Compare commits

..

14 Commits

Author SHA1 Message Date
84f2560f13 eiger server 2021-03-15 15:16:18 +01:00
bdeb030fea Better way of finding libzmq (#235)
* new strategy for finding zmq based on cppzmq
2021-03-15 15:03:45 +01:00
435146ca9c notes 2021-03-09 13:35:17 +01:00
39926497b2 bugfix for bottom when setting quad 2021-03-09 08:00:21 +01:00
14cd8c5d4a version 2021-03-01 21:21:40 +01:00
09bd91028c m3 server 2021-03-01 21:00:29 +01:00
209a228f74 m3 fw version 2021-03-01 20:57:43 +01:00
d500f62852 fix for m3 scan with single module 2021-03-01 20:51:32 +01:00
e5c33cf04f servers in 2021-02-26 19:46:32 +01:00
5612eabfb1 gotthard 2021-02-26 16:12:26 +01:00
6fc93beee1 gotthard2 2021-02-26 16:10:41 +01:00
638ef57082 eiger server 2021-02-26 16:06:34 +01:00
da8bbc97d4 m3 server 2021-02-26 15:19:38 +01:00
1ae8c5e464 version and jf server added 2021-02-26 15:11:58 +01:00
880 changed files with 40374 additions and 129152 deletions

View File

@ -18,9 +18,7 @@ Checks: '*,
-google-readability-todo,
-google-readability-braces-around-statements,
-modernize-use-trailing-return-type,
-readability-isolate-declaration,
-readability-implicit-bool-conversion,
-llvmlibc-*'
-readability-isolate-declaration'
HeaderFilterRegex: \.h
AnalyzeTemporaryDtors: false

3
.gitmodules vendored
View File

@ -0,0 +1,3 @@
[submodule "python/pybind11"]
path = libs/pybind11
url = https://github.com/pybind/pybind11.git

180
CMakeLists.txt Normal file → Executable file
View File

@ -1,15 +1,13 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
cmake_minimum_required(VERSION 3.12)
project(slsDetectorPackage)
set(PROJECT_VERSION 7.0.1)
set(PROJECT_VERSION 5.1.0)
include(CheckIPOSupported)
set(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG")
cmake_policy(SET CMP0074 NEW)
include(cmake/project_version.cmake)
include(cmake/SlsAddFlag.cmake)
include(cmake/SlsFindZeroMQ.cmake)
# Include additional modules that are used unconditionally
include(GNUInstallDirs)
# If conda build, always set lib dir to 'lib'
@ -23,7 +21,7 @@ string(TOLOWER "${PROJECT_NAME}" PROJECT_NAME_LOWER)
# Set targets export name (used by slsDetectorPackage and dependencies)
set(TARGETS_EXPORT_NAME "${PROJECT_NAME_LOWER}-targets")
set(namespace "sls::")
#set(namespace "${PROJECT_NAME}::")
set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
@ -34,21 +32,15 @@ if (CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
set(SLS_MASTER_PROJECT ON)
endif()
option (SLS_USE_HDF5 "HDF5 File format" OFF)
option(SLS_BUILD_SHARED_LIBRARIES "Build shared libaries" ON)
option (SLS_USE_TEXTCLIENT "Text Client" ON)
option(SLS_USE_DETECTOR "Detector libs" ON)
option (SLS_USE_RECEIVER "Receiver" ON)
option(SLS_USE_RECEIVER_BINARIES "Receiver binaries" ON)
option (SLS_USE_GUI "GUI" OFF)
option (SLS_USE_SIMULATOR "Simulator" OFF)
option (SLS_USE_TESTS "TESTS" OFF)
option (SLS_USE_INTEGRATION_TESTS "Integration Tests" OFF)
option(SLS_USE_SANITIZER "Sanitizers for debugging" OFF)
option(SLS_USE_PYTHON "Python bindings" OFF)
option(SLS_INSTALL_PYTHONEXT "Install the python extension in the install tree under CMAKE_INSTALL_PREFIX/python/" OFF)
option(SLS_USE_CTBGUI "ctb GUI" OFF)
option(SLS_BUILD_DOCS "docs" OFF)
option(SLS_BUILD_EXAMPLES "examples" OFF)
@ -56,35 +48,7 @@ option(SLS_TUNE_LOCAL "tune to local machine" OFF)
option(SLS_DEVEL_HEADERS "install headers for devel" OFF)
option(SLS_USE_MOENCH "compile zmq and post processing for Moench" OFF)
#Convenience option to switch off defaults when building Moench binaries only
option(SLS_BUILD_ONLY_MOENCH "compile only Moench" OFF)
if(SLS_BUILD_ONLY_MOENCH)
message(STATUS "Build MOENCH binaries only!")
set(SLS_BUILD_SHARED_LIBRARIES OFF CACHE BOOL "Disabled for MOENCH_ONLY" FORCE)
set(SLS_USE_TEXTCLIENT OFF CACHE BOOL "Disabled for MOENCH_ONLY" FORCE)
set(SLS_USE_DETECTOR OFF CACHE BOOL "Disabled for MOENCH_ONLY" FORCE)
set(SLS_USE_RECEIVER OFF CACHE BOOL "Disabled for MOENCH_ONLY" FORCE)
set(SLS_USE_RECEIVER_BINARIES OFF CACHE BOOL "Disabled for MOENCH_ONLY" FORCE)
set(SLS_USE_MOENCH ON CACHE BOOL "Enable" FORCE)
endif()
option(SLS_EXT_BUILD "external build of part of the project" OFF)
if(SLS_EXT_BUILD)
message(STATUS "External build using already installed libraries")
set(SLS_BUILD_SHARED_LIBRARIES OFF CACHE BOOL "Should already exist" FORCE)
set(SLS_USE_TEXTCLIENT OFF CACHE BOOL "Should already exist" FORCE)
set(SLS_USE_DETECTOR OFF CACHE BOOL "Should already exist" FORCE)
set(SLS_USE_RECEIVER OFF CACHE BOOL "Should already exist" FORCE)
set(SLS_USE_RECEIVER_BINARIES OFF CACHE BOOL "Should already exist" FORCE)
set(SLS_MASTER_PROJECT OFF CACHE BOOL "No master proj in case of extbuild" FORCE)
endif()
#Maybe have an option guarding this?
set(SLS_INTERNAL_RAPIDJSON_DIR ${CMAKE_CURRENT_SOURCE_DIR}/libs/rapidjson)
set(SLS_INTERNAL_QWT_DIR ${CMAKE_CURRENT_SOURCE_DIR}/libs/qwt-6.1.5)
# set(ClangFormat_BIN_NAME clang-format)
set(ClangFormat_EXCLUDE_PATTERNS "build/"
"libs/"
"slsDetectorCalibration/"
@ -95,6 +59,11 @@ set(ClangFormat_EXCLUDE_PATTERNS "build/"
${CMAKE_BINARY_DIR})
find_package(ClangFormat)
#Enable LTO if available
check_ipo_supported(RESULT SLS_LTO_AVAILABLE)
message(STATUS "SLS_LTO_AVAILABLE:" ${SLS_LTO_AVAILABLE})
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
@ -103,36 +72,14 @@ if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
endif()
#Enable LTO if available
include(CheckIPOSupported)
check_ipo_supported(RESULT SLS_LTO_AVAILABLE)
if((CMAKE_BUILD_TYPE STREQUAL "Release") AND SLS_LTO_AVAILABLE)
message(STATUS "Building with link time optimization")
else()
message(STATUS "Building without link time optimization")
endif()
if(SLS_EXT_BUILD)
# Find ourself in case of external build
find_package(slsDetectorPackage ${PROJECT_VERSION} REQUIRED)
endif()
# slsProjectOptions and slsProjectWarnings are used
# to control options for the libraries
if(NOT TARGET slsProjectOptions)
#Add two fake libraries to manage options
add_library(slsProjectOptions INTERFACE)
target_compile_features(slsProjectOptions INTERFACE cxx_std_11)
endif()
if (NOT TARGET slsProjectWarnings)
add_library(slsProjectWarnings INTERFACE)
target_compile_features(slsProjectOptions INTERFACE cxx_std_11)
target_compile_options(slsProjectWarnings INTERFACE
-Wall
-Wextra
-Wno-unused-parameter
-Wno-unused-parameter #Needs to be slowly mitigated
# -Wold-style-cast
-Wnon-virtual-dtor
-Woverloaded-virtual
@ -143,37 +90,38 @@ if (NOT TARGET slsProjectWarnings)
-Wvla
-Wdouble-promotion
-Werror=return-type
)
# Add or disable warnings depending on if the compiler supports them
# The function checks internally and sets HAS_warning-name
sls_enable_cxx_warning("-Wnull-dereference")
sls_enable_cxx_warning("-Wduplicated-cond")
sls_disable_cxx_warning("-Wclass-memaccess")
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 5 AND "${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
)
#Testing for minimum version for compilers
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 3.2)
message(FATAL_ERROR "Clang version must be at least 3.2!")
endif()
target_compile_options(slsProjectWarnings INTERFACE -Wshadow) #Clag does not warn on constructor
elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.8)
message(FATAL_ERROR "GCC version must be at least 4.8!")
endif()
if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 5)
target_compile_options(slsProjectWarnings INTERFACE
-Wno-missing-field-initializers)
endif()
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 6.0)
target_compile_options(slsProjectWarnings INTERFACE
-Wno-misleading-indentation # mostly in rapidjson remove using clang format
-Wduplicated-cond
-Wnull-dereference )
endif()
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 8.0)
target_compile_options(slsProjectWarnings INTERFACE
-Wno-class-memaccess )
if (NOT TARGET slsProjectCSettings)
#Settings for C code
add_library(slsProjectCSettings INTERFACE)
target_compile_options(slsProjectCSettings INTERFACE
-std=gnu99 #fixed
-Wall
-Wextra
-Wno-unused-parameter
-Wdouble-promotion
-Wformat=2
-Wredundant-decls
-Wdouble-promotion
-Werror=return-type
)
sls_disable_c_warning("-Wstringop-truncation")
endif()
endif()
@ -189,22 +137,47 @@ if(SLS_TUNE_LOCAL)
endif()
if(SLS_MASTER_PROJECT)
install(TARGETS slsProjectOptions slsProjectWarnings
#rapidjson
add_library(rapidjson INTERFACE)
target_include_directories(rapidjson INTERFACE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/libs/rapidjson>
)
# Install fake the libraries
install(TARGETS slsProjectOptions slsProjectWarnings rapidjson
EXPORT "${TARGETS_EXPORT_NAME}"
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
endif()
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(CMAKE_INSTALL_RPATH $ORIGIN)
# set(CMAKE_BUILD_WITH_INSTALL_RPATH TRUE)
set(CMAKE_BUILD_WITH_INSTALL_RPATH FALSE)
custom_find_zmq()
#From: https://github.com/zeromq/cppzmq/
if (NOT TARGET libzmq)
find_package(ZeroMQ 4 QUIET)
# libzmq autotools install: fallback to pkg-config
if(NOT ZeroMQ_FOUND)
message(STATUS "CMake libzmq package not found, trying again with pkg-config (normal install of zeromq)")
list (APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_LIST_DIR}/libzmq-pkg-config)
find_package(ZeroMQ 4 REQUIRED)
endif()
# TODO "REQUIRED" above should already cause a fatal failure if not found, but this doesn't seem to work
if(NOT ZeroMQ_FOUND)
message(FATAL_ERROR "ZeroMQ was not found, neither as a CMake package nor via pkg-config")
endif()
if (ZeroMQ_FOUND AND NOT TARGET libzmq)
message(FATAL_ERROR "ZeroMQ version not supported!")
endif()
endif()
if (SLS_USE_TESTS)
enable_testing()
@ -212,20 +185,20 @@ if (SLS_USE_TESTS)
endif(SLS_USE_TESTS)
if(NOT SLS_EXT_BUILD)
add_subdirectory(slsSupportLib)
endif()
if (SLS_USE_DETECTOR OR SLS_USE_TEXTCLIENT)
# Common functionallity to detector and receiver
add_subdirectory(slsSupportLib)
if (SLS_USE_TEXTCLIENT)
add_subdirectory(slsDetectorSoftware)
endif ()
endif (SLS_USE_TEXTCLIENT)
if (SLS_USE_RECEIVER)
add_subdirectory(slsReceiverSoftware)
endif (SLS_USE_RECEIVER)
if (SLS_USE_GUI)
add_subdirectory(libs/qwt)
add_subdirectory(slsDetectorGui)
endif (SLS_USE_GUI)
@ -239,7 +212,7 @@ endif (SLS_USE_INTEGRATION_TESTS)
if (SLS_USE_PYTHON)
find_package (Python 3.6 COMPONENTS Interpreter Development)
add_subdirectory(libs/pybind ${CMAKE_BINARY_DIR}/bin/)
add_subdirectory(libs/pybind11)
add_subdirectory(python)
endif(SLS_USE_PYTHON)
@ -259,13 +232,16 @@ if(SLS_BUILD_DOCS)
add_subdirectory(docs)
endif(SLS_BUILD_DOCS)
if(SLS_USE_MOENCH)
add_subdirectory(slsDetectorCalibration/tiffio)
add_subdirectory(slsDetectorCalibration/moenchExecutables)
endif(SLS_USE_MOENCH)
if(SLS_MASTER_PROJECT)
# Set install dir CMake packages
set(CMAKE_INSTALL_DIR "share/cmake/${PROJECT_NAME}")
# Set the list of exported targets
set(PROJECT_LIBRARIES slsSupportShared slsDetectorShared slsReceiverShared)
# Generate and install package config file and version
include(cmake/package_config.cmake)
endif()

17
COPYING
View File

@ -1,17 +0,0 @@
The SLS Detector Package is provided under:
SPDX-License-Identifier: LGPL-3.0-or-later
Being under the terms of the GNU Lesser General Public License version 3 or later,
according with:
LICENSES/LGPL-3.0
Source code under the Apache 2.0 License have the SPDX Identifier and are
according with:
LICENSES/ThirdParty/Apache-2.0
All contributions to the SLS Detector Package are subject to this COPYING file.

View File

@ -1,688 +0,0 @@
Valid-License-Identifier: GPL-3.0
Valid-License-Identifier: GPL-3.0+
SPDX-URL: https://spdx.org/licenses/GPL-3.0-or-later.html
Usage-Guide:
To use this license in source code, put one of the following SPDX
tag/value pairs into a comment according to the placement
guidelines in the licensing rules documentation.
For 'GNU Library General Public License (LGPL) version 3.0 only' use:
SPDX-License-Identifier: GPL-3.0
For 'GNU Library General Public License (LGPL) version 3.0 or any later
version' use:
SPDX-License-Identifier: GPL-3.0-or-later
License-Text:
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@ -1,179 +0,0 @@
Valid-License-Identifier: LGPL-3.0
Valid-License-Identifier: LGPL-3.0+
SPDX-URL: https://spdx.org/licenses/LGPL-3.0-or-later.html
Usage-Guide:
To use this license in source code, put one of the following SPDX
tag/value pairs into a comment according to the placement
guidelines in the licensing rules documentation.
For 'GNU Library General Public License (LGPL) version 3.0 only' use:
SPDX-License-Identifier: LGPL-3.0
For 'GNU Library General Public License (LGPL) version 3.0 or any later
version' use:
SPDX-License-Identifier: LGPL-3.0-or-later
License-Text:
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

View File

@ -1,210 +0,0 @@
Valid-License-Identifier: Apache-2.0
SPDX-URL: https://spdx.org/licenses/Apache-2.0.html
Usage-Guide:
To use this license in source code, put one of the following SPDX
tag/value pairs into a comment according to the placement
guidelines in the licensing rules documentation.
SPDX-License-Identifier: Apache-2.0
License-Text:
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

245
README.md
View File

@ -1,233 +1,92 @@
## Dependencies
Before building from source make sure that you have the [software wiki](https://slsdetectorgroup.github.io/devdoc/dependencies.html) installed. If installing using conda, conda will manage the dependencies. Avoid also installing packages with pip.
### Note
## Documentaion
Detailed documentation can be found in the [software wiki](https://slsdetectorgroup.github.io/devdoc/index.html) and on the [official site](https://www.psi.ch/en/detectors/software).
Please do not update to any xxxx.xx.xx.dev0 tags. They are not releases, but tags for internal usage.
Use only releases with tags such as x.x.x or x.x.x-rcx.
## Installation
### 1. Install binaries using conda
Conda is not only useful to manage python environments but can also
be used as a user space package manager. Dates in the tag (for eg. 2020.07.23.dev0)
are from the developer branch. Please use released tags for stability.
We have three different packages available:
* **slsdetlib** shared libraries and command line utilities
* **slsdetgui** GUI
* **slsdet** Python bindings
### Documentation
Detailed documentation on the latest release of 5.0.0 can be found in the [software wiki](https://slsdetectorgroup.github.io/devdoc/index.html) and on the [official site](https://www.psi.ch/en/detectors/software).
### Binaries
Binaries for the slsDetectorPackage are available through conda.
```
#Add channels for dependencies and our library
#Add conda channels
conda config --add channels conda-forge
conda config --add channels slsdetectorgroup
conda config --set channel_priority strict
#create and activate an environment with our library
#replace 6.1.1 with the required tag
conda create -n myenv slsdetlib=6.1.1
conda activate myenv
conda install slsdetlib #only shared lib and command line
conda install slsdet #python bindings (includes slsdetlib)
conda install slsdetgui #gui (includes qt4)
#ready to use
sls_detector_get exptime
etc ...
```
#Install specific version
conda install slsdet=2020.03.02.dev0 #developer version from 3 March 2020
```
# List available versions
# lib and binaries
conda search slsdetlib
# python
conda search slsdet
# gui
conda search slsdetgui
### Source code
One can also obtain the source code from this repository and compile.
```
### 2. Build from source
##### 2.1 Download Source Code from github
```
git clone https://github.com/slsdetectorgroup/slsDetectorPackage.git --branch 7.0.0
```
**Pybind for Python**<br>
* **v7.0.0+**:
pybind11 packaged into 'libs/pybind'. No longer a submodule. No need for "recursive" or "submodule update".
* **Older versions**:
pybind11 is a submodule. Must be cloned using "recursive" and updated when switching between versions using the following commands.
git clone https://github.com/slsdetectorgroup/slsDetectorPackage.git
```
# clone using recursive to get pybind11 submodule
git clone --recursive https://github.com/slsdetectorgroup/slsDetectorPackage.git
#### Dependencies
# update submodule when switching between releases
cd slsDetectorPackage
git submodule update --init
```
##### 2.2 Build from source
Refer [this page](https://slsdetectorgroup.github.io/devdoc/dependencies.html) for dependencies.
###### Build using CMake
#### Compilation
```
# outside slsDetecorPackage folder
mkdir build && cd build
Compiling can be done in two ways. Either with the convenience script
cmk.sh or directly with cmake for more control.
# configure & generate Makefiles using cmake
# by listing all your options (alternately use ccmake described below)
# cmake3 for some systems
cmake ../slsDetectorPackage -DCMAKE_INSTALL_PREFIX=/your/install/path
# compiled to the build/bin directory
make -j12 #or whatever number of cores you are using to build
# install headers and libs in /your/install/path directory
make install
```
Instead of the cmake command, one can use ccmake to get a list of options to configure and generate Makefiles at ease.
```
# ccmake3 for some systems
ccmake ..
# choose the options
# first press [c] - configure
# then press [g] - generate
```
|Example cmake options|Comment|
|---|---|
| -DSLS_USE_PYTHON=ON | Python |
| -DPython_FIND_VIRTUALENV=ONLY | Python from only the conda environment |
| -DZeroMQ_HINT=/usr/lib64 | Use system zmq instead |
| -DSLS_USE_GUI=ON | GUI |
###### Build using in-built cmk.sh script
**1. Compile using script cmk.sh**<br>
These are mainly aimed at those not familiar with using ccmake and cmake.
```
The binaries are generated in slsDetectorPackage/build/bin directory.
Usage: ./cmk.sh [-b] [-c] [-d <HDF5 directory>] [e] [g] [-h] [i] [-j <Number of threads>]
[-k <CMake command>] [-l <Install directory>] [m] [n] [-p] [-q <Zmq hint directory>]
[r] [s] [t] [u] [z]
Usage: $0 [-c] [-b] [-p] [e] [t] [r] [g] [s] [u] [i] [m] [n] [-h] [z] [-d <HDF5 directory>] [-l Install directory] [-k <CMake command>] [-j <Number of threads>]
-[no option]: only make
-b: Builds/Rebuilds CMake files normal mode
-c: Clean
-d: HDF5 Custom Directory
-e: Debug mode
-g: Build/Rebuilds gui
-b: Builds/Rebuilds CMake files normal mode
-p: Builds/Rebuilds Python API
-h: Builds/Rebuilds Cmake files with HDF5 package
-i: Builds tests
-j: Number of threads to compile through
-d: HDF5 Custom Directory
-k: CMake command
-l: Install directory
-t: Build/Rebuilds only text client
-r: Build/Rebuilds only receiver
-g: Build/Rebuilds only gui
-s: Simulator
-u: Chip Test Gui
-j: Number of threads to compile through
-e: Debug mode
-i: Builds tests
-m: Manuals
-n: Manuals without compiling doxygen (only rst)
-p: Builds/Rebuilds Python API
-q: Zmq hint directory
-r: Build/Rebuilds only receiver
-s: Simulator
-t: Build/Rebuilds only text client
-u: Chip Test Gui
-z: Moench zmq processor
# display all options
# get all options
./cmk.sh -?
# new build and compile in parallel (recommended basic option):
./cmk.sh -cbj5
# new build, python and compile in parallel:
./cmk.sh -cbpj5
#To use the system zmq (/usr/lib64) instead
./cmk.sh -cbj5 -q /usr/lib64
# new build and compile in parallel:
./cmk.sh -bj5
```
###### Build on old distributions
If your linux distribution doesn't come with a C++11 compiler (gcc>4.8) then
it's possible to install a newer gcc using conda and build the slsDetectorPackage
using this compiler
**2. Compile without script**<br>
Use cmake to create out-of-source builds, by creating a build folder parallel to source directory. This would create a debug build with address sanitizers.
```
$ mkdir build
$ cd build
$ cmake ../slsDetectorPackage -DCMAKE_BUILD_TYPE=Debug -DSLS_USE_SANITIZER=ON
$ make -j12 #or whatever number of threads wanted
```
#Create an environment with the dependencies
conda create -n myenv gxx_linux-64 cmake zmq
conda activate myenv
# outside slsDetecorPackage folder
To install binaries using CMake
```
git clone --recursive https://github.com/slsdetectorgroup/slsDetectorPackage.git
mkdir build && cd build
cmake ../slsDetectorPackage -DCMAKE_PREFIX_PATH=$CONDA_PREFIX
make -j12
cmake ../slsDetectorPackage -DCMAKE_INSTALL_PREFIX=/your/install/path
make -j12 #or whatever number of cores you are using to build
make install
```
###### Build slsDetectorGui (Qt5)
1. Using pre-built binary on conda
```
conda create -n myenv slsdetgui=7.0.0
conda activate myenv
```
2. Using system installation on RHEL7
```
yum install qt5-qtbase-devel.x86_64
yum install qt5-qtsvg-devel.x86_64
```
3. Using conda
```
#Add channels for dependencies and our library
conda config --add channels conda-forge
conda config --add channels slsdetectorgroup
conda config --set channel_priority strict
# create environment to compile
# on rhel7
conda create -n slsgui zeromq gxx_linux-64 gxx_linux-64 mesa-libgl-devel-cos6-x86_64 qt
# on fedora or newer systems
conda create -n slsgui zeromq qt
# when using conda compilers, would also need libgl, but no need for it on fedora unless maybe using it with ROOT
# activate environment
conda activate slsgui
# compile with cmake outside slsDetecorPackage folder
mkdir build && cd build
cmake ../slsDetectorPackage -DSLS_USE_GUI=ON
make -j12
# or compile with cmk.sh
cd slsDetectorPackage
./cmk.sh -cbgj9
```
###### Build documentation from package
The documentation for the slsDetectorPackage is build using a combination
of Doxygen, Sphinx and Breathe. The easiest way to install the dependencies
is to use conda
```
conda create -n myenv python sphinx_rtd_theme breathe
```
```
# using cmake or ccmake to enable DSLS_BUILD_DOCS
# outside slsDetecorPackage folder
mkdir build && cd build
cmake ../slsDetectorPackage -DSLS_BUILD_DOCS=ON
make docs # generate API docs and build Sphinx RST
make rst # rst only, saves time in case the API did not change
```
## Support
dhanya.thattil@psi.ch
erik.frojdh@psi.ch

191
RELEASE.txt Normal file → Executable file
View File

@ -1,161 +1,94 @@
SLS Detector Package Major Release 7.0.1 released on 24.03.2023
===============================================================
SLS Detector Package 5.1.0 released on xx.xx.2020 (Minor Release)
===================================================================
This document describes the differences between v7.0.1 and v7.0.0
This document describes the differences between 5.1.0 and 5.x.x releases.
CONTENTS
--------
1 Resolved Issues
2 On-board Detector Server Compatibility
3 Firmware Requirements
4 Kernel Requirements
5 Download, Documentation & Support
1. Topics Concerning
2. New Features
2. Resolved Issues
3. Known Issues
4. Firmware Requirements
5. Download, Documentation & Support
1. Topics Concerning
====================
1 Resolved Issues
=================
- potentital memory leak in receiver
- scanParameters in Python
- cmk.sh refactored
- m3 settings and threshold
2. New Features
===============
Client
------
1. Aded settings and threshold features for Mythen3.
2. Internal modification of acquire for Mythen3.
3. Added getMaster for Mythen3
4. Mythen3, API function to set pattern from memory
Mythen3 server
-----------------
1. Setting timing to auto, sets timing to trigger for slaves
3. Resolved Issues
==================
Receiver
--------
* HDF5 Compilation
Compilation issues from 7.0.0 fixed.
* Arping error
Cmdline: rx_arping
API: setRxArping/ getRxArping
Even if arping was successful, it gave an error. Fixed.
1. Current code only calls Implementation::setDetectorType from constructor,
but potential memory leak if called out of constructor context. Fixed.
Client
------
1. Fixed missing scanParameters class in Python
* Detector Server Version from previous Releases
Hostname command would hang with 7.0.0 client if the detector server
was from a previous release (eg. 6.1.2). In this case, the user cannot
get the detector server version.
2. cmk.sh refactored to have better option handling
Fixed that the hostname command will throw an exception about
incompatible server with its version in the message. Now, the user can
get the version number without having to telnet or ssh to the detector.
With this info, one can then update to matching client for that server
and start the detector updation process.
Server
--------
2 On-board Detector Server Compatibility
==========================================
Eiger 7.0.0
Jungfrau 7.0.0
Mythen3 7.0.0
Gotthard2 7.0.0
Gotthard 7.0.0
Moench 7.0.0
Ctb 7.0.0
On-board Detector Server Upgrade
--------------------------------
From v6.1.0 (without tftp):
Using command 'updatedetectorserver'
From 5.0.0 (with tftp):
Using command 'copydetectorserver'
Instructions available at
https://slsdetectorgroup.github.io/devdoc/serverupgrade.html
1. Bottom port not mirrored correctly for Eiger quad
3 Firmware Requirements
4. Firmware Requirements
========================
Mythen3: 0x210201
Jungfrau: 0x210218 (1.0 pcb)
0x200721 (2.0 pcb, not changed)
Eiger 20.02.2023 (v31)
Jungfrau 04.11.2022 (v1.4, HW v1.0)
03.11.2022 (v2.4, HW v2.0)
Mythen3 24.01.2023 (v1.4)
Gotthard2 23.11.2022 (v0.3)
Gotthard 08.02.2018 (50um and 25um Master)
09.02.2018 (25 um Slave)
Moench 05.12.2022 (v0.3)
Ctb 05.12.2022 (v1.1)
Detector Upgrade
----------------
The following can be upgraded remotely:
Eiger via bit files
Jungfrau via command <.pof>
Mythen3 via command <.rbf>
Gotthard2 via command <.rbf>
Moench via command <.pof>
Ctb via command <.pof>
Gotthard cannot be upgraded remotely
Except Eiger,
upgrade
Using command 'programfpga' or
udpate both server and firmware simultaneously
Using command 'update'
Instructions available at
https://slsdetectorgroup.github.io/devdoc/firmware.html
Other detectors no updates from 5.0.0
5. Known Issues
===============
4 Kernel Requirements
======================
Blackfin
--------
Latest version: Fri Oct 29 00:00:00 2021
Older ones will work, but might have issues with programming firmware via
the package.
Nios
-----
Compatible version: Mon May 10 18:00:21 CEST 2021
Kernel Upgrade
---------------
Eiger via bit files
Others via command
Commands: udpatekernel, kernelversion
Instructions available at
https://slsdetectorgroup.github.io/devdoc/commandline.html
https://slsdetectorgroup.github.io/devdoc/detector.html
https://slsdetectorgroup.github.io/devdoc/pydetector.html
No updates from 5.0.0
5 Download, Documentation & Support
6. Download, Documentation & Support
====================================
Download
@ -168,10 +101,7 @@ This document describes the differences between v7.0.1 and v7.0.0
-------------
Installation:
https://slsdetectorgroup.github.io/devdoc/installation.html
Quick Start Guide:
https://slsdetectorgroup.github.io/devdoc/quick_start_guide.html
https://slsdetectorgroup.github.io/devdoc/installation.html#
Firmware Upgrade:
https://slsdetectorgroup.github.io/devdoc/firmware.html
@ -191,6 +121,9 @@ This document describes the differences between v7.0.1 and v7.0.0
Command Line Documentation:
https://slsdetectorgroup.github.io/devdoc/commandline.html
Quick Start Guide:
https://slsdetectorgroup.github.io/devdoc/quick_start_guide.html
C++ API Documentation:
https://slsdetectorgroup.github.io/devdoc/detector.html
@ -207,16 +140,8 @@ This document describes the differences between v7.0.1 and v7.0.0
https://slsdetectorgroup.github.io/devdoc/receivers.html
https://slsdetectorgroup.github.io/devdoc/slsreceiver.html
Detector UDP Header:
https://slsdetectorgroup.github.io/devdoc/udpheader.html
https://slsdetectorgroup.github.io/devdoc/udpdetspec.html
slsReceiver Zmq Format:
https://slsdetectorgroup.github.io/devdoc/slsreceiver.html#zmq-json-header-format
TroubleShooting:
https://slsdetectorgroup.github.io/devdoc/troubleshooting.html
https://slsdetectorgroup.github.io/devdoc/troubleshooting.html#receiver-pc-tuning-options
Further Documentation:
https://www.psi.ch/en/detectors/documentation

