merge from 4.0.1

This commit is contained in:
maliakal_d 2019-02-11 14:37:54 +01:00
commit ed74e710d6
68 changed files with 6174 additions and 2231 deletions

View File

@ -41,5 +41,5 @@ deploy:
provider: script
script: find $HOME/miniconda/conda-bld/${TRAVIS_OS_NAME}-64 -name "*.tar.bz2" -exec anaconda -t $CONDA_TOKEN upload --force {} \;
on:
branch: 4.0.1-rc
branch: developer

View File

@ -0,0 +1,61 @@
detsizechan 2560 1
hostname bchip074+bchip075+
#replace my_installation_path
settingsdir /my_installation_path/slsDetectorPackage/settingsdir/gotthard
caldir /my_installation_path/slsDetectorPackage/settingsdir/gotthard
0:extsig:0 trigger_in_rising_edge
0:rx_tcpport 1954
0:rx_udpport 50001
0:vhighvoltage 0
1:extsig:0 trigger_in_rising_edge
1:rx_tcpport 1955
1:rx_udpport 50002
#1:detectorip 10.1.1.52
1:vhighvoltage 0
##############################################################################
#########
######### Uncomment this part to use the gotthard25umZmq process
#########
##############################################################################
# #replace my_receiver_hostname with the hostname of IP of the machine where the receiver runs
#0:rx_zmqip my_receiver_hostname
#0:rx_zmqport 30003
# #replace my_client_hostname with the hostname of IP of the machine where the client/GUI or softIOC runs
#0:zmqip my_client_hostname
#0:zmqport 40003
# #replace my_receiver_hostname with the hostname of IP of the machine where the receiver runs
#1:rx_zmqip my_receiver_hostname
#1:rx_zmqport 30004
# #replace my_client_hostname with the hostname of IP of the machine where the client/GUI or softIOC runs
#1:zmqip my_client_hostname
#1:zmqport 40004
##############################################################################
#########
######### until here
#########
##############################################################################
r_readfreq 1
rx_datastream 1
#replace my_receiver_hostname with the hostname of 1Gb IP of the machine where the receiver runs
rx_hostname my_receiver_hostname
rx_datastream 1
outdir /tmp/
angconv none
threaded 1
settings veryhighgain
exptime 0.000005
period 0.0001
vhighvoltage 90

View File

@ -0,0 +1,61 @@
detsizechan 2560 1
hostname bchip074+bchip075+
#replace my_installation_path
settingsdir /my_installation_path/slsDetectorPackage/settingsdir/gotthard
caldir /my_installation_path/slsDetectorPackage/settingsdir/gotthard
0:extsig:0 trigger_in_rising_edge
0:rx_tcpport 1954
0:rx_udpport 50001
0:vhighvoltage 0
1:extsig:0 trigger_in_rising_edge
1:rx_tcpport 1955
1:rx_udpport 50002
#1:detectorip 10.1.1.52
1:vhighvoltage 0
##############################################################################
#########
######### Uncomment this part to use the gotthard25umZmq process
#########
##############################################################################
# #replace my_receiver_hostname with the hostname of IP of the machine where the receiver runs
#0:rx_zmqip my_receiver_hostname
#0:rx_zmqport 30003
# #replace my_client_hostname with the hostname of IP of the machine where the client/GUI or softIOC runs
#0:zmqip my_client_hostname
#0:zmqport 40003
# #replace my_receiver_hostname with the hostname of IP of the machine where the receiver runs
#1:rx_zmqip my_receiver_hostname
#1:rx_zmqport 30004
# #replace my_client_hostname with the hostname of IP of the machine where the client/GUI or softIOC runs
#1:zmqip my_client_hostname
#1:zmqport 40004
##############################################################################
#########
######### until here
#########
##############################################################################
r_readfreq 1
rx_datastream 1
#replace my_receiver_hostname with the hostname of 1Gb IP of the machine where the receiver runs
rx_hostname my_receiver_hostname
rx_datastream 1
outdir /tmp/
angconv none
threaded 1
settings veryhighgain
exptime 0.000005
period 0.0001
vhighvoltage 90

View File

@ -0,0 +1,14 @@
Turn on the two receivers:
slsReceiver --rx_tcpport 1954 &
slsReceiver --rx_tcpport 1955 &
Switch on the photon conversion on the receiver machine (replace my_receiver_hostname):
gotthard25umZmq my_receiver_hostname 30003 my_receiver_hostname 40003 &
Run the configuration file:
sls_detector_put config bchip2modules.config
Start your measurements using the command line, the slsDetectorGui or the EPICS driver

