]*nscan[1]; #ifdef VERBOSE cout << "nc " << nc << endl; cout << "nf " << nf << endl; cout << "npos " << npos << endl; cout << "nscan[0] " << nscan[0] << endl; cout << "nscan[1] " << nscan[1] << endl; cout << "Set total progress " << thisDetector->totalProgress << endl; #endif return thisDetector->totalProgress; } float slsDetector::getCurrentProgress() { return 100.*((float)thisDetector->progressIndex)/((float)thisDetector->totalProgress); } /* important speed parameters enum speedVariable { CLOCK_DIVIDER, WAIT_STATES, SET_SIGNAL_LENGTH }; */ int slsDetector::setSpeed(speedVariable sp, int value) { int fnum=F_SET_SPEED; int retval=-1; char mess[100]; int ret=OK; int n=0; #ifdef VERBOSE std::cout<< "Setting speed variable"<< sp << " to " << value << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&sp,sizeof(sp)); n=controlSocket->SendDataOnly(&value,sizeof(value)); #ifdef VERBOSE std::cout<< "Sent "<< n << " bytes " << std::endl; #endif controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } #ifdef VERBOSE std::cout<< "Speed set to "<< retval << std::endl; #endif return retval; } int64_t slsDetector::getTimeLeft(timerIndex index){ int fnum=F_GET_TIME_LEFT; int64_t retval; char mess[100]; int ret=OK; #ifdef VERBOSE std::cout<< "Getting timer "<< index << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (stopSocket) { if (stopSocket->Connect()>=0) { stopSocket->SendDataOnly(&fnum,sizeof(fnum)); stopSocket->SendDataOnly(&index,sizeof(index)); stopSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { stopSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { stopSocket->ReceiveDataOnly(&retval,sizeof(retval)); } stopSocket->Disconnect(); } } } #ifdef VERBOSE std::cout<< "Time left is "<< retval << std::endl; #endif return retval; }; // Flags int slsDetector::setDynamicRange(int n){ int fnum=F_SET_DYNAMIC_RANGE; int retval=-1; char mess[100]; int ret=OK; #ifdef VERBOSE std::cout<< "Setting dynamic range to "<< n << std::endl; #endif if (n==24) n=32; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&n,sizeof(n)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } else { if (n>0) thisDetector->dynamicRange=n; retval=thisDetector->dynamicRange; } if (ret!=FAIL && retval>0) { /* checking the number of probes to chose the data size */ if (thisDetector->timerValue[PROBES_NUMBER]==0) { thisDetector->dataBytes=thisDetector->nMod[X]*thisDetector->nMod[Y]*thisDetector->nChips*thisDetector->nChans*retval/8; } else { thisDetector->dataBytes=thisDetector->nMod[X]*thisDetector->nMod[Y]*thisDetector->nChips*thisDetector->nChans*4; } if (retval==32) thisDetector->dynamicRange=24; else thisDetector->dynamicRange=retval; #ifdef VERBOSE std::cout<< "Dynamic range set to "<< thisDetector->dynamicRange << std::endl; std::cout<< "Data bytes "<< thisDetector->dataBytes << std::endl; #endif } return thisDetector->dynamicRange; }; /* int slsDetector::setROI(int nroi, int *xmin, int *xmax, int *ymin, int *ymax){ }; */ /* enum readOutFlags { NORMAL_READOUT, setReadOutFlags(STORE_IN_RAM, READ_HITS, ZERO_COMPRESSION, BACKGROUND_CORRECTION }{}; */ int slsDetector::setReadOutFlags(readOutFlags flag){ int fnum=F_SET_READOUT_FLAGS; readOutFlags retval; char mess[100]; int ret=OK; #ifdef VERBOSE std::cout<< "Setting readout flags to "<< flag << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&flag,sizeof(flag)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); thisDetector->roFlags=retval; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } else { if (flag!