118
cmake/FindQwt.cmake Executable file
View File

@ -0,0 +1,118 @@
# Qt Widgets for Technical Applications
# available at http://www.http://qwt.sourceforge.net/
#
# The module defines the following variables:
# QWT_FOUND - the system has Qwt
# QWT_INCLUDE_DIR - where to find qwt_plot.h
# QWT_INCLUDE_DIRS - qwt includes
# QWT_LIBRARY - where to find the Qwt library
# QWT_LIBRARIES - aditional libraries
# QWT_MAJOR_VERSION - major version
# QWT_MINOR_VERSION - minor version
# QWT_PATCH_VERSION - patch version
# QWT_VERSION_STRING - version (ex. 5.2.1)
# QWT_ROOT_DIR - root dir (ex. /usr/local)
#=============================================================================
# Copyright 2010-2013, Julien Schueller
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# The views and conclusions contained in the software and documentation are those
# of the authors and should not be interpreted as representing official policies,
# either expressed or implied, of the FreeBSD Project.
#=============================================================================
find_path ( QWT_INCLUDE_DIR
NAMES qwt_plot.h
HINTS $ENV{QWTDIR} $ENV{QWTDIR}/src ${QT_INCLUDE_DIR}
PATH_SUFFIXES qwt qwt-qt3 qwt-qt4 qwt-qt5
)
set ( QWT_INCLUDE_DIRS ${QWT_INCLUDE_DIR} )
# version
set ( _VERSION_FILE ${QWT_INCLUDE_DIR}/qwt_global.h )
if ( EXISTS ${_VERSION_FILE} )
file ( STRINGS ${_VERSION_FILE} _VERSION_LINE REGEX "define[ ]+QWT_VERSION_STR" )
if ( _VERSION_LINE )
string ( REGEX REPLACE ".*define[ ]+QWT_VERSION_STR[ ]+\"(.*)\".*" "\\1" QWT_VERSION_STRING "${_VERSION_LINE}" )
string ( REGEX REPLACE "([0-9]+)\\.([0-9]+)\\.([0-9]+)" "\\1" QWT_MAJOR_VERSION "${QWT_VERSION_STRING}" )
string ( REGEX REPLACE "([0-9]+)\\.([0-9]+)\\.([0-9]+)" "\\2" QWT_MINOR_VERSION "${QWT_VERSION_STRING}" )
string ( REGEX REPLACE "([0-9]+)\\.([0-9]+)\\.([0-9]+)" "\\3" QWT_PATCH_VERSION "${QWT_VERSION_STRING}" )
endif ()
endif ()
# check version
set ( _QWT_VERSION_MATCH TRUE )
if ( Qwt_FIND_VERSION AND QWT_VERSION_STRING )
if ( Qwt_FIND_VERSION_EXACT )
if ( NOT Qwt_FIND_VERSION VERSION_EQUAL QWT_VERSION_STRING )
set ( _QWT_VERSION_MATCH FALSE )
endif ()
else ()
if ( QWT_VERSION_STRING VERSION_LESS Qwt_FIND_VERSION )
set ( _QWT_VERSION_MATCH FALSE )
endif ()
endif ()
endif ()
find_library ( QWT_LIBRARY
NAMES qwt qwt-qt3 qwt-qt4 qwt-qt5
HINTS $ENV{QWTDIR}/lib ${QT_LIBRARY_DIR}
)
set ( QWT_LIBRARIES ${QWT_LIBRARY} )
# try to guess root dir from include dir
if ( QWT_INCLUDE_DIR )
string ( REGEX REPLACE "(.*)/include.*" "\\1" QWT_ROOT_DIR ${QWT_INCLUDE_DIR} )
# try to guess root dir from library dir
elseif ( QWT_LIBRARY )
string ( REGEX REPLACE "(.*)/lib[/|32|64].*" "\\1" QWT_ROOT_DIR ${QWT_LIBRARY} )
endif ()
# handle the QUIETLY and REQUIRED arguments
include ( FindPackageHandleStandardArgs )
if ( CMAKE_VERSION LESS 2.8.3 )
find_package_handle_standard_args( Qwt DEFAULT_MSG QWT_LIBRARY QWT_INCLUDE_DIR _QWT_VERSION_MATCH )
else ()
find_package_handle_standard_args( Qwt REQUIRED_VARS QWT_LIBRARY QWT_INCLUDE_DIR _QWT_VERSION_MATCH VERSION_VAR QWT_VERSION_STRING )
endif ()
mark_as_advanced (
QWT_LIBRARY
QWT_LIBRARIES
QWT_INCLUDE_DIR
QWT_INCLUDE_DIRS
QWT_MAJOR_VERSION
QWT_MINOR_VERSION
QWT_PATCH_VERSION
QWT_VERSION_STRING
QWT_ROOT_DIR
)

View File

@ -1,64 +0,0 @@
include(CheckCXXCompilerFlag)
include(CheckCCompilerFlag)
function(enable_cxx_warning flag target)
string(REPLACE "-W" "HAS_" flag_name ${flag})
check_cxx_compiler_flag(${flag} ${flag_name})
if(${flag_name})
target_compile_options(${target} INTERFACE ${flag})
message(STATUS "Adding: ${flag} to ${target}")
else()
message(STATUS "Flag: ${flag} not supported")
endif()
endfunction()
function(enable_c_warning flag target)
string(REPLACE "-W" "HAS_" flag_name ${flag})
check_c_compiler_flag(${flag} ${flag_name})
if(${flag_name})
target_compile_options(${target} INTERFACE ${flag})
message(STATUS "Adding: ${flag} to ${target}")
else()
message(STATUS "Flag: ${flag} not supported")
endif()
endfunction()
function(disable_cxx_warning flag target)
string(REPLACE "-W" "HAS_" flag_name ${flag})
check_cxx_compiler_flag(${flag} ${flag_name})
if(${flag_name})
string(REPLACE "-W" "-Wno-" neg_flag ${flag})
message(STATUS "Adding: ${neg_flag} to ${target}")
target_compile_options(${target} INTERFACE ${neg_flag})
else()
message(STATUS "Warning: ${flag} not supported no need to disable")
endif()
endfunction()
function(disable_c_warning flag target)
string(REPLACE "-W" "HAS_" flag_name ${flag})
check_c_compiler_flag(${flag} ${flag_name})
if(${flag_name})
string(REPLACE "-W" "-Wno-" neg_flag ${flag})
message(STATUS "Adding: ${neg_flag} to ${target}")
target_compile_options(${target} INTERFACE ${neg_flag})
else()
message(STATUS "Warning: ${flag} not supported no need to disable")
endif()
endfunction()
function(sls_disable_c_warning flag)
disable_c_warning(${flag} slsProjectCSettings)
endfunction()
function(sls_enable_cxx_warning flag)
enable_cxx_warning(${flag} slsProjectWarnings)
endfunction()
function(sls_disable_cxx_warning flag)
disable_cxx_warning(${flag} slsProjectWarnings)
endfunction()

View File

@ -1,38 +0,0 @@
function(custom_find_zmq)
set(ZeroMQ_HINT "" CACHE STRING "Hint where ZeroMQ could be found")
#Adapted from: https://github.com/zeromq/cppzmq/
if (NOT TARGET libzmq)
if(ZeroMQ_HINT)
message(STATUS "Looking for ZeroMQ in: ${ZeroMQ_HINT}")
find_package(ZeroMQ 4
NO_DEFAULT_PATH
HINTS ${ZeroMQ_HINT}
)
else()
find_package(ZeroMQ 4 QUIET)
endif()
# libzmq autotools install: fallback to pkg-config
if(ZeroMQ_FOUND)
message(STATUS "Found libzmq using find_package")
else()
message(STATUS "CMake libzmq package not found, trying again with pkg-config (normal install of zeromq)")
list (APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_LIST_DIR}/cmake/libzmq-pkg-config)
find_package(ZeroMQ 4 REQUIRED)
endif()
# TODO "REQUIRED" above should already cause a fatal failure if not found, but this doesn't seem to work
if(NOT ZeroMQ_FOUND)
message(FATAL_ERROR "ZeroMQ was not found, neither as a CMake package nor via pkg-config")
endif()
if (ZeroMQ_FOUND AND NOT TARGET libzmq)
message(FATAL_ERROR "ZeroMQ version not supported!")
endif()
endif()
get_target_property(VAR libzmq IMPORTED_LOCATION)
message(STATUS "Using libzmq: ${VAR}")
endfunction()

View File

@ -1,36 +0,0 @@
#From: https://github.com/zeromq/cppzmq/
set(PKG_CONFIG_USE_CMAKE_PREFIX_PATH ON)
find_package(PkgConfig)
pkg_check_modules(PC_LIBZMQ QUIET libzmq)
set(ZeroMQ_VERSION ${PC_LIBZMQ_VERSION})
find_path(ZeroMQ_INCLUDE_DIR zmq.h
PATHS ${ZeroMQ_DIR}/include
${PC_LIBZMQ_INCLUDE_DIRS}
)
find_library(ZeroMQ_LIBRARY
NAMES zmq
PATHS ${ZeroMQ_DIR}/lib
${PC_LIBZMQ_LIBDIR}
${PC_LIBZMQ_LIBRARY_DIRS}
)
if(ZeroMQ_LIBRARY OR ZeroMQ_STATIC_LIBRARY)
set(ZeroMQ_FOUND ON)
message(STATUS "Found libzmq using PkgConfig")
endif()
set ( ZeroMQ_LIBRARIES ${ZeroMQ_LIBRARY} )
set ( ZeroMQ_INCLUDE_DIRS ${ZeroMQ_INCLUDE_DIR} )
if (NOT TARGET libzmq)
add_library(libzmq UNKNOWN IMPORTED)
set_target_properties(libzmq PROPERTIES
IMPORTED_LOCATION ${ZeroMQ_LIBRARIES}
INTERFACE_INCLUDE_DIRECTORIES ${ZeroMQ_INCLUDE_DIRS})
endif()
include ( FindPackageHandleStandardArgs )
find_package_handle_standard_args ( ZeroMQ DEFAULT_MSG ZeroMQ_LIBRARIES ZeroMQ_INCLUDE_DIRS )

View File

@ -26,7 +26,7 @@ install(FILES
)
install(FILES
"${CMAKE_SOURCE_DIR}/cmake/libzmq-pkg-config/FindZeroMQ.cmake"
"${CMAKE_SOURCE_DIR}/libzmq-pkg-config/FindZeroMQ.cmake"
COMPONENT devel
DESTINATION ${CMAKE_INSTALL_DIR}/libzmq-pkg-config
)

120
cmk.sh
View File

@ -1,6 +1,4 @@
#!/bin/bash
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
CMAKE="cmake3"
BUILDDIR="build"
INSTALLDIR=""
@ -18,7 +16,6 @@ CTBGUI=0
MANUALS=0
MANUALS_ONLY_RST=0
MOENCHZMQ=0
ZMQ_HINT_DIR=""
CLEAN=0
@ -27,26 +24,25 @@ CMAKE_PRE=""
CMAKE_POST=""
usage() { echo -e "
Usage: $0 [-b] [-c] [-d <HDF5 directory>] [e] [g] [-h] [i] [-j <Number of threads>] [-k <CMake command>] [-l <Install directory>] [m] [n] [-p] [-q <Zmq hint directory>] [r] [s] [t] [u] [z]
Usage: $0 [-c] [-b] [-p] [e] [t] [r] [g] [s] [u] [i] [m] [n] [-h] [z] [-d <HDF5 directory>] [-l Install directory] [-k <CMake command>] [-j <Number of threads>]
-[no option]: only make
-b: Builds/Rebuilds CMake files normal mode
-c: Clean
-d: HDF5 Custom Directory
-e: Debug mode
-g: Build/Rebuilds gui
-b: Builds/Rebuilds CMake files normal mode
-p: Builds/Rebuilds Python API
-h: Builds/Rebuilds Cmake files with HDF5 package
-i: Builds tests
-j: Number of threads to compile through
-d: HDF5 Custom Directory
-k: CMake command
-l: Install directory
-t: Build/Rebuilds only text client
-r: Build/Rebuilds only receiver
-g: Build/Rebuilds only gui
-s: Simulator
-u: Chip Test Gui
-j: Number of threads to compile through
-e: Debug mode
-i: Builds tests
-m: Manuals
-n: Manuals without compiling doxygen (only rst)
-p: Builds/Rebuilds Python API
-q: Zmq hint directory
-r: Build/Rebuilds only receiver
-s: Simulator
-t: Build/Rebuilds only text client
-u: Chip Test Gui
-z: Moench zmq processor
Rebuild when you switch to a new build and compile in parallel:
@ -83,49 +79,68 @@ For rebuilding only certain sections
" ; exit 1; }
while getopts ":bcd:eghij:k:l:mnpq:rstuz" opt ; do
while getopts ":bpchd:k:l:j:trgeisumnz" opt ; do
case $opt in
b)
echo "Building of CMake files Required"
REBUILD=1
;;
p)
echo "Compiling Options: Python"
PYTHON=1
REBUILD=1
;;
c)
echo "Clean Required"
CLEAN=1
;;
h)
echo "Building of CMake files with HDF5 option Required"
HDF5=1
REBUILD=1
;;
d)
echo "New HDF5 directory: $OPTARG"
HDF5DIR=$OPTARG
;;
e)
echo "Compiling Options: Debug"
DEBUG=1
l)
echo "CMake install directory: $OPTARG"
INSTALLDIR="$OPTARG"
;;
k)
echo "CMake command: $OPTARG"
CMAKE="$OPTARG"
;;
j)
echo "Number of compiler threads: $OPTARG"
COMPILERTHREADS=$OPTARG
;;
t)
echo "Compiling Options: Text Client"
TEXTCLIENT=1
REBUILD=1
;;
r)
echo "Compiling Options: Receiver"
RECEIVER=1
REBUILD=1
;;
g)
echo "Compiling Options: GUI"
GUI=1
REBUILD=1
;;
h)
echo "Building of CMake files with HDF5 option Required"
HDF5=1
REBUILD=1
e)
echo "Compiling Options: Debug"
DEBUG=1
;;
i)
echo "Compiling Options: Tests"
TESTS=1
;;
j)
echo "Number of compiler threads: $OPTARG"
COMPILERTHREADS=$OPTARG
;;
k)
echo "CMake command: $OPTARG"
CMAKE="$OPTARG"
;;
l)
echo "CMake install directory: $OPTARG"
INSTALLDIR="$OPTARG"
s)
echo "Compiling Options: Simulator"
SIMULATOR=1
;;
m)
echo "Compiling Manuals"
@ -135,37 +150,14 @@ while getopts ":bcd:eghij:k:l:mnpq:rstuz" opt ; do
echo "Compiling Manuals (Only RST)"
MANUALS_ONLY_RST=1
;;
p)
echo "Compiling Options: Python"
PYTHON=1
REBUILD=1
;;
q)
echo "Zmq hint directory: $OPTARG"
ZMQ_HINT_DIR=$OPTARG
;;
r)
echo "Compiling Options: Receiver"
RECEIVER=1
REBUILD=1
;;
s)
echo "Compiling Options: Simulator"
SIMULATOR=1
;;
t)
echo "Compiling Options: Text Client"
TEXTCLIENT=1
REBUILD=1
z)
echo "Compiling Moench Zmq Processor"
MOENCHZMQ=1
;;
u)
echo "Compiling Options: Chip Test Gui"
CTBGUI=1
;;
z)
echo "Compiling Moench Zmq Processor"
MOENCHZMQ=1
;;
\?)
echo "Invalid option: -$OPTARG"
usage
@ -260,12 +252,6 @@ if [ $TESTS -eq 1 ]; then
echo "Tests Option enabled"
fi
#zmq hint dir
if [ -n "$ZMQ_HINT_DIR" ]; then
CMAKE_POST+=" -DZeroMQ_HINT="$ZMQ_HINT_DIR
CMAKE_POST+=" -DZeroMQ_DIR="
# echo "Enabling Zmq Hint Directory: $ZMQ_HINT_DIR"
fi
#hdf5 rebuild
if [ $HDF5 -eq 1 ]; then

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
mkdir build
mkdir install
@ -10,7 +8,6 @@ cmake .. \
-DSLS_USE_TEXTCLIENT=ON \
-DSLS_USE_RECEIVER=ON \
-DSLS_USE_GUI=ON \
-DSLS_USE_MOENCH=ON\
-DSLS_USE_TESTS=ON \
-DSLS_USE_PYTHON=OFF \
-DCMAKE_BUILD_TYPE=Release \
@ -21,4 +18,4 @@ echo "Building using: ${NCORES} cores"
cmake --build . -- -j${NCORES}
cmake --build . --target install
CTEST_OUTPUT_ON_FAILURE=1 ctest -j 1
CTEST_OUTPUT_ON_FAILURE=1 ctest -j 2

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
echo "|<-------- starting python build"
cd python

View File

@ -1,8 +1,8 @@
python:
- 3.6
- 3.7
- 3.8
- 3.9
- 3.10
- 3.11
numpy:
- 1.17

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
mkdir $PREFIX/lib
mkdir $PREFIX/bin
mkdir $PREFIX/include

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
#Copy the GUI
mkdir -p $PREFIX/bin
cp build/install/bin/slsDetectorGui $PREFIX/bin/.

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
mkdir -p $PREFIX/lib
mkdir -p $PREFIX/bin
@ -19,4 +17,4 @@ cp build/install/bin/slsMultiReceiver $PREFIX/bin/.
cp build/install/include/sls/* $PREFIX/include/sls
cp -rv build/install/share $PREFIX
cp -r build/install/share/ $PREFIX/share

View File

@ -1,6 +0,0 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
#Copy the Moench executables
mkdir -p $PREFIX/bin
cp build/install/bin/moench* $PREFIX/bin/.

View File

@ -17,7 +17,8 @@ requirements:
- {{ compiler('c') }}
- {{compiler('cxx')}}
- cmake
- qt 5.*
- qwt 6.*
- qt 4.8.*
- zeromq
- xorg-libx11
- xorg-libice
@ -110,22 +111,10 @@ outputs:
- {{ compiler('c') }}
- {{compiler('cxx')}}
- {{ pin_subpackage('slsdetlib', exact=True) }}
- qwt 6.*
run:
- {{ pin_subpackage('slsdetlib', exact=True) }}
- qt 5.*
- expat
- name: moenchzmq
script: copy_moench.sh
requirements:
build:
- {{ compiler('c') }}
- {{compiler('cxx')}}
- {{ pin_subpackage('slsdetlib', exact=True) }}
run:
- {{ pin_subpackage('slsdetlib', exact=True) }}
- qwt 6.*
- qt 4.8.*
- expat

View File

@ -1,3 +1 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
ctest -j2

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
find_package(ROOT CONFIG REQUIRED COMPONENTS Core Gui)
@ -34,7 +32,7 @@ add_executable(ctbGui
ctbAdcs.cpp
ctbPattern.cpp
ctbAcquisition.cpp
${CMAKE_SOURCE_DIR}/slsDetectorCalibration/tiffio/src/tiffIO.cpp
${CMAKE_SOURCE_DIR}/slsDetectorCalibration/tiffIO.cpp
)
@ -43,7 +41,6 @@ target_include_directories(ctbGui PRIVATE
${CMAKE_SOURCE_DIR}/slsDetectorCalibration/dataStructures
${CMAKE_SOURCE_DIR}/slsDetectorCalibration/interpolations
${CMAKE_SOURCE_DIR}/slsDetectorCalibration/
${CMAKE_SOURCE_DIR}/slsDetectorCalibration/tiffio/include/
)
# Headders needed for ROOT dictionary generation
@ -62,6 +59,7 @@ set( HEADERS
#set(ROOT_INCLUDE_PATH ${CMAKE_CURRENT_SOURCE_DIR})
# ROOT dictionary generation
include("${ROOT_DIR}/RootMacros.cmake")
root_generate_dictionary(ctbDict ${HEADERS} LINKDEF ctbLinkDef.h)
add_library(ctbRootLib SHARED ctbDict.cxx)
target_include_directories(ctbRootLib PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
@ -87,4 +85,3 @@ set_target_properties(ctbGui PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin
)

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
INCS=ctbMain.h ctbDacs.h ctbPattern.h ctbSignals.h ctbAdcs.h ctbAcquisition.h ctbPowers.h ctbSlowAdcs.h

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
INCS=ctbMain.h ctbDacs.h ctbPattern.h ctbSignals.h ctbAdcs.h ctbAcquisition.h ctbPowers.h ctbSlowAdcs.h

8
ctbGui/ctbAcquisition.cpp Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
//#define TESTADC
@ -828,14 +826,14 @@ void ctbAcquisition::setCanvas(TCanvas* c) {
myCanvas->AddExec("dynamic",Form("((ctbAcquisition*)%p)->canvasClicked()",this));
// myCanvas->AddExec("ex","canvasClicked()");
}
void ctbAcquisition::dataCallback(sls::detectorData *data, long unsigned int index, unsigned int dum, void* pArgs) {
void ctbAcquisition::dataCallback(detectorData *data, long unsigned int index, unsigned int dum, void* pArgs) {
// return
((ctbAcquisition*)pArgs)->plotData(data,index);
}
int ctbAcquisition::plotData(sls::detectorData *data, int index) {
int ctbAcquisition::plotData(detectorData *data, int index) {
/*
******************************************************************
@ -988,7 +986,7 @@ sample1 (dbit0 + dbit1 +...)if (cmd == "rx_dbitlist") {
ped=0;
aval=dataStructure->getValue(data->data,x,y);
//aval=dataStructure->getChannel(data->data,x,y);
// cout << x << " " <<y << " "<< aval << endl;
cout << x << " " <<y << " "<< aval << endl;
if (cbGetPedestal->IsOn()) {
if (photonFinder) {
photonFinder->addToPedestal(aval,x,y);

8
ctbGui/ctbAcquisition.h Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef CTBACQUISITION_H
#define CTBACQUISITION_H
#include <TGFrame.h>
@ -28,8 +26,8 @@ class TGTextButton;
namespace sls
{
class Detector;
class detectorData;
};
class detectorData;
template <class dataType> class slsDetectorData;
@ -201,10 +199,10 @@ class ctbAcquisition : public TGGroupFrame {
void setBitGraph (int i ,int en, Pixel_t col);
void startAcquisition();
static void progressCallback(double,void*);
static void dataCallback(sls::detectorData*, long unsigned int, unsigned int, void*);
static void dataCallback(detectorData*, long unsigned int, unsigned int, void*);
int StopFlag;
int plotData(sls::detectorData*, int);
int plotData(detectorData*, int);
void setPatternFile(const char* t);

2
ctbGui/ctbAdcs.cpp Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include <TApplication.h>
#include <TGClient.h>
#include <TCanvas.h>

2
ctbGui/ctbAdcs.h Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package

2
ctbGui/ctbDacs.cpp Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include <stdio.h>
#include <iostream>

2
ctbGui/ctbDacs.h Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef CTBDACS_H

2
ctbGui/ctbDefs.h Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#pragma once
#include <string>

2
ctbGui/ctbGui.cpp Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include <TApplication.h>
#include <TColor.h>

2
ctbGui/ctbLinkDef.h Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#pragma link C++ class ctbMain;
#pragma link C++ class ctbDacs;
#pragma link C++ class ctbDac;

2
ctbGui/ctbMain.cpp Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include <TApplication.h>
#include <TGClient.h>
#include <TCanvas.h>

2
ctbGui/ctbMain.h Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef CTBMAIN_H
#define CTBMAIN_H
#include <TGFrame.h>

2
ctbGui/ctbPattern.cpp Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include <TApplication.h>
#include <TGClient.h>
#include <TCanvas.h>

2
ctbGui/ctbPattern.h Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef CTBPATTERN_H
#define CTBPATTERN_H
#include <TGFrame.h>

View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include <TGFrame.h>

View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef CTBPOWERS_H
#define CTBPOWERS_H

2
ctbGui/ctbSignals.cpp Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include <TApplication.h>
#include <TGClient.h>
#include <TCanvas.h>

2
ctbGui/ctbSignals.h Normal file → Executable file
View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef CTBSIGNALS_H
#define CTBSIGNALS_H
#include <TGFrame.h>

View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include <stdio.h>
#include <iostream>

View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#ifndef CTBSLOWADCS_H

View File

@ -0,0 +1,110 @@
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/utsname.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <math.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
int main(int argc, char *argv[]) {
int iarg;
char fname[10000];
uint64_t word;
int val[64];
int bit[64];
FILE *fdin;
int nb=2;
int off=0;
int ioff=0;
int dr=24;
int idr=0;
int ib=0;
int iw=0;
bit[0]=19;
bit[1]=8;
// for (iarg=0; iarg<argc; iarg++) printf("%d %s\n",iarg, argv[iarg]);
if (argc<2) printf("Error: usage is %s fname [dr off b0 b1 bn]\n");
if (argc>2) dr=atoi(argv[2]);
if (argc>3) off=atoi(argv[3]);
if (argc>4) {
for (ib=0; ib<64; ib++) {
if (argc>4+ib) {
bit[ib]=atoi(argv[4+ib]);
nb++;
}
}
}
idr=0;
for (ib=0; ib<nb; ib++) {
val[ib]=0;
}
fdin=fopen(argv[1],"rb");
if (fdin==NULL) {
printf("Cannot open input file %s for reading\n",argv[1]);
return 200;
}
while (fread((void*)&word, 8, 1, fdin)) {
// printf("%llx\n",word);
if (ioff<off) ioff++;
else {
for (ib=0; ib<nb; ib++) {
if (word&(1<<bit[ib])) val[ib]|=(1<<idr);
}
idr++;
if (idr==dr) {
idr=0;
fprintf(stdout,"%d\t",iw++);
for (ib=0; ib<nb; ib++) {
#ifdef HEX
fprintf(stdout,"%08llx\t",val[ib]);
#else
fprintf(stdout,"%lld\t",val[ib]);
#endif
val[ib]=0;
}
fprintf(stdout,"\n");
}
}
}
if (idr!=0) {
fprintf(stdout,"%d\t",iw++);
for (ib=0; ib<nb; ib++) {
#ifdef HEX
fprintf(stdout,"%08llx\t",val[ib]);
#else
fprintf(stdout,"%lld\t",val[ib]);
#endif
val[ib]=0;
}
fprintf(stdout,"\n");
}
fclose(fdin);
return 0;
}