View File

@ -0,0 +1,489 @@
hostname bchip085+
patword 0000 0000000000000000
patword 0001 0000000000000000
patword 0002 0008000900080000
patword 0003 0008000900080000
patword 0004 0008000900080000
patword 0005 0008000900080000
patword 0006 0008000900080000
patword 0007 0008000900080000
patword 0008 0008000900080000
patword 0009 0008000900080000
patword 000a 0008000900080000
patword 000b 0008000900080000
patword 000c 0008000900080000
patword 000d 0008000900080000
patword 000e 0008000900080000
patword 000f 0008000900080000
patword 0010 0008000900080000
patword 0011 0008000900080000
patword 0012 0008000900080000
patword 0013 0008000900080000
patword 0014 0008000900080000
patword 0015 0008000900080000
patword 0016 0008400900080020
patword 0017 0008400900080020
patword 0018 0008599f0418503a
patword 0019 0008599f0418503a
patword 001a 0108599f0418503a
patword 001b 0108599f0418503a
patword 001c 0108599f0418503a
patword 001d 0108599f0418503a
patword 001e 0108599f0418503a
patword 001f 0108599f0418503a
patword 0020 0108599f0418503a
patword 0021 0108599f0418503a
patword 0022 0108599f0418503a
patword 0023 0108599f0418503a
patword 0024 0108599f0418503a
patword 0025 0108599f0418503a
patword 0026 0108599f0418503a
patword 0027 0108599f0418503a
patword 0028 0108599f0418503a
patword 0029 0108599f0418503a
patword 002a 0108599f0418503a
patword 002b 0108599f0418503a
patword 002c 0108599f0418503a
patword 002d 0108599f0418503a
patword 002e 0108599f0418503a
patword 002f 0108599f0418503a
patword 0030 0108599f0418503a
patword 0031 0108599f0418503a
patword 0032 0108599f0418503a
patword 0033 0108599f0418503a
patword 0034 0108599f0418503a
patword 0035 0108599f0418503a
patword 0036 0108599f0418503a
patword 0037 0108599f0418503a
patword 0038 0108599f0418503a
patword 0039 0108599f0418503a
patword 003a 0108599f0418503a
patword 003b 0108599f0418503a
patword 003c 0108599f0418503a
patword 003d 0108599f0418503a
patword 003e 0108599f0418503a
patword 003f 0108599f0418503a
patword 0040 0108599f0418503a
patword 0041 0108599f0418503a
patword 0042 0108599f0418503a
patword 0043 0108599f0418503a
patword 0044 0108599f0418503a
patword 0045 0108599f0418503a
patword 0046 0108599f0418503a
patword 0047 0108599f0418503a
patword 0048 0108599f0418503a
patword 0049 0108599f0418503a
patword 004a 0108599f0418503a
patword 004b 0108599f0418503a
patword 004c 0108599f0418503a
patword 004d 0108599f0418503a
patword 004e 0108599f0418503a
patword 004f 0108599f0418503a
patword 0050 0108599f0418503a
patword 0051 0108599f0418503a
patword 0052 0108599f0418503a
patword 0053 0108599f0418503a
patword 0054 0108599f0418503a
patword 0055 0108599f0418503a
patword 0056 0108599f0418503a
patword 0057 0108599f0418503a
patword 0058 0108599f0418503a
patword 0059 0108599f0418503a
patword 005a 0108599f0418503a
patword 005b 0108599f0418503a
patword 005c 0108599f0418503a
patword 005d 0108599f0418503a
patword 005e 0108599f0418503a
patword 005f 0108599f0418503a
patword 0060 0108599f0418503a
patword 0061 0108599f0418503a
patword 0062 0108599f0418503a
patword 0063 0108599f0418503a
patword 0064 0108599f0418503a
patword 0065 0108599f0418503a
patword 0066 0108599f0418503a
patword 0067 0108599f0418503a
patword 0068 0108599f0418503a
patword 0069 0108599f0418503a
patword 006a 0108599f0418503a
patword 006b 0108599f0418503a
patword 006c 0108599f0418503a
patword 006d 0108599f0418503a
patword 006e 0108599f0418503a
patword 006f 0108599f0418503a
patword 0070 0108599f0418503a
patword 0071 0108599f0418503a
patword 0072 0108599f0418503a
patword 0073 0108599f0418503a
patword 0074 0108599f0418503a
patword 0075 0108599f0418503a
patword 0076 0108599f0418503a
patword 0077 0108599f0418503a
patword 0078 0108599f0418503a
patword 0079 0108599f0418503a
patword 007a 0108599f0418503a
patword 007b 0108599f0418503a
patword 007c 0108599f0418503a
patword 007d 0108599f0418503a
patword 007e 010859960418503a
patword 007f 010859960418503a
patword 0080 010859960418503a
patword 0081 010859960418503a
patword 0082 010859960418503a
patword 0083 010859960418503a
patword 0084 010859960418503a
patword 0085 010859960418503a
patword 0086 010859960418503a
patword 0087 010859960418503a
patword 0088 010859960418503a
patword 0089 010859960418503a
patword 008a 010859960418503a
patword 008b 010859960418503a
patword 008c 010859960418503a
patword 008d 010859960418503a
patword 008e 010859960418503a
patword 008f 010859960418503a
patword 0090 010859960418503a
patword 0091 010859960418503a
patword 0092 010819960418501a
patword 0093 010819960418501a
patword 0094 010819960418501a
patword 0095 010819960418501a
patword 0096 030819960418501a
patword 0097 030819960418501a
patword 0098 030819960418501a
patword 0099 030819960418501a
patword 009a 030819960418501a
patword 009b 030819960418501a
patword 009c 030819960418501a
patword 009d 030819960418501a
patword 009e 030819960418501a
patword 009f 030819960418501a
patword 00a0 030819960418501a
patword 00a1 030819960418501a
patword 00a2 030819960418501a
patword 00a3 030819960418501a
patword 00a4 030819960418501a
patword 00a5 030819960418501a
patword 00a6 030819960418501a
patword 00a7 030819960418501a
patword 00a8 030819960418501a
patword 00a9 030819960418501a
patword 00aa 030819960418501a
patword 00ab 030819960418501a
patword 00ac 030819960008501a
patword 00ad 030819960008501a
patword 00ae 030819960008501a
patword 00af 030819960008501a
patword 00b0 030819960008501a
patword 00b1 030819960008501a
patword 00b2 030819960008501a
patword 00b3 030819960008501a
patword 00b4 030819960008501a
patword 00b5 030819960008501a
patword 00b6 030819960008501a
patword 00b7 030819960008501a
patword 00b8 030819960008501a
patword 00b9 030819960008501a
patword 00ba 030819960008501a
patword 00bb 030819960008501a
patword 00bc 030819960008501a
patword 00bd 030819960008501a
patword 00be 030819960008501a
patword 00bf 030819960008501a
patword 00c0 0308199f0008501a
patword 00c1 0308199f0008501a
patword 00c2 0308199f0008501a
patword 00c3 0308199f0008501a
patword 00c4 0308199f0008501a
patword 00c5 0308199f0008501a
patword 00c6 0308199f0008501a
patword 00c7 0308199f0008501a
patword 00c8 0308199f0008501a
patword 00c9 0308199f0008501a
patword 00ca 0308199f0008501a
patword 00cb 0308199f0008501a
patword 00cc 0308199f0008501a
patword 00cd 0308199f0008501a
patword 00ce 0308199f0008501a
patword 00cf 0308199f0008501a
patword 00d0 0308199f0008501a
patword 00d1 0308199f0008501a
patword 00d2 0308199f0008501a
patword 00d3 0308199f0008501a
patword 00d4 0308599f0008503a
patword 00d5 0308599f0008503a
patword 00d6 030c599f000850ba
patword 00d7 030c599f000850ba