=GET_READOUT_FLAGS) thisDetector->roFlags=flag; } #ifdef VERBOSE std::cout<< "Readout flag set to "<< retval << std::endl; #endif return thisDetector->roFlags; }; //Trimming /* enum trimMode { NOISE_TRIMMING, BEAM_TRIMMING, IMPROVE_TRIMMING, FIXEDSETTINGS_TRIMMING, OFFLINE_TRIMMING }{}; */ int slsDetector::executeTrimming(trimMode mode, int par1, int par2, int imod){ int fnum= F_EXECUTE_TRIMMING; int retval=FAIL; char mess[100]; int ret=OK; int arg[3]; arg[0]=imod; arg[1]=par1; arg[2]=par2; #ifdef VERBOSE std::cout<< "Trimming module " << imod << " with mode "<< mode << " parameters " << par1 << " " << par2 << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); #ifdef VERBOSE std::cout<< "sending mode bytes= "<< controlSocket->SendDataOnly(&mode,sizeof(mode)) << std::endl; #endif controlSocket->SendDataOnly(arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { #ifdef VERBOSE std::cout<< "Detector trimmed "<< ret << std::endl; #endif /* controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); thisDetector->roFlags=retval; */ retval=ret; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return retval; }; float* slsDetector::decodeData(int *datain) { float *dataout=new float[thisDetector->nChans*thisDetector->nChips*thisDetector->nMods]; const int bytesize=8; int ival=0; char *ptr=(char*)datain; char iptr; int nbits=thisDetector->dynamicRange; int ipos=0, ichan=0, ibyte; if (thisDetector->timerValue[PROBES_NUMBER]==0) { switch (nbits) { case 1: for (ibyte=0; ibytedataBytes; ibyte++) { iptr=ptr[ibyte]&0x1; for (ipos=0; ipos<8; ipos++) { // dataout[ibyte*2+ichan]=((iptr&((0xf)<>ichan)&0xf; ival=(iptr>>(ipos))&0x1; dataout[ichan]=ival; ichan++; } } break; case 4: for (ibyte=0; ibytedataBytes; ibyte++) { iptr=ptr[ibyte]&0xff; for (ipos=0; ipos<2; ipos++) { // dataout[ibyte*2+ichan]=((iptr&((0xf)<>ichan)&0xf; ival=(iptr>>(ipos*4))&0xf; dataout[ichan]=ival; ichan++; } } break; case 8: for (ichan=0; ichandataBytes; ichan++) { ival=ptr[ichan]&0xff; dataout[ichan]=ival; } break; case 16: for (ichan=0; ichannChans*thisDetector->nChips*thisDetector->nMods; ichan++) { // dataout[ichan]=0; ival=0; for (ibyte=0; ibyte<2; ibyte++) { iptr=ptr[ichan*2+ibyte]; ival|=((iptr<<(ibyte*bytesize))&(0xff<<(ibyte*bytesize))); } dataout[ichan]=ival; } break; default: for (ichan=0; ichannChans*thisDetector->nChips*thisDetector->nMods; ichan++) { ival=datain[ichan]&0xffffff; dataout[ichan]=ival; } } } else { for (ichan=0; ichannChans*thisDetector->nChips*thisDetector->nMods; ichan++) { dataout[ichan]=datain[ichan]; } } /* if (nbits==32) { for (ichan=0; ichannChans*thisDetector->nChips*thisDetector->nMods; ichan++) dataout[ichan]=(datain[ichan]&0xffffff); } else { for (int ibyte=0; ibytedataBytes; ibyte++) { for (int ibit=0; ibit>ibit)<dynamicRange) { ipos=0; dataout[ichan]=ival; ichan++; ival=0; if (ichan>thisDetector->nChans*thisDetector->nChips*thisDetector->nMods){ std::cout<< "error: decoding too many channels!" << ichan; break; } } } } } */ #ifdef VERBOSE std::cout<< "decoded "<< ichan << " channels" << std::endl; #endif return dataout; } //Correction /* enum correctionFlags { DISCARD_BAD_CHANNELS, AVERAGE_NEIGHBOURS_FOR_BAD_CHANNELS, FLAT_FIELD_CORRECTION, RATE_CORRECTION, ANGULAR_CONVERSION } */ int slsDetector::setFlatFieldCorrection(string fname){ float data[thisDetector->nModMax[X]*thisDetector->nModMax[Y]*thisDetector->nChans*thisDetector->nChips]; //float err[thisDetector->nModMax[X]*thisDetector->nModMax[Y]*thisDetector->nChans*thisDetector->nChips]; float xmed[thisDetector->nModMax[X]*thisDetector->nModMax[Y]*thisDetector->nChans*thisDetector->nChips]; int nmed=0; int im=0; int nch; thisDetector->nBadFF=0; char ffffname[MAX_STR_LENGTH*2]; if (fname=="") { #ifdef VERBOSE std::cout<< "disabling flat field correction" << std::endl; #endif thisDetector->correctionMask&=~(1<flatFieldFile,"none"); } else { #ifdef VERBOSE std::cout<< "Setting flat field correction from file " << fname << std::endl; #endif sprintf(ffffname,"%s/%s",thisDetector->flatFieldDir,fname.c_str()); nch=readDataFile(string(ffffname),data); if (nch>0) { strcpy(thisDetector->flatFieldFile,fname.c_str()); for (int ichan=0; ichan0) { /* add to median */ im=0; while ((imim; i--) xmed[i]=xmed[i-1]; xmed[im]=data[ichan]; nmed++; } else { //add the channel to the ff bad channel list if (thisDetector->nBadFFbadFFList[thisDetector->nBadFF]=ichan; (thisDetector->nBadFF)++; #ifdef VERBOSE std::cout<< "Channel " << ichan << " added to the bad channel list" << std::endl; #endif } else std::cout<< "Too many bad channels " << std::endl; } } if (nmed>1 && xmed[nmed/2]>0) { #ifdef