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
if [ "$#" -eq 0 ]; then
echo "Wrong number of arguments: usage should be $0 patname"
exit 1
@ -21,10 +19,9 @@ fi
if [ -f "$infile" ]
then
dir=$(dirname $infile)
gcc -DINFILE="\"$infile\"" -DOUTFILE="\"$outfile\"" -DOUTFILEBIN="\"$outfilebin\"" -o $exe generator.c -I$dir;
gcc -DINFILE="\"$infile\"" -DOUTFILE="\"$outfile\"" -DOUTFILEBIN="\"$outfilebin\"" -o $exe generator.c ;
echo compiling
echo gcc -DINFILE="\"$infile\"" -DOUTFILE="\"$outfile\"" -DOUTFILEBIN="\"$outfilebin\"" -o $exe generator.c -I$dir;
echo gcc -DINFILE="\"$infile\"" -DOUTFILE="\"$outfile\"" -DOUTFILEBIN="\"$outfilebin\"" -o $exe generator.c ;
$exe ;
echo cleaning
rm $exe

View File

@ -0,0 +1,177 @@
/****************************************************************************
usage to generate a patter test.pat from test.p
gcc -DINFILE="\"test.p\"" -DOUTFILE="\"test.pat\"" -o test.exe generator.c ; ./test.exe ; rm test.exe
*************************************************************************/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/utsname.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <math.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#define MAXLOOPS 3
#define MAXTIMERS 3
#define MAXWORDS 1024
uint64_t pat=0;
uint64_t iopat=0;
uint64_t clkpat=0;
int iaddr=0;
int waitaddr[3]={MAXWORDS,MAXWORDS,MAXWORDS};
int startloopaddr[3]={MAXWORDS,MAXWORDS,MAXWORDS};
int stoploopaddr[3]={MAXWORDS,MAXWORDS,MAXWORDS};
int start=0, stop=0;
uint64_t waittime[3]={0,0,0};
int nloop[3]={0,0,0};
char infile[10000], outfile[10000];
FILE *fd, *fd1;
uint64_t PAT[MAXWORDS];
int i,ii,iii,j,jj,jjj,pixx,pixy,memx,memy,muxout,memclk,colclk,rowclk,muxclk,memcol,memrow,loopcounter;
void setstart() {
start=iaddr;
}
void setstop() {
stop=iaddr;
}
void setinput(int bit) {
uint64_t mask=1;
mask=mask<<bit;
iopat &= ~mask;
}
void setoutput(int bit) {
uint64_t mask=1;
mask=mask<<bit;
iopat |= mask;
}
void setclk(int bit) {
uint64_t mask=1;
mask=mask<<bit;
iopat |= mask;
clkpat |= mask;
}
void clearbit(int bit){
uint64_t mask=1;
mask=mask<<bit;
pat &= ~mask;
}
void setbit(int bit){
uint64_t mask=1;
mask=mask<<bit;
pat |= mask;
}
int checkbit(int bit) {
uint64_t mask=1;
mask=mask<<bit;
return (pat & mask ) >>bit;
}
void setstartloop(int iloop) {
if (iloop>=0 && iloop<MAXLOOPS)
startloopaddr[iloop]=iaddr;
}
void setstoploop(int iloop) {
if (iloop>=0 && iloop<MAXLOOPS)
stoploopaddr[iloop]=iaddr;
}
void setnloop(int iloop, int n) {
if (iloop>=0 && iloop<MAXLOOPS)
nloop[iloop]=n;
}
void setwaitpoint(int iloop) {
if (iloop>=0 && iloop<MAXTIMERS)
waitaddr[iloop]=iaddr;
}
void setwaittime(int iloop, uint64_t t) {
if (iloop>=0 && iloop<MAXTIMERS)
waittime[iloop]=t;
}
void pw(){
if (iaddr<MAXWORDS)
PAT[iaddr]= pat;
fprintf(fd,"patword 0x%04x 0x%016llx\n",iaddr, pat);
iaddr++;
if (iaddr>=MAXWORDS) printf("ERROR: too many word in the pattern (%d instead of %d)!",iaddr, MAXWORDS);
}
int parseCommand(int clk, int cmdbit, int cmd, int length) {
int ibit;
clearbit(clk);
for (ibit=0; ibit<length; ibit++) {
if (cmd&(1>>ibit))
setbit(cmdbit);
else
clearbit(cmdbit);
pw();
/******/
setbit(clk);
pw();
/******/
}
};
main(void) {
int iloop=0;
fd=fopen(OUTFILE,"w");
#include INFILE
fprintf(fd,"patioctrl 0x%016llx\n",iopat);
fprintf(fd,"patclkctrl 0x%016llx\n",clkpat);
fprintf(fd,"patlimits 0x%04x 0x%04x\n",start, stop);
for (iloop=0; iloop<MAXLOOPS; iloop++) {
fprintf(fd,"patloop%d 0x%04x 0x%04x\n",iloop, startloopaddr[iloop], stoploopaddr[iloop]);
if ( startloopaddr[iloop]<0 || stoploopaddr[iloop]<= startloopaddr[iloop]) nloop[iloop]=0;
fprintf(fd,"patnloop%d %d\n",iloop, nloop[iloop]);
}
for (iloop=0; iloop<MAXTIMERS; iloop++) {
fprintf(fd,"patwait%d 0x%04x\n",iloop, waitaddr[iloop]);
if (waitaddr[iloop]<0) waittime[iloop]=0;
fprintf(fd,"patwaittime%d %lld\n",iloop, waittime[iloop]);
}
close((int)fd);
fd1=fopen(OUTFILEBIN,"w");
fwrite(PAT,sizeof(uint64_t),iaddr, fd1);
close((int)fd1);
}

201
ctbGui/patternGenerator/test.p Executable file
View File

@ -0,0 +1,201 @@
//define signals and directions (Input, outputs, clocks)
#define compTestIN 1
setoutput(compTestIN);
#define curON 32
setoutput(curON);
#define side_clk 2
setclk(side_clk);
#define side_din 3
setoutput(side_din);
#define clear_shr 4
setoutput(clear_shr);
#define bottom_din 5
setoutput(bottom_din);
#define bottom_clk 6
setclk(bottom_clk);
#define gHG 7
setoutput(gHG);
#define bypassCDS 31
setoutput(bypassCDS);
#define ENprechPRE 8
setoutput(ENprechPRE);
#define res 9
setoutput(res);
#define pulseOFF 30
setoutput(pulseOFF);
#define connCDS 27
setoutput(connCDS);
#define Dsg_1 24
setoutput(Dsg_1);
#define Dsg_2 25
setoutput(Dsg_2);
#define Dsg_3 23
setoutput(Dsg_3);
#define sto0 10
setoutput(sto0);
#define sto1 11
setoutput(sto1);
#define sto2 12
setoutput(sto2);
#define resCDS 13
setoutput(resCDS);
#define prechargeConnect 14
setoutput(prechargeConnect);
#define pulse 15
setoutput(pulse);
#define PCT_mode 21
setoutput(PCT_mode);
#define res_DGS 16
setoutput(res_DGS);
#define adc_ena 17
setoutput(adc_ena);
#define CLKBIT 18
setclk(CLKBIT);
#define adc_sync 63
setoutput(adc_sync);
#define PW pw()
#define SB(x) setbit(x)
#define CB(x) clearbit(x)
#define CLOCK clearbit(CLKBIT); pw();setbit(CLKBIT);pw()
#define LCLOCK clearbit(CLKBIT); pw();setbit(CLKBIT);pw();clearbit(CLKBIT); pw()
#define CLOCKS(x) for (i=0;i<x;i++) {clearbit(CLKBIT);pw(); setbit(CLKBIT); pw();}
#define STOP setstop();
#define START setstart();
#define REPEAT(x) for (i=0;i<(x);i++) {pw();}
#define DOFOR(x) for (j=0;j<(x);j++) {
// }
#define STARTUP1 CB(compTestIN);SB(clear_shr);CB(side_clk);CB(side_din);CB(bottom_din);CB(bottom_clk);
#define STARTUP2 CB(pulse);SB(PCT_mode);SB(pulseOFF);CB(curON);
#define STARTUP3 SB(res);SB(gHG);SB(ENprechPRE);
#define STARTUP4 SB(bypassCDS); CB(connCDS);CB(sto0);SB(sto1);SB(sto2);
#define STARTUP5 SB(resCDS);CB(Dsg_1);CB(Dsg_2);SB(Dsg_3);CB(prechargeConnect);SB(res_DGS);
#define STARTUP STARTUP1 STARTUP2 STARTUP3 STARTUP4 STARTUP5 PW;
//****NOTES****//
//FUNCTIONS
//Declare functions at the beginning
void load_pix(int nx, int ny)
{//SELECT PIXEL 1,1 for readout
SB(clear_shr);PW;PW;
CB(clear_shr);PW;PW;PW;PW;
SB(side_din);PW;
SB(side_clk);PW;
CB(side_din);
setstartloop(0); //loop on the rows
SB(side_clk);PW;
setstoploop(0); //finish loop on the rows
setnloop(0,ny); //set number row selected -can be changed dynamically
CB(side_clk);PW;
SB(bottom_din);PW;
SB(bottom_clk);PW;
CB(bottom_din);
setstartloop(1); //loop on the columns
SB(bottom_clk);PW;
setstoploop(1); //loop on the columns
setnloop(1,ny); //set number columns selected -can be changed dynamically
}
void load_col(void)
{//SELECT COLUMN 1 for readout
SB(clear_shr);PW;PW;
CB(clear_shr);PW;PW;PW;PW;
SB(bottom_din);PW;
SB(bottom_clk);PW;
CB(bottom_clk);PW;
CB(bottom_din);PW;
}
//END of FUNCTIONS
////////////////////////////////////////////////////////
//LET BYPASS PREAMP AND CDS and write on preamp out.//
//THIS ALLOWS CHECKING SOURCE FOLLOWERS //
////////////////////////////////////////////////////////
PW;
SB(5); PW;
CB(5); PW;
START; //pattern starts from here
STARTUP;
setwaitpoint(0); //set wait points
PW;
setwaittime(0,20); //wait time - can be changed dynamically
SB(adc_ena);PW;
printf("ADC sync %x %d %llx\n",iaddr,adc_sync, pat);
SB(adc_sync);PW;
printf("ADC sync %x %d %llx\n",iaddr, adc_sync, pat);
CB(gHG);
setwaitpoint(1); //set wait points
setwaittime(1,16); //wait time - can be changed dynamically
CB(adc_sync);PW;
load_pix(10, 20);
CB(res);
//CB(Dsg_3);PW;
CB(res_DGS);
setwaitpoint(2); //set wait points
setwaittime(2,1000); //wait time - can be changed dynamically
//SB(res_DGS);
//PW;
//SB(Dsg_3);
//
//CB(connCDS);
//TEST SIGNALS END
//
REPEAT(20)
//****************//
//*FINAL COMMANDS*//
//****************//
CB(adc_ena);PW;
//STARTUP;
STOP; PW; //stops here
//REPEAT(4);

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
find_package(Doxygen REQUIRED)
find_package(Sphinx REQUIRED)
@ -55,9 +53,6 @@ set(SPHINX_SOURCE_FILES
src/troubleshooting.rst
src/receivers.rst
src/slsreceiver.rst
src/udpheader.rst
src/udpconfig.rst
src/udpdetspec.rst
)
foreach(filename ${SPHINX_SOURCE_FILES})

View File

@ -21,8 +21,10 @@ the shared libraries these are needed:
GUI
-----------------------
* Qt 5.9
* Qwt 6.1.5 (packaged in libs/)
The GUI is currently using Qt4 but watch out for an upgrade to 5.
* Qt 4.8
* Qwt 6.1
-----------------------
Python bindings
@ -32,12 +34,6 @@ Python bindings
* pybind11 (packaged in libs/)
-----------------------
Moench executables
-----------------------
* libtiff
-----------------------
Documentation
-----------------------

View File

@ -1,6 +1,8 @@
Firmware Upgrade
=================
Eiger
-------------
@ -16,9 +18,30 @@ Upgrade
^^^^^^^^
#. Tftp must be already installed on your pc to use the bcp script.
#. Copy new servers to the board. See :ref:`how to upgrade detector servers<Detector Server Upgrade>` for more detals. A reboot should have started the new linked servers automatically. For Eiger, do not reboot yet as we need to program the firmware via bit files.
#. Kill the on-board servers and copy new servers to the board.
* This step is crucial when registers between firmwares change. Failure to do so will result in linux on boards to crash and boards can't be pinged anymore.
.. code-block:: bash
# Option 1: from detector console
# kill old server
ssh root@bebxxx
killall eigerDetectorServer
# copy new server
cd executables
scp user@pc:/path/eigerDetectorServerxxx .
chmod 777 eigerDetectorServerxxx
ln -sf eigerDetectorServerxxx eigerDetectorServer
sync
# Options 2: from client console for multiple modules
for i in bebxxx bebyyy;
do ssh root@$i killall eigerDetectorServer;
scp eigerDetectorServerxxx root@$i:~/executables/eigerDetectorServer;
ssh root@$i sync; done
* This is crucial when registers between firmwares change. Failure to do so will result in linux on boards to crash and boards can't be pinged anymore.
#. Bring the board into programmable mode using either of the 2 ways. Both methods result in only the central LED blinking.
@ -27,13 +50,8 @@ Upgrade
Do a hard reset for each half module on back panel boards, between the LEDs, closer to each of the 1G ethernet connectors. Push until all LEDs start to blink.
* Software:
.. code-block:: bash
# Option 1: if the old server is still running:
sls_detector_put execcommand "./boot_recovery"
# Option 2:
ssh root@bebxxx
cd executables
./boot_recovery
@ -61,24 +79,11 @@ Upgrade
#update front right fpga
bcp download.bit bebxxx:/febr
#update kernel (only if required by us)
#update kernel (only if required by the SLS Detector Group)
bcp download.bit bebxxx:/kernel
#. Reboot the detector.
.. code-block:: bash
# In the first terminal where we saw "Succeess"
# reconfig febX is necessary only if you have flashed a new feb firmware
reconfig febl
reconfig febr
# will reboot controller
reconfig fw0
.. note ::
If the detector servers did not start up automatically after reboot, you need to add scripts to do that. See :ref:`Automatic start<Automatic start servers>` for more details.
Jungfrau
-------------
@ -89,50 +94,82 @@ Download
- `pof files <https://github.com/slsdetectorgroup/slsDetectorFirmware>`__
Upgrade
^^^^^^^^
Upgrade (from v4.x.x)
^^^^^^^^^^^^^^^^^^^^^^
.. warning ::
Check :ref:`firmware troubleshooting <blackfin firmware troubleshooting>` if you run into issues while programming firmware.
In case you have had issues in the past with programming via software:
#. Tftp must be installed on pc.
* 6.1.2 server has a fix for seamless fpga programming
#. Update client package to the latest (5.x.x).
* We recommend first updating the on-board detector server to 6.1.2 (with client 6.1.x) using command 'updatedetectorserver' or 'copydetectorserver'.
#. Disable server respawning or kill old server
.. code-block:: bash
* Then use command 'programfpga' to only update firmware or use command 'update' to update firmware and server to the latest release.
# Option 1: if respawning enabled
telnet bchipxxx
# edit /etc/inittab
# comment out line #ttyS0::respawn:/jungfrauDetectorServervxxx
reboot
# ensure servers did not start up after reboot
telnet bchipxxx
ps
# Option 2: if respawning already disabled
telnet bchipxxx
killall jungfrauDetectorServerv*
#. Copy new server and start in update mode
.. code-block:: bash
tftp pcxxx -r jungfrauDetectorServervxxx -g
chmod 777 jungfrauDetectorServervxxx
./jungfrauDetectorServervxxx -u
#. Program fpga from the client console
.. code-block:: bash
sls_detector_get free
# Crucial that the next command executes without any errors
sls_detector_put hostname bchipxxx
sls_detector_put programfpga xxx.pof
#. After programming, kill 'update server' using Ctrl + C in server console.
#. Enable server respawning if needed
.. code-block:: bash
telnet bchipxxx
# edit /etc/inittab
# uncomment out line #ttyS0::respawn:/jungfrauDetectorServervxxx
# ensure the line has the new server name
reboot
# ensure both servers are running using ps
jungfrauDetectorServervxxx
jungfrauDetectorServervxxx --stop-server 1953
Upgrade (from v5.0.0)
^^^^^^^^^^^^^^^^^^^^^^^^^^
Check :ref:`firmware troubleshooting <blackfin firmware troubleshooting>` if you run into issues while programming firmware.
Program from console
#. Program from console
.. code-block:: bash
# These instructions are for upgrades from v5.0.0. For earlier versions, please contact us.
# Always ensure that the client and server software are of the same release.
# copies server, links new server to jungfrauDetectorServer,
# removes old server from respawn, sets up new lnked server to respawn
# programs fpga, reboots
# v5.0.0 - 6.0.0 (copies server from tftp folder of the pc)
# copies server from tftp folder of pc, programs fpga,
# removes old server from respawn, sets up new server to respawn
# and reboots
sls_detector_put update jungfrauDetectorServervxxx pcxxx xx.pof
# v6.1.1 - present (copies server from the full path provided)
sls_detector_put update jungfrauDetectorServervxxx xx.pof
# Or only program firmware
sls_detector_put programfpga xxx.pof
Gotthard I
-----------
Gotthard
---------
Download
^^^^^^^^^^^^^
@ -147,7 +184,7 @@ Upgrade
^^^^^^^^
.. warning ::
| Gotthard firmware cannot be upgraded remotely and requires the use of USB-Blaster.
| It is generally updated by us.
| It is generally updated by the SLS Detector group.
#. Download `Altera Quartus software or Quartus programmer <https://fpgasoftware.intel.com/20.1/?edition=standard&platform=linux&product=qprogrammer#tabs-4>`__.
@ -158,7 +195,7 @@ Upgrade
#. Plug the end of your USB-Blaster with the adaptor provided to the connector 'AS config' on the Gotthard board.
#. Click on 'Add file'. Select programming (pof) file provided by us.
#. Click on 'Add file'. Select programming (pof) file provided by the SLS Detector group.
#. Check "Program/Configure" and "Verify". Push the start button. Wait until the programming process is finished.
@ -167,75 +204,64 @@ Upgrade
#. Reboot the detector.
Mythen III
-----------
Mythen3
-------
.. note ::
As it is still in developement, the rbf files must be picked up from the SLS Detector Group.
Download
^^^^^^^^^^^^^
- detector server corresponding to package in slsDetectorPackage/serverBin
- `rbf files <https://github.com/slsdetectorgroup/slsDetectorFirmware>`__
- rbf files (in developement)
Upgrade
^^^^^^^^
Upgrade (from v5.0.0)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Program from console
#. Program from console
.. code-block:: bash
# Always ensure that the client and server software are of the same release.
# copies server, links new server to mythen3DetectorServer,
# removes old server from respawn, sets up new lnked server to respawn
# programs fpga, reboots
# v5.0.0 - 6.0.0 (copies server from tftp folder of the pc)
# copies server from tftp folder of pc, programs fpga,
# and reboots (new server not respawned currently)
sls_detector_put update mythen3DetectorServervxxx pcxxx xxx.rbf
# v6.1.1 - present (copies server from the full path provided)
sls_detector_put update mythen3DetectorServervxxx xxx.rbf
# Or only program firmware
sls_detector_put programfpga xxx.rbf
Gotthard2
-------------
.. note ::
If the detector servers did not start up automatically after reboot, you need to add scripts to do that. See :ref:`Automatic start<Automatic start servers>` for more details.
Gotthard II
-------------
As it is still in developement, the rbf files must be picked up from the SLS Detector Group.
Download
^^^^^^^^^^^^^
- detector server corresponding to package in slsDetectorPackage/serverBin
- `rbf files <https://github.com/slsdetectorgroup/slsDetectorFirmware>`__
- rbf files (in development)
Upgrade
^^^^^^^^
Program from console
Upgrade (from v5.0.0)
^^^^^^^^^^^^^^^^^^^^^^^^^^
#. Program from console
.. code-block:: bash
# Always ensure that the client and server software are of the same release.
# copies server, links new server to gotthard2DetectorServer,
# removes old server from respawn, sets up new lnked server to respawn
# programs fpga, reboots
# v5.0.0 - 6.0.0 (copies server from tftp folder of the pc)
# copies server from tftp folder of pc, programs fpga,
# and reboots (new server not respawned currently)
sls_detector_put update gotthard2DetectorServervxxx pcxxx xxx.rbf
# v6.1.1 - present (copies server from the full path provided)
sls_detector_put update gotthard2DetectorServervxxx xxx.rbf
# Or only program firmware
sls_detector_put programfpga xxx.rbf
.. note ::
If the detector servers did not start up automatically after reboot, you need to add scripts to do that. See :ref:`Automatic start<Automatic start servers>` for more details.
Moench
-------
@ -247,40 +273,19 @@ Download
- `pof files <https://github.com/slsdetectorgroup/slsDetectorFirmware>`__
Upgrade
^^^^^^^^
.. warning ::
In case you have had issues in the past with programming via software:
* 6.1.2 server has a fix for seamless fpga programming
* We recommend first updating the on-board detector server to 6.1.2 (with client 6.1.x) using command 'updatedetectorserver' or 'copydetectorserver'.
* Then use command 'programfpga' to only update firmware or use command 'update' to update firmware and server to the latest release.
Upgrade (from v5.0.0)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Check :ref:`firmware troubleshooting <blackfin firmware troubleshooting>` if you run into issues while programming firmware.
Program from console
#. Program from console
.. code-block:: bash
# Always ensure that the client and server software are of the same release.
# copies server, links new server to moenchDetectorServer,
# removes old server from respawn, sets up new lnked server to respawn
# programs fpga, reboots
# v5.0.0 - 6.0.0 (copies server from tftp folder of the pc)
# copies server from tftp folder of pc, programs fpga,
# removes old server from respawn, sets up new server to respawn
# and reboots
sls_detector_put update moenchDetectorServervxxx pcxxx xx.pof
# v6.1.1 - present (copies server from the full path provided)
sls_detector_put update moenchDetectorServervxxx xx.pof
# Or only program firmware
sls_detector_put programfpga xxx.pof
@ -294,28 +299,19 @@ Download
- `pof files <https://github.com/slsdetectorgroup/slsDetectorFirmware>`__
Upgrade
^^^^^^^^
Upgrade (from v5.0.0)
^^^^^^^^^^^^^^^^^^^^^^^^^^
Check :ref:`firmware troubleshooting <blackfin firmware troubleshooting>` if you run into issues while programming firmware.
Program from console
#. Program from console
.. code-block:: bash
# Always ensure that the client and server software are of the same release.
# copies server, links new server to ctbDetectorServer,
# removes old server from respawn, sets up new lnked server to respawn
# programs fpga, reboots
# v5.0.0 - 6.0.0 (copies server from tftp folder of the pc)
# copies server from tftp folder of pc, programs fpga,
# removes old server from respawn, sets up new server to respawn
# and reboots
sls_detector_put update ctbDetectorServervxxx pcxxx xx.pof
# v6.1.1 - present (copies server from the full path provided)
sls_detector_put update ctbDetectorServervxxx xx.pof
# Or only program firmware
sls_detector_put programfpga xxx.pof
@ -348,52 +344,25 @@ Firmware Troubleshooting with blackfin
5. If one can't list it, read the next section to try to get the blackfin to list it.
How to get back mtd3 drive remotely (udpating kernel)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You have 2 alternatives to update the kernel.
1. Commands via software (>= v6.0.0)
How to get back mtd3 drive remotely
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This might take a few reruns (maybe even 10) until the mtd drive is accessed by the blackfin upon linux startup.
.. code-block:: bash
sls_detector_put updatekernel /home/...path-to-kernel-image
2. or command line
.. code-block:: bash
# step 1: get the kernel image (uImage.lzma) from slsdetectorgroup
# and copy it to pc's tftp folder
# step 2: connect to the board
# step 1: connect to the board
telnet bchipxxx
#step 3: go to directory for space
cd /var/tmp/
# step 2: check if mtd3 drive listed
more /proc/mtd
# step 3: copy kernel to board
tftp pcxxx -r uImage.lzma -g
# step 4: verify kernel copied properly
ls -lrt
# step 5: erase flash
flash_eraseall /dev/mtd1
# step 6: copy new image to kernel drive
cat uImage.lzma > /dev/mtd1
# step 7:
sync
# step 8:
# step 3: tell fpga not to touch flash and reboot
echo 9 > /sys/class/gpio/export;
echo out > /sys/class/gpio/gpio9/direction;
echo 0 > /sys/class/gpio/gpio9/value;
reboot
# step 9: verification
telnet bchipxxx
uname -a # verify kernel date
more /proc/mtd # verify mtd3 is listed
# step 4: repeat steps 1 - 3 until you see the mtd3 drive
Last Resort using USB Blaster

View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
/**
* Utility program to generate input files for the command line
* documentation. Uses the string returned from sls_detector_help cmd
@ -45,7 +43,6 @@ int main() {
for (const auto &cmd : commands) {
std::ostringstream os;
std::cout << cmd << '\n';
proxy.Call(cmd, {}, -1, slsDetectorDefs::HELP_ACTION, os);
auto tmp = os.str().erase(0, cmd.size());

View File

@ -66,15 +66,6 @@ Welcome to slsDetectorPackage's documentation!
virtualserver
serverdefaults
.. toctree::
:caption: Detector UDP Header
:maxdepth: 2
udpheader
udpconfig
udpdetspec
.. toctree::
:caption: Receiver
:maxdepth: 2