patword 00d8 030c599f000850ba
patword 00d9 030c599f000850ba
patword 00da 030c599f000850ba
patword 00db 030c599f000850ba
patword 00dc 030c599f000850ba
patword 00dd 030c599f000850ba
patword 00de 030c599f000850ba
patword 00df 030c599f000850ba
patword 00e0 030c599f000850ba
patword 00e1 030c599f000850ba
patword 00e2 030c599f000850ba
patword 00e3 030c599f000850ba
patword 00e4 030c599f000850ba
patword 00e5 030c599f000850ba
patword 00e6 030c599f000850ba
patword 00e7 030c599f000850ba
patword 00e8 030c599f000850ba
patword 00e9 030c599f000850ba
patword 00ea 030c799f010858ba
patword 00eb 030c799f010858ba
patword 00ec 030c599f000850ba
patword 00ed 030c599f000850ba
patword 00ee 030c599f000850ba
patword 00ef 030c599f000850ba
patword 00f0 030c599f000850ba
patword 00f1 030c599f000850ba
patword 00f2 030c599f000850ba
patword 00f3 030c599f000850ba
patword 00f4 030c599f000850ba
patword 00f5 030c599f000850ba
patword 00f6 030c599f000850ba
patword 00f7 030c599f000850ba
patword 00f8 030c599f000850ba
patword 00f9 030c599f000850ba
patword 00fa 030c599f000850ba
patword 00fb 030c599f000850ba
patword 00fc 030c599f000850ba
patword 00fd 030c599f000850ba
patword 00fe 030c599f000850ba
patword 00ff 030c599f000850ba
patword 0100 030c599f000850ba
patword 0101 030c599f000850ba
patword 0102 030c599f400850ba
patword 0103 030c599f400850ba
patword 0104 030c599f600850ba
patword 0105 030c599f400850ba
patword 0106 030c599f400850ba
patword 0107 030c599f400850ba
patword 0108 870c599f682e50ba
patword 0109 870c599f482850ba
patword 010a 870c599f000e50ba
patword 010b 870c599f000850ba
patword 010c 870c599f000e50ba
patword 010d 870c599f000850ba
patword 010e 870c599f000e50ba
patword 010f 870c599f000850ba
patword 0110 870c599f000e50ba
patword 0111 870c599f000850ba
patword 0112 870c599f000e50ba
patword 0113 870c599f000850ba
patword 0114 870c599f000e50ba
patword 0115 870c599f000850ba
patword 0116 870c599f000e50ba
patword 0117 870c599f000850ba
patword 0118 870c599f000e50ba
patword 0119 870c599f000850ba
patword 011a 870c599f000e50ba
patword 011b 870c599f000850ba
patword 011c 870c599f000e50ba
patword 011d 870c599f000850ba
patword 011e 870c599f000e50ba
patword 011f 870c599f000850ba
patword 0120 870c599f000e50ba
patword 0121 870c599f000850ba
patword 0122 870c599f200e50ba
patword 0123 870c599f000850ba
patword 0124 870c599f000e50ba
patword 0125 870c599f000850ba
patword 0126 870c599f000e50ba
patword 0127 870c599f000850ba
patword 0128 870c599f000e50ba
patword 0129 870c599f000850ba
patword 012a 870c599f000e50ba
patword 012b 870c599f000850ba
patword 012c 870c599f000e50ba
patword 012d 870c599f000850ba
patword 012e 870c599f000e50ba
patword 012f 870c599f000850ba
patword 0130 870c599f000e50ba
patword 0131 870c599f000850ba
patword 0132 870c599f000e50ba
patword 0133 870c599f000850ba
patword 0134 870c599f000e50ba
patword 0135 870c599f000850ba
patword 0136 870c599f000e50ba
patword 0137 870c599f000850ba
patword 0138 870c599f000e50ba
patword 0139 870c599f000850ba
patword 013a 870c599f282e50ba
patword 013b 870c599f082850ba
patword 013c 870c599f000e50ba
patword 013d 870c599f000850ba
patword 013e 870c599f000e50ba
patword 013f 870c599f000850ba
patword 0140 870c599f000e50ba
patword 0141 870c599f000850ba
patword 0142 870c599f000e50ba
patword 0143 870c599f000850ba
patword 0144 870c599f000e50ba
patword 0145 870c599f000850ba
patword 0146 870c599f000e50ba
patword 0147 870c599f000850ba
patword 0148 870c599f000e50ba
patword 0149 870c599f000850ba
patword 014a 870c599f000e50ba
patword 014b 870c599f000850ba
patword 014c 870c599f000e50ba
patword 014d 870c599f000850ba
patword 014e 870c599f000e50ba
patword 014f 870c599f000850ba
patword 0150 870c599f000e50ba
patword 0151 870c599f000850ba
patword 0152 870c599f000e50ba
patword 0153 870c599f000850ba
patword 0154 870c599f200e50ba
patword 0155 870c599f000850ba
patword 0156 870c599f000e50ba
patword 0157 870c599f000850ba
patword 0158 870c599f000e50ba
patword 0159 870c599f000850ba
patword 015a 870c599f000e50ba
patword 015b 870c599f000850ba
patword 015c 870c599f000e50ba
patword 015d 870c599f000850ba
patword 015e 870c599f000e50ba
patword 015f 870c599f000850ba
patword 0160 870c599f000e50ba
patword 0161 870c599f000850ba
patword 0162 870c599f000e50ba
patword 0163 870c599f000850ba
patword 0164 870c599f000e50ba
patword 0165 870c599f000850ba
patword 0166 870c599f000e50ba
patword 0167 870c599f000850ba
patword 0168 870c599f000e50ba
patword 0169 870c599f000850ba
patword 016a 870c599f000e50ba
patword 016b 870c599f000850ba
patword 016c 070c599f000850ba
patword 016d 070c599f000850ba
patword 016e 000c599f000850ba
patword 016f 000c599f000850ba
patword 0170 0008599f200e503a
patword 0171 0008599f0008503a
patword 0172 0008599f200e503a
patword 0173 0008599f0008503a
patword 0174 0008599f0008503a
patword 0175 0008599f0008503a
patword 0176 0008599f0008503a
patword 0177 0008599f0008503a
patword 0178 0008599f0008503a
patword 0179 0008599f0008503a
patword 017a 0008599f0008503a
patword 017b 0008599f0008503a
patword 017c 0008599f0008503a
patword 017d 0008599f0008503a
patword 017e 0008599f0008503a
patword 017f 0008599f0008503a
patword 0180 0008599f0008503a
patword 0181 0008599f0008503a
patword 0182 0008599f0008503a
patword 0183 0008599f0008503a
patword 0184 0008599f0008503a
patword 0185 0008599f0008503a
patword 0186 0008599f0008503a
patword 0187 0008599f0008503a
patword 0188 0008599f0008503a
patword 0189 0008599f0008503a
patword 018a 0008599f0008503a
patword 018b 0008599f0008503a
patword 018c 0008599f0008503a
patword 018d 0008599f0008503a
patioctrl 8f0effff6dbffdbf
patclkctrl 0000000000000000
patlimits 0000 018c
patloop0 013a 016b
patnloop0 199
patloop1 0400 0400
patnloop1 0
patloop2 0400 0400
patnloop2 0
patwait0 00aa
patwaittime0 40000
patwait1 0400
patwaittime1 0
patwait2 0400
patwaittime2 0
####mcp2011
#0:rx_udpip 10.1.1.102
#0:detectorip 10.1.1.19
#0:rx_udpport 32410
####gui listening to
#zmqip 129.129.202.131
#zmqport 30001
####data streaming out of
#rx_zmqip 10.1.2.103
#rx_zmqport 30003
#0:rx_hostname mpc2011
####mx-test-1
0:rx_udpip 10.1.1.100
0:detectorip 10.1.1.19
0:rx_udpport 32410
####gui listening to (on receiver pc)
zmqip 129.129.202.92
zmqport 30001
####data streaming out of
rx_zmqip 10.1.1.100
rx_zmqport 30003
0:rx_hostname pcmoench01
#turn on datastream from commandline
rx_datastream 1
r_readfreq 1
#0:configuremac -1
rx_datastream 1
r_readfreq 1
dac:6 800
dac:0 1300
dac:4 1428
dac:1 1000
dac:7 900
dac:3 680
dac:2 1400
dac:5 1200
adcinvert 4a342593
samples 5000
adcphase 90
adcpipeline 15
adcreg 14 40
powerchip 1
vhighvoltage 90
period 0.005
frames 100
period 0.1
outdir /scratch/
enablefwrite 0