VERBOSE std::cout<< "Flat field median is " << xmed[nmed/2] << " calculated using "<< nmed << " points" << std::endl; #endif thisDetector->correctionMask|=(1<0) { ffcoefficients[ichan]=xmed[nmed/2]/data[ichan]; fferrors[ichan]=ffcoefficients[ichan]*sqrt(data[ichan])/data[ichan]; } else { ffcoefficients[ichan]=0.; fferrors[ichan]=1.; } } for (int ichan=nch; ichannMod[X]*thisDetector->nMod[Y]*thisDetector->nChans*thisDetector->nChips; ichan++) { ffcoefficients[ichan]=1.; fferrors[ichan]=0.; } fillBadChannelMask(); } else { std::cout<< "Flat field data from file " << fname << " are not valid (" << nmed << "///" << xmed[nmed/2] << std::endl; return -1; } } else { std::cout<< "Flat field from file " << fname << " is not valid " << nch << std::endl; return -1; } } return thisDetector->correctionMask&(1<nMod[X]*thisDetector->nChans*thisDetector->nChips; ichan++) { // #ifdef VERBOSE // std::cout<< ichan << " "<< corr[ichan] << std::endl; // #endif ffcoefficients[ichan]=corr[ichan]; if (ecorr!=NULL) fferrors[ichan]=ecorr[ichan]; else fferrors[ichan]=1; } thisDetector->correctionMask|=(1<correctionMask&=~(1<correctionMask&(1<correctionMask&(1<nMod[X]*thisDetector->nMod[Y]*thisDetector->nChans*thisDetector->nChips; ichan++) { corr[ichan]=(ffcoefficients[ichan]*ffcoefficients[ichan])/(fferrors[ichan]*fferrors[ichan]); if (ecorr) { ecorr[ichan]=ffcoefficients[ichan]/fferrors[ichan]; } } } return 1; } else { #ifdef VERBOSE std::cout<< "Flat field correction is disabled" << std::endl; #endif if (corr) for (int ichan=0; ichannMod[X]*thisDetector->nMod[Y]*thisDetector->nChans*thisDetector->nChips; ichan++) { corr[ichan]=1; if (ecorr) ecorr[ichan]=0; } return 0; } } int slsDetector::flatFieldCorrect(float* datain, float *errin, float* dataout, float *errout){ #ifdef VERBOSE std::cout<< "Flat field correcting data" << std::endl; #endif float e, eo; if (thisDetector->correctionMask & (1<nMod[X]*thisDetector->nChans*thisDetector->nChips; ichan++) { if (errin==NULL) { e=0; } else { e=errin[ichan]; } flatFieldCorrect(datain[ichan],e,dataout[ichan],eo,ffcoefficients[ichan],fferrors[ichan]); if (errout) errout[ichan]=eo; // #ifdef VERBOSE // cout << ichan << " " <correctionMask&=~(1<correctionMask|=(1<0) thisDetector->tDead=t; else { if (thisDetector->currentSettings<3 && thisDetector->currentSettings>-1) thisDetector->tDead=tdead[thisDetector->currentSettings]; else thisDetector->tDead=0; } #ifdef VERBOSE std::cout<< "Setting rate correction with dead time "<< thisDetector->tDead << std::endl; #endif } return thisDetector->correctionMask&(1<correctionMask&(1<tDead << std::endl; #endif t=thisDetector->tDead; return 1; } else t=0; #ifdef VERBOSE std::cout<< "Rate correction is disabled " << std::endl; #endif return 0; }; float slsDetector::getRateCorrectionTau(){ if (thisDetector->correctionMask&(1<tDead << std::endl; #endif return thisDetector->tDead; //return 1; } else #ifdef VERBOSE std::cout<< "Rate correction is disabled " << std::endl; #endif return 0; }; int slsDetector::getRateCorrection(){ if (thisDetector->correctionMask&(1<tDead; float t=thisDetector->timerValue[ACQUISITION_TIME]; // float data; float e; if (thisDetector->correctionMask&(1<nMod[X]*thisDetector->nMod[Y]*thisDetector->nChans*thisDetector->nChips; ichan++) { if (errin==NULL) { e=sqrt(datain[ichan]); } else e=errin[ichan]; rateCorrect(datain[ichan], e, dataout[ichan], errout[ichan], tau, t); } } return 0; }; int slsDetector::setBadChannelCorrection(string fname){ if (fname=="default") fname=string(thisDetector->badChanFile); int ret=setBadChannelCorrection(fname, thisDetector->nBadChans, thisDetector->badChansList); if (ret) { thisDetector->correctionMask|=(1<badChanFile,fname.c_str()); } else thisDetector->correctionMask&=~(1<correctionMask&(1<0) { thisDetector->correctionMask|=(1<nBadChans=nch; for (int ich=0 ;ichbadChansList[ich]=chs[ich]; } } else thisDetector->correctionMask&=~(1<0) { thisDetector->nBadFF=nch; for (int ich=0 ;ichbadFFList[ich]=chs[ich]; } } } #ifdef VERBOSE cout << "badchans flag is "<< (thisDetector->correctionMask&(1<< DISCARD_BAD_CHANNELS)) << endl; #endif fillBadChannelMask(); if (thisDetector->correctionMask&(1<< DISCARD_BAD_CHANNELS)) { return thisDetector->nBadChans+thisDetector->nBadFF; } else return 0; } int slsDetector::getBadChannelCorrection(int *bad) { int ichan; if (thisDetector->correctionMask&(1<< DISCARD_BAD_CHANNELS)) { if (bad) { for (ichan=0; ichannBadChans; ichan++) bad[ichan]=thisDetector->badChansList[ichan]; for (int ich=0; ichnBadFF; ich++) bad[ichan+ich]=thisDetector->badFFList[ich]; } return thisDetector->nBadChans+thisDetector->nBadFF; } else return 0; } int slsDetector::exitServer(){ int retval; int fnum=F_EXIT_SERVER; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { controlSocket->Connect(); controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); controlSocket->Disconnect(); } } if (retval!=OK) { std::cout<< std::endl; std::cout<< "Shutting down the server" << std::endl; std::cout<< std::endl; } return retval; }; char* slsDetector::setNetworkParameter(networkParameter index, string value) { switch (index) { case CLIENT_IP: return setClientIP(value); break; case CLIENT_MAC: return setClientMAC(value); break; case SERVER_MAC: return setServerMAC(value); break; default: return ("unknown network parameter"); } } char* slsDetector::getNetworkParameter(networkParameter index) { switch (index) { case CLIENT_IP: return getClientIP(); break; case CLIENT_MAC: return getClientMAC(); break; case SERVER_MAC: return getServerMAC(); break; default: return ("unknown network parameter"); } } char* slsDetector::setClientIP(string clientIP){ int wrongFormat=1; struct sockaddr_in sa; if(clientIP.length()<16){ if((clientIP[3]=='.')&&(clientIP[7]=='.')&&(clientIP[11]=='.')){ int result = inet_pton(AF_INET, clientIP.c_str(), &(sa.sin_addr)); if(result!=0){ sprintf(thisDetector->clientIP,clientIP.c_str()); wrongFormat=0; } } } if(!wrongFormat) return thisDetector->clientIP; else return ("IP Address should be VALID and in xxx.xxx.xxx.xxx format"); } char* slsDetector::setClientMAC(string clientMAC){ if(clientMAC.length()==17){ if((clientMAC[2]==':')&&(clientMAC[5]==':')&&(clientMAC[8]==':')&& (clientMAC[11]==':')&&(clientMAC[14]==':')) sprintf(thisDetector->clientMAC,clientMAC.c_str()); else return("MAC Address should be in xx:xx:xx:xx:xx:xx format"); } else return("MAC Address should be in xx:xx:xx:xx:xx:xx format"); return thisDetector->clientMAC; }; char* slsDetector::setServerMAC(string serverMAC){ if(serverMAC.length()==17){ if((serverMAC[2]==':')&&(serverMAC[5]==':')&&(serverMAC[8]==':')&& (serverMAC[11]==':')&&(serverMAC[14]==':')) sprintf(thisDetector->serverMAC,serverMAC.c_str()); else return("server MAC Address should be in xx:xx:xx:xx:xx:xx format"); } else return("server MAC Address should be in xx:xx:xx:xx:xx:xx format"); return thisDetector->serverMAC; }; int slsDetector::configureMAC(){ int retval,i; int ret=FAIL; int fnum=F_CONFIGURE_MAC; char mess[100]; char arg[3][50]; char cword[50]="", *pcword; string sword; strcpy(arg[0],getClientIP()); strcpy(arg[1],getClientMAC()); strcpy(arg[2],getServerMAC()); #ifdef VERBOSE std::cout<< "slsDetector configureMAC "<< std::endl; #endif for(i=0;i<3;i++){ if(!strcmp(arg[i],"none")) return -1; } #ifdef VERBOSE std::cout<< "IP/MAC Addresses in valid format "<< std::endl; #endif //converting IPaddress to hex. pcword = strtok (arg[0],"."); while (pcword != NULL) { sprintf(arg[0],"%02x",atoi(pcword)); strcat(cword,arg[0]); pcword = strtok (NULL, "."); } strcpy(arg[0],cword); std::cout<<"arg0:"<onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(arg,sizeof(arg)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } #ifdef VERBOSE std::cout<< "Configuring MAC - returned "<< retval << std::endl; #endif if (ret==FAIL) { std::cout<< "Configuring MAC failed " << std::endl; } return retval; } //Corrections int slsDetector::setAngularConversion(string fname) { if (fname=="") { thisDetector->correctionMask&=~(1<< ANGULAR_CONVERSION); //strcpy(thisDetector->angConvFile,"none"); #ifdef VERBOSE std::cout << "Unsetting angular