View File

@ -1,28 +1,100 @@
.. note ::
The default branch of our git repository is developer. It contains the
latest development version. It is expected to compile and work but
features might be added or tweaked. In some cases the API might also change
without being communicated. If absolute stability of the API is needed please
use one of the release versions.
.. warning ::
Before building from source make sure that you have the
:doc:`dependencies <../dependencies>` installed. If installing using conda, conda will
manage the dependencies. Avoid also installing packages with pip.
manage the dependencies.
.. _Installation:
Installation
===============
==============================================
.. _build from source using cmake:
Build from source using CMake
---------------------------------
Note that on some systems, for example RH7, cmake v3+ is available under the cmake3 alias.
It is also required to clone with the option --recursive to get the git submodules used
in the package.
.. code-block:: bash
git clone --recursive https://github.com/slsdetectorgroup/slsDetectorPackage.git
mkdir build && cd build
cmake ../slsDetectorPackage -DCMAKE_INSTALL_PREFIX=/your/install/path
make -j12 #or whatever number of cores you are using to build
make install
The easiest way to configure options is to use the ccmake utility.
.. code-block:: bash
#from the build directory
ccmake .
Build using cmk.sh script
-------------------------
These are mainly aimed at those not familiar with using ccmake and cmake.
.. code-block:: bash
The binaries are generated in slsDetectorPackage/build/bin directory.
Usage: $0 [-c] [-b] [-p] [e] [t] [r] [g] [s] [u] [i] [m] [n] [-h] [z] [-d <HDF5 directory>] [-l Install directory] [-k <CMake command>] [-j <Number of threads>]
-[no option]: only make
-c: Clean
-b: Builds/Rebuilds CMake files normal mode
-p: Builds/Rebuilds Python API
-h: Builds/Rebuilds Cmake files with HDF5 package
-d: HDF5 Custom Directory
-k: CMake command
-l: Install directory
-t: Build/Rebuilds only text client
-r: Build/Rebuilds only receiver
-g: Build/Rebuilds only gui
-s: Simulator
-u: Chip Test Gui
-j: Number of threads to compile through
-e: Debug mode
-i: Builds tests
-m: Manuals
-n: Manuals without compiling doxygen (only rst)
-z: Moench zmq processor
# get all options
./cmk.sh -?
# new build and compile in parallel:
./cmk.sh -bj5
Install binaries using conda
-------------------------------
--------------------------------
Conda is not only useful to manage python environments but can also
be used as a user space package manager. Dates in the tag (for eg. 2020.07.23.dev0)
are from the developer branch. Please use released tags for stability.
be used as a user space package manager.
We have three different packages available:
* **slsdetlib** shared libraries and command line utilities
* **slsdetgui** GUI
* **slsdet** Python bindings
* **slsdetlib**, shared libraries and command line utilities
* **slsdetgui**, GUI
* **slsdet**, Python bindings
.. code-block:: bash
@ -31,9 +103,9 @@ We have three different packages available:
conda config --add channels slsdetectorgroup
conda config --set channel_priority strict
#create and activate an environment with our library
#replace 6.1.1 with the required tag
conda create -n myenv slsdetlib=6.1.1
#cerate an environment with our library, then activate
#replace 2020.07.20.dev0 with the required tag
conda create -n myenv slsdetlib=2020.07.23.dev0
conda activate myenv
#ready to use
@ -44,145 +116,11 @@ We have three different packages available:
.. code-block:: bash
#List available versions
# lib and binaries
conda search slsdetlib
# python
conda search slsdet
# gui
conda search slsdetgui
Build from source
-------------------
1. Download Source Code from github
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
git clone https://github.com/slsdetectorgroup/slsDetectorPackage.git --branch 6.1.1
| **Pybind for Python**
| v7.0.0+:
| pybind11 packaged into 'libs/pybind'. No longer a submodule. No need for "recursive" or "submodule update".
|
| Older versions:
| pybind11 is a submodule. Must be cloned using "recursive" and updated when switching between versions using the following commands.
.. code-block:: bash
# clone using recursive to get pybind11 submodule
git clone --recursive https://github.com/slsdetectorgroup/slsDetectorPackage.git
# update submodule when switching between releases
cd slsDetectorPackage
git submodule update --init
.. _build from source using cmake:
2. Build from Source
^^^^^^^^^^^^^^^^^^^^^^^^^^
Build using CMake
^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
# outside slsDetecorPackage folder
mkdir build && cd build
# configure & generate Makefiles using cmake
# by listing all your options (alternately use ccmake described below)
# cmake3 for some systems
cmake ../slsDetectorPackage -DCMAKE_INSTALL_PREFIX=/your/install/path
# compiled to the build/bin directory
make -j12 #or whatever number of cores you are using to build
# install headers and libs in /your/install/path directory
make install
Instead of the cmake command, one can use ccmake to get a list of options to configure and generate Makefiles at ease.
.. code-block:: bash
# ccmake3 for some systems
ccmake ..
# choose the options
# first press [c] - configure
# then press [g] - generate
=============================== ===========================================
Example cmake options Comment
=============================== ===========================================
-DSLS_USE_PYTHON=ON Python
-DPython_FIND_VIRTUALENV=ONLY Python from only the conda environment
-DZeroMQ_HINT=/usr/lib64 Use system zmq instead
-DSLS_USE_GUI=ON GUI
=============================== ===========================================
Build using in-built cmk.sh script
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
The binaries are generated in slsDetectorPackage/build/bin directory.
Usage: ./cmk.sh [-b] [-c] [-d <HDF5 directory>] [e] [g] [-h] [i] [-j <Number of threads>]
[-k <CMake command>] [-l <Install directory>] [m] [n] [-p] [-q <Zmq hint directory>]
[r] [s] [t] [u] [z]
-[no option]: only make
-b: Builds/Rebuilds CMake files normal mode
-c: Clean
-d: HDF5 Custom Directory
-e: Debug mode
-g: Build/Rebuilds gui
-h: Builds/Rebuilds Cmake files with HDF5 package
-i: Builds tests
-j: Number of threads to compile through
-k: CMake command
-l: Install directory
-m: Manuals
-n: Manuals without compiling doxygen (only rst)
-p: Builds/Rebuilds Python API
-q: Zmq hint directory
-r: Build/Rebuilds only receiver
-s: Simulator
-t: Build/Rebuilds only text client
-u: Chip Test Gui
-z: Moench zmq processor
# display all options
./cmk.sh -?
# new build and compile in parallel (recommended basic option):
./cmk.sh -cbj5
# new build, python and compile in parallel:
./cmk.sh -cbpj5
#To use the system zmq (/usr/lib64) instead
./cmk.sh -cbj5 -q /usr/lib64
Build on old distributions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Build from source on old distributions
-----------------------------------------
If your linux distribution doesn't come with a C++11 compiler (gcc>4.8) then
it's possible to install a newer gcc using conda and build the slsDetectorPackage
@ -193,64 +131,12 @@ using this compiler
#Create an environment with the dependencies
conda create -n myenv gxx_linux-64 cmake zmq
conda activate myenv
# outside slsDetecorPackage folder
mkdir build && cd build
cmake ../slsDetectorPackage -DCMAKE_PREFIX_PATH=$CONDA_PREFIX
make -j12
Build slsDetectorGui (Qt5)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1. Using pre-built binary on conda
.. code-block:: bash
conda create -n myenv slsdetgui=7.0.0
conda activate myenv
2. Using system installation on RHEL7
.. code-block:: bash
yum install qt5-qtbase-devel.x86_64
yum install qt5-qtsvg-devel.x86_64
3. Using conda
.. code-block:: bash
#Add channels for dependencies and our library
conda config --add channels conda-forge
conda config --add channels slsdetectorgroup
conda config --set channel_priority strict
# create environment to compile
# on rhel7
conda create -n slsgui zeromq gxx_linux-64 gxx_linux-64 mesa-libgl-devel-cos6-x86_64 qt
# on fedora or newer systems
conda create -n slsgui zeromq qt
# when using conda compilers, would also need libgl, but no need for it on fedora unless maybe using it with ROOT
# activate environment
conda activate slsgui
# compile with cmake outside slsDetecorPackage folder
mkdir build && cd build
cmake ../slsDetectorPackage -DSLS_USE_GUI=ON
make -j12
# or compile with cmk.sh
cd slsDetectorPackage
./cmk.sh -cbgj9
Build this documentation
^^^^^^^^^^^^^^^^^^^^^^^^
-------------------------------
The documentation for the slsDetectorPackage is build using a combination
of Doxygen, Sphinx and Breathe. The easiest way to install the dependencies
@ -258,15 +144,11 @@ is to use conda
.. code-block:: bash
conda create -n myenv python sphinx_rtd_theme breathe
conda create -n myenv python sphinx sphinx_rtd_theme
Then enable the option SLS_BUILD_DOCS to create the targets
.. code-block:: bash
# using cmake or ccmake to enable DSLS_BUILD_DOCS
# outside slsDetecorPackage folder
mkdir build && cd build
cmake ../slsDetectorPackage -DSLS_BUILD_DOCS=ON
make docs # generate API docs and build Sphinx RST
make rst # rst only, saves time in case the API did not change

View File

@ -67,23 +67,11 @@ exposed to Python through pybind11.
.. autoclass:: readoutMode
:undoc-members:
.. autoclass:: masterFlags
:undoc-members:
.. autoclass:: burstMode
:undoc-members:
.. autoclass:: timingSourceType
:undoc-members:
.. autoclass:: M3_GainCaps
:undoc-members:
.. autoclass:: portPosition
:undoc-members:
.. autoclass:: streamingInterface
:undoc-members:
.. autoclass:: vetoAlgorithm
:undoc-members:
.. autoclass:: gainMode
:undoc-members:

View File

@ -10,46 +10,27 @@ open an issue in our our `github repo
Setting exposure time
------------------------------------
Setting and reading back exposure time can be done either using a Python
datetime.timedelta, DurationWrapper or by setting the time in seconds.
Setting and reading back exposure time can be done either using a Python datetime.timedelta
or by setting the time in seconds.
::
# Set exposure time to 1.2 seconds
>>> d.exptime = 1.2
>>> d.exptime = 5e-07
# Setting exposure time using timedelta (upto microseconds precision)
# Setting exposure time using timedelta
import datetime as dt
>>> d.exptime = dt.timedelta(seconds = 1.2)
>>> d.exptime = dt.timedelta(seconds = 1, microseconds = 3)
# With timedelta any arbitrary combination of units can be used
>>> t = dt.timedelta(microseconds = 100, seconds = 5.3, minutes = .3)
# using DurationWrapper to set in seconds
>>> from slsdet import DurationWrapper
>>> d.exptime = DurationWrapper(1.2)
# using DurationWrapper to set in ns
>>> t = DurationWrapper()
>>> t.set_count(500)
>>> d.exptime = t
# To set exposure time for individual detector one have to resort
# to the C++ style API.
# Sets exposure time to 1.2 seconds for module 0, 6 and 12
>>> d.setExptime(1.2, [0, 6, 12])
>>> d.setExptime(dt.timedelta(seconds = 1.2), [0, 6, 12])
# to get in seconds
>>> d.period
181.23
# to get in DurationWrapper
>>> d.getExptime()
[sls::DurationWrapper(total_seconds: 181.23 count: 181230000000)]
------------------------------------
@ -239,7 +220,8 @@ Setting and getting times
# This sets the exposure time for all modules
d.exptime = 0.5
# exptime also accepts a python datetime.timedelta (upto microseconds resolution)
# exptime also accepts a python datetime.timedelta
# which can be used to set the time in almost any unit
t = dt.timedelta(milliseconds = 2.3)
d.exptime = t
@ -247,25 +229,16 @@ Setting and getting times
t = dt.timedelta(minutes = 3, seconds = 1.23)
d.exptime = t
# using DurationWrapper to set in seconds
>>> from slsdet import DurationWrapper
>>> d.exptime = DurationWrapper(1.2)
# using DurationWrapper to set in ns
>>> t = DurationWrapper()
>>> t.set_count(500)
>>> d.exptime = t
# exptime however always returns the time in seconds
>>> d.exptime
181.23
# To get back the exposure time for each module
# it's possible to use getExptime, this also returns
# the values as DurationWrapper
# the values as datetime.timedelta
>>> d.getExptime()
[sls::DurationWrapper(total_seconds: 181.23 count: 181230000000)]
[datetime.timedelta(seconds=181, microseconds=230000), datetime.timedelta(seconds=181, microseconds=230000)]
# In case the values are the same it's possible to use the
# element_if_equal function to reduce the values to a single
@ -273,8 +246,7 @@ Setting and getting times
>>> t = d.getExptime()
>>> element_if_equal(t)
sls::DurationWrapper(total_seconds: 1.2 count: 1200000000)
datetime.timedelta(seconds=1)
--------------
Reading dacs

View File

@ -6,7 +6,7 @@ Getting Started
Which Python?
--------------------
We require at least Python 3.6 and strongly recommended that you don't use the system
We require at lest Python 3.6 and strongly recommended that you don't use the system
Python installation. The examples in this documentation uses `conda
<https://docs.conda.io/en/latest/miniconda.html>`_ since it provides good support
also for non Python packages but there are also other alternatives like, pyenv.
@ -14,35 +14,28 @@ also for non Python packages but there are also other alternatives like, pyenv.
Using something like conda also allows you to quickly switch beteen different Python
environments.
---------------------
Building from Source
---------------------
If you are not installing slsdet binaries from conda, but instead building from
source, please refer to :ref:`the installation section<Installation>` for details.
Don't forget to compile with the option SLS_USE_PYTHON=ON to enable the Python
bindings or if you use the cmk.sh script -p.
.. note ::
Ensure that the sls det python lib compiled is for the expected python version.
For example, build/bin/_slsdet.cpython-39-x86_64-linux-gnu.so for Python v3.9.x
.. warning ::
If you use conda avoid also installing packages with pip.
---------------------
PYTHONPATH
---------------------
If you install slsdet binaries using conda everything is set up and you can
If you install slsdet using conda everything is set up and you can
directly start using the Python bindings. However, if you build
from source you need to tell Python where to find slsdet to use it. This
can be done by adding your build/bin directory to PYTHONPATH.
from source you need to tell Python where to find slsdet. This
is be done by adding your build/bin directory to PYTHONPATH.
.. code-block:: bash
export PYTHONPATH = /path/to/your/build/bin:$PYTHONPATH
.. note ::
Don't forget to compile with the option SLS_USE_PYTHON=ON to enable
the Python bindings or if you use the cmk.sh script -p.
--------------------------------------
Which detector class should I use?
--------------------------------------
@ -143,7 +136,7 @@ can use dir()
'__str__', '__subclasshook__', '_adc_register', '_frozen',
'_register', 'acquire', 'adcclk', 'adcphase', 'adcpipeline',
'adcreg', 'asamples', 'auto_comp_disable', 'clearAcquiringFlag',
'clearBit', 'clearROI', 'client_version', 'config',
'clearBit', 'clearROI', 'client_version', 'config', 'copyDetectorServer',
'counters', 'daclist', 'dacvalues', 'dbitclk', 'dbitphase' ...
Since the list for Detector is rather long it's an good idea to filter it.
@ -153,11 +146,9 @@ their name.
::
>>> [item for item in dir(d) if 'time' in item]
['compdisabletime', 'exptime', 'exptimel', 'frametime', 'getExptime',
'getExptimeForAllGates', 'getExptimeLeft', 'getSubExptime', 'patwaittime',
'patwaittime0', 'patwaittime1', 'patwaittime2', 'runtime', 'setExptime',
'setSubExptime', 'subdeadtime', 'subexptime']
['exptime', 'getExptime', 'getExptimeForAllGates', 'getExptimeLeft',
'getSubExptime', 'patwaittime0', 'patwaittime1', 'patwaittime2',
'setExptime', 'setSubExptime', 'subdeadtime', 'subexptime']
The above method works on any Python object but for convenience we also
included two functions to find names. View prints the names one per line
@ -169,7 +160,6 @@ while find returns a list of names.
>>> view('exptime')
exptime
exptimel
getExptime
getExptimeForAllGates
getExptimeLeft
@ -178,7 +168,6 @@ while find returns a list of names.
setSubExptime
subexptime
>>> find('exptime')
['exptime', 'getExptime', 'getExptimeForAllGates', 'getExptimeLeft',
'getSubExptime', 'setExptime', 'setSubExptime', 'subexptime']
@ -199,36 +188,16 @@ To access the documentation of a function directly from the Python prompt use he
Note
-----
:getter: always returns in seconds. To get in DurationWrapper, use getPeriod
:getter: always returns in seconds. To get in datetime.delta, use getPeriod
Example
Examples
-----------
>>> # setting directly in seconds
>>> d.period = 1.05
>>>
>>> # setting directly in seconds
>>> d.period = 5e-07
>>>
>>> # using timedelta (up to microseconds precision)
>>> from datatime import timedelta
>>> d.period = timedelta(seconds = 1, microseconds = 3)
>>>
>>> # using DurationWrapper to set in seconds
>>> from slsdet import DurationWrapper
>>> d.period = DurationWrapper(1.2)
>>>
>>> # using DurationWrapper to set in ns
>>> t = DurationWrapper()
>>> t.set_count(500)
>>> d.period = t
>>>
>>> # to get in seconds
>>> d.period = datetime.timedelta(minutes = 3, seconds = 1.23)
>>> d.period
181.23
>>>
>>> d.getExptime()
[sls::DurationWrapper(total_seconds: 181.23 count: 181230000000)]
>>> d.getPeriod()
[datetime.timedelta(seconds=181, microseconds=230000)]
----------------------
@ -248,12 +217,11 @@ The enums can be found in slsdet.enums
import slsdet
>>> [e for e in dir(slsdet.enums) if not e.startswith('_')]
['M3_GainCaps', 'burstMode', 'clockIndex', 'cls', 'dacIndex', 'detectorSettings',
'detectorType', 'dimension', 'externalSignalFlag', 'fileFormat',
'frameDiscardPolicy', 'gainMode', 'name', 'polarity', 'portPosition',
'readoutMode', 'runStatus', 'speedLevel', 'streamingInterface', 'timingMode',
'timingSourceType', 'vetoAlgorithm']
['burstMode', 'clockIndex', 'dacIndex',
'detectorSettings', 'detectorType', 'dimension', 'externalSignalFlag',
'fileFormat', 'frameDiscardPolicy', 'masterFlags',
'readoutMode', 'runStatus', 'speedLevel', 'timingMode',
'timingSourceType']
# Even though importing using * is not recommended one could
# get all the enums like this:

View File

@ -66,15 +66,11 @@ For a Single Module
# sets destination udp ports (not needed, default is 50001)
udp_dstport 50012
# 1g data out
# source udp ips must be same subnet at destintaion udp ips
# udp_srcip 192.168.1.112
# destination udp ip picked up from rx_hostname (if auto)
# udp_dstip auto
udp_srcip 192.168.1.112
# 10g data out
udp_srcip 10.30.20.200
udp_dstip 10.30.20.6
# destination udp ip picked up from rx_hostname (if auto)
udp_dstip auto
# set file path
fpath /tmp

View File

@ -4,8 +4,41 @@ Receivers
Receiver processes can be run on same or different machines as the client, receives the data from the detector (via UDP packets).
When using the slsReceiver/ slsMultiReceiver, they can be further configured by the client control software (via TCP/IP) to set file name, file path, progress of acquisition etc.
Detector UDP Header
---------------------
| The UDP data format for the packets consist of a common header for all detectors, followed by the data for that one packet.
**The SLS Detector Header**
.. table:: <-------------------------------- 8 bytes -------------------------------->
:align: center
:widths: 30,30,30,30
+--------------------------------------------------------------------+
|frameNumber |
+---------------------------------+----------------------------------+
|expLength |packetNumber |
+---------------------------------+----------------------------------+
|bunchId |
+--------------------------------------------------------------------+
|timestamp |
+----------------+----------------+----------------+-----------------+
|modId |row |column |reserved |
+----------------+----------------+----------------+--------+--------+
|debug |roundRNumber |detType |version |
+---------------------------------+----------------+--------+--------+
UDP configuration in Config file
----------------------------------
#. UDP source port is hardcoded in detector server, starting at 32410.
#. **udp_dstport** : UDP destination port number. Port in receiver pc to listen to packets from the detector.
#. **udp_dstip** : IP address of UDP destination interface. IP address of interface in receiver pc to listen to packets from detector. If **auto** is used (only when using slsReceiver/ slsMultiReceiver), the IP of **rx_hostname** is picked up.
#. **udp_dstmac** : Mac address of UDP destination interface. MAC address of interface in receiver pc to list to packets from detector. Only required when using custom receiver, else slsReceiver/slsMultiReceiver picks it up from **udp_dstip**.
#. **udp_srcip** : IP address of UDP source interface. IP address of detector UDP interface to send packets from. Do not use for Eiger 1Gb interface (uses its hardware IP). For others, must be in the same subnet as **udp_dstip**.
#. **udp_srcmac** : MAC address of UDP source interface. MAC address of detector UDP interface to send packets from. Do not use for Eiger (uses hardware mac). For others, it is not necessary, but can help for switch and debugging to put unique values for each module.
To know more about detector receiver configuration, please check out :ref:`detector udp header and udp commands in the config file <detector udp header>`
Custom Receiver
----------------

View File

@ -1,14 +1,5 @@
Getting Started
===============
Detector Servers include:
* Control server [default port: 1952]
* Almost all client communication.
* Stop server [default port: 1953]
* Client requests for detector status, stop acquisition, temperature, advanced read/write registers.
When using a blocking acquire command (sls_detector_acquire or Detector::acquire), the control server is blocked until end of acquisition. However, stop server commands could be used in parallel.
Detector Servers
=================
Location
---------
@ -25,76 +16,21 @@ Arguments
Possible arguments are:
-v, --version : Software version
-p, --port <port> : TCP communication port with client.
-g, --nomodule : [Mythen3][Gotthard2]
Generic or No Module mode. Skips detector type checks.
-g, --nomodule : [Mythen3][Gotthard2] Generic or No Module mode.
Skips detector type checks.
-f, --phaseshift <value> : [Gotthard] only. Sets phase shift.
-d, --devel : Developer mode. Skips firmware checks.
-u, --update : Update mode. Skips firmware checks and initial detector setup.
-i, --ignore-config : [Eiger][Jungfrau][Gotthard][Gotthard2][Moench]
Ignore config file.
-m, --master <master> : [Eiger][Mythen3][Gotthard][Gotthard2]
Set Master to 0 or 1. Precedence over config file. Only for virtual servers except Eiger.
-t, --top <top> : [Eiger] Set Top to 0 or 1. Precedence over config file.
-s, --stopserver : Stop server. Do not use as it is created by control server
.. _Automatic start servers:
Automatic start
------------------
Basics
------------
One can start the on-board detector server automatically upon powering on the board.
Detector Servers include:
* Control server [default port: 1952]
* Almost all client communication.
* Stop server [default port: 1953]
* Client requests for detector status, stop acquisition, temperature, advanced read/write registers.
#. Create a soft link to the binary on board
:
.. code-block:: bash
ln -sf someDetectorServervx.x.x someDetectorServer
#. Do the following depending on the detector type :
Eiger
.. code-block:: bash
# create script in rc5.d on the board
vi /etc/rc5.d/S50board_com.sh
# enter the following (edit server name)
#! /bin/sh
/home/root/executables/eigerDetectorServer &> /dev/null &
exit 0
Jungfrau | Moench | CTB | Gotthard I
.. code-block:: bash
# Edit inittab on board
vi /etc/inittab
# enter the following line
ttyS0::respawn:/./xxxDetectorServer
Gotthard II | Mythen III
.. code-block:: bash
# create script in init.d on board
vi /etc/init.d/S99detServer.sh
# enter the following (edit server name)
#! /bin/sh
cd /root >> /dev/null
/root/xxxDetectorServer >> /dev/null &
#. Sync, reboot and verify
:
.. code-block:: bash
sync
# physically reboot for Gotthard II or Mythen III
reboot
# verify
ps -ef | grep xxxDetectorServer
When using a blocking acquire command (sls_detector_acquire or Detector::acquire), the control server is blocked until end of acquisition. However, stop server commands could be used in parallel.

View File

@ -1,66 +1,114 @@
.. _Detector Server Upgrade:
Upgrade
========
Detector Server Upgrade
=======================
Eiger
-------------
**Location:** slsDetectorPackage/serverBin/ folder for every release.
.. note ::
For Mythen3, Gotthard2 and Eiger, you need to add scripts to automatically start detector server upon power on. See :ref:`Automatic start<Automatic start servers>` for more details.
.. note ::
Eiger requires a manual reboot. Or killall the servers and restart the new linked one. If you are in the process of updating firmware, then don't reboot yet.
6.1.1+ (no tftp required)
---------------------------------------
#. Program from console
#. Kill old server and copy new server
.. code-block:: bash
# the following command copies new server, creates a soft link to xxxDetectorServerxxx
# [Jungfrau][CTB][Moench] also deletes the old server binary and edits initttab to respawn server on reboot
# Then, the detector controller will reboot (except Eiger)
sls_detector_put updatedetectorserver /complete-path-to-binary/xxxDetectorServerxxx
# Option 1: from detector console
# kill old server
ssh root@bebxxx
killall eigerDetectorServer
#. Copy the detector server specific config files or any others required to the detector:
# copy new server
cd executables
scp user@pc:/path/eigerDetectorServerxxx .
chmod 777 eigerDetectorServerxxx
ln -sf eigerDetectorServerxxx eigerDetectorServer
sync
.. code-block:: bash
# Options 2: from client console for multiple modules
for i in bebxxx bebyyy;
do ssh root@$i killall eigerDetectorServer;
scp eigerDetectorServerxxx root@$i:~/executables/eigerDetectorServer;
ssh root@$i sync; done
sls_detector_put execcommand "tftp pcxxx -r configxxx -g"
5.0.0 - 6.1.1
--------------
#. Reboot the detector.
Jungfrau
-------------
**Location:** slsDetectorPackage/serverBin/ folder for every release.
#. Install tftp and copy detector server binary to tftp folder
#. Program from console
#. Program from console (only from 5.0.0-rcx)
.. code-block:: bash
# the following command copies new server from pc tftp folder, creates a soft link to xxxDetectorServerxxx
# [Jungfrau][CTB][Moench] also edits initttab to respawn server on reboot
# Then, the detector controller will reboot (except Eiger)
sls_detector_put copydetectorserver xxxDetectorServerxxx pcxxx
# copies new server from pc tftp folder, respawns and reboots
sls_detector_put copydetectorserver jungfrauDetectorServerxxx pcxxx
#. Copy the detector server specific config files or any others required to the detector:
Gotthard
---------
**Location:** slsDetectorPackage/serverBin/ folder for every release.
#. Install tftp and copy detector server binary to tftp folder
#. Program from console (only from 5.0.0-rcx)
.. code-block:: bash
sls_detector_put execcommand "tftp pcxxx -r configxxx -g"
# copies new server from pc tftp folder, respawns and reboots
sls_detector_put copydetectorserver gotthardDetectorServerxxx pcxxx
Troubleshooting with tftp
^^^^^^^^^^^^^^^^^^^^^^^^^
#. tftp write error: There is no space left. Please delete some old binaries and try again.
Mythen3
-------
#. text file busy: You are trying to copy the same server.
**Location:** slsDetectorPackage/serverBin/ folder for every release.
#. Install tftp and copy detector server binary to tftp folder
#. Program from console (only from 5.0.0-rcx)
.. code-block:: bash
# copies new server from pc tftp folder and reboots (does not respawn)
sls_detector_put copydetectorserver mythen3DetectorServerxxx pcxxx
< 5.0.0
--------
Gotthard2
----------
Please contact us.
**Location:** slsDetectorPackage/serverBin/ folder for every release.
#. Install tftp and copy detector server binary to tftp folder
#. Program from console (only from 5.0.0-rcx)
.. code-block:: bash
# copies new server from pc tftp folder and reboots (does not respawn)
sls_detector_put copydetectorserver gotthard2DetectorServerxxx pcxxx
Moench
------
**Location:** slsDetectorPackage/serverBin/ folder for every release.
#. Install tftp and copy detector server binary to tftp folder
#. Program from console (only from 5.0.0-rcx)
.. code-block:: bash
# copies new server from pc tftp folder, respawns and reboots
sls_detector_put copydetectorserver moenchDetectorServerxxx pcxxx
Ctb
---
**Location:** slsDetectorPackage/serverBin/ folder for every release.
#. Install tftp and copy detector server binary to tftp folder
#. Program from console (only from 5.0.0-rcx)
.. code-block:: bash
# copies new server from pc tftp folder, respawns and reboots
sls_detector_put copydetectorserver ctbDetectorServerxxx pcxxx