View File

@ -1,7 +1,7 @@
package:
name: sls_detector_software
version: 4.0.1
version: "developer"
source:
- path: ..
@ -52,14 +52,14 @@ requirements:
outputs:
- name: sls_detector_lib
version: 4.0.1
version: "developer"
script: copy_lib.sh
requirements:
build:
- {{ compiler('c') }}
- {{compiler('cxx')}}
- name: sls_detector_gui
version: 4.0.1
version: "developer"
script: copy_gui.sh
requirements:
build:
@ -84,6 +84,6 @@ outputs:
- {{ cdt('libxdamage') }} # [linux]
- {{ cdt('libxxf86vm') }} # [linux]
run:
- sls_detector_lib=4.0.1
- sls_detector_lib=developer
- qwt 6.*
- qt=4.8.7=7

View File

@ -0,0 +1,45 @@
class Stat
{
public:
Stat() : n(0), m(0.), m2(0.) {}
void Clear()
{
n = 0;
m=0;
m2=0;
}
void Push(double x)
{
m+=x;
m2+=x*x;
n++;
}
int NumDataValues() const
{
return n;
}
double Mean() const
{
return (n > 0) ? m/n : 0.0;
}
double Variance() const
{
return ( (n >0 ) ? (m2/n-m*m/(n*n)) : 0.0 );
}
double StandardDeviation() const
{
return sqrt( Variance() );
}
private:
int n;
double m, m2;
};

View File

@ -8,6 +8,7 @@
#include "pedestalSubtraction.h"
#include "commonModeSubtraction.h"
#include "tiffIO.h"
#include "slsInterpolation.h"
#ifdef ROOTSPECTRUM
@ -29,6 +30,10 @@ using namespace std;
enum to define the flags of the data set, which are needed to seect the type of processing it should undergo: frame, pedestal, flat
*/
enum frameMode { eFrame, ePedestal, eFlat };
/**
enum to define the detector mode
*/
enum detectorMode { eAnalog, ePhotonCounting, eInterpolating };
#endif
@ -76,7 +81,6 @@ template <class dataType> class analogDetector {
fMode=ePedestal;
thr=0;
myFile=NULL;
fm=new pthread_mutex_t ;
#ifdef ROOTSPECTRUM
hs=new TH2F("hs","hs",2000,-100,10000,nx*ny,-0.5,nx*ny-0.5);
#ifdef ROOTCLUST
@ -124,7 +128,6 @@ template <class dataType> class analogDetector {
// nSigma=orig->nSigma;
fMode=orig->fMode;
myFile=orig->myFile;
fm=orig->fm;
stat=new pedestalSubtraction*[ny];
@ -218,8 +221,8 @@ template <class dataType> class analogDetector {
if (gm) {
if (gmap) delete [] gmap;
gmap=new double[nnx*nny];
for (int ix=0; ix<nnx; ix++) {
for (int iy=0; iy<nny; iy++) {
for (int ix=0; ix<nnx; ix++) {
gmap[iy*nnx+ix]=gm[iy*nnx+ix];
}
}
@ -237,8 +240,8 @@ template <class dataType> class analogDetector {
void *ret;
if (gmap) {
gm=new float[nx*ny];
for (int ix=0; ix<nx; ix++) {
for (int iy=0; iy<ny; iy++) {
for (int ix=0; ix<nx; ix++) {
gm[iy*nx+ix]=gmap[iy*nx+ix];
}
}
@ -322,10 +325,11 @@ template <class dataType> class analogDetector {
virtual void addToCommonMode(char *data){
if (cmSub) {
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
for (int ix=xmin; ix<xmax; ix++) {
// if (getNumpedestals(ix,iy)>0)
addToCommonMode(data, ix, iy);
if (det->isGood(ix,iy))
addToCommonMode(data, ix, iy);
}
}
//cout << "cm " << getCommonMode(0,0) << " " << getCommonMode(1,0) << endl;
@ -383,9 +387,10 @@ template <class dataType> class analogDetector {
virtual double* getPedestal(double *ped){
if (ped==NULL)
ped=new double[nx*ny];
for (int ix=0; ix<nx; ix++) {
for (int iy=0; iy<ny; iy++) {
for (int ix=0; ix<nx; ix++) {
ped[iy*nx+ix]=stat[iy][ix].getPedestal();
//cout << ped[iy*nx+ix] << " " ;
}
}
return ped;
@ -400,8 +405,8 @@ template <class dataType> class analogDetector {
virtual double* getPedestalRMS(double *ped=NULL){
if (ped==NULL)
ped=new double[nx*ny];
for (int ix=0; ix<nx; ix++) {
for (int iy=0; iy<ny; iy++) {
for (int ix=0; ix<nx; ix++) {
ped[iy*nx+ix]=stat[iy][ix].getPedestalRMS();
}
}
@ -440,8 +445,8 @@ template <class dataType> class analogDetector {
*/
virtual void setPedestal(double *ped, double *rms=NULL, int m=-1){
double rr=0;
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
for (int ix=xmin; ix<xmax; ix++) {
if (rms) rr=rms[iy*nx+ix];
stat[iy][ix].setPedestal(ped[iy*nx+ix],rr, m);
};
@ -469,8 +474,8 @@ template <class dataType> class analogDetector {
\param rms pointer to array of pedestal rms
*/
virtual void setPedestalRMS(double *rms){
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
for (int ix=xmin; ix<xmax; ix++) {
stat[iy][ix].setPedestalRMS(rms[iy*nx+ix]);
};
};
@ -493,8 +498,8 @@ template <class dataType> class analogDetector {
#endif
gm=new float[nx*ny];
for (int ix=0; ix<nx; ix++) {
for (int iy=0; iy<ny; iy++) {
for (int ix=0; ix<nx; ix++) {
gm[iy*nx+ix]=image[iy*nx+ix];
#ifdef ROOTSPECTRUM
hmap->SetBinContent(ix+1, iy+1,image[iy*nx+ix]);
@ -541,8 +546,8 @@ template <class dataType> class analogDetector {
TH2F *hmap=new TH2F("hmap","hmap",nx, -0.5,nx-0.5, ny, -0.5, ny-0.5);
#endif
for (int ix=0; ix<nx; ix++) {
for (int iy=0; iy<ny; iy++) {
for (int ix=0; ix<nx; ix++) {
/* if (cmSub) */
/* gm[iy*nx+ix]=stat[iy][ix].getPedestal()-cmSub->getCommonMode(); */
/* else */
@ -588,8 +593,8 @@ template <class dataType> class analogDetector {
if (gm) {
for (int ix=0; ix<nnx; ix++) {
for (int iy=0; iy<nny; iy++) {
for (int ix=0; ix<nnx; ix++) {
stat[iy][ix].setPedestal(gm[iy*nx+ix],-1,-1);
}
}
@ -613,8 +618,8 @@ template <class dataType> class analogDetector {
if (gm) {
for (int ix=0; ix<nnx; ix++) {
for (int iy=0; iy<nny; iy++) {
for (int ix=0; ix<nnx; ix++) {
image[iy*nx+ix]=gm[iy*nx+ix];
}
}
@ -639,8 +644,8 @@ template <class dataType> class analogDetector {
float *gm=NULL;
void *ret;
gm=new float[nx*ny];
for (int ix=0; ix<nx; ix++) {
for (int iy=0; iy<ny; iy++) {
for (int ix=0; ix<nx; ix++) {