conversion" << std::endl; #endif } else { if (fname=="default") { fname=string(thisDetector->angConvFile); } #ifdef VERBOSE std::cout << "Setting angular conversion to" << fname << std:: endl; #endif if (readAngularConversion(fname)>=0) { thisDetector->correctionMask|=(1<< ANGULAR_CONVERSION); strcpy(thisDetector->angConvFile,fname.c_str()); } } return thisDetector->correctionMask&(1<< ANGULAR_CONVERSION); } int slsDetector::getAngularConversion(int &direction, angleConversionConstant *angconv) { direction=thisDetector->angDirection; if (angconv) { for (int imod=0; imodnMods; imod++) { (angconv+imod)->center=thisDetector->angOff[imod].center; (angconv+imod)->r_conversion=thisDetector->angOff[imod].r_conversion; (angconv+imod)->offset=thisDetector->angOff[imod].offset; (angconv+imod)->ecenter=thisDetector->angOff[imod].ecenter; (angconv+imod)->er_conversion=thisDetector->angOff[imod].er_conversion; (angconv+imod)->eoffset=thisDetector->angOff[imod].eoffset; } } if (thisDetector->correctionMask&(1<< ANGULAR_CONVERSION)) { return 1; } else { return 0; } } int slsDetector::readAngularConversion(string fname) { return readAngularConversion(fname,thisDetector->nModsMax, thisDetector->angOff); } int slsDetector::readAngularConversion(ifstream& ifs) { return readAngularConversion(ifs,thisDetector->nModsMax, thisDetector->angOff); } float* slsDetector::convertAngles(float pos) { int imod; float *ang=new float[thisDetector->nChans*thisDetector->nChips*thisDetector->nMods]; for (int ip=0; ipnChans*thisDetector->nChips*thisDetector->nMods; ip++) { imod=ip/(thisDetector->nChans*thisDetector->nChips); ang[ip]=angle(ip%(thisDetector->nChans*thisDetector->nChips),\ pos, \ thisDetector->fineOffset+thisDetector->globalOffset, \ thisDetector->angOff[imod].r_conversion, \ thisDetector->angOff[imod].center, \ thisDetector->angOff[imod].offset, \ thisDetector->angOff[imod].tilt, \ thisDetector->angDirection ); // cout << imod << " " << thisDetector->angOff[imod].offset << " " << ang[ip] << endl; } return ang; } int slsDetector:: writeAngularConversion(string fname) { return writeAngularConversion(fname, thisDetector->nMods, thisDetector->angOff); } int slsDetector:: writeAngularConversion(ofstream &ofs) { return writeAngularConversion(ofs, thisDetector->nMods, thisDetector->angOff); } int slsDetector::loadImageToDetector(imageType index,string const fname){ int ret=FAIL; short int arg[thisDetector->nChans*thisDetector->nChips]; #ifdef VERBOSE std::cout<< std::endl<< "Loading "; if(!index) std::cout<<"Dark"; else std::cout<<"Gain"; std::cout<<" image from file " << fname << std::endl; #endif if(readDataFile(fname,arg)){ ret = sendImageToDetector(index,arg); return ret; } std::cout<< "Could not open file "<< fname << std::endl; return ret; } int slsDetector::sendImageToDetector(imageType index,short int imageVals[]){ int ret=FAIL; int retval; int fnum=F_LOAD_IMAGE; char mess[100]; #ifdef VERBOSE std::cout<<"Sending image to detector " <onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&index,sizeof(index)); controlSocket->SendDataOnly(imageVals,thisDetector->dataBytes); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return ret; } int slsDetector::readConfigurationFile(string const fname){ string ans; string str; ifstream infile; // int iargval; // int interrupt=0; char *args[100]; for (int ia=0; ia<100; ia++) { args[ia]=new char[1000]; } string sargname, sargval; int iline=0; #ifdef VERBOSE std::cout<< "config file name "<< fname << std::endl; #endif infile.open(fname.c_str(), ios_base::in); if (infile.is_open()) { iline=readConfigurationFile(infile); infile.close(); } else { std::cout<< "Error opening configuration file " << fname << " for reading" << std::endl; return FAIL; } #ifdef VERBOSE std::cout<< "Read configuration file of " << iline << " lines" << std::endl; #endif return iline; } int slsDetector::readConfigurationFile(ifstream &infile){ slsDetectorCommand *cmd=new slsDetectorCommand(this); string ans; string str; int iargval; int interrupt=0; char *args[100]; for (int ia=0; ia<100; ia++) { args[ia]=new char[1000]; } string sargname, sargval; int iline=0; while (infile.good() and interrupt==0) { sargname="none"; sargval="0"; getline(infile,str); iline++; #ifdef VERBOSE std::cout<< str << std::endl; #endif if (str.find('#')!