View File

@ -86,199 +86,16 @@ Client Commands
sls_detector_get -h rx_framescaught
ZMQ: Json Header Format
------------------------
**Change in field names from slsDetectorPackage v6.x.x to v7.0.0**
* detSpec1 <- bunchId
* detSpec2 <- reserved
* detSpec3 <- debug
* detSpec4 <- roundRNumber
**Format**
.. code-block:: bash
{
"jsonversion": unsigned int,
"bitmode": unsigned int,
"fileIndex": unsigned long int,
"detshape": [
unsigned int,
unsigned int
],
"shape": [
unsigned int,
unsigned int
],
"size": unsigned int,
"acqIndex": unsigned long int,
"frameIndex": unsigned long int,
"progress": double,
"fname": string,
"data": unsigned int,
"completeImage": unsigned int,
"frameNumber": unsigned long long int,
"expLength": unsigned int,
"packetNumber": unsigned int,
"detSpec1": unsigned long int,
"timestamp": unsigned long int,
"modId": unsigned int,
"row": unsigned int,
"column": unsigned int,
"detSpec2": unsigned int,
"detSpec3": unsigned int,
"detSpec4": unsigned int,
"detType": unsigned int,
"version": unsigned int,
"flipRows": unsigned int,
"quad": unsigned int,
"addJsonHeader": {
string : string
}
}
+--------------+----------------------------------------------+
| Field | Description |
+--------------+----------------------------------------------+
| jsonversion | Version of the json header. |
| | Value at 4 for v6.x.x and v7.x.x |
+--------------+----------------------------------------------+
| bitmode | Bits per pixel [4|8|16|32] |
+--------------+----------------------------------------------+
| fileIndex | Current file acquisition index |
+--------------+----------------------------------------------+
| detshape | Geometry of the entire detector |
+--------------+----------------------------------------------+
| shape | Geometry of the current port streamed out |
+--------------+----------------------------------------------+
| size | Size of image of current port in bytesout |
+--------------+----------------------------------------------+
| acqIndex | Frame number from the detector (redundant) |
+--------------+----------------------------------------------+
| frameIndex | Frame number of current acquisition |
| | (Starting at 0) |
+--------------+----------------------------------------------+
| progress | Progress of current acquisition in % |
+--------------+----------------------------------------------+
| fname | Current file name |
+--------------+----------------------------------------------+
| data | 1 if there is data following |
| | 0 if dummy header |
+--------------+----------------------------------------------+
| completeImage| 1 if no missing packets for this frame |
| | in this port, else 0 |
+--------------+----------------------------------------------+
| frameNumber | Frame number |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| expLength | subframe number (32 bit eiger) |
| | or real time exposure time in 100ns (others) |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| packetNumber | Number of packets caught for that frame |
+--------------+----------------------------------------------+
| detSpec1 | See :ref:`here<Detector Specific Fields>` |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| timestamp | Timestamp with 10 MHz clock |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| modId | Module Id |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| row | Row number in detector |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| column | Column number in detector |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| detSpec2 | See :ref:`here<Detector Specific Fields>` |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| detSpec3 | See :ref:`here<Detector Specific Fields>` |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| detSpec4 | See :ref:`here<Detector Specific Fields>` |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| detType | Detector type enum |
| detSpec3 | See :ref:`Detector enum<Detector Enum>` |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| version | Detector header version. At 2 |
| | [From detector udp header] |
+--------------+----------------------------------------------+
| flipRows | 1 if rows should be flipped. |
| | Usually for Eiger bottom. |
+--------------+----------------------------------------------+
| quad | 1 if its an Eiger quad. |
+--------------+----------------------------------------------+
| addJsonHeader| Optional custom parameters that is required |
| | for processing code. |
+--------------+----------------------------------------------+
SLS Receiver Header Format
--------------------------
It is 112 bytes and consists of:
* 48 bytes of the SLS Detector Header (described in :ref:`the current detector header <detector udp header>`)
* 64 bytes of packet mask
.. code-block:: cpp
typedef struct {
uint64_t frameNumber;
uint32_t expLength;
uint32_t packetNumber;
uint64_t detSpec1;
uint64_t timestamp;
uint16_t modId;
uint16_t row;
uint16_t column;
uint16_t detSpec2;
uint32_t detSpec3;
uint16_t detSpec4;
uint8_t detType;
uint8_t version;
} sls_detector_header;
struct sls_receiver_header {
sls_detector_header detHeader; /**< is the detector header */
sls_bitset packetsMask; /**< is the packets caught bit mask */
};
.. note ::
| The packetNumber in the SLS Receiver Header will be modified to number of packets caught by receiver for that frame. For eg. Jungfrau will have 128 packets per frame. If it is less, then this is a partial frame due to missing packets.
| Furthermore, the bit mask will specify which packets have been received.
File format
--------------
Master file is in json format.
* The file name format is [fpath]/[fname]_dx_fy_[findex].raw, where x is module index and y is file index. **fname** is file name prefix and by default "run". **fpath** is '/' by default.
The file name format is [fpath]/[fname]_dx_fy_[findex].raw, where x is module index and y is file index. **fname** is file name prefix and by default "run". **fpath** is '/' by default.
* Each acquisition will have an increasing acquisition index or findex (if file write enabled). This can be retrieved by using **findex** command.
* Each acquisition can have multiple files (the file index number **y**), with **rx_framesperfile** being the maximum number of frames per file. The default varies for each detector type.
Each acquisition will have an increasing acquisition index or findex (if file write enabled). This can be retrieved by using **findex** command.
Each acquisition can have multiple files (the file index number **y**), with **rx_framesperfile** being the maximum number of frames per file. The default varies for each detector type.
Some file name examples:
* Some file name examples:
.. code-block:: bash
@ -291,19 +108,17 @@ Some file name examples:
# second acquisition, first file
path-to-file/run_d0_f0_1.raw
* Each acquisition will create a master file that can be enabled/disabled using **fmaster**. This should have parameters relevant to the acquisition.
Each acquisition will create a master file that can be enabled/disabled using **fmaster**. This should have parameters relevant to the acquisition.
* SLS Receiver Header consist of SLS Detector Header + 64 bytes of bitmask, altogether 112 bytes. The packetNumber in the sls detector header part, will be updated to number of packets caught by receiver for that frame. Furthermore, the bit mask will specify which packets have been received.
**Binary file format**
This is the default file format.
* This is the default file format.
* Each data file will consist of frames, each consisting of slsReceiver Header followed by data for 1 frame.
Each data file will consist of frames, each consisting of slsReceiver Header followed by data for 1 frame.
Master file is of ASCII format and will also include the format of the slsReceiver Header.
* Master file is of ASCII format and will also include the format of the slsReceiver Header.
**HDF5 file formats**
@ -345,7 +160,7 @@ When handling callbacks, the control should be returned as soon as possible, to
**Example**
* `main cpp file <https://github.com/slsdetectorgroup/api-examples/blob/master/e4-receiver_callbacks.cpp>`_
* `cmake file <https://github.com/slsdetectorgroup/api-examples/blob/master/CMakeLists.txt>`_.
* how to install the slsDetectorPackage with cmake is provided :ref:`here <build from source using cmake>`.
* how to install the slsDetectorPackage is provided :ref:`here <build from source using cmake>`.
* compile the example **e4-rxr** by:
.. code-block:: bash

View File

@ -8,24 +8,21 @@ open an issue at our `github repo issues
Common
------
Missing Packets
^^^^^^^^^^^^^^^
Possible causes could be the following:
1. Total Failure of Packet Delivery
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#. Receiver PC is not tuned for socket buffer size and input packet queue.
* Refer to :ref:`Increase rmem_default, rmem_max and max_backlog<Receiver PC Tuning>`
#. Data cable plugged into the wrong interface on board (Jungfrau)
* Please ensure that the data cable is plugged into the rightmost interface (default for single interface). The inner one is disabled for PCB v1.0 and must be selected via command for PCB v2.0.
#. Wiring
* Faulty wiring or connecting cable to incorrect interface.
#. Link up and speed
* Check ethtool and find if Link Deteced:Yes and Speed is acceptable (>10k).
* Check to see if the 10G link is up (blue or red LED on board, close to SFP+). If not:
* Check transeiver and fibers are compatible (all MMF 850nm or all SMF 1030nm)
* Check fiber
* Check fiber polarity (if short range, unplug the link anywhere, and look at the light/dark pattern: dark has to mate with light)
* Check to see if there is a blue LED on board to signal that the link is up. Check ethtool and find if Link Deteced:Yes and Speed is acceptable (>10k).
#. Detector is not acquiring (Not Eiger)
* Take an acquisition with many images and using the following steps instead of acquire:
.. code-block:: bash
sls_detector_put status start
@ -33,63 +30,37 @@ Common
# which means the detector is acquiring.
sls_detector_get framesl
# If you are using multiple modules, the previous command can return -1 because each module will return different values. Then, check for a single module instead: sls_detector_get 0:framesl
#. Detector is not sending data (Except Eiger)
* Check the board to see if the green LED close to SFP is blinking (detector is sending data). If not, detector is not operated properly (period too short/long, no trigger in trigger mode) or misconfigured and needs reboot.
#. Power supply
* Check if power supply has enough current.
* For Jungfrau, refer to :ref:`Jungfrau Power Supply Troubleshooting<Jungfrau Troubleshooting Power Supply>`.
#. Ethernet interface not configured for Jumbo frames (10Gb)
* Ensure that the interfaces (on NIC and the switch) used in receiver pc have MTU 9000 (jumbo frames) enabled.
#. Check if 'rx_frames' counter in 'ifconfig' do not increment for interface.
* If no, check switch configuration if present. Port counters of switch can also help to identify problem.
* If yes, but receiver software does not see it:
* Check no firewall (eg. firewalld) is present or add rules
* Check that selinux is disabled ( or add rules)
#. Source UDP IP in config file (Not Eiger)
* Ensure it is valid and does not end if 0 or 255. Also ensure that the source ip 'udp_srcip' is in the same subnet as destination ip 'udp_dstip' and the masking in the interface configuration ensures this rule.
* Eg. If interface IP is 102.10.10.110 and mask is 255.255.255.0, udp_srcip has to be 102.10.10.xxx (same subnet)
* Use ifconfig and route commands to verify etheret interface configuration
#. Netstat and netcat
* Try with netstat to see if its really listening to the right interface. Or netcat to see if you get packets.
#. Wireshark or Tcpdump
* Use one of these to confirm that you receive packets (with the right filtering ie. source and destination ports, ip).
2. Partial or Random Packet Loss (Performance)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note ::
The following suggestions are for convenience. Please do not follow blindly, research each parameter and adapt it to your system.
If you are using multiple modules, the previous command can return -1 because each module will return different values. Then, check for a single module instead: sls_detector_get 0:framesl
#. Receiver PC is not tuned for socket buffer size and input packet queue or other parameters.
* Refer to :ref:`Receiver PC Tuning<Receiver PC Tuning>`
#. Data cable plugged into the wrong interface on board (Jungfrau)
* Please ensure that the data cable is plugged into the rightmost interface. The middle one is disabled for PCB v1.0 and must be selected via command for PCB v2.0.
#. Wiring
* Faulty wiring or connecting cable to incorrect interface.
#. Detector is not sending data
* Check the board to see if the green LED is blinking next to the data cable, which means that the detector is sending data.
#. Firewall or security feature
* A firewall or some security feature could be blocking the reception of data.
#. Ethernet interface not configured properly
* Ensure that the interfaces used are configured properly with the right mask and ip. Eg. use ifconfig and route commands to verify.
#. Ethernet interface not configured for Jumbo frames (10Gb)
* Ensure that the interfaces used in receiver pc have MTU 9000 (jumbo frames) enabled.
#. Detector IP (Not Eiger)
* Ensure it is valid and does not end if 0 or 255. Also ensure that the detector ip is in the same subnet as rx_udpip and the masking in the interface configuration ensures this rule.
#. Tcpdump or wireshark
* Use one of these to confirm that you receive packets (with the right filtering ie. source and destination ports, ip).
#. Check SFP modules
* Check if the SFP modules on both sides of the fiber are of same type.
#. Pinging the subnet (receiving only a few number of packets each time)
* If a switch is used between a receiver pc and detector instead of plugging the cables directly, one might have to ping any ip in the subnet of the Ethernet interface constantly so that it does not forget the ip during operation.
* Eg. if rx_udpip is 10.2.3.100, then ping constantly 10.2.3.xxx, where xxx is any ip other than 100.
* Using slsReceiver, you can use a command that does this for you:
.. code-block:: bash
# arping the interface in a separate thread every minute
sls_detector_put rx_arping 1
@ -97,12 +68,6 @@ Common
Receiver PC Tuning Options
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note ::
| xth1 is example interface name in the following examples.
| These settings are lost at pc reboot.
#. Increase maximum receive socket buffer size and socket input packet queue.
* Temporarily (until shut down)
.. code-block:: bash
@ -146,7 +111,6 @@ Receiver PC Tuning Options
# check how many GB memory you can allocate, to avoid swapping otherwise
#. Modify ethtool settings.
* rx ring parameters
.. code-block:: bash
@ -163,9 +127,6 @@ Receiver PC Tuning Options
# check
ethtool -c xth1
# enable adaptive xoalescence parameters
ethtool -C xth1 adaptive-rx on
# set to max value in your pc settings
ethtool -C xth1 rx-usecs 100
@ -178,42 +139,10 @@ Receiver PC Tuning Options
# set to max value in your pc settings
ethtool -A xth1 rx on
* generic receiver offload (might not always work)
.. code-block:: bash
.. note ::
# check
ethtool -k xth1
# enable generic receiver offload
ethtool -K xth1 gro
#. Disable power saving in CPU frequency scaling and set system to performance
* Check current policy (default might be powersave or schedutil)
.. code-block:: bash
# check current active governor and range of cpu freq policy
cpupower frequency-info --policy
# list all available governors for this kernel
cpupower frequency-info --governors
* Temporarily (until shut down)
.. code-block:: bash
# set to performance
sudo cpupower frequency-set -g performance
# or
cpufreq-info
for i in seq 0 7; do cpufreq-set -c $i -g performance; done
* Permanently
.. code-block:: bash
# edit /etc/sysconfig/cpupower to preference
# enable or disable permanently
sudo systemctl enable cpupower
| xth1 is example interface name.
| These settings are lost at pc reboot.
#. Give user speicific user scheduling privileges.
.. code-block:: bash
@ -226,29 +155,18 @@ Receiver PC Tuning Options
This is also set if slsReceiver is run as root user.
#. Some more advanced options:
.. warning ::
Please do not try if you do not understand
#. reduce the number of queue per NIC to the number of expected streams: ethtool -L xth0 combined 2
#. assign each queue to its stream: ethtool -U xth0 flow-type tcp4 dst-port 50004 action 1
#. assign to each queue (IRQ) one CPU on the right socket: echo "3"> /proc/irq/47/smp_affinity_list #change the numbers looking at /proc/interrupts
#. disable irqbalance service
#. Be sure that the switch knows the receiver mac address. Most switches reset the mac lists every few minutes, and since the receiver only receives, there is not a periodic refresh of the mac list. In this case, one can set a fixed mac list in the switch, or setup some kind of script arping or pinging out from that interface (will be available in 7.0.0).
#. assign the receiver numa node (also with -m) to the socket where the NIC is attached. To know it, cat /sys/class/net/ethxxx/device/numa_node
#. ensure file system performance can handle sustained high data rate:
* One can use dd:
#. Disable power saving in CPU frequency
.. code-block:: bash
dd if=/dev/zero of=/testpath/testfile bs=1M count=100000
* Or better fio (which needs to be installed)
# or similar command depending on your distribution
cpupower frequency-info
cpupower frequency-set -g performance
.. code-block:: bash
# or
cpufreq-info
for i in seq 0 7; do cpufreq-set -c $i -g performance; done
fio --name=global directory=/testpath/ --rw=write --ioengine=libaio --direct=0 --size=200G -- numjobs=2 --iodepth=1 --bs=1M name=job
slsReceiver Tuning
^^^^^^^^^^^^^^^^^^
@ -256,25 +174,18 @@ slsReceiver Tuning
#. Starting receiver as root to have scheduling privileges.
#. For 10g, enable flow control
.. code-block:: bash
sls_detector_put flowcontrol10g 1
#. Increase slsReceiver ring buffer depth
This can be tuned depending on the number of receivers (modules) and memory available.
#. Increase slsReceiver fifo depth between listening and processing threads.
.. code-block:: bash
# sugggested not to use more than half memory of CPU socket in case of NUMA systems) for this
sls_detector_get rx_fifodepth
# sets number of frames in fifo to 1024 ~1GB per receiver. Default is 2500
sls_detector_put rx_fifodepth 1024
#. Increase number of frames per file
This can reduce time taken to open and close files.
# sets number of frames in fifo to 5000
sls_detector_put rx_fifodepth 5000
#. Increase number of frames per file to reduce time taken to open and close files.
.. code-block:: bash
sls_detector_get rx_framesperfile
@ -282,31 +193,10 @@ slsReceiver Tuning
# writes all frames into a single file
sls_detector_put rx_framesperfile 0
#. Disable file write
This can ensure it is not the file system performance hampering high date rate.
.. code-block:: bash
sls_detector_put fwrite 0
Shared memory error
^^^^^^^^^^^^^^^^^^^
For errors due to access or size, use any of the following suggestions.
#. Delete shared memory files and try again
#. Use environment variable to use a different shared memory ending in jfxx
.. code-block:: bash
# shared memory ending in jfxx
export SLSDETNAME=jfxx
#. USe a different multi shared memory ID
.. code-block:: bash
sls_detector_put 2-config xxxx.config
# or
sls_detector_put 2-hostname bchipxxx
| For errors due to access or size, delete shared memory files nd try again.
To list all shared memory files of sls detector package.
.. code-block:: bash
@ -357,19 +247,6 @@ Possible causes could be the following:
* For Jungfrau, refer to :ref:`Jungfrau Power Supply Troubleshooting<Jungfrau Troubleshooting Power Supply>`.
Cannot ping module (Nios)
^^^^^^^^^^^^^^^^^^^^^^^^^
If you executed "reboot" command on the board, you cannot ping it anymore unless you power cycle. To reboot the controller, please use the software command ("rebootcontroller"), which talks to the microcontroller.
Gotthard2
---------
Cannot get data without a module attached
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You cannot get data without a module attached as a specific pin is floating. Attach module to get data.
Gotthard
----------
@ -417,7 +294,6 @@ Cannot get multi module data
#. Check :ref:`Common Multi Module Troubleshooting<common troubleshooting multi module data>`
#. Power Supply
* Jungfrau needs a ~4A per module for a short time at startup. If not, it reboots misconfigured.
* Comment out this line in the config file: powerchip 1
* Powering on the chip increases the power consumption by a considerable amount. If commenting out this line aids in getting data (strange data due to powered off chip), then it could be the power supply current limit. Fix it (possibly to 8A current limit) and uncomment the powerchip line back in config file.

View File

@ -1,37 +0,0 @@
.. _detector udp header:
Config file
============
Commands to configure the UDP in the config file:
.. note ::
These command are recommended to be placed before "rx_hostname" if it is used.
Source Port
-----------
Hardcoded in detector server, starting at 32410.
udp_srcip - Source IP
---------------------
IP address of detector UDP interface to send packets from. Do not use for Eiger 1Gb interface (uses its hardware IP). For others, must be in the same subnet as **udp_dstip**.
udp_srcmac - Source MAC
-----------------------
MAC address of detector UDP interface to send packets from. Do not use for Eiger (uses hardware mac). For others, it is not necessary, but can help for switch and debugging to put unique values for each module.
udp_dstport - Desintation Port
-------------------------------
Port in receiver pc to listen to packets from the detector.
udp_dstip - Destination IP
--------------------------
IP address of interface in receiver pc to listen to packets from detector. If **auto** is used (only when using slsReceiver/ slsMultiReceiver), the IP of **rx_hostname** is picked up.
udp_dstmac - Destination MAC
----------------------------
MAC address of interface in receiver pc to list to packets from detector. Only required when using custom receiver, else slsReceiver/slsMultiReceiver picks it up from **udp_dstip**.

View File

@ -1,152 +0,0 @@
.. _detector specific fields:
Detector Specific Fields
========================
Please check out :ref:`the current detector header <detector udp header>` to see
where the detector specific fields are placed.
Eiger
------
.. table:: Detector Specific Field
+----------+------------------------------+
| expLength| Sub Frame Number |
+----------+------------------------------+
| detSpec1 | 0x0 |
+----------+------------------------------+
| detSpec2 | 0x0 |
+----------+------------------------------+
| detSpec3 | e14a |
+----------+------------------------------+
| detSpec4 | Round Robin Interface Number |
+----------+------------------------------+
Jungfrau
---------
.. table:: Detector Specific Field
+----------+------------------------------+
| detSpec1 | Bunch Id [#]_ |
+----------+------------------------------+
| detSpec2 | 0 |
+----------+------------------------------+
| detSpec3 | DAQ info |
+----------+------------------------------+
| detSpec4 | 0 |
+----------+------------------------------+
.. table:: DAQ Info Field
+----------+--------------------+----------------------------------------------+
| Bits | Name | Description |
+----------+--------------------+-----+----------------------------------------+
| 0 | High gain | 1 | High Gain enabled |
| | +-----+----------------------------------------+
| | | 0 | High Gain disabled |
+----------+--------------------+-----+----------------------------------------+
| 1 | Fix gain stage 1 | 1 | Gain stage 1 fixed. The switch that |
| | | | selects the gains stage 1 is active all|
| | | | the time. |
| | +-----+----------------------------------------+
| | | 0 | Gain stage 1 unset. The switch that |
| | | | selects the gains stage 1 is inactive |
| | | | all the time. |
+----------+--------------------+-----+----------------------------------------+
| 2 | Fix gain stage 2 | 1 | Gain stage 2 fixed. The switch that |
| | | | selects the gains stage 2 is active all|
| | | | the time. |
| | +-----+----------------------------------------+
| | | 0 | Gain stage 2 unset. The switch that |
| | | | selects the gains stage 2 is inactive |
| | | | all the time. |
+----------+--------------------+-----+----------------------------------------+
| 4 | Comparator reset | 1 | On-chip comparator in reset state. |
| | | | Dynamic-gain switching is therefore |
| | | | disabled. |
| | +-----+----------------------------------------+
| | | 0 | On-chip comparator active. |
+----------+--------------------+-----+-----+-----+----------------------------+
| 7-5 | Jungfrau chip |Bit 7|Bit 6|Bit 5| Description |
| | version +-----+-----+-----+----------------------------+
| | | 0 | 0 | 0 | v1.0 |
| | +-----+-----+-----+----------------------------+
| | | 0 | 0 | 1 | v1.1 |
| | +-----+-----+-----+----------------------------+
| | | 0 | 1 | X | Reserved |
| | +-----+-----+-----+----------------------------+
| | | 1 | X | X | Reserved |
+----------+--------------------+-----+-----+-----+----------------------------+
| 11-8 | Storage cell select|Storage cell used for this exposure. This |
| | |field defines the storage cell that was used |
| | |to acquire the data of this frame |
+----------+--------------------+-----+----------------------------------------+
| 12 | Force switching | 1 | Forced switching to gain stage 1 at the|
| | to gain stage 1 | | start of the exposure period. |
| | +-----+----------------------------------------+
| | | 0 | Disabled forced gain switching to gain |
| | | | stage 1. Dynamic gain switching |
| | | | conditions apply. |
+----------+--------------------+-----+----------------------------------------+
| 13 | Force switching | 1 | Forced switching to gain stage 2 at the|
| | to gain stage 2 | | start of the exposure period. |
| | +-----+----------------------------------------+
| | | 0 | Disabled forced gain switching to gain |
| | | | stage 2. Dynamic gain switching |
| | | | conditions apply. |
+----------+--------------------+-----+-----+-----+----------------------------+
| 23-16 | 10-Gigabit event |The 8-bit event code contains value of the |
| | code |event received over the 10 GbE interface by |
| | |JUNGFRAU detector at the moment of the frame |
| | |acquisition. |
+----------+--------------------+-----+----------------------------------------+
| 31 | External input flag| 1 | External input flag detected in the |
| | | | last exposure. |
| | +-----+----------------------------------------+
| | | 0 | External input flag not detected in the|
| | | | last exposure. |
+----------+--------------------+-----+----------------------------------------+
Gotthard2
----------
.. table:: Detector Specific Field
+----------+------------------------------+
| detSpec1 | Train Id [#]_ |
+----------+------------------------------+
| detSpec2 | Bunch Id [#]_ |
+----------+------------------------------+
| detSpec3 | 0 |
+----------+------------------------------+
| detSpec4 | 0 |
+----------+------------------------------+
Mythen3
----------
.. table:: Detector Specific Field
+----------+------------------------------+
| detSpec1 | 0 |
+----------+------------------------------+
| detSpec2 | 0 |
+----------+------------------------------+
| detSpec3 | 0 |
+----------+------------------------------+
| detSpec4 | 0 |
+----------+------------------------------+
.. [#] **Bunch Id**: bunch identification number received by the detector at the moment of frame acquisition.
.. [#] **Train Id**: train identification number received by the detector at the moment of frame acquisition.
.. [#] **Bunch Id**: bunch identification number to identify every single exposure during a burst acquisition.

View File

@ -1,125 +0,0 @@
.. _detector udp header:
Format
=======
The UDP data format for the packets consist of a common header for all detectors, followed by the data for that one packet.
Current Version
---------------------------
**v2.0 (slsDetectorPackage v7.0.0+)**
.. table:: <---------------------------------------------------- 8 bytes per row --------------------------------------------->
:align: center
:widths: 30,30,30,15,15
+---------------------------------------------------------------+
| frameNumber |
+-------------------------------+-------------------------------+
| expLength | packetNumber |
+-------------------------------+-------------------------------+
| **detSpec1** |
+---------------------------------------------------------------+
| timestamp |
+---------------+---------------+---------------+---------------+
| modId | row | column | **detSpec2** |
+---------------+---------------+---------------+-------+-------+
| **detSpec3** | **detSpec4** |detType|version|
+-------------------------------+---------------+-------+-------+
.. note ::
Since there is no difference in the format of the UDP header from the detector
from the previous version (v2.0), the version number stays the same.
Only the struture member names have changed in sls_detector_defs.h
Description
------------
* **Detector specific field** descriptions are found :ref:`here<detector specific fields>`.
* **frameNumber**: framenumber to which the current packet belongs to.
* **expLength**: measured exposure time of the frame in tenths of microsecond. It is instead the sub frame number for Eiger.
* **packetNumber**: packet number of the frame to which the current data belongs to.
* **timestamp**: time measured at the start of frame exposure since the start of the current measurement. It is expressed in tenths of microsecond.
* **modId**: module ID picked up from det_id_[detector type].txt on the detector cpu.
* **row**: row position of the module in the detector system. It is calculated by the order of the module in hostname command, as well as the detsize command.
* **column**: column position of the module in the detector system. It is calculated by the order of the module in hostname command, as well as the detsize command.
* **detType**: detector type from enum of detectorType in the package.
* **version**: current version of the detector header (0x2).
Detector Enum
--------------
================ ========
Detector Type Value
================ ========
GENERIC 0
EIGER 1
GOTTHARD 2
JUNGFRAU 3
CHIPTESTBOARD 4
MOENCH 5
MYTHEN3 6
GOTTHARD2 7
================ ========
Previous Versions
-----------------
**v2.0 (Package v4.0.0 - 6.x.x)**
.. table:: <---------------------------------------------------- 8 bytes ---------------------------------------------------->
:align: center
:widths: 30,30,30,15,15
+---------------------------------------------------------------+
| frameNumber |
+-------------------------------+-------------------------------+
| expLength | packetNumber |
+-------------------------------+-------------------------------+
| bunchid |
+---------------------------------------------------------------+
| timestamp |
+---------------+---------------+---------------+---------------+
| modId | **row** | **column** | **reserved** |
+---------------+---------------+---------------+-------+-------+
| debug | roundRNumber |detType|version|
+-------------------------------+---------------+-------+-------+
**v1.0 (Package v3.0.0 - 3.1.5)**
.. table:: <---------------------------------------------------- 8 bytes ---------------------------------------------------->
:align: center
:widths: 30,30,30,15,15
+---------------------------------------------------------------+
| frameNumber |
+-------------------------------+-------------------------------+
| expLength | packetNumber |
+-------------------------------+-------------------------------+
| bunchid |
+---------------------------------------------------------------+
| timestamp |
+---------------+---------------+---------------+---------------+
| modId | xCoord | yCoord | zCoord |
+---------------+---------------+---------------+-------+-------+
| debug | roundRNumber |detType|version|
+-------------------------------+---------------+-------+-------+

View File

@ -1,6 +1,6 @@
.. _Virtual Detector Servers:
Simulators
===========
Detector Simulators
===================
Compilation
-----------
@ -13,14 +13,16 @@ Compilation
* Using cmk.sh script,
.. code-block:: bash
./cmk.sh -bsj9 # option -s is for simulator
./cmk.sh -bsj9 #option s is for simulator
Binaries
^^^^^^^^
.. code-block:: bash
eigerDetectorServer_virtual
eigerDetectorServerMaster_virtual
eigerDetectorServerSlaveTop_virtual
eigerDetectorServerSlaveBottom_virtual
jungfrauDetectorServer_virtual
gotthardDetectorServer_virtual
gotthard2DetectorServer_virtual
@ -65,15 +67,7 @@ Sample Config file
^^^^^^^^^^^^^^^^^^
There are sample config files for each detector in slsDetectorPackage/examples folder.
For a Single Module (Basic)
.. code-block:: bash
hostname localhost
rx_hostname localhost
udp_dstip auto
For a Single Module (With Options)
For a Single Module
.. code-block:: bash
# connects to control port 1912
@ -146,7 +140,7 @@ Gui
Limitations
-----------
#. Data coming out of virtual server is fake.
#. Data coming out of virtual server is fake. Value at each pixel/ channel is incremented by 1.
#. A stop will stop the virtual acquisition only at the start of every new frame.