gm[iy*nx+ix]=stat[iy][ix].getPedestalRMS();
}
}
@ -661,8 +666,8 @@ template <class dataType> class analogDetector {
if (nnx>nx) nnx=nx;
if (nny>ny) nny=ny;
if (gm) {
for (int ix=0; ix<nnx; ix++) {
for (int iy=0; iy<nny; iy++) {
for (int ix=0; ix<nnx; ix++) {
stat[iy][ix].setPedestalRMS(gm[iy*nx+ix]);
}
}
@ -682,24 +687,28 @@ template <class dataType> class analogDetector {
\param data pointer to the data
*/
virtual void addToPedestal(char *data, int cm=0) {
// cout << "add to pedestal " << endl;
newFrame();
if (cmSub) {
addToCommonMode(data);
}
// cout << xmin << " " << xmax << endl;
//cout << xmin << " " << xmax << endl;
// cout << ymin << " " << ymax << endl;
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
addToPedestal(data,ix,iy,1);
#ifdef ROOTSPECTRUM
subtractPedestal(data,ix,iy,cm);
for (int ix=xmin; ix<xmax; ix++) {
if (det->isGood(ix,iy)) {
addToPedestal(data,ix,iy,1);
//if (ix==10 && iy==10)
// cout <<ix << " " << iy << " " << getPedestal(ix,iy)<< endl;
#ifdef ROOTSPECTRUM
subtractPedestal(data,ix,iy,cm);
#endif
}
}
}
@ -784,12 +793,12 @@ template <class dataType> class analogDetector {
else
val=((double*)data)[iy*nx+ix];
/* if (ix==10 && iy==10) */
/* cout << ix << " " << iy << " " << val ; */
/* if (ix==10 && iy==10) */
/* cout << ix << " " << iy << " " << val ; */
/* if (ix==100 && iy==100) */
/* cout << ix << " " << iy << " " << val; */
addToPedestal(val,ix,iy);
/* if (ix==10 && iy==10) */
/* if (ix==10 && iy==10) */
/* cout <<" " << getPedestal(ix,iy)<< endl; */
/* if (ix==100 && iy==100) */
/* cout << " " << getPedestal(ix,iy)<< endl; */
@ -814,9 +823,10 @@ template <class dataType> class analogDetector {
if (val==NULL)
val=image;//new double[nx*ny];
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
val[iy*nx+ix]+=subtractPedestal(data, ix, iy,cm);
for (int ix=xmin; ix<xmax; ix++) {
if (det->isGood(ix,iy))
val[iy*nx+ix]+=subtractPedestal(data, ix, iy,cm);
}
}
return val;
@ -941,9 +951,10 @@ template <class dataType> class analogDetector {
addToCommonMode(data);
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
nph[iy*nx+ix]+=getNPhotons(data, ix, iy);
for (int ix=xmin; ix<xmax; ix++) {
if (det->isGood(ix,iy))
nph[iy*nx+ix]+=getNPhotons(data, ix, iy);
}
}
return nph;
@ -955,8 +966,8 @@ template <class dataType> class analogDetector {
*/
virtual void clearImage(){
for (int ix=0; ix<nx; ix++) {
for (int iy=0; iy<ny; iy++) {
for (int ix=0; ix<nx; ix++) {
image[iy*nx+ix]=0;
}
}
@ -986,8 +997,8 @@ template <class dataType> class analogDetector {
int SetNPedestals(int i=-1) {
int ix=0, iy=0;
if (i>0)
for (ix=0; ix<nx; ix++)
for (iy=0; iy<ny; iy++)
for (ix=0; ix<nx; ix++)
stat[iy][ix].SetNPedestals(i);
return stat[0][0].SetNPedestals();
};
@ -1019,10 +1030,13 @@ template <class dataType> class analogDetector {
if (ymi<0) ymi=ymin;
if (yma<0) yma=ymax;
for (int ix=xmi; ix<xma; ix++)
for (int iy=ymi; iy<yma; iy++)
if (ix>=0 && ix<nx && iy>=0 && iy<ny)
val+=getNPhotons(data, ix, iy);
for (int ix=xmi; ix<xma; ix++)
if (det->isGood(ix,iy)) {
if (ix>=0 && ix<nx && iy>=0 && iy<ny)
val+=getNPhotons(data, ix, iy);
}
return val;
};
@ -1039,16 +1053,17 @@ template <class dataType> class analogDetector {
virtual void processData(char *data,int *val=NULL) {
switch(fMode) {
case ePedestal:
// cout << "ped " << endl;
//cout << "analog ped " << endl;
addToPedestal(data);
break;
default:
// cout << "analog " << endl;
//subtractPedestal(data);
getNPhotons(data);
}
};
virtual char *getInterpolation(){return NULL;};
// virtual char *getInterpolation(){return NULL;};
/** sets the current frame mode for the detector
\param f frame mode to be set
@ -1062,6 +1077,21 @@ template <class dataType> class analogDetector {
*/
frameMode getFrameMode() {return fMode;};
//enum detectorMode { eAnalog, ePhotonCounting, eInterpolating };
/** sets the current detector mode for the detector
\param f detector mode to be set
\returns current detector mode
*/
detectorMode setDetectorMode(detectorMode f) {dMode=f; return dMode;};
/** gets the current detector mode for the detector
\returns current detector mode
*/
detectorMode getDetectorMode() {return dMode;};
/** sets file pointer where to write the clusters to
\param f file pointer
\returns current file pointer
@ -1072,7 +1102,32 @@ FILE *setFilePointer(FILE *f){myFile=f; return myFile;};
\returns current file pointer
*/
FILE *getFilePointer(){return myFile;};
void setMutex(pthread_mutex_t *m){fm=m;};
virtual slsInterpolation *getInterpolation(){
return NULL;
};
virtual slsInterpolation *setInterpolation(slsInterpolation *ii){return NULL;}
virtual double setNSigma(double n) {return 0;};
virtual void setEnergyRange(double emi, double ema) {;};
protected:
slsDetectorData<dataType> *det; /**< slsDetectorData to be used */
@ -1093,6 +1148,7 @@ FILE *getFilePointer(){return myFile;};
double thr; /**< threshold to be used for conversion into number of photons */
// int nSigma; /**< number of sigma to be used for conversion into number of photons if threshold is undefined */
frameMode fMode; /**< current detector frame mode */
detectorMode dMode; /**< current detector frame mode */
FILE *myFile; /**< file pointer to write to */
#ifdef ROOTSPECTRUM
TH2F *hs;
@ -1103,7 +1159,6 @@ FILE *getFilePointer(){return myFile;};
TH2F *hs9;
#endif
#endif
pthread_mutex_t *fm;
};
#endif