=string::npos) { #ifdef VERBOSE std::cout<< "Line is a comment " << std::endl; std::cout<< str << std::endl; #endif continue; } else if (str.length()<2) { #ifdef VERBOSE std::cout<< "Empty line " << std::endl; #endif continue; } else { istringstream ssstr(str); iargval=0; while (ssstr.good()) { ssstr >> sargname; //if (ssstr.good()) { #ifdef VERBOSE std::cout<< iargval << " " << sargname << std::endl; #endif strcpy(args[iargval],sargname.c_str()); iargval++; //} } ans=cmd->executeLine(iargval,args,PUT_ACTION); #ifdef VERBOSE std::cout<< ans << std::endl; #endif } iline++; } delete cmd; return iline; } int slsDetector::writeConfigurationFile(string const fname){ ofstream outfile; int ret; outfile.open(fname.c_str(),ios_base::out); if (outfile.is_open()) { ret=writeConfigurationFile(outfile); outfile.close(); } else { std::cout<< "Error opening configuration file " << fname << " for writing" << std::endl; return FAIL; } #ifdef VERBOSE std::cout<< "wrote " <myDetectorType) { case GOTTHARD: names[6]="outdir"; names[7]="clientip"; names[8]="clientmac"; names[9]="servermac"; nvar=10; break; default: nvar=22; } int iv=0; char *args[100]; for (int ia=0; ia<100; ia++) { args[ia]=new char[1000]; } for (iv=0; ivexecuteLine(1,args,GET_ACTION) << std::endl; } delete cmd; return iv; } /* It should be possible to dump all the settings of the detector (including trimbits, threshold energy, gating/triggering, acquisition time etc. in a file and retrieve it for repeating the measurement with identicals settings, if necessary */ int slsDetector::dumpDetectorSetup(string const fname, int level){ slsDetectorCommand *cmd=new slsDetectorCommand(this); string names[]={ "fname",\ "index",\ "flags",\ "dr",\ "settings",\ "threshold",\ "exptime",\ "period",\ "delay",\ "gates",\ "frames",\ "cycles",\ "probes",\ "timing",\ "fineoff",\ "ratecorr",\ "startscript",\ "startscriptpar",\ "stopscript",\ "stopscriptpar",\ "scriptbefore",\ "scriptbeforepar",\ "scriptafter",\ "scriptafterpar",\ "headerbefore",\ "headerbeforepar",\ "headerafter",\ "headerafterpar",\ "scan0script",\ "scan0par",\ "scan0prec",\ "scan0steps",\ "scan1script",\ "scan1par",\ "scan1prec",\ "scan1steps",\ "flatfield",\ "badchannels",\ "angconv",\ "trimbits",\ "extsig" }; int nvar=41; int iv=0; string fname1; ofstream outfile; char *args[2]; for (int ia=0; ia<2; ia++) { args[ia]=new char[1000]; } int nargs; if (level==2) nargs=2; else nargs=1; if (level==2) { fname1=fname+string(".config"); writeConfigurationFile(fname1); fname1=fname+string(".det"); } else fname1=fname; outfile.open(fname1.c_str(),ios_base::out); if (outfile.is_open()) { for (iv=0; ivexecuteLine(1,args,GET_ACTION) << std::endl; } strcpy(args[0],names[iv].c_str()); if (level==2) { fname1=fname+string(".ff"); strcpy(args[1],fname1.c_str()); } outfile << names[iv] << " " << cmd->executeLine(nargs,args,GET_ACTION) << std::endl; iv++; strcpy(args[0],names[iv].c_str()); if (level==2) { fname1=fname+string(".bad"); strcpy(args[1],fname1.c_str()); } outfile << names[iv] << " " << cmd->executeLine(nargs,args,GET_ACTION) << std::endl; iv++; strcpy(args[0],names[iv].c_str()); if (level==2) { fname1=fname+string(".angoff"); strcpy(args[1],fname1.c_str()); } outfile << names[iv] << " " << cmd->executeLine(nargs,args,GET_ACTION) << std::endl; iv++; strcpy(args[0],names[iv].c_str()); if (level==2) { size_t c=fname.rfind('/'); if (cexecuteLine(nargs,args,GET_ACTION) << std::endl; iv++; for (int is=0; is<4; is++) { sprintf(args[0],"%s:%d",names[iv].c_str(),is); outfile << args[0] << " " << cmd->executeLine(1,args,GET_ACTION) << std::endl; } iv++; outfile.close(); } else { std::cout<< "Error opening parameters file " << fname1 << " for writing" << std::endl; return FAIL; } #ifdef VERBOSE std::cout<< "wrote " <> sargname; // if (ssstr.good()) { strcpy(args[iargval],sargname.c_str()); #ifdef