22
evalVersionVariables.sh Executable file
View File

@ -0,0 +1,22 @@
GITREPO1='git remote -v'
GITREPO2=" | grep \"fetch\" | cut -d' ' -f1"
BRANCH1='git branch -v'
BRANCH2=" | grep '*' | cut -d' ' -f2"
REPUID1='git log --pretty=format:"%H" -1'
AUTH1_1='git log --pretty=format:"%cn" -1'
AUTH1_2=" | cut -d' ' -f1"
AUTH2_1='git log --pretty=format:"%cn" -1'
AUTH2_2=" | cut -d' ' -f2"
FOLDERREV1='git log --oneline . ' #used for all the individual server folders
FOLDERREV2=" | wc -l" #used for all the individual server folders
REV1='git log --oneline '
REV2=" | wc -l"
GITREPO=`eval $GITREPO1 $GITREPO2`
BRANCH=`eval $BRANCH1 $BRANCH2`
REPUID=`eval $REPUID1`
AUTH1=`eval $AUTH1_1 $AUTH1_2`
AUTH2=`eval $AUTH2_1 $AUTH2_2`
REV=`eval $REV1 $REV2`
FOLDERREV=`eval $FOLDERREV1 $FOLDERREV2`

View File

@ -1,6 +0,0 @@
0
10, 30
40:45 50:52
1279
# all bad channels are applied for all counters in deector

View File

@ -5,7 +5,7 @@ detsize 1024 1024
hostname bchip048+bchip052+
# 1Gb receiver pc hostname (default tcpport: 1954)
rx_hostname pcmoench01:1954+pcmoench01:1955+
rx_hostname pcmoench01+pcmoench01:1955

View File

@ -1,9 +1,8 @@
#initialchecks 0
initialchecks 0
#############################################
### edit with hostname or IP address of your detector
############################################
#hostname bchip181+
hostname bchip135
hostname bchip181+
#############################################
### edit with hostname or 1Gbs IP address of your server
@ -28,7 +27,7 @@ rx_zmqport 50003
#############################################
### edit with 1 Gbs IP of PC where you will run the GUI
############################################
zmqip 129.129.202.57
zmqip 129.129.202.136
zmqport 50001
@ -40,12 +39,11 @@ rx_zmqstream 1
frames 100000
period 0.0006
exptime 0.00035
#############################################
### edit with directory you want to write to
############################################
fpath /mnt/moench_data/scratch1/
fpath /mnt/moench_data/scratch/
fwrite 0

View File

@ -1,18 +1,18 @@
# detector hostname
hostname localhost:1910
# udp destination ports
udp_dstport 50010
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
# receiver hostname
rx_hostname mpc1922:2010
# udp destination ports
udp_dstport 50010
# udp destination ip from rx_hostname
udp_dstip auto
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
# output file directory
fpath /tmp
@ -27,7 +27,418 @@ dbitclk 40
# patterns
pattern /tmp/pattern.pat
patword 0x0000 0x0000000000000000
patword 0x0001 0x0000000000000000
patword 0x0002 0x0008000900080000
patword 0x0003 0x0008000900080000
patword 0x0004 0x0008000900080000
patword 0x0005 0x0008000900080000
patword 0x0006 0x0008000900080000
patword 0x0007 0x0008000900080000
patword 0x0008 0x0008000900080000
patword 0x0009 0x0008000900080000
patword 0x000a 0x0008000900080000
patword 0x000b 0x0008000900080000
patword 0x000c 0x0008000900080000
patword 0x000d 0x0008000900080000
patword 0x000e 0x0008000900080000
patword 0x000f 0x0008000900080000
patword 0x0010 0x0008000900080000
patword 0x0011 0x0008000900080000
patword 0x0012 0x0008000900080000
patword 0x0013 0x0008000900080000
patword 0x0014 0x0008000900080000
patword 0x0015 0x0008000900080000
patword 0x0016 0x0008400900080020
patword 0x0017 0x0008400900080020
patword 0x0018 0x0008599f0418503a
patword 0x0019 0x0008599f0418503a
patword 0x001a 0x0108599f0418503a
patword 0x001b 0x0108599f0418503a
patword 0x001c 0x0108599f0418503a
patword 0x001d 0x0108599f0418503a
patword 0x001e 0x0108599f0418503a
patword 0x001f 0x0108599f0418503a
patword 0x0020 0x0108599f0418503a
patword 0x0021 0x0108599f0418503a
patword 0x0022 0x0108599f0418503a
patword 0x0023 0x0108599f0418503a
patword 0x0024 0x0108599f0418503a
patword 0x0025 0x0108599f0418503a
patword 0x0026 0x0108599f0418503a
patword 0x0027 0x0108599f0418503a
patword 0x0028 0x0108599f0418503a
patword 0x0029 0x0108599f0418503a
patword 0x002a 0x0108599f0418503a
patword 0x002b 0x0108599f0418503a
patword 0x002c 0x0108599f0418503a
patword 0x002d 0x0108599f0418503a
patword 0x002e 0x0108599f0418503a
patword 0x002f 0x0108599f0418503a
patword 0x0030 0x0108599f0418503a
patword 0x0031 0x0108599f0418503a
patword 0x0032 0x0108599f0418503a
patword 0x0033 0x0108599f0418503a
patword 0x0034 0x0108599f0418503a
patword 0x0035 0x0108599f0418503a
patword 0x0036 0x0108599f0418503a
patword 0x0037 0x0108599f0418503a
patword 0x0038 0x0108599f0418503a
patword 0x0039 0x0108599f0418503a
patword 0x003a 0x0108599f0418503a
patword 0x003b 0x0108599f0418503a
patword 0x003c 0x0108599f0418503a
patword 0x003d 0x0108599f0418503a
patword 0x003e 0x0108599f0418503a
patword 0x003f 0x0108599f0418503a
patword 0x0040 0x0108599f0418503a
patword 0x0041 0x0108599f0418503a
patword 0x0042 0x0108599f0418503a
patword 0x0043 0x0108599f0418503a
patword 0x0044 0x0108599f0418503a
patword 0x0045 0x0108599f0418503a
patword 0x0046 0x0108599f0418503a
patword 0x0047 0x0108599f0418503a
patword 0x0048 0x0108599f0418503a
patword 0x0049 0x0108599f0418503a
patword 0x004a 0x0108599f0418503a
patword 0x004b 0x0108599f0418503a
patword 0x004c 0x0108599f0418503a
patword 0x004d 0x0108599f0418503a
patword 0x004e 0x0108599f0418503a
patword 0x004f 0x0108599f0418503a
patword 0x0050 0x0108599f0418503a
patword 0x0051 0x0108599f0418503a
patword 0x0052 0x0108599f0418503a
patword 0x0053 0x0108599f0418503a
patword 0x0054 0x0108599f0418503a
patword 0x0055 0x0108599f0418503a
patword 0x0056 0x0108599f0418503a
patword 0x0057 0x0108599f0418503a
patword 0x0058 0x0108599f0418503a
patword 0x0059 0x0108599f0418503a
patword 0x005a 0x0108599f0418503a
patword 0x005b 0x0108599f0418503a
patword 0x005c 0x0108599f0418503a
patword 0x005d 0x0108599f0418503a
patword 0x005e 0x0108599f0418503a
patword 0x005f 0x0108599f0418503a
patword 0x0060 0x0108599f0418503a
patword 0x0061 0x0108599f0418503a
patword 0x0062 0x0108599f0418503a
patword 0x0063 0x0108599f0418503a
patword 0x0064 0x0108599f0418503a
patword 0x0065 0x0108599f0418503a
patword 0x0066 0x0108599f0418503a
patword 0x0067 0x0108599f0418503a
patword 0x0068 0x0108599f0418503a
patword 0x0069 0x0108599f0418503a
patword 0x006a 0x0108599f0418503a
patword 0x006b 0x0108599f0418503a
patword 0x006c 0x0108599f0418503a
patword 0x006d 0x0108599f0418503a
patword 0x006e 0x0108599f0418503a
patword 0x006f 0x0108599f0418503a
patword 0x0070 0x0108599f0418503a
patword 0x0071 0x0108599f0418503a
patword 0x0072 0x0108599f0418503a
patword 0x0073 0x0108599f0418503a
patword 0x0074 0x0108599f0418503a
patword 0x0075 0x0108599f0418503a
patword 0x0076 0x0108599f0418503a
patword 0x0077 0x0108599f0418503a
patword 0x0078 0x0108599f0418503a
patword 0x0079 0x0108599f0418503a
patword 0x007a 0x0108599f0418503a
patword 0x007b 0x0108599f0418503a
patword 0x007c 0x0108599f0418503a
patword 0x007d 0x0108599f0418503a
patword 0x007e 0x010859960418503a
patword 0x007f 0x010859960418503a
patword 0x0080 0x010859960418503a
patword 0x0081 0x010859960418503a
patword 0x0082 0x010859960418503a
patword 0x0083 0x010859960418503a
patword 0x0084 0x010859960418503a
patword 0x0085 0x010859960418503a
patword 0x0086 0x010859960418503a
patword 0x0087 0x010859960418503a
patword 0x0088 0x010859960418503a
patword 0x0089 0x010859960418503a
patword 0x008a 0x010859960418503a
patword 0x008b 0x010859960418503a
patword 0x008c 0x010859960418503a
patword 0x008d 0x010859960418503a
patword 0x008e 0x010859960418503a
patword 0x008f 0x010859960418503a
patword 0x0090 0x010859960418503a
patword 0x0091 0x010859960418503a
patword 0x0092 0x010819960418501a
patword 0x0093 0x010819960418501a
patword 0x0094 0x010819960418501a
patword 0x0095 0x010819960418501a
patword 0x0096 0x030819960418501a
patword 0x0097 0x030819960418501a
patword 0x0098 0x030819960418501a
patword 0x0099 0x030819960418501a
patword 0x009a 0x030819960418501a
patword 0x009b 0x030819960418501a
patword 0x009c 0x030819960418501a
patword 0x009d 0x030819960418501a
patword 0x009e 0x030819960418501a
patword 0x009f 0x030819960418501a
patword 0x00a0 0x030819960418501a
patword 0x00a1 0x030819960418501a
patword 0x00a2 0x030819960418501a
patword 0x00a3 0x030819960418501a
patword 0x00a4 0x030819960418501a
patword 0x00a5 0x030819960418501a
patword 0x00a6 0x030819960418501a
patword 0x00a7 0x030819960418501a
patword 0x00a8 0x030819960418501a
patword 0x00a9 0x030819960418501a
patword 0x00aa 0x030819960418501a
patword 0x00ab 0x030819960418501a
patword 0x00ac 0x030819960008501a
patword 0x00ad 0x030819960008501a
patword 0x00ae 0x030819960008501a
patword 0x00af 0x030819960008501a
patword 0x00b0 0x030819960008501a
patword 0x00b1 0x030819960008501a
patword 0x00b2 0x030819960008501a
patword 0x00b3 0x030819960008501a
patword 0x00b4 0x030819960008501a
patword 0x00b5 0x030819960008501a
patword 0x00b6 0x030819960008501a
patword 0x00b7 0x030819960008501a
patword 0x00b8 0x030819960008501a
patword 0x00b9 0x030819960008501a
patword 0x00ba 0x030819960008501a
patword 0x00bb 0x030819960008501a
patword 0x00bc 0x030819960008501a
patword 0x00bd 0x030819960008501a
patword 0x00be 0x030819960008501a
patword 0x00bf 0x030819960008501a
patword 0x00c0 0x0308199f0008501a
patword 0x00c1 0x0308199f0008501a
patword 0x00c2 0x0308199f0008501a
patword 0x00c3 0x0308199f0008501a
patword 0x00c4 0x0308199f0008501a
patword 0x00c5 0x0308199f0008501a
patword 0x00c6 0x0308199f0008501a
patword 0x00c7 0x0308199f0008501a
patword 0x00c8 0x0308199f0008501a
patword 0x00c9 0x0308199f0008501a
patword 0x00ca 0x0308199f0008501a
patword 0x00cb 0x0308199f0008501a
patword 0x00cc 0x0308199f0008501a
patword 0x00cd 0x0308199f0008501a
patword 0x00ce 0x0308199f0008501a
patword 0x00cf 0x0308199f0008501a
patword 0x00d0 0x0308199f0008501a
patword 0x00d1 0x0308199f0008501a
patword 0x00d2 0x0308199f0008501a
patword 0x00d3 0x0308199f0008501a
patword 0x00d4 0x0308599f0008503a
patword 0x00d5 0x0308599f0008503a
patword 0x00d6 0x030c599f000850ba
patword 0x00d7 0x030c599f000850ba
patword 0x00d8 0x030c599f000850ba
patword 0x00d9 0x030c599f000850ba
patword 0x00da 0x030c599f000850ba
patword 0x00db 0x030c599f000850ba
patword 0x00dc 0x030c599f000850ba
patword 0x00dd 0x030c599f000850ba
patword 0x00de 0x030c599f000850ba
patword 0x00df 0x030c599f000850ba
patword 0x00e0 0x030c599f000850ba
patword 0x00e1 0x030c599f000850ba
patword 0x00e2 0x030c599f000850ba
patword 0x00e3 0x030c599f000850ba
patword 0x00e4 0x030c599f000850ba
patword 0x00e5 0x030c599f000850ba
patword 0x00e6 0x030c599f000850ba
patword 0x00e7 0x030c599f000850ba
patword 0x00e8 0x030c599f000850ba
patword 0x00e9 0x030c599f000850ba
patword 0x00ea 0x030c799f010858ba
patword 0x00eb 0x030c799f010858ba
patword 0x00ec 0x030c599f000850ba
patword 0x00ed 0x030c599f000850ba
patword 0x00ee 0x030c599f000850ba
patword 0x00ef 0x030c599f000850ba
patword 0x00f0 0x030c599f000850ba
patword 0x00f1 0x030c599f000850ba
patword 0x00f2 0x030c599f000850ba
patword 0x00f3 0x030c599f000850ba
patword 0x00f4 0x030c599f000850ba
patword 0x00f5 0x030c599f000850ba
patword 0x00f6 0x030c599f000850ba
patword 0x00f7 0x030c599f000850ba
patword 0x00f8 0x030c599f000850ba
patword 0x00f9 0x030c599f000850ba
patword 0x00fa 0x030c599f000850ba
patword 0x00fb 0x030c599f000850ba
patword 0x00fc 0x030c599f000850ba
patword 0x00fd 0x030c599f000850ba
patword 0x00fe 0x030c599f000850ba
patword 0x00ff 0x030c599f000850ba
patword 0x0100 0x030c599f000850ba
patword 0x0101 0x030c599f000850ba
patword 0x0102 0x030c599f400850ba
patword 0x0103 0x030c599f400850ba
patword 0x0104 0x030c599f600850ba
patword 0x0105 0x030c599f400850ba
patword 0x0106 0x030c599f400850ba
patword 0x0107 0x030c599f400850ba
patword 0x0108 0x870c599f682e50ba
patword 0x0109 0x870c599f482850ba
patword 0x010a 0x870c599f000e50ba
patword 0x010b 0x870c599f000850ba
patword 0x010c 0x870c599f000e50ba
patword 0x010d 0x870c599f000850ba
patword 0x010e 0x870c599f000e50ba
patword 0x010f 0x870c599f000850ba
patword 0x0110 0x870c599f000e50ba
patword 0x0111 0x870c599f000850ba
patword 0x0112 0x870c599f000e50ba
patword 0x0113 0x870c599f000850ba
patword 0x0114 0x870c599f000e50ba
patword 0x0115 0x870c599f000850ba
patword 0x0116 0x870c599f000e50ba
patword 0x0117 0x870c599f000850ba
patword 0x0118 0x870c599f000e50ba
patword 0x0119 0x870c599f000850ba
patword 0x011a 0x870c599f000e50ba
patword 0x011b 0x870c599f000850ba
patword 0x011c 0x870c599f000e50ba
patword 0x011d 0x870c599f000850ba
patword 0x011e 0x870c599f000e50ba
patword 0x011f 0x870c599f000850ba
patword 0x0120 0x870c599f000e50ba
patword 0x0121 0x870c599f000850ba
patword 0x0122 0x870c599f200e50ba
patword 0x0123 0x870c599f000850ba
patword 0x0124 0x870c599f000e50ba
patword 0x0125 0x870c599f000850ba
patword 0x0126 0x870c599f000e50ba
patword 0x0127 0x870c599f000850ba
patword 0x0128 0x870c599f000e50ba
patword 0x0129 0x870c599f000850ba
patword 0x012a 0x870c599f000e50ba
patword 0x012b 0x870c599f000850ba
patword 0x012c 0x870c599f000e50ba
patword 0x012d 0x870c599f000850ba
patword 0x012e 0x870c599f000e50ba
patword 0x012f 0x870c599f000850ba
patword 0x0130 0x870c599f000e50ba
patword 0x0131 0x870c599f000850ba
patword 0x0132 0x870c599f000e50ba
patword 0x0133 0x870c599f000850ba
patword 0x0134 0x870c599f000e50ba
patword 0x0135 0x870c599f000850ba
patword 0x0136 0x870c599f000e50ba
patword 0x0137 0x870c599f000850ba
patword 0x0138 0x870c599f000e50ba
patword 0x0139 0x870c599f000850ba
patword 0x013a 0x870c599f282e50ba
patword 0x013b 0x870c599f082850ba
patword 0x013c 0x870c599f000e50ba
patword 0x013d 0x870c599f000850ba
patword 0x013e 0x870c599f000e50ba
patword 0x013f 0x870c599f000850ba
patword 0x0140 0x870c599f000e50ba
patword 0x0141 0x870c599f000850ba
patword 0x0142 0x870c599f000e50ba
patword 0x0143 0x870c599f000850ba
patword 0x0144 0x870c599f000e50ba
patword 0x0145 0x870c599f000850ba
patword 0x0146 0x870c599f000e50ba
patword 0x0147 0x870c599f000850ba
patword 0x0148 0x870c599f000e50ba
patword 0x0149 0x870c599f000850ba
patword 0x014a 0x870c599f000e50ba
patword 0x014b 0x870c599f000850ba
patword 0x014c 0x870c599f000e50ba
patword 0x014d 0x870c599f000850ba
patword 0x014e 0x870c599f000e50ba
patword 0x014f 0x870c599f000850ba
patword 0x0150 0x870c599f000e50ba
patword 0x0151 0x870c599f000850ba
patword 0x0152 0x870c599f000e50ba
patword 0x0153 0x870c599f000850ba
patword 0x0154 0x870c599f200e50ba
patword 0x0155 0x870c599f000850ba
patword 0x0156 0x870c599f000e50ba
patword 0x0157 0x870c599f000850ba
patword 0x0158 0x870c599f000e50ba
patword 0x0159 0x870c599f000850ba
patword 0x015a 0x870c599f000e50ba
patword 0x015b 0x870c599f000850ba
patword 0x015c 0x870c599f000e50ba
patword 0x015d 0x870c599f000850ba
patword 0x015e 0x870c599f000e50ba
patword 0x015f 0x870c599f000850ba
patword 0x0160 0x870c599f000e50ba
patword 0x0161 0x870c599f000850ba
patword 0x0162 0x870c599f000e50ba
patword 0x0163 0x870c599f000850ba
patword 0x0164 0x870c599f000e50ba
patword 0x0165 0x870c599f000850ba
patword 0x0166 0x870c599f000e50ba
patword 0x0167 0x870c599f000850ba
patword 0x0168 0x870c599f000e50ba
patword 0x0169 0x870c599f000850ba
patword 0x016a 0x870c599f000e50ba
patword 0x016b 0x870c599f000850ba
patword 0x016c 0x070c599f000850ba
patword 0x016d 0x070c599f000850ba
patword 0x016e 0x000c599f000850ba
patword 0x016f 0x000c599f000850ba
patword 0x0170 0x0008599f200e503a
patword 0x0171 0x0008599f0008503a
patword 0x0172 0x0008599f200e503a
patword 0x0173 0x0008599f0008503a
patword 0x0174 0x0008599f0008503a
patword 0x0175 0x0008599f0008503a
patword 0x0176 0x0008599f0008503a
patword 0x0177 0x0008599f0008503a
patword 0x0178 0x0008599f0008503a
patword 0x0179 0x0008599f0008503a
patword 0x017a 0x0008599f0008503a
patword 0x017b 0x0008599f0008503a
patword 0x017c 0x0008599f0008503a
patword 0x017d 0x0008599f0008503a
patword 0x017e 0x0008599f0008503a
patword 0x017f 0x0008599f0008503a
patword 0x0180 0x0008599f0008503a
patword 0x0181 0x0008599f0008503a
patword 0x0182 0x0008599f0008503a
patword 0x0183 0x0008599f0008503a
patword 0x0184 0x0008599f0008503a
patword 0x0185 0x0008599f0008503a
patword 0x0186 0x0008599f0008503a
patword 0x0187 0x0008599f0008503a
patword 0x0188 0x0008599f0008503a
patword 0x0189 0x0008599f0008503a
patword 0x018a 0x0008599f0008503a
patword 0x018b 0x0008599f0008503a
patword 0x018c 0x0008599f0008503a
patword 0x018d 0x0008599f0008503a
patioctrl 0x8f0effff6dbffdbf
patlimits 0x0000 0x018c
patloop0 0x013a 0x016b
patnloop0 0x199
patloop1 0x0400 0x0400
patnloop1 0
patloop2 0x0400 0x0400
patnloop2 0
patwait0 0x00aa
patwaittime0 10000
patwait1 0x0400
patwaittime1 0
patwait2 0x0400
patwaittime2 0
# dacs
dac 6 800

View File

@ -1,13 +1,13 @@
# detector hostname
hostname localhost:1900
# receiver hostname
rx_hostname mpc1922:2000
# udp destination ports
udp_dstport 50000
udp_dstport2 50001
# receiver hostname
rx_hostname mpc1922:2000
# udp destination ip from rx_hostname
udp_dstip auto

View File

@ -1,15 +1,15 @@
# detector hostname
hostname localhost:1900+localhost:1902+
# receiver hostname
rx_hostname mpc1922:2000+mpc1922:2001+
# udp destination ports
0:udp_dstport 50000
0:udp_dstport2 50001
1:udp_dstport 50002
1:udp_dstport2 50003
# receiver hostname
rx_hostname mpc1922:2000+mpc1922:2001+
# udp destination ip from rx_hostname
udp_dstip auto

View File

@ -1,18 +1,18 @@
# detector hostname
hostname localhost:1904
# udp destination ports
udp_dstport 50004
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
# receiver hostname
rx_hostname mpc1922:2004
# udp destination ports
udp_dstport 50004
# udp destination ip from rx_hostname
udp_dstip auto
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
# output file directory
fpath /tmp

View File

@ -1,12 +1,24 @@
# detector hostname
hostname localhost:1914
# receiver hostname
rx_hostname mpc1922:2014
# udp destination ports
udp_dstport 50014
# udp destination ip from rx_hostname
udp_dstip auto
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
# output file directory
fpath /tmp
# disable file writing
fwrite 0
# enable 2nd interface for veto debugging
# udp destination port for veto
udp_dstport2 50015
@ -15,18 +27,6 @@ udp_dstip2 auto
# udp source ip (same subnet as udp_dstip)
udp_srcip2 192.168.1.100
# receiver hostname
rx_hostname mpc1922:2014
# udp destination ip from rx_hostname
udp_dstip auto
# output file directory
fpath /tmp
# disable file writing
fwrite 0
# to enable 2nd interface for veto debugging
numinterfaces 2

View File

@ -1,21 +1,21 @@
# detector hostname
hostname localhost:1906
# receiver hostname
rx_hostname mpc1922:2006
# udp destination ports
udp_dstport 50006
udp_dstport2 50007
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
udp_srcip2 192.168.1.100
# receiver hostname
rx_hostname mpc1922:2006
# udp destination ip from rx_hostname
udp_dstip auto
udp_dstip2 auto
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
udp_srcip2 192.168.1.100
# output file directory
fpath /tmp

View File

@ -4,6 +4,13 @@ detsize 2048 1024
# detector hostname
virtual 4 1952
# receiver hostname and tcpports
0:rx_tcpport 1970
1:rx_tcpport 1971
2:rx_tcpport 1972
3:rx_tcpport 1973
rx_hostname mpc1922
# udp destination ports
0:udp_dstport2 50001
0:udp_dstport2 50002
@ -14,21 +21,14 @@ virtual 4 1952
3:udp_dstport 50007
3:udp_dstport2 50008
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
udp_srcip2 192.168.1.100
# receiver hostname and tcpports
0:rx_tcpport 1970
1:rx_tcpport 1971
2:rx_tcpport 1972
3:rx_tcpport 1973
rx_hostname mpc1922
# udp destination ip from rx_hostname
udp_dstip auto
udp_dstip2 auto
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
udp_srcip2 192.168.1.100
# transmission delay frame
0:txndelay_frame 0
1:txndelay_frame 1

View File

@ -1,18 +1,18 @@
# detector hostname
hostname localhost:1908
# udp destination ports
udp_dstport 50008
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
# receiver hostname
rx_hostname mpc1922:2008
# udp destination ports
udp_dstport 50008
# udp destination ip from rx_hostname
udp_dstip auto
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
# output file directory
fpath /tmp

View File

@ -1,18 +1,18 @@
# detector hostname
hostname localhost:1912
# udp destination ports
udp_dstport 50012
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
# receiver hostname
rx_hostname mpc1922:2012
# udp destination ports
udp_dstport 50012
# udp destination ip from rx_hostname
udp_dstip auto
# udp source ip (same subnet as udp_dstip)
udp_srcip 192.168.1.100
# output file directory
fpath /tmp

25
genVersionHeader.sh Executable file
View File

@ -0,0 +1,25 @@
#####! /bin/awk -f
if [ $# -lt 3 ]
then
echo "wrong usage"
exit -1
fi
fin=$1
ftmp=$2
fout=$3
#dat=echo "date '+%Y%m%d'"
echo "Updating $fout"
#echo "in: $fin tmp: $ftmp out: $fout"
#awk 'NR==FNR {if ($3=="Date:") {l[FNR]=$4; gsub("-","",l[FNR]);} else { if (match($0,"Rev")) {l[FNR]=$(NF);} else {l[FNR]="\""$(NF)"\"";};};next} {$0=$1" "$2" "l[FNR]}1' $fin $ftmp > $fout
awk 'BEGIN {l[0]=0; "date +%Y%m%d" | getline l[1]; l[2]="\"/\""; l[3]="\"nobody\""; l[3]="\"nobody\""; l[4]="\"0000-0000-0000\"";} \
NR==FNR {if (match($0,"Rev")) {l[0]="0x"$(NF);} else if (match($0,"Date")) {l[1]="0x"$4; gsub("-","",l[1]);} else if (match($0,"URL")) {l[2]="\""$(NF)"\"";} else if (match($0,"Author")) {l[3]="\""$(NF)"\"";} else if (match($0,"UUID")) {l[4]="\""$(NF)"\"";} else if (match($0,"Branch")) {l[5]="\""$(NF)"\"";};next;}
{if (match($2,"REV")) {$0=$1" "$2" "l[0];} else if (match($2,"DATE")) {$0=$1" "$2" "l[1];} else if (match($2,"URL")) {$0=$1" "$2" "l[2];} else if (match($2,"AUTH")) {$0=$1" "$2" "l[3];} else if (match($2,"UUID")) {$0=$1" "$2" "l[4];} else if (match($2,"BRANCH")) {$0=$1" "$2" "l[5];}}1' $fin $ftmp > $fout