View File

@ -0,0 +1,116 @@
#ifndef COMMONMODESUBTRACTION_H
#define COMMONMODESUBTRACTION_H
#include <cmath>
class commonModeSubtraction {
/** @short class to calculate the common mode of the pedestals based on an approximated moving average*/
public:
/** constructor
\param nn number of samples for the moving average to calculate the average common mode
\param iroi number of regions on which one can calculate the common mode separately. Defaults to 1 i.e. whole detector
*/
commonModeSubtraction(int iroi=1, int ns=3) : nROI(iroi), nsigma(ns) {
mean=new double[nROI];
mean2=new double[nROI];
nCm=new double[nROI];
};
/** destructor - deletes the moving average(s) and the sum of pedestals calculator(s) */
virtual ~commonModeSubtraction() {delete [] mean; delete [] mean2; delete [] nCm;};
/** clears the moving average and the sum of pedestals calculation - virtual func*/
virtual void Clear(){
for (int i=0; i<nROI; i++) {
mean[i]=0;
nCm[i]=0;
mean2[i]=0;
}};
/** adds the average of pedestals to the moving average and reinitializes the calculation of the sum of pedestals for all ROIs. - virtual func*/
virtual void newFrame(){
for (int i=0; i<nROI; i++) {
// if (nCm[i]>0) cmStat[i].Calc(cmPed[i]/nCm[i]);
nCm[i]=0;
mean[i]=0;
mean2[i]=0;
}};
/** adds the pixel to the sum of pedestals -- virtual func must be overloaded to define the regions of interest
\param val value to add
\param ix pixel x coordinate
\param iy pixel y coordinate
*/
virtual void addToCommonMode(double val, int ix=0, int iy=0) {
int iroi=getROI(ix,iy);
// if (iroi==0) val=100;
// else val=-100;
// if (isc>=0 && isc<nROI) {
if (iroi>=0 && iroi<nROI) {
mean[iroi]+=val;
mean2[iroi]+=val*val;
nCm[iroi]++;
}
};
/** gets the common mode i.e. the difference between the current average sum of pedestals mode and the average pedestal
\param ix pixel x coordinate
\param iy pixel y coordinate
\return the difference between the current average sum of pedestals and the average pedestal
*/
virtual double getCommonMode(int ix=0, int iy=0) {
int iroi=getROI(ix,iy);
/* if (iroi==0) */
/* return 100; */
/* else */
/* return -100; */
if (iroi>=0 && iroi<nROI) {
if (nCm[iroi]>0)
return mean[iroi]/nCm[iroi];
}
return 0;
};
/** gets the common mode i.e. the difference between the current average sum of pedestals mode and the average pedestal
\param ix pixel x coordinate
\param iy pixel y coordinate
\return the difference between the current average sum of pedestals and the average pedestal
*/
virtual double getCommonModeRMS(int ix=0, int iy=0) {
int iroi=getROI(ix,iy);
if (iroi>=0 && iroi<nROI) {
if (nCm[iroi]>0)
return sqrt(mean2[iroi]/nCm[iroi]-(mean[iroi]/nCm[iroi])*(mean[iroi]/nCm[iroi]));
}
return 0;
};
/**
gets the common mode ROI for pixel ix, iy -should be overloaded!
*/
virtual int getROI(int ix, int iy){ (void) ix; (void) iy; return 0;};
protected:
double *mean; /**<array of moving average of the pedestal average per region of interest */
double *mean2; /**< array storing the sum of pedestals per region of interest */
double *nCm; /**< array storing the number of pixels currently contributing to the pedestals */
int nsigma; /** number of rms above which the pedestal should be considered as a photon */
const int nROI; /**< constant parameter for number of regions on which the common mode should be calculated separately e.g. supercolumns */
};
#endif

View File

@ -74,7 +74,7 @@ class mythen3_01_jctbData : public slsDetectorData<short unsigned int> {
for (ib=0; ib<nb; ib++) {
if (word&(1<<bit[ib])) {
cout << "+" ;
val[iw+nch*(ib/nb)]|=(1<<idr);
val[iw+nch/nb*(ib)]|=(1<<idr);
} else {
cout << "-" ;
}
@ -96,8 +96,8 @@ class mythen3_01_jctbData : public slsDetectorData<short unsigned int> {
ii++;
}//end for
cout << "Decoded "<<ii << " samples"<< endl;
cout << "Should be "<< nch/nb*dr+off << " samples"<< endl;
cout << "M3.01 Decoded "<<ii << " samples"<< endl;
cout << "M3.01 Should be "<< nch/nb*dr+off << " samples"<< endl;
return val;
}

View File

@ -57,8 +57,9 @@ class mythen3_02_jctbData : public mythen3_01_jctbData {
int ioff=0;
int idr=0;
int ib=0;
int iw=0;
int ich=0;
int ii=0;
int iw=0;
bit[0]=17;//19;
bit[1]=6;//8;
idr=0;
@ -68,7 +69,8 @@ class mythen3_02_jctbData : public mythen3_01_jctbData {
wp=(int64_t*)ptr;
for (iw=0; iw<nch/nb; iw) {
word=*wp;;
word=*wp;
if (ioff<off) {
ioff++;
cout <<"*";
@ -78,10 +80,11 @@ class mythen3_02_jctbData : public mythen3_01_jctbData {
for (ib=0; ib<nb; ib++) {
if (word&(1<<bit[ib])) {
cout << "+" ;
val[iw+nch*(ib/nb)]|=(1<<idr);
val[iw+nch/nb*(ib)]|=(1<<idr);
} else {
cout << "-" ;
}
}
// cout << iw+nch/nb*(ib)<< " " ;
}//end for()
}
@ -100,8 +103,8 @@ class mythen3_02_jctbData : public mythen3_01_jctbData {
ii++;
}//end for
cout << "Decoded "<<ii << " samples"<< endl;
cout << "Should be "<< nch/nb*dr+off << " samples"<< endl;
cout << "M3.02 Decoded "<<ii << " samples"<< endl;
cout << "M3.02 Should be "<< nch/nb*dr+off << " samples"<< endl;
return val;
}