VERBOSE std::cout<< args[iargval] << std::endl; #endif iargval++; // } } if (level==2) { ; cmd->executeLine(iargval,args,PUT_ACTION); } else { if (string(args[0])==string("flatfield")) ; else if (string(args[0])==string("badchannels")) ; else if (string(args[0])==string("angconv")) ; else if (string(args[0])==string("trimbits")) ; else { ; cmd->executeLine(iargval,args,PUT_ACTION); } } } iline++; } infile.close(); } else { std::cout<< "Error opening " << fname << " for reading" << std::endl; return FAIL; } #ifdef VERBOSE std::cout<< "Read " << iline << " lines" << std::endl; #endif delete cmd; return iline; }; /* I/O */ slsDetectorDefs::sls_detector_module* slsDetector::readSettingsFile(string fname, sls_detector_module *myMod){ int nflag=0; if (myMod==NULL) { myMod=createModule(); nflag=1; } string myfname; string str; ifstream infile; ostringstream oss; int iline=0; // string names[]={"Vtrim", "Vthresh", "Rgsh1", "Rgsh2", "Rgpr", "Vcal", "outBuffEnable"}; string sargname; int ival; int ichan=0, ichip=0, idac=0; #ifdef VERBOSE std::cout<< "reading settings file for module number "<< myMod->module << std::endl; #endif myfname=fname; #ifdef VERBOSE std::cout<< "file name is "<< myfname << std::endl; #endif infile.open(myfname.c_str(), ios_base::in); if (infile.is_open()) { switch (thisDetector->myDetectorType) { case MYTHEN: for (int iarg=0; iargnDacs; iarg++) { getline(infile,str); iline++; istringstream ssstr(str); ssstr >> sargname >> ival; #ifdef VERBOSE std::cout<< sargname << " dac nr. " << idac << " is " << ival << std::endl; #endif myMod->dacs[idac]=ival; idac++; } for (ichip=0; ichipnChips; ichip++) { getline(infile,str); iline++; #ifdef VERBOSE // std::cout<< str << std::endl; #endif istringstream ssstr(str); ssstr >> sargname >> ival; #ifdef VERBOSE // std::cout<< "chip " << ichip << " " << sargname << " is " << ival << std::endl; #endif myMod->chipregs[ichip]=ival; for (ichan=0; ichannChans; ichan++) { getline(infile,str); #ifdef VERBOSE // std::cout<< str << std::endl; #endif istringstream ssstr(str); #ifdef VERBOSE // std::cout<< "channel " << ichan+ichip*thisDetector->nChans <<" iline " << iline<< std::endl; #endif iline++; myMod->chanregs[ichip*thisDetector->nChans+ichan]=0; for (int iarg=0; iarg<6 ; iarg++) { ssstr >> ival; //if (ssstr.good()) { switch (iarg) { case 0: #ifdef VERBOSE // std::cout<< "trimbits " << ival ; #endif myMod->chanregs[ichip*thisDetector->nChans+ichan]|=ival&0x3f; break; case 1: #ifdef VERBOSE //std::cout<< " compen " << ival ; #endif myMod->chanregs[ichip*thisDetector->nChans+ichan]|=ival<<9; break; case 2: #ifdef VERBOSE //std::cout<< " anen " << ival ; #endif myMod->chanregs[ichip*thisDetector->nChans+ichan]|=ival<<8; break; case 3: #ifdef VERBOSE //std::cout<< " calen " << ival ; #endif myMod->chanregs[ichip*thisDetector->nChans+ichan]|=ival<<7; break; case 4: #ifdef VERBOSE //std::cout<< " outcomp " << ival ; #endif myMod->chanregs[ichip*thisDetector->nChans+ichan]|=ival<<10; break; case 5: #ifdef VERBOSE //std::cout<< " counts " << ival << std::endl; #endif myMod->chanregs[ichip*thisDetector->nChans+ichan]|=ival<<11; break; default: std::cout<< " too many columns" << std::endl; break; } } } // } } #ifdef VERBOSE std::cout<< "read " << ichan*ichip << " channels" <nDacs; iarg++) { getline(infile,str); iline++; #ifdef VERBOSE std::cout<< str << std::endl; #endif istringstream ssstr(str); ssstr >> sargname >> ival; #ifdef VERBOSE std::cout<< sargname << " dac nr. " << idac << " is " << ival << std::endl; #endif myMod->dacs[idac]=ival; idac++; } break; default: std::cout<< "Unknown detector type - don't know how to read file" << myfname << std::endl; infile.close(); deleteModule(myMod); return NULL; } infile.close(); strcpy(thisDetector->settingsFile,fname.c_str()); return myMod; } else { std::cout<< "could not open settings file " << myfname << std::endl; if (nflag) deleteModule(myMod); return NULL; } }; int slsDetector::writeSettingsFile(string fname, sls_detector_module mod){ ofstream outfile; string names[100]; int id=0; switch (thisDetector->myDetectorType) { case MYTHEN: names[id++]="Vtrim"; names[id++]="Vthresh"; names[id++]="Rgsh1"; names[id++]="Rgsh2"; names[id++]="Rgpr"; names[id++]="Vcal"; names[id++]="outBuffEnable"; break; case GOTTHARD: names[id++]="Vref"; names[id++]="VcascN"; names[id++]="VcascP"; names[id++]="Vout"; names[id++]="Vcasc"; names[id++]="Vin"; names[id++]="Vref_comp"; names[id++]="Vib_test"; names[id++]="config"; names[id++]="HV"; names[id++]="macaddress"; names[id++]="ipaddress"; break; default: cout << "Unknown detector type - unknown format for settings file" << endl; return FAIL; } int iv, ichan, ichip; int iv1, idac; int nb; outfile.open(fname.c_str(), ios_base::out); if (outfile.is_open()) { for (idac=0; idacnChans; ichan++) { iv=mod.chanregs[ichip*thisDetector->nChans+ichan]; iv1= (iv&0x3f); outfile <>nb); outfile << iv1 << " "; nb=8; iv1=((iv&(1<>nb); outfile << iv1 << " "; nb=7; iv1=((iv&(1<>nb); outfile <>nb); outfile << iv1 << " "; nb=11; iv1= ((iv&0xfffff800)>>nb); outfile << iv1 << std::endl; } } outfile.close(); return OK; } else { std::cout<< "could not open SETTINGS file " << fname << std::endl; return FAIL; } }; int slsDetector::writeSettingsFile(string fname, int imod){ return writeSettingsFile(fname,detectorModules[imod]); }; int slsDetector::loadSettingsFile(string fname, int imod) { sls_detector_module *myMod=NULL; string fn; fn=fname; int mmin=0, mmax=setNumberOfModules(); if (imod>=0) { mmin=imod; mmax=imod+1; } for (int im=mmin; immodule=im; setModule(*myMod); deleteModule(myMod); } else return FAIL; } return OK; } int slsDetector::saveSettingsFile(string fname, int imod) { sls_detector_module *myMod=NULL; int ret=FAIL; int mmin=0, mmax=setNumberOfModules(); if (imod>=0) { mmin=imod; mmax=imod+1; } for (int im=mmin; imonlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&flag,sizeof(flag)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } #ifdef VERBOSE std::cout<< "Master flag set to "<< retval << std::endl; #endif return retval; } /* Sets/gets the synchronization mode of the various detectors \param sync syncronization mode can be GET_SYNCHRONIZATION_MODE, NO_SYNCHRONIZATION, MASTER_GATES, MASTER_TRIGGERS, SLAVE_STARTS_WHEN_MASTER_STOPS \returns current syncronization mode */ slsDetectorDefs::synchronizationMode slsDetector::setSynchronization(synchronizationMode flag) { int fnum=F_SET_SYNCHRONIZATION_MODE; synchronizationMode retval=GET_SYNCHRONIZATION_MODE; char mess[100]; int ret=OK; #ifdef VERBOSE std::cout<< "Setting synchronization mode to "<< flag << std::endl; #endif if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&flag,sizeof(flag)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL) { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } else { controlSocket->ReceiveDataOnly(&retval,sizeof(retval)); } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } #ifdef VERBOSE std::cout<< "Readout flag set to "<< retval << std::endl; #endif return retval; } int slsDetector::getCounterBlock(short int arg[],int startACQ){ int ret=FAIL; int fnum=F_READ_COUNTER_BLOCK; char mess[100]; if (thisDetector->onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&startACQ,sizeof(startACQ)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret!=FAIL) controlSocket->ReceiveDataOnly(arg,thisDetector->dataBytes); else { controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return ret; } int slsDetector::writeCounterBlockFile(string const fname,int startACQ){ int ret=FAIL; short int counterVals[thisDetector->nChans*thisDetector->nChips]; #ifdef VERBOSE std::cout<< std::endl<< "Reading Counter to \""<onlineFlag==ONLINE_FLAG) { if (controlSocket) { if (controlSocket->Connect()>=0) { controlSocket->SendDataOnly(&fnum,sizeof(fnum)); controlSocket->SendDataOnly(&startACQ,sizeof(startACQ)); controlSocket->ReceiveDataOnly(&ret,sizeof(ret)); if (ret==FAIL){ controlSocket->ReceiveDataOnly(mess,sizeof(mess)); std::cout<< "Detector returned error: " << mess << std::endl; } controlSocket->Disconnect(); if (ret==FORCE_UPDATE) updateDetector(); } } } return ret; }