View File

@ -1,5 +1,3 @@
# SPDX-License-Identifier: LGPL-3.0-or-other
# Copyright (C) 2021 Contributors to the SLS Detector Package
# MESSAGE( STATUS "CMAKE_CURRENT_SOURCE_DIR: " ${CMAKE_CURRENT_SOURCE_DIR} )
# MESSAGE( STATUS "PROJECT_SOURCE_DIR: " ${PROJECT_SOURCE_DIR} )

View File

@ -1,13 +1,9 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include "DetectorImpl.h"
#include "catch.hpp"
#include "sls/string_utils.h"
#include "tests/globals.h"
#include <iostream>
namespace sls {
class MultiDetectorFixture {
protected:
DetectorImpl d;
@ -138,7 +134,7 @@ TEST_CASE_METHOD(MultiDetectorFixture, "Get ID", "[.eigerintegration][cli]") {
std::string hn = test::hostname;
hn.erase(std::remove(begin(hn), end(hn), 'b'), end(hn));
hn.erase(std::remove(begin(hn), end(hn), 'e'), end(hn));
auto hostnames = split(hn, '+');
auto hostnames = sls::split(hn, '+');
CHECK(hostnames.size() == d.getNumberOfDetectors());
for (int i = 0; i != d.getNumberOfDetectors(); ++i) {
CHECK(d.getId(defs::DETECTOR_SERIAL_NUMBER, 0) ==
@ -200,5 +196,3 @@ TEST_CASE_METHOD(MultiDetectorFixture, "rate correction",
d.setRateCorrection(200);
CHECK(d.getRateCorrection() == 200);
}
} // namespace sls

View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include "catch.hpp"
@ -24,8 +22,6 @@
// extern std::string detector_type;
// extern dt type;
namespace sls {
TEST_CASE("Single detector no receiver", "[.integration][.single]") {
auto t = Module::getTypeFromDetector(test::hostname);
CHECK(t == test::type);
@ -50,8 +46,8 @@ TEST_CASE("Set control port then create a new object with this control port",
Is this the best way to initialize the detectors
Using braces to make the object go out of scope
*/
int old_cport = DEFAULT_TCP_CNTRL_PORTNO;
int old_sport = DEFAULT_TCP_STOP_PORTNO;
int old_cport = DEFAULT_PORTNO;
int old_sport = DEFAULT_PORTNO + 1;
int new_cport = 1993;
int new_sport = 2000;
{
@ -79,7 +75,7 @@ TEST_CASE("Set control port then create a new object with this control port",
Module d(test::type);
d.setHostname(test::hostname);
CHECK(d.getStopPort() == DEFAULT_TCP_STOP_PORTNO);
CHECK(d.getStopPort() == DEFAULT_PORTNO + 1);
d.freeSharedMemory();
}
@ -285,14 +281,14 @@ TEST_CASE(
CHECK(m.getRateCorrection() == ratecorr);
// ratecorr fail with dr 4 or 8
CHECK_THROWS_AS(m.setDynamicRange(8), RuntimeError);
CHECK_THROWS_AS(m.setDynamicRange(8), sls::RuntimeError);
CHECK(m.getRateCorrection() == 0);
m.setDynamicRange(16);
m.setDynamicRange(16);
m.setRateCorrection(ratecorr);
m.setDynamicRange(16);
m.setRateCorrection(ratecorr);
CHECK_THROWS_AS(m.setDynamicRange(4), RuntimeError);
CHECK_THROWS_AS(m.setDynamicRange(4), sls::RuntimeError);
CHECK(m.getRateCorrection() == 0);
}
@ -331,11 +327,11 @@ TEST_CASE("Chiptestboard Loading Patterns", "[.ctbintegration]") {
m.setPatternWord(addr, word);
CHECK(m.setPatternWord(addr, -1) == word);
addr = MAX_ADDR;
CHECK_THROWS_AS(m.setPatternWord(addr, word), RuntimeError);
CHECK_THROWS_AS(m.setPatternWord(addr, word), sls::RuntimeError);
CHECK_THROWS_WITH(m.setPatternWord(addr, word),
Catch::Matchers::Contains("be between 0 and"));
addr = -1;
CHECK_THROWS_AS(m.setPatternWord(addr, word), RuntimeError);
CHECK_THROWS_AS(m.setPatternWord(addr, word), sls::RuntimeError);
CHECK_THROWS_WITH(m.setPatternWord(addr, word),
Catch::Matchers::Contains("be between 0 and"));
@ -410,7 +406,7 @@ TEST_CASE("Chiptestboard Dbit offset, list, sampling, advinvert",
CHECK(m.getReceiverDbitList().size() == 10);
list.push_back(64);
CHECK_THROWS_AS(m.setReceiverDbitList(list), RuntimeError);
CHECK_THROWS_AS(m.setReceiverDbitList(list), sls::RuntimeError);
CHECK_THROWS_WITH(m.setReceiverDbitList(list),
Catch::Matchers::Contains("be between 0 and 63"));
@ -478,7 +474,7 @@ TEST_CASE("Eiger or Jungfrau nextframenumber",
CHECK(m.acquire() == slsDetectorDefs::OK);
CHECK(m.getReceiverCurrentFrameIndex() == val);
CHECK_THROWS_AS(m.setNextFrameNumber(0), RuntimeError);
CHECK_THROWS_AS(m.setNextFrameNumber(0), sls::RuntimeError);
if (m.getDetectorTypeAsString() == "Eiger") {
val = 281474976710655;
@ -492,7 +488,7 @@ TEST_CASE("Eiger or Jungfrau nextframenumber",
CHECK(m.getNextFrameNumber() == (val + 1));
}
TEST_CASE("Eiger partialread", "[.eigerintegration][partialread]") {
TEST_CASE("Eiger readnlines", "[.eigerintegration][readnlines]") {
SingleDetectorConfig c;
// pick up multi detector from shm id 0
@ -505,18 +501,16 @@ TEST_CASE("Eiger partialread", "[.eigerintegration][partialread]") {
m.setDynamicRange(16);
m.enableTenGigabitEthernet(0);
m.setPartialReadout(256);
CHECK(m.getPartialReadout() == 256);
m.setPartialReadout(1);
CHECK(m.getPartialReadout() == 1);
m.setReadNLines(256);
CHECK(m.getReadNLines() == 256);
m.setReadNLines(1);
CHECK(m.getReadNLines() == 1);
m.setDynamicRange(8);
m.setPartialReadout(256);
CHECK(m.getPartialReadout() == 256);
CHECK_THROWS_AS(m.setPartialReadout(1), RuntimeError);
CHECK(m.getPartialReadout() == 256);
CHECK_THROWS_AS(m.setPartialReadout(0), RuntimeError);
m.setPartialReadout(256);
m.setReadNLines(256);
CHECK(m.getReadNLines() == 256);
CHECK_THROWS_AS(m.setReadNLines(1), sls::RuntimeError);
CHECK(m.getReadNLines() == 256);
CHECK_THROWS_AS(m.setReadNLines(0), sls::RuntimeError);
m.setReadNLines(256);
}
} // namespace sls

View File

@ -1,17 +1,13 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
#include "DetectorImpl.h"
#include "catch.hpp"
#include "sls/string_utils.h"
#include "tests/globals.h"
#include <iostream>
namespace sls {
using namespace Catch::literals;
TEST_CASE("Initialize a multi detector", "[.integration][.multi]") {
auto hostnames = split(test::hostname, '+');
auto hostnames = sls::split(test::hostname, '+');
DetectorImpl d(0, true, true);
d.setHostname(test::hostname.c_str());
@ -104,5 +100,3 @@ TEST_CASE("Set and read timers", "[.integration][.multi]") {
d.freeSharedMemory();
}
} // namespace sls

View File

@ -1,5 +1,3 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
// tests-main.cpp
#define CATCH_CONFIG_MAIN
#include "catch.hpp"

File diff suppressed because it is too large Load Diff

View File

@ -1,299 +0,0 @@
# CMakeLists.txt -- Build system for the pybind11 modules
#
# Copyright (c) 2015 Wenzel Jakob <wenzel@inf.ethz.ch>
#
# All rights reserved. Use of this source code is governed by a
# BSD-style license that can be found in the LICENSE file.
cmake_minimum_required(VERSION 3.4)
# The `cmake_minimum_required(VERSION 3.4...3.22)` syntax does not work with
# some versions of VS that have a patched CMake 3.11. This forces us to emulate
# the behavior using the following workaround:
if(${CMAKE_VERSION} VERSION_LESS 3.22)
cmake_policy(VERSION ${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION})
else()
cmake_policy(VERSION 3.22)
endif()
# Avoid infinite recursion if tests include this as a subdirectory
if(DEFINED PYBIND11_MASTER_PROJECT)
return()
endif()
# Extract project version from source
file(STRINGS "${CMAKE_CURRENT_SOURCE_DIR}/include/pybind11/detail/common.h"
pybind11_version_defines REGEX "#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) ")
foreach(ver ${pybind11_version_defines})
if(ver MATCHES [[#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) +([^ ]+)$]])
set(PYBIND11_VERSION_${CMAKE_MATCH_1} "${CMAKE_MATCH_2}")
endif()
endforeach()
if(PYBIND11_VERSION_PATCH MATCHES [[\.([a-zA-Z0-9]+)$]])
set(pybind11_VERSION_TYPE "${CMAKE_MATCH_1}")
endif()
string(REGEX MATCH "^[0-9]+" PYBIND11_VERSION_PATCH "${PYBIND11_VERSION_PATCH}")
project(
pybind11
LANGUAGES CXX
VERSION "${PYBIND11_VERSION_MAJOR}.${PYBIND11_VERSION_MINOR}.${PYBIND11_VERSION_PATCH}")
# Standard includes
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
include(CMakeDependentOption)
if(NOT pybind11_FIND_QUIETLY)
message(STATUS "pybind11 v${pybind11_VERSION} ${pybind11_VERSION_TYPE}")
endif()
# Check if pybind11 is being used directly or via add_subdirectory
if(CMAKE_SOURCE_DIR STREQUAL PROJECT_SOURCE_DIR)
### Warn if not an out-of-source builds
if(CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_CURRENT_BINARY_DIR)
set(lines
"You are building in-place. If that is not what you intended to "
"do, you can clean the source directory with:\n"
"rm -r CMakeCache.txt CMakeFiles/ cmake_uninstall.cmake pybind11Config.cmake "
"pybind11ConfigVersion.cmake tests/CMakeFiles/\n")
message(AUTHOR_WARNING ${lines})
endif()
set(PYBIND11_MASTER_PROJECT ON)
if(OSX AND CMAKE_VERSION VERSION_LESS 3.7)
# Bug in macOS CMake < 3.7 is unable to download catch
message(WARNING "CMAKE 3.7+ needed on macOS to download catch, and newer HIGHLY recommended")
elseif(WINDOWS AND CMAKE_VERSION VERSION_LESS 3.8)
# Only tested with 3.8+ in CI.
message(WARNING "CMAKE 3.8+ tested on Windows, previous versions untested")
endif()
message(STATUS "CMake ${CMAKE_VERSION}")
if(CMAKE_CXX_STANDARD)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
endif()
set(pybind11_system "")
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
else()
set(PYBIND11_MASTER_PROJECT OFF)
set(pybind11_system SYSTEM)
endif()
# Options
option(PYBIND11_INSTALL "Install pybind11 header files?" ${PYBIND11_MASTER_PROJECT})
option(PYBIND11_TEST "Build pybind11 test suite?" ${PYBIND11_MASTER_PROJECT})
option(PYBIND11_NOPYTHON "Disable search for Python" OFF)
set(PYBIND11_INTERNALS_VERSION
""
CACHE STRING "Override the ABI version, may be used to enable the unstable ABI.")
cmake_dependent_option(
USE_PYTHON_INCLUDE_DIR
"Install pybind11 headers in Python include directory instead of default installation prefix"
OFF "PYBIND11_INSTALL" OFF)
cmake_dependent_option(PYBIND11_FINDPYTHON "Force new FindPython" OFF
"NOT CMAKE_VERSION VERSION_LESS 3.12" OFF)
# NB: when adding a header don't forget to also add it to setup.py
set(PYBIND11_HEADERS
include/pybind11/detail/class.h
include/pybind11/detail/common.h
include/pybind11/detail/descr.h
include/pybind11/detail/init.h
include/pybind11/detail/internals.h
include/pybind11/detail/type_caster_base.h
include/pybind11/detail/typeid.h
include/pybind11/attr.h
include/pybind11/buffer_info.h
include/pybind11/cast.h
include/pybind11/chrono.h
include/pybind11/common.h
include/pybind11/complex.h
include/pybind11/options.h
include/pybind11/eigen.h
include/pybind11/embed.h
include/pybind11/eval.h
include/pybind11/gil.h
include/pybind11/iostream.h
include/pybind11/functional.h
include/pybind11/numpy.h
include/pybind11/operators.h
include/pybind11/pybind11.h
include/pybind11/pytypes.h
include/pybind11/stl.h
include/pybind11/stl_bind.h
include/pybind11/stl/filesystem.h)
# Compare with grep and warn if mismatched
if(PYBIND11_MASTER_PROJECT AND NOT CMAKE_VERSION VERSION_LESS 3.12)
file(
GLOB_RECURSE _pybind11_header_check
LIST_DIRECTORIES false
RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}"
CONFIGURE_DEPENDS "include/pybind11/*.h")
set(_pybind11_here_only ${PYBIND11_HEADERS})
set(_pybind11_disk_only ${_pybind11_header_check})
list(REMOVE_ITEM _pybind11_here_only ${_pybind11_header_check})
list(REMOVE_ITEM _pybind11_disk_only ${PYBIND11_HEADERS})
if(_pybind11_here_only)
message(AUTHOR_WARNING "PYBIND11_HEADERS has extra files:" ${_pybind11_here_only})
endif()
if(_pybind11_disk_only)
message(AUTHOR_WARNING "PYBIND11_HEADERS is missing files:" ${_pybind11_disk_only})
endif()
endif()
# CMake 3.12 added list(TRANSFORM <list> PREPEND
# But we can't use it yet
string(REPLACE "include/" "${CMAKE_CURRENT_SOURCE_DIR}/include/" PYBIND11_HEADERS
"${PYBIND11_HEADERS}")
# Cache variable so this can be used in parent projects
set(pybind11_INCLUDE_DIR
"${CMAKE_CURRENT_LIST_DIR}/include"
CACHE INTERNAL "Directory where pybind11 headers are located")
# Backward compatible variable for add_subdirectory mode
if(NOT PYBIND11_MASTER_PROJECT)
set(PYBIND11_INCLUDE_DIR
"${pybind11_INCLUDE_DIR}"
CACHE INTERNAL "")
endif()
# Note: when creating targets, you cannot use if statements at configure time -
# you need generator expressions, because those will be placed in the target file.
# You can also place ifs *in* the Config.in, but not here.
# This section builds targets, but does *not* touch Python
# Non-IMPORT targets cannot be defined twice
if(NOT TARGET pybind11_headers)
# Build the headers-only target (no Python included):
# (long name used here to keep this from clashing in subdirectory mode)
add_library(pybind11_headers INTERFACE)
add_library(pybind11::pybind11_headers ALIAS pybind11_headers) # to match exported target
add_library(pybind11::headers ALIAS pybind11_headers) # easier to use/remember
target_include_directories(
pybind11_headers ${pybind11_system} INTERFACE $<BUILD_INTERFACE:${pybind11_INCLUDE_DIR}>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>)
target_compile_features(pybind11_headers INTERFACE cxx_inheriting_constructors cxx_user_literals
cxx_right_angle_brackets)
if(NOT "${PYBIND11_INTERNALS_VERSION}" STREQUAL "")
target_compile_definitions(
pybind11_headers INTERFACE "PYBIND11_INTERNALS_VERSION=${PYBIND11_INTERNALS_VERSION}")
endif()
else()
# It is invalid to install a target twice, too.
set(PYBIND11_INSTALL OFF)
endif()
include("${CMAKE_CURRENT_SOURCE_DIR}/tools/pybind11Common.cmake")
# Relative directory setting
if(USE_PYTHON_INCLUDE_DIR AND DEFINED Python_INCLUDE_DIRS)
file(RELATIVE_PATH CMAKE_INSTALL_INCLUDEDIR ${CMAKE_INSTALL_PREFIX} ${Python_INCLUDE_DIRS})
elseif(USE_PYTHON_INCLUDE_DIR AND DEFINED PYTHON_INCLUDE_DIR)
file(RELATIVE_PATH CMAKE_INSTALL_INCLUDEDIR ${CMAKE_INSTALL_PREFIX} ${PYTHON_INCLUDE_DIRS})
endif()
if(PYBIND11_INSTALL)
install(DIRECTORY ${pybind11_INCLUDE_DIR}/pybind11 DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
set(PYBIND11_CMAKECONFIG_INSTALL_DIR
"${CMAKE_INSTALL_DATAROOTDIR}/cmake/${PROJECT_NAME}"
CACHE STRING "install path for pybind11Config.cmake")
if(IS_ABSOLUTE "${CMAKE_INSTALL_INCLUDEDIR}")
set(pybind11_INCLUDEDIR "${CMAKE_INSTALL_FULL_INCLUDEDIR}")
else()
set(pybind11_INCLUDEDIR "\$\{PACKAGE_PREFIX_DIR\}/${CMAKE_INSTALL_INCLUDEDIR}")
endif()
configure_package_config_file(
tools/${PROJECT_NAME}Config.cmake.in "${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake"
INSTALL_DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
if(CMAKE_VERSION VERSION_LESS 3.14)
# Remove CMAKE_SIZEOF_VOID_P from ConfigVersion.cmake since the library does
# not depend on architecture specific settings or libraries.
set(_PYBIND11_CMAKE_SIZEOF_VOID_P ${CMAKE_SIZEOF_VOID_P})
unset(CMAKE_SIZEOF_VOID_P)
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake
VERSION ${PROJECT_VERSION}
COMPATIBILITY AnyNewerVersion)
set(CMAKE_SIZEOF_VOID_P ${_PYBIND11_CMAKE_SIZEOF_VOID_P})
else()
# CMake 3.14+ natively supports header-only libraries
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake
VERSION ${PROJECT_VERSION}
COMPATIBILITY AnyNewerVersion ARCH_INDEPENDENT)
endif()
install(
FILES ${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake
tools/FindPythonLibsNew.cmake
tools/pybind11Common.cmake
tools/pybind11Tools.cmake
tools/pybind11NewTools.cmake
DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
if(NOT PYBIND11_EXPORT_NAME)
set(PYBIND11_EXPORT_NAME "${PROJECT_NAME}Targets")
endif()
install(TARGETS pybind11_headers EXPORT "${PYBIND11_EXPORT_NAME}")
install(
EXPORT "${PYBIND11_EXPORT_NAME}"
NAMESPACE "pybind11::"
DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
# Uninstall target
if(PYBIND11_MASTER_PROJECT)
configure_file("${CMAKE_CURRENT_SOURCE_DIR}/tools/cmake_uninstall.cmake.in"
"${CMAKE_CURRENT_BINARY_DIR}/cmake_uninstall.cmake" IMMEDIATE @ONLY)
add_custom_target(uninstall COMMAND ${CMAKE_COMMAND} -P
${CMAKE_CURRENT_BINARY_DIR}/cmake_uninstall.cmake)
endif()
endif()
# BUILD_TESTING takes priority, but only if this is the master project
if(PYBIND11_MASTER_PROJECT AND DEFINED BUILD_TESTING)
if(BUILD_TESTING)
if(_pybind11_nopython)
message(FATAL_ERROR "Cannot activate tests in NOPYTHON mode")
else()
add_subdirectory(tests)
endif()
endif()
else()
if(PYBIND11_TEST)
if(_pybind11_nopython)
message(FATAL_ERROR "Cannot activate tests in NOPYTHON mode")
else()
add_subdirectory(tests)
endif()
endif()
endif()
# Better symmetry with find_package(pybind11 CONFIG) mode.
if(NOT PYBIND11_MASTER_PROJECT)
set(pybind11_FOUND
TRUE
CACHE INTERNAL "True if pybind11 and all required components found on the system")
endif()

View File

@ -1,29 +0,0 @@
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Please also refer to the file .github/CONTRIBUTING.md, which clarifies licensing of
external contributions to this project including patches, pull requests, etc.

View File

@ -1,5 +0,0 @@
recursive-include pybind11/include/pybind11 *.h
recursive-include pybind11 *.py
recursive-include pybind11 py.typed
include pybind11/share/cmake/pybind11/*.cmake
include LICENSE README.rst pyproject.toml setup.py setup.cfg

View File

@ -1,180 +0,0 @@
.. figure:: https://github.com/pybind/pybind11/raw/master/docs/pybind11-logo.png
:alt: pybind11 logo
**pybind11 — Seamless operability between C++11 and Python**
|Latest Documentation Status| |Stable Documentation Status| |Gitter chat| |GitHub Discussions| |CI| |Build status|
|Repology| |PyPI package| |Conda-forge| |Python Versions|
`Setuptools example <https://github.com/pybind/python_example>`_
`Scikit-build example <https://github.com/pybind/scikit_build_example>`_
`CMake example <https://github.com/pybind/cmake_example>`_
.. start
**pybind11** is a lightweight header-only library that exposes C++ types
in Python and vice versa, mainly to create Python bindings of existing
C++ code. Its goals and syntax are similar to the excellent
`Boost.Python <http://www.boost.org/doc/libs/1_58_0/libs/python/doc/>`_
library by David Abrahams: to minimize boilerplate code in traditional
extension modules by inferring type information using compile-time
introspection.
The main issue with Boost.Python—and the reason for creating such a
similar project—is Boost. Boost is an enormously large and complex suite
of utility libraries that works with almost every C++ compiler in
existence. This compatibility has its cost: arcane template tricks and
workarounds are necessary to support the oldest and buggiest of compiler
specimens. Now that C++11-compatible compilers are widely available,
this heavy machinery has become an excessively large and unnecessary
dependency.
Think of this library as a tiny self-contained version of Boost.Python
with everything stripped away that isn't relevant for binding
generation. Without comments, the core header files only require ~4K
lines of code and depend on Python (3.6+, or PyPy) and the C++
standard library. This compact implementation was possible thanks to
some of the new C++11 language features (specifically: tuples, lambda
functions and variadic templates). Since its creation, this library has
grown beyond Boost.Python in many ways, leading to dramatically simpler
binding code in many common situations.
Tutorial and reference documentation is provided at
`pybind11.readthedocs.io <https://pybind11.readthedocs.io/en/latest>`_.
A PDF version of the manual is available
`here <https://pybind11.readthedocs.io/_/downloads/en/latest/pdf/>`_.
And the source code is always available at
`github.com/pybind/pybind11 <https://github.com/pybind/pybind11>`_.
Core features
-------------
pybind11 can map the following core C++ features to Python:
- Functions accepting and returning custom data structures per value,
reference, or pointer
- Instance methods and static methods
- Overloaded functions
- Instance attributes and static attributes
- Arbitrary exception types
- Enumerations
- Callbacks
- Iterators and ranges
- Custom operators
- Single and multiple inheritance
- STL data structures
- Smart pointers with reference counting like ``std::shared_ptr``
- Internal references with correct reference counting
- C++ classes with virtual (and pure virtual) methods can be extended
in Python
Goodies
-------
In addition to the core functionality, pybind11 provides some extra
goodies:
- Python 3.6+, and PyPy3 7.3 are supported with an implementation-agnostic
interface (pybind11 2.9 was the last version to support Python 2 and 3.5).
- It is possible to bind C++11 lambda functions with captured
variables. The lambda capture data is stored inside the resulting
Python function object.
- pybind11 uses C++11 move constructors and move assignment operators
whenever possible to efficiently transfer custom data types.
- It's easy to expose the internal storage of custom data types through
Pythons' buffer protocols. This is handy e.g. for fast conversion
between C++ matrix classes like Eigen and NumPy without expensive
copy operations.
- pybind11 can automatically vectorize functions so that they are
transparently applied to all entries of one or more NumPy array
arguments.
- Python's slice-based access and assignment operations can be
supported with just a few lines of code.
- Everything is contained in just a few header files; there is no need
to link against any additional libraries.
- Binaries are generally smaller by a factor of at least 2 compared to
equivalent bindings generated by Boost.Python. A recent pybind11
conversion of PyRosetta, an enormous Boost.Python binding project,
`reported <https://graylab.jhu.edu/Sergey/2016.RosettaCon/PyRosetta-4.pdf>`_
a binary size reduction of **5.4x** and compile time reduction by
**5.8x**.
- Function signatures are precomputed at compile time (using
``constexpr``), leading to smaller binaries.
- With little extra effort, C++ types can be pickled and unpickled
similar to regular Python objects.
Supported compilers
-------------------
1. Clang/LLVM 3.3 or newer (for Apple Xcode's clang, this is 5.0.0 or
newer)
2. GCC 4.8 or newer
3. Microsoft Visual Studio 2017 or newer
4. Intel classic C++ compiler 18 or newer (ICC 20.2 tested in CI)
5. Cygwin/GCC (previously tested on 2.5.1)
6. NVCC (CUDA 11.0 tested in CI)
7. NVIDIA PGI (20.9 tested in CI)
About
-----
This project was created by `Wenzel
Jakob <http://rgl.epfl.ch/people/wjakob>`_. Significant features and/or
improvements to the code were contributed by Jonas Adler, Lori A. Burns,
Sylvain Corlay, Eric Cousineau, Aaron Gokaslan, Ralf Grosse-Kunstleve, Trent Houliston, Axel
Huebl, @hulucc, Yannick Jadoul, Sergey Lyskov Johan Mabille, Tomasz Miąsko,
Dean Moldovan, Ben Pritchard, Jason Rhinelander, Boris Schäling, Pim
Schellart, Henry Schreiner, Ivan Smirnov, Boris Staletic, and Patrick Stewart.
We thank Google for a generous financial contribution to the continuous
integration infrastructure used by this project.
Contributing
~~~~~~~~~~~~
See the `contributing
guide <https://github.com/pybind/pybind11/blob/master/.github/CONTRIBUTING.md>`_
for information on building and contributing to pybind11.
License
~~~~~~~
pybind11 is provided under a BSD-style license that can be found in the
`LICENSE <https://github.com/pybind/pybind11/blob/master/LICENSE>`_
file. By using, distributing, or contributing to this project, you agree
to the terms and conditions of this license.
.. |Latest Documentation Status| image:: https://readthedocs.org/projects/pybind11/badge?version=latest
:target: http://pybind11.readthedocs.org/en/latest
.. |Stable Documentation Status| image:: https://img.shields.io/badge/docs-stable-blue.svg
:target: http://pybind11.readthedocs.org/en/stable
.. |Gitter chat| image:: https://img.shields.io/gitter/room/gitterHQ/gitter.svg
:target: https://gitter.im/pybind/Lobby
.. |CI| image:: https://github.com/pybind/pybind11/workflows/CI/badge.svg
:target: https://github.com/pybind/pybind11/actions
.. |Build status| image:: https://ci.appveyor.com/api/projects/status/riaj54pn4h08xy40?svg=true
:target: https://ci.appveyor.com/project/wjakob/pybind11
.. |PyPI package| image:: https://img.shields.io/pypi/v/pybind11.svg
:target: https://pypi.org/project/pybind11/
.. |Conda-forge| image:: https://img.shields.io/conda/vn/conda-forge/pybind11.svg
:target: https://github.com/conda-forge/pybind11-feedstock
.. |Repology| image:: https://repology.org/badge/latest-versions/python:pybind11.svg
:target: https://repology.org/project/python:pybind11/versions
.. |Python Versions| image:: https://img.shields.io/pypi/pyversions/pybind11.svg
:target: https://pypi.org/project/pybind11/
.. |GitHub Discussions| image:: https://img.shields.io/static/v1?label=Discussions&message=Ask&color=blue&logo=github
:target: https://github.com/pybind/pybind11/discussions