View File

@ -8,6 +8,23 @@ class jungfrau10ModuleData : public slsDetectorData<uint16_t> {
private:
typedef struct {
uint64_t frameNumber; /**< is the frame number */
uint32_t expLength; /**< is the subframe number (32 bit eiger) or real time exposure time in 100ns (others) */
uint32_t packetNumber; /**< is the packet number */
uint64_t bunchId; /**< is the bunch id from beamline */
uint64_t timestamp; /**< is the time stamp with 10 MHz clock */
uint16_t modId; /**< is the unique module id (unique even for left, right, top, bottom) */
uint16_t xCoord; /**< is the x coordinate in the complete detector system */
uint16_t yCoord; /**< is the y coordinate in the complete detector system */
uint16_t zCoord; /**< is the z coordinate in the complete detector system */
uint32_t debug; /**< is for debugging purposes */
uint16_t roundRNumber; /**< is the round robin set number */
uint8_t detType; /**< is the detector type see :: detectorType */
uint8_t version; /**< is the version number of this structure format */
} sls_detector_header;
int iframe;
int nadc;
int sc_width;
@ -25,7 +42,7 @@ class jungfrau10ModuleData : public slsDetectorData<uint16_t> {
*/
jungfrau10ModuleData(int ns=16384): slsDetectorData<uint16_t>(256*4, 256*2, 256*256*8*2, NULL, NULL, NULL) , iframe(0), nadc(32), sc_width(64), sc_height(256) {
jungfrau10ModuleData(int ns=16384): slsDetectorData<uint16_t>(256*4, 256*2, 256*256*8*2+48, NULL, NULL, NULL) , iframe(0) {
@ -38,45 +55,53 @@ class jungfrau10ModuleData : public slsDetectorData<uint16_t> {
int ichip;
// cout << sizeof(uint16_t) << endl;
for (iadc=0; iadc<nadc; iadc++) {
ichip=iadc/4;
for (int i=0; i<sc_width*sc_height; i++) {
if (ichip%2==0) {
row=sc_height+i/sc_width;
col=(ichip/2)*256+iadc%4*sc_width+(i%sc_width);
} else {
row=sc_height-1-i/sc_width;
col=((ichip/2)*256+iadc%4*sc_width)+sc_width-(i%sc_width)-1;
}
/* if (iadc<nadc/2) { */
/* row=sc_height+i/sc_width; */
/* col=iadc*sc_width+(i%sc_width); */
/* } else { */
/* row=sc_height-1-i/sc_width; */
/* col=(nx-1)-((iadc-16)*sc_width)-(i%sc_width); */
/* } */
if (row<0 || row>=ny || col<0 || col>=nx) {
cout << "Wrong row, column " << row << " " << col << " " << iadc << " " << i << endl;
} else
dataMap[row][col]=(nadc*i+iadc)*2;
if (dataMap[row][col]<0 || dataMap[row][col]>=dataSize)
cout << "Error: pointer " << dataMap[row][col] << " out of range " << row << " " << col <<" " << iadc << " " << i << endl;
else {
xmap[nadc*i+iadc]=col;
ymap[nadc*i+iadc]=row;
}
int ip=0;
for (int iy=0; iy<256*2; iy++) {
for (int ix=0; ix<256*4; ix++){
dataMap[iy][ix]=ip*2+48;
ip++;
}
}
/* for (iadc=0; iadc<nadc; iadc++) { */
/* ichip=iadc/4; */
/* for (int i=0; i<sc_width*sc_height; i++) { */
/* if (ichip%2==0) { */
/* row=sc_height+i/sc_width; */
/* col=(ichip/2)*256+iadc%4*sc_width+(i%sc_width); */
/* } else { */
/* row=sc_height-1-i/sc_width; */
/* col=((ichip/2)*256+iadc%4*sc_width)+sc_width-(i%sc_width)-1; */
/* } */
/* /\* if (iadc<nadc/2) { *\/ */
/* /\* row=sc_height+i/sc_width; *\/ */
/* /\* col=iadc*sc_width+(i%sc_width); *\/ */
/* /\* } else { *\/ */
/* /\* row=sc_height-1-i/sc_width; *\/ */
/* /\* col=(nx-1)-((iadc-16)*sc_width)-(i%sc_width); *\/ */
/* /\* } *\/ */
/* if (row<0 || row>=ny || col<0 || col>=nx) { */
/* cout << "Wrong row, column " << row << " " << col << " " << iadc << " " << i << endl; */
/* } else */
/* dataMap[row][col]=(nadc*i+iadc)*2; */
/* if (dataMap[row][col]<0 || dataMap[row][col]>=dataSize) */
/* cout << "Error: pointer " << dataMap[row][col] << " out of range " << row << " " << col <<" " << iadc << " " << i << endl; */
/* else { */
/* xmap[nadc*i+iadc]=col; */
/* ymap[nadc*i+iadc]=row; */
/* } */
/* } */
// }
};
@ -91,7 +116,7 @@ class jungfrau10ModuleData : public slsDetectorData<uint16_t> {
*/
int getFrameNumber(char *buff){(void)buff; return iframe;};
int getFrameNumber(return (sls_detector_header*)buff)->frameNumber;};
/**
@ -123,28 +148,65 @@ class jungfrau10ModuleData : public slsDetectorData<uint16_t> {
\returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete
*/
char *readNextFrame(ifstream &filebin){
// int afifo_length=0;
uint16_t *afifo_cont;
int ib=0;
if (filebin.is_open()) {
afifo_cont=new uint16_t[dataSize/2];
while (filebin.read(((char*)afifo_cont)+ib,2)) {
ib+=2;
if (ib==dataSize) break;
}
if (ib>0) {
iframe++;
// cout << ib << "-" << endl;
return (char*)afifo_cont;
} else {
delete [] afifo_cont;
return NULL;
}
}
return NULL;
};
virtual char *readNextFrame(ifstream &filebin) {
int ff=-1, np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int &ff) {
int np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np) {
char *data=new char[dataSize];
char *d=readNextFrame(filebin, ff, np, data);
if (d==NULL) {delete [] data; data=NULL;}
return data;
}
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np, char *data) {
// char *readNextFrame(ifstream &filebin){
// int afifo_length=0;
/* uint16_t *afifo_cont; */
/* int ib=0; */
/* if (filebin.is_open()) { */
/* afifo_cont=new uint16_t[dataSize/2]; */
/* while (filebin.read(((char*)afifo_cont)+ib,2)) { */
/* ib+=2; */
/* if (ib==dataSize) break; */
/* } */
/* if (ib>0) { */
/* iframe++; */
/* // cout << ib << "-" << endl; */
/* return (char*)afifo_cont; */
/* } else { */
/* delete [] afifo_cont; */
/* return NULL; */
/* } */
/* } */
/* return NULL; */
/* }; */
char *retval=0;
int nd;
int fnum = -1;
np=0;
int pn;
// cout << dataSize << endl;
if (ff>=0)
fnum=ff;
if (filebin.is_open()) {
if (filebin.read(data, dataSize) ){
ff=getFrameNumber(data);
np=getPacketNumber(data);
return data;
}
}
return NULL;

View File

@ -31,11 +31,11 @@ class moench02CtbData : public slsDetectorData<uint16_t> {
*/
moench02CtbData(int ns=6400): slsDetectorData<uint16_t>(160, 160, ns*2*32, NULL, NULL) , nadc(32), sc_width(40), sc_height(160) {
moench02CtbData(int ns=6400): slsDetectorData<uint16_t>(160, 160, ns*2*32, NULL, NULL) , nadc(32), sc_width(40), sc_height(160) {
int adc_off[4]={0,40,80,120};
int adc_nr[4]={8,10,20,23};
int adc_off[4]={40,0,120,80};
int adc_nr[4]={8,10,20,22};
int row, col;
int isample;
@ -86,10 +86,10 @@ class moench02CtbData : public slsDetectorData<uint16_t> {
if(ip>=0 && ip<maplength){
x=xmap[ip];
y=ymap[ip];
}else{
}/*else{
cerr<<"WRONG ARRAY LENGTH"<<endl;
cerr<<"Trying to access the "<<ip<<"-th element"<<endl;
}
}*/
};