View File

@ -1,21 +0,0 @@
PROJECT_NAME = pybind11
INPUT = ../include/pybind11/
RECURSIVE = YES
GENERATE_HTML = NO
GENERATE_LATEX = NO
GENERATE_XML = YES
XML_OUTPUT = .build/doxygenxml
XML_PROGRAMLISTING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
EXPAND_AS_DEFINED = PYBIND11_RUNTIME_EXCEPTION
ALIASES = "rst=\verbatim embed:rst"
ALIASES += "endrst=\endverbatim"
QUIET = YES
WARNINGS = YES
WARN_IF_UNDOCUMENTED = NO
PREDEFINED = PYBIND11_NOINLINE

View File

@ -1,192 +0,0 @@
# Makefile for Sphinx documentation
#
# You can set these variables from the command line.
SPHINXOPTS =
SPHINXBUILD = sphinx-build
PAPER =
BUILDDIR = .build
# User-friendly check for sphinx-build
ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1)
$(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/)
endif
# Internal variables.
PAPEROPT_a4 = -D latex_paper_size=a4
PAPEROPT_letter = -D latex_paper_size=letter
ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
# the i18n builder cannot share the environment and doctrees with the others
I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest coverage gettext
help:
@echo "Please use \`make <target>' where <target> is one of"
@echo " html to make standalone HTML files"
@echo " dirhtml to make HTML files named index.html in directories"
@echo " singlehtml to make a single large HTML file"
@echo " pickle to make pickle files"
@echo " json to make JSON files"
@echo " htmlhelp to make HTML files and a HTML help project"
@echo " qthelp to make HTML files and a qthelp project"
@echo " applehelp to make an Apple Help Book"
@echo " devhelp to make HTML files and a Devhelp project"
@echo " epub to make an epub"
@echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter"
@echo " latexpdf to make LaTeX files and run them through pdflatex"
@echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx"
@echo " text to make text files"
@echo " man to make manual pages"
@echo " texinfo to make Texinfo files"
@echo " info to make Texinfo files and run them through makeinfo"
@echo " gettext to make PO message catalogs"
@echo " changes to make an overview of all changed/added/deprecated items"
@echo " xml to make Docutils-native XML files"
@echo " pseudoxml to make pseudoxml-XML files for display purposes"
@echo " linkcheck to check all external links for integrity"
@echo " doctest to run all doctests embedded in the documentation (if enabled)"
@echo " coverage to run coverage check of the documentation (if enabled)"
clean:
rm -rf $(BUILDDIR)/*
html:
$(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html
@echo
@echo "Build finished. The HTML pages are in $(BUILDDIR)/html."
dirhtml:
$(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml
@echo
@echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml."
singlehtml:
$(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml
@echo
@echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml."
pickle:
$(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle
@echo
@echo "Build finished; now you can process the pickle files."
json:
$(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json
@echo
@echo "Build finished; now you can process the JSON files."
htmlhelp:
$(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp
@echo
@echo "Build finished; now you can run HTML Help Workshop with the" \
".hhp project file in $(BUILDDIR)/htmlhelp."
qthelp:
$(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp
@echo
@echo "Build finished; now you can run "qcollectiongenerator" with the" \
".qhcp project file in $(BUILDDIR)/qthelp, like this:"
@echo "# qcollectiongenerator $(BUILDDIR)/qthelp/pybind11.qhcp"
@echo "To view the help file:"
@echo "# assistant -collectionFile $(BUILDDIR)/qthelp/pybind11.qhc"
applehelp:
$(SPHINXBUILD) -b applehelp $(ALLSPHINXOPTS) $(BUILDDIR)/applehelp
@echo
@echo "Build finished. The help book is in $(BUILDDIR)/applehelp."
@echo "N.B. You won't be able to view it unless you put it in" \
"~/Library/Documentation/Help or install it in your application" \
"bundle."
devhelp:
$(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp
@echo
@echo "Build finished."
@echo "To view the help file:"
@echo "# mkdir -p $$HOME/.local/share/devhelp/pybind11"
@echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/pybind11"
@echo "# devhelp"
epub:
$(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub
@echo
@echo "Build finished. The epub file is in $(BUILDDIR)/epub."
latex:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo
@echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex."
@echo "Run \`make' in that directory to run these through (pdf)latex" \
"(use \`make latexpdf' here to do that automatically)."
latexpdf:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo "Running LaTeX files through pdflatex..."
$(MAKE) -C $(BUILDDIR)/latex all-pdf
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
latexpdfja:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo "Running LaTeX files through platex and dvipdfmx..."
$(MAKE) -C $(BUILDDIR)/latex all-pdf-ja
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
text:
$(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text
@echo
@echo "Build finished. The text files are in $(BUILDDIR)/text."
man:
$(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man
@echo
@echo "Build finished. The manual pages are in $(BUILDDIR)/man."
texinfo:
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
@echo
@echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo."
@echo "Run \`make' in that directory to run these through makeinfo" \
"(use \`make info' here to do that automatically)."
info:
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
@echo "Running Texinfo files through makeinfo..."
make -C $(BUILDDIR)/texinfo info
@echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo."
gettext:
$(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale
@echo
@echo "Build finished. The message catalogs are in $(BUILDDIR)/locale."
changes:
$(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes
@echo
@echo "The overview file is in $(BUILDDIR)/changes."
linkcheck:
$(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck
@echo
@echo "Link check complete; look for any errors in the above output " \
"or in $(BUILDDIR)/linkcheck/output.txt."
doctest:
$(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest
@echo "Testing of doctests in the sources finished, look at the " \
"results in $(BUILDDIR)/doctest/output.txt."
coverage:
$(SPHINXBUILD) -b coverage $(ALLSPHINXOPTS) $(BUILDDIR)/coverage
@echo "Testing of coverage in the sources finished, look at the " \
"results in $(BUILDDIR)/coverage/python.txt."
xml:
$(SPHINXBUILD) -b xml $(ALLSPHINXOPTS) $(BUILDDIR)/xml
@echo
@echo "Build finished. The XML files are in $(BUILDDIR)/xml."
pseudoxml:
$(SPHINXBUILD) -b pseudoxml $(ALLSPHINXOPTS) $(BUILDDIR)/pseudoxml
@echo
@echo "Build finished. The pseudo-XML files are in $(BUILDDIR)/pseudoxml."

View File

@ -1,3 +0,0 @@
.highlight .go {
color: #707070;
}

View File

@ -1,81 +0,0 @@
Chrono
======
When including the additional header file :file:`pybind11/chrono.h` conversions
from C++11 chrono datatypes to python datetime objects are automatically enabled.
This header also enables conversions of python floats (often from sources such
as ``time.monotonic()``, ``time.perf_counter()`` and ``time.process_time()``)
into durations.
An overview of clocks in C++11
------------------------------
A point of confusion when using these conversions is the differences between
clocks provided in C++11. There are three clock types defined by the C++11
standard and users can define their own if needed. Each of these clocks have
different properties and when converting to and from python will give different
results.
The first clock defined by the standard is ``std::chrono::system_clock``. This
clock measures the current date and time. However, this clock changes with to
updates to the operating system time. For example, if your time is synchronised
with a time server this clock will change. This makes this clock a poor choice
for timing purposes but good for measuring the wall time.
The second clock defined in the standard is ``std::chrono::steady_clock``.
This clock ticks at a steady rate and is never adjusted. This makes it excellent
for timing purposes, however the value in this clock does not correspond to the
current date and time. Often this clock will be the amount of time your system
has been on, although it does not have to be. This clock will never be the same
clock as the system clock as the system clock can change but steady clocks
cannot.
The third clock defined in the standard is ``std::chrono::high_resolution_clock``.
This clock is the clock that has the highest resolution out of the clocks in the
system. It is normally a typedef to either the system clock or the steady clock
but can be its own independent clock. This is important as when using these
conversions as the types you get in python for this clock might be different
depending on the system.
If it is a typedef of the system clock, python will get datetime objects, but if
it is a different clock they will be timedelta objects.
Provided conversions
--------------------
.. rubric:: C++ to Python
- ``std::chrono::system_clock::time_point````datetime.datetime``
System clock times are converted to python datetime instances. They are
in the local timezone, but do not have any timezone information attached
to them (they are naive datetime objects).
- ``std::chrono::duration````datetime.timedelta``
Durations are converted to timedeltas, any precision in the duration
greater than microseconds is lost by rounding towards zero.
- ``std::chrono::[other_clocks]::time_point````datetime.timedelta``
Any clock time that is not the system clock is converted to a time delta.
This timedelta measures the time from the clocks epoch to now.
.. rubric:: Python to C++
- ``datetime.datetime`` or ``datetime.date`` or ``datetime.time````std::chrono::system_clock::time_point``
Date/time objects are converted into system clock timepoints. Any
timezone information is ignored and the type is treated as a naive
object.
- ``datetime.timedelta````std::chrono::duration``
Time delta are converted into durations with microsecond precision.
- ``datetime.timedelta````std::chrono::[other_clocks]::time_point``
Time deltas that are converted into clock timepoints are treated as
the amount of time from the start of the clocks epoch.
- ``float````std::chrono::duration``
Floats that are passed to C++ as durations be interpreted as a number of
seconds. These will be converted to the duration using ``duration_cast``
from the float.
- ``float````std::chrono::[other_clocks]::time_point``
Floats that are passed to C++ as time points will be interpreted as the
number of seconds from the start of the clocks epoch.

View File

@ -1,93 +0,0 @@
Custom type casters
===================
In very rare cases, applications may require custom type casters that cannot be
expressed using the abstractions provided by pybind11, thus requiring raw
Python C API calls. This is fairly advanced usage and should only be pursued by
experts who are familiar with the intricacies of Python reference counting.
The following snippets demonstrate how this works for a very simple ``inty``
type that that should be convertible from Python types that provide a
``__int__(self)`` method.
.. code-block:: cpp
struct inty { long long_value; };
void print(inty s) {
std::cout << s.long_value << std::endl;
}
The following Python snippet demonstrates the intended usage from the Python side:
.. code-block:: python
class A:
def __int__(self):
return 123
from example import print
print(A())
To register the necessary conversion routines, it is necessary to add an
instantiation of the ``pybind11::detail::type_caster<T>`` template.
Although this is an implementation detail, adding an instantiation of this
type is explicitly allowed.
.. code-block:: cpp
namespace pybind11 { namespace detail {
template <> struct type_caster<inty> {
public:
/**
* This macro establishes the name 'inty' in
* function signatures and declares a local variable
* 'value' of type inty
*/
PYBIND11_TYPE_CASTER(inty, const_name("inty"));
/**
* Conversion part 1 (Python->C++): convert a PyObject into a inty
* instance or return false upon failure. The second argument
* indicates whether implicit conversions should be applied.
*/
bool load(handle src, bool) {
/* Extract PyObject from handle */
PyObject *source = src.ptr();
/* Try converting into a Python integer value */
PyObject *tmp = PyNumber_Long(source);
if (!tmp)
return false;
/* Now try to convert into a C++ int */
value.long_value = PyLong_AsLong(tmp);
Py_DECREF(tmp);
/* Ensure return code was OK (to avoid out-of-range errors etc) */
return !(value.long_value == -1 && !PyErr_Occurred());
}
/**
* Conversion part 2 (C++ -> Python): convert an inty instance into
* a Python object. The second and third arguments are used to
* indicate the return value policy and parent object (for
* ``return_value_policy::reference_internal``) and are generally
* ignored by implicit casters.
*/
static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromLong(src.long_value);
}
};
}} // namespace pybind11::detail
.. note::
A ``type_caster<T>`` defined with ``PYBIND11_TYPE_CASTER(T, ...)`` requires
that ``T`` is default-constructible (``value`` is first default constructed
and then ``load()`` assigns to it).
.. warning::
When using custom type casters, it's important to declare them consistently
in every compilation unit of the Python extension module. Otherwise,
undefined behavior can ensue.

View File

@ -1,310 +0,0 @@
Eigen
#####
`Eigen <http://eigen.tuxfamily.org>`_ is C++ header-based library for dense and
sparse linear algebra. Due to its popularity and widespread adoption, pybind11
provides transparent conversion and limited mapping support between Eigen and
Scientific Python linear algebra data types.
To enable the built-in Eigen support you must include the optional header file
:file:`pybind11/eigen.h`.
Pass-by-value
=============
When binding a function with ordinary Eigen dense object arguments (for
example, ``Eigen::MatrixXd``), pybind11 will accept any input value that is
already (or convertible to) a ``numpy.ndarray`` with dimensions compatible with
the Eigen type, copy its values into a temporary Eigen variable of the
appropriate type, then call the function with this temporary variable.
Sparse matrices are similarly copied to or from
``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` objects.
Pass-by-reference
=================
One major limitation of the above is that every data conversion implicitly
involves a copy, which can be both expensive (for large matrices) and disallows
binding functions that change their (Matrix) arguments. Pybind11 allows you to
work around this by using Eigen's ``Eigen::Ref<MatrixType>`` class much as you
would when writing a function taking a generic type in Eigen itself (subject to
some limitations discussed below).
When calling a bound function accepting a ``Eigen::Ref<const MatrixType>``
type, pybind11 will attempt to avoid copying by using an ``Eigen::Map`` object
that maps into the source ``numpy.ndarray`` data: this requires both that the
data types are the same (e.g. ``dtype='float64'`` and ``MatrixType::Scalar`` is
``double``); and that the storage is layout compatible. The latter limitation
is discussed in detail in the section below, and requires careful
consideration: by default, numpy matrices and Eigen matrices are *not* storage
compatible.
If the numpy matrix cannot be used as is (either because its types differ, e.g.
passing an array of integers to an Eigen parameter requiring doubles, or
because the storage is incompatible), pybind11 makes a temporary copy and
passes the copy instead.
When a bound function parameter is instead ``Eigen::Ref<MatrixType>`` (note the
lack of ``const``), pybind11 will only allow the function to be called if it
can be mapped *and* if the numpy array is writeable (that is
``a.flags.writeable`` is true). Any access (including modification) made to
the passed variable will be transparently carried out directly on the
``numpy.ndarray``.
This means you can write code such as the following and have it work as
expected:
.. code-block:: cpp
void scale_by_2(Eigen::Ref<Eigen::VectorXd> v) {
v *= 2;
}
Note, however, that you will likely run into limitations due to numpy and
Eigen's difference default storage order for data; see the below section on
:ref:`storage_orders` for details on how to bind code that won't run into such
limitations.
.. note::
Passing by reference is not supported for sparse types.
Returning values to Python
==========================
When returning an ordinary dense Eigen matrix type to numpy (e.g.
``Eigen::MatrixXd`` or ``Eigen::RowVectorXf``) pybind11 keeps the matrix and
returns a numpy array that directly references the Eigen matrix: no copy of the
data is performed. The numpy array will have ``array.flags.owndata`` set to
``False`` to indicate that it does not own the data, and the lifetime of the
stored Eigen matrix will be tied to the returned ``array``.
If you bind a function with a non-reference, ``const`` return type (e.g.
``const Eigen::MatrixXd``), the same thing happens except that pybind11 also
sets the numpy array's ``writeable`` flag to false.
If you return an lvalue reference or pointer, the usual pybind11 rules apply,
as dictated by the binding function's return value policy (see the
documentation on :ref:`return_value_policies` for full details). That means,
without an explicit return value policy, lvalue references will be copied and
pointers will be managed by pybind11. In order to avoid copying, you should
explicitly specify an appropriate return value policy, as in the following
example:
.. code-block:: cpp
class MyClass {
Eigen::MatrixXd big_mat = Eigen::MatrixXd::Zero(10000, 10000);
public:
Eigen::MatrixXd &getMatrix() { return big_mat; }
const Eigen::MatrixXd &viewMatrix() { return big_mat; }
};
// Later, in binding code:
py::class_<MyClass>(m, "MyClass")
.def(py::init<>())
.def("copy_matrix", &MyClass::getMatrix) // Makes a copy!
.def("get_matrix", &MyClass::getMatrix, py::return_value_policy::reference_internal)
.def("view_matrix", &MyClass::viewMatrix, py::return_value_policy::reference_internal)
;
.. code-block:: python
a = MyClass()
m = a.get_matrix() # flags.writeable = True, flags.owndata = False
v = a.view_matrix() # flags.writeable = False, flags.owndata = False
c = a.copy_matrix() # flags.writeable = True, flags.owndata = True
# m[5,6] and v[5,6] refer to the same element, c[5,6] does not.
Note in this example that ``py::return_value_policy::reference_internal`` is
used to tie the life of the MyClass object to the life of the returned arrays.
You may also return an ``Eigen::Ref``, ``Eigen::Map`` or other map-like Eigen
object (for example, the return value of ``matrix.block()`` and related
methods) that map into a dense Eigen type. When doing so, the default
behaviour of pybind11 is to simply reference the returned data: you must take
care to ensure that this data remains valid! You may ask pybind11 to
explicitly *copy* such a return value by using the
``py::return_value_policy::copy`` policy when binding the function. You may
also use ``py::return_value_policy::reference_internal`` or a
``py::keep_alive`` to ensure the data stays valid as long as the returned numpy
array does.
When returning such a reference of map, pybind11 additionally respects the
readonly-status of the returned value, marking the numpy array as non-writeable
if the reference or map was itself read-only.
.. note::
Sparse types are always copied when returned.
.. _storage_orders:
Storage orders
==============
Passing arguments via ``Eigen::Ref`` has some limitations that you must be
aware of in order to effectively pass matrices by reference. First and
foremost is that the default ``Eigen::Ref<MatrixType>`` class requires
contiguous storage along columns (for column-major types, the default in Eigen)
or rows if ``MatrixType`` is specifically an ``Eigen::RowMajor`` storage type.
The former, Eigen's default, is incompatible with ``numpy``'s default row-major
storage, and so you will not be able to pass numpy arrays to Eigen by reference
without making one of two changes.
(Note that this does not apply to vectors (or column or row matrices): for such
types the "row-major" and "column-major" distinction is meaningless).
The first approach is to change the use of ``Eigen::Ref<MatrixType>`` to the
more general ``Eigen::Ref<MatrixType, 0, Eigen::Stride<Eigen::Dynamic,
Eigen::Dynamic>>`` (or similar type with a fully dynamic stride type in the
third template argument). Since this is a rather cumbersome type, pybind11
provides a ``py::EigenDRef<MatrixType>`` type alias for your convenience (along
with EigenDMap for the equivalent Map, and EigenDStride for just the stride
type).
This type allows Eigen to map into any arbitrary storage order. This is not
the default in Eigen for performance reasons: contiguous storage allows
vectorization that cannot be done when storage is not known to be contiguous at
compile time. The default ``Eigen::Ref`` stride type allows non-contiguous
storage along the outer dimension (that is, the rows of a column-major matrix
or columns of a row-major matrix), but not along the inner dimension.
This type, however, has the added benefit of also being able to map numpy array
slices. For example, the following (contrived) example uses Eigen with a numpy
slice to multiply by 2 all coefficients that are both on even rows (0, 2, 4,
...) and in columns 2, 5, or 8:
.. code-block:: cpp
m.def("scale", [](py::EigenDRef<Eigen::MatrixXd> m, double c) { m *= c; });
.. code-block:: python
# a = np.array(...)
scale_by_2(myarray[0::2, 2:9:3])
The second approach to avoid copying is more intrusive: rearranging the
underlying data types to not run into the non-contiguous storage problem in the
first place. In particular, that means using matrices with ``Eigen::RowMajor``
storage, where appropriate, such as:
.. code-block:: cpp
using RowMatrixXd = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// Use RowMatrixXd instead of MatrixXd
Now bound functions accepting ``Eigen::Ref<RowMatrixXd>`` arguments will be
callable with numpy's (default) arrays without involving a copying.
You can, alternatively, change the storage order that numpy arrays use by
adding the ``order='F'`` option when creating an array:
.. code-block:: python
myarray = np.array(source, order="F")
Such an object will be passable to a bound function accepting an
``Eigen::Ref<MatrixXd>`` (or similar column-major Eigen type).
One major caveat with this approach, however, is that it is not entirely as
easy as simply flipping all Eigen or numpy usage from one to the other: some
operations may alter the storage order of a numpy array. For example, ``a2 =
array.transpose()`` results in ``a2`` being a view of ``array`` that references
the same data, but in the opposite storage order!
While this approach allows fully optimized vectorized calculations in Eigen, it
cannot be used with array slices, unlike the first approach.
When *returning* a matrix to Python (either a regular matrix, a reference via
``Eigen::Ref<>``, or a map/block into a matrix), no special storage
consideration is required: the created numpy array will have the required
stride that allows numpy to properly interpret the array, whatever its storage
order.
Failing rather than copying
===========================
The default behaviour when binding ``Eigen::Ref<const MatrixType>`` Eigen
references is to copy matrix values when passed a numpy array that does not
conform to the element type of ``MatrixType`` or does not have a compatible
stride layout. If you want to explicitly avoid copying in such a case, you
should bind arguments using the ``py::arg().noconvert()`` annotation (as
described in the :ref:`nonconverting_arguments` documentation).
The following example shows an example of arguments that don't allow data
copying to take place:
.. code-block:: cpp
// The method and function to be bound:
class MyClass {
// ...
double some_method(const Eigen::Ref<const MatrixXd> &matrix) { /* ... */ }
};
float some_function(const Eigen::Ref<const MatrixXf> &big,
const Eigen::Ref<const MatrixXf> &small) {
// ...
}
// The associated binding code:
using namespace pybind11::literals; // for "arg"_a
py::class_<MyClass>(m, "MyClass")
// ... other class definitions
.def("some_method", &MyClass::some_method, py::arg().noconvert());
m.def("some_function", &some_function,
"big"_a.noconvert(), // <- Don't allow copying for this arg
"small"_a // <- This one can be copied if needed
);
With the above binding code, attempting to call the the ``some_method(m)``
method on a ``MyClass`` object, or attempting to call ``some_function(m, m2)``
will raise a ``RuntimeError`` rather than making a temporary copy of the array.
It will, however, allow the ``m2`` argument to be copied into a temporary if
necessary.
Note that explicitly specifying ``.noconvert()`` is not required for *mutable*
Eigen references (e.g. ``Eigen::Ref<MatrixXd>`` without ``const`` on the
``MatrixXd``): mutable references will never be called with a temporary copy.
Vectors versus column/row matrices
==================================
Eigen and numpy have fundamentally different notions of a vector. In Eigen, a
vector is simply a matrix with the number of columns or rows set to 1 at
compile time (for a column vector or row vector, respectively). NumPy, in
contrast, has comparable 2-dimensional 1xN and Nx1 arrays, but *also* has
1-dimensional arrays of size N.
When passing a 2-dimensional 1xN or Nx1 array to Eigen, the Eigen type must
have matching dimensions: That is, you cannot pass a 2-dimensional Nx1 numpy
array to an Eigen value expecting a row vector, or a 1xN numpy array as a
column vector argument.
On the other hand, pybind11 allows you to pass 1-dimensional arrays of length N
as Eigen parameters. If the Eigen type can hold a column vector of length N it
will be passed as such a column vector. If not, but the Eigen type constraints
will accept a row vector, it will be passed as a row vector. (The column
vector takes precedence when both are supported, for example, when passing a
1D numpy array to a MatrixXd argument). Note that the type need not be
explicitly a vector: it is permitted to pass a 1D numpy array of size 5 to an
Eigen ``Matrix<double, Dynamic, 5>``: you would end up with a 1x5 Eigen matrix.
Passing the same to an ``Eigen::MatrixXd`` would result in a 5x1 Eigen matrix.
When returning an Eigen vector to numpy, the conversion is ambiguous: a row
vector of length 4 could be returned as either a 1D array of length 4, or as a
2D array of size 1x4. When encountering such a situation, pybind11 compromises
by considering the returned Eigen type: if it is a compile-time vector--that
is, the type has either the number of rows or columns set to 1 at compile
time--pybind11 converts to a 1D numpy array when returning the value. For
instances that are a vector only at run-time (e.g. ``MatrixXd``,
``Matrix<float, Dynamic, 4>``), pybind11 returns the vector as a 2D array to
numpy. If this isn't want you want, you can use ``array.reshape(...)`` to get
a view of the same data in the desired dimensions.
.. seealso::
The file :file:`tests/test_eigen.cpp` contains a complete example that
shows how to pass Eigen sparse and dense data types in more detail.

View File

@ -1,109 +0,0 @@
Functional
##########
The following features must be enabled by including :file:`pybind11/functional.h`.
Callbacks and passing anonymous functions
=========================================
The C++11 standard brought lambda functions and the generic polymorphic
function wrapper ``std::function<>`` to the C++ programming language, which
enable powerful new ways of working with functions. Lambda functions come in
two flavors: stateless lambda function resemble classic function pointers that
link to an anonymous piece of code, while stateful lambda functions
additionally depend on captured variables that are stored in an anonymous
*lambda closure object*.
Here is a simple example of a C++ function that takes an arbitrary function
(stateful or stateless) with signature ``int -> int`` as an argument and runs
it with the value 10.
.. code-block:: cpp
int func_arg(const std::function<int(int)> &f) {
return f(10);
}
The example below is more involved: it takes a function of signature ``int -> int``
and returns another function of the same kind. The return value is a stateful
lambda function, which stores the value ``f`` in the capture object and adds 1 to
its return value upon execution.
.. code-block:: cpp
std::function<int(int)> func_ret(const std::function<int(int)> &f) {
return [f](int i) {
return f(i) + 1;
};
}
This example demonstrates using python named parameters in C++ callbacks which
requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
methods of classes:
.. code-block:: cpp
py::cpp_function func_cpp() {
return py::cpp_function([](int i) { return i+1; },
py::arg("number"));
}
After including the extra header file :file:`pybind11/functional.h`, it is almost
trivial to generate binding code for all of these functions.
.. code-block:: cpp
#include <pybind11/functional.h>
PYBIND11_MODULE(example, m) {
m.def("func_arg", &func_arg);
m.def("func_ret", &func_ret);
m.def("func_cpp", &func_cpp);
}
The following interactive session shows how to call them from Python.
.. code-block:: pycon
$ python
>>> import example
>>> def square(i):
... return i * i
...
>>> example.func_arg(square)
100L
>>> square_plus_1 = example.func_ret(square)
>>> square_plus_1(4)
17L
>>> plus_1 = func_cpp()
>>> plus_1(number=43)
44L
.. warning::
Keep in mind that passing a function from C++ to Python (or vice versa)
will instantiate a piece of wrapper code that translates function
invocations between the two languages. Naturally, this translation
increases the computational cost of each function call somewhat. A
problematic situation can arise when a function is copied back and forth
between Python and C++ many times in a row, in which case the underlying
wrappers will accumulate correspondingly. The resulting long sequence of
C++ -> Python -> C++ -> ... roundtrips can significantly decrease
performance.
There is one exception: pybind11 detects case where a stateless function
(i.e. a function pointer or a lambda function without captured variables)
is passed as an argument to another C++ function exposed in Python. In this
case, there is no overhead. Pybind11 will extract the underlying C++
function pointer from the wrapped function to sidestep a potential C++ ->
Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
.. note::
This functionality is very useful when generating bindings for callbacks in
C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
The file :file:`tests/test_callbacks.cpp` contains a complete example
that demonstrates how to work with callbacks and anonymous functions in
more detail.

Some files were not shown because too many files have changed in this diff Show More