View File

@ -0,0 +1,187 @@
#ifndef MOENCH02CTBDATADGS_H
#define MOENCH02CTBDATADGS_H
#include "slsDetectorData.h"
class moench02CtbData : public slsDetectorData<uint16_t> {
private:
int iframe;
// int *xmap, *ymap;
//int nadc;
int sc_width;
int sc_height;
int maplength;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
moench02CtbDataDGS(int ns=6400): slsDetectorData<uint16_t>(160, 160, ns*(2*32+8), NULL, NULL) , sc_width(40), sc_height(160) {
int adc_off[4]={40,0,120,80};
int adc_nr[4]={8,10,20,23};
int row, col;
int isample;
int iadc, iiadc;
int ix, iy;
maplength=this->getDataSize()/2;
//cout << maplength << endl;
for (iiadc=0; iiadc<4; iiadc++) {
iadc=adc_nr[iiadc];
//cout << iiadc << endl;
for (int i=0; i<sc_width*sc_height; i++) {
col=adc_off[iiadc]+(i%sc_width);
row=i/sc_width;
dataMap[row][col]=(32*i+iadc)*2;
if (dataMap[row][col]<0 || dataMap[row][col]>=dataSize) {
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
}
}
}
for (int i=0; i<maplength; i++) {
//cout << i << endl;
isample=i/32;
iiadc=i%32;
iadc=-1;
for (int iii=0; iii<4; iii++) {
if (iiadc==adc_nr[iii]) iadc=iii;
}
ix=isample%sc_width;
iy=isample/sc_width;
if(iadc>=0){
xmap[i]=adc_off[iadc]+ix;
ymap[i]=iy;
}else{
xmap[i]=-1;
ymap[i]=-1;
}
}
iframe=0;
cout << "data struct created" << endl;
};
void getPixel(int ip, int &x, int &y) {
if(ip>=0 && ip<maplength){
x=xmap[ip];
y=ymap[ip];
}/*else{
cerr<<"WRONG ARRAY LENGTH"<<endl;
cerr<<"Trying to access the "<<ip<<"-th element"<<endl;
}*/
};
/**
Returns the gain for the selected pixel (at the moemnt only 3rd supercolumn)
\param buff pointer to the dataset
\param ix x coordinate
\param iy y coordinate
\returns gain value
*/
int getGain(char *buff, int ix, int iy) {
int isample=iy*sc_width+iy;
if (ix<sc_width) return 0; //first supercolumn no gain switching - could return the static gain if wished
if (ix<2*sc_width) return 0; //second supercolumn no gain switching - could return the static gain if wished
if (ix<3*sc_width){
if(*((long*)(buff+(32*2*isample+8*(isample-1)))&(1>>31)) return 1;
return 0;
}
return 0; //not yet implemented for 4th supercolumn
}
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
virtual int getFrameNumber(char *buff){(void)buff; return iframe;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
virtual int getPacketNumber(char *buff)=0;
*/
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;};
/**
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param filebin input file stream (binary)
\returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete
*/
virtual char *readNextFrame(ifstream &filebin){
// int afifo_length=0;
uint16_t *afifo_cont;
int ib=0;
if (filebin.is_open()) {
afifo_cont=new uint16_t[dataSize/2];
while (filebin.read(((char*)afifo_cont)+ib,2)) {
ib+=2;
if (ib==dataSize) break;
}
if (ib>0) {
iframe++;
//cout << ib/2 << "-" << endl;
//for (int i=0; i<ib/2; i++)
//cout << i << " " << afifo_cont[i] << endl;
return (char*)afifo_cont;
} else {
delete [] afifo_cont;
return NULL;
}
}
return NULL;
};
};
#endif

View File

@ -121,7 +121,8 @@ class moench03Ctb10GbT1Data : public slsReceiverData<uint16_t> {
int getFrameNumber(char *buff){return *((int*)(buff+5))&0xffffff;};
// int getFrameNumber(char *buff){return *((int*)buff)&0xffffffff;};
int getFrameNumber(char *buff){return *((int*)(buff+5))&0xffffff;};
/**
@ -199,7 +200,7 @@ class moench03Ctb10GbT1Data : public slsReceiverData<uint16_t> {
int nd;
int fnum = -1;
np=0;
int pn;
int pn, po=0;
char aa[8224];
char *packet=(char *)aa;
// cout << packetSize*nPackets << endl;
@ -217,15 +218,16 @@ class moench03Ctb10GbT1Data : public slsReceiverData<uint16_t> {
if (fnum<0)
fnum= getFrameNumber(packet);
// cout << "fn: " << fnum << "\t pn: " << pn << endl;
// cout << "fn: " << fnum << "\t pn: " << pn << endl;
if (fnum>=0) {
if (getFrameNumber(packet) !=fnum) {
if (getFrameNumber(packet) !=fnum || pn<po) {
if (np==0){
// delete [] data;
return NULL;
} else
filebin.seekg(-8208,ios_base::cur);
po =pn;
return data;
}
if (pn>nPackets) {
@ -234,6 +236,7 @@ class moench03Ctb10GbT1Data : public slsReceiverData<uint16_t> {
memcpy(data+(pn-1)*packetSize, packet, packetSize);
np++;
po =pn;
if (np==nPackets)
break;

View File

@ -2,6 +2,7 @@
#define MOENCH03T1RECDATANEW_H
#include "slsDetectorData.h"
#define VERSION_V2
/**
@short structure for a Detector Packet or Image Header
@li frameNumber is the frame number
@ -32,6 +33,10 @@
uint16_t roundRNumber; /**< is the round robin set number */
uint8_t detType; /**< is the detector type see :: detectorType */
uint8_t version; /**< is the version number of this structure format */
#ifdef VERSION_V2
uint64_t packetCaught[8]; /**< is the version number of this structure format */
#endif
} sls_detector_header;

View File

@ -0,0 +1,321 @@
#ifndef MOENCH03T1RECDATANEWRECT_H
#define MOENCH03T1RECDATANEWRECT_H
#include "slsDetectorData.h"
#define VERT 1
/**
@short structure for a Detector Packet or Image Header
@li frameNumber is the frame number
@li expLength is the subframe number (32 bit eiger) or real time exposure time in 100ns (others)
@li packetNumber is the packet number
@li bunchId is the bunch id from beamline
@li timestamp is the time stamp with 10 MHz clock
@li modId is the unique module id (unique even for left, right, top, bottom)
@li xCoord is the x coordinate in the complete detector system
@li yCoord is the y coordinate in the complete detector system
@li zCoord is the z coordinate in the complete detector system
@li debug is for debugging purposes
@li roundRNumber is the round robin set number
@li detType is the detector type see :: detectorType
@li version is the version number of this structure format
*/
typedef struct {
uint64_t frameNumber; /**< is the frame number */
uint32_t expLength; /**< is the subframe number (32 bit eiger) or real time exposure time in 100ns (others) */
uint32_t packetNumber; /**< is the packet number */
uint64_t bunchId; /**< is the bunch id from beamline */
uint64_t timestamp; /**< is the time stamp with 10 MHz clock */
uint16_t modId; /**< is the unique module id (unique even for left, right, top, bottom) */
uint16_t xCoord; /**< is the x coordinate in the complete detector system */
uint16_t yCoord; /**< is the y coordinate in the complete detector system */
uint16_t zCoord; /**< is the z coordinate in the complete detector system */
uint32_t debug; /**< is for debugging purposes */
uint16_t roundRNumber; /**< is the round robin set number */
uint8_t detType; /**< is the detector type see :: detectorType */
uint8_t version; /**< is the version number of this structure format */
} sls_detector_header;
class moench03T1ReceiverDataNew : public slsDetectorData<uint16_t> {
private:
int iframe;
int nadc;
int sc_width;
int sc_height;
const int nSamples;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
#ifdef HOR
moench03T1ReceiverDataNew(int ns=5000): slsDetectorData<uint16_t>(800, 200, ns*2*32+sizeof(sls_detector_header)), nSamples(ns) {
#endif
#ifdef VERT
moench03T1ReceiverDataNew(int ns=5000): slsDetectorData<uint16_t>(200, 800, ns*2*32+sizeof(sls_detector_header)), nSamples(ns) {
#endif
int nadc=32;
int sc_width=25;
int sc_height=200;
int adc_nr[32]={300,325,350,375,300,325,350,375, \
200,225,250,275,200,225,250,275,\
100,125,150,175,100,125,150,175,\
0,25,50,75,0,25,50,75};
int row, col;
int isample;
int iadc;
int ix, iy;
int npackets=40;
int i;
int adc4(0);
int pix;
int off=0;
#ifdef OFF_1
off=1;
#endif
cout << "This is a MOENCH with rectangular pixels!" << endl;
for (int ip=0; ip<npackets; ip++) {
for (int is=0; is<128; is++) {
for (iadc=0; iadc<nadc; iadc++) {
i=128*ip+is;
adc4=(int)iadc/4;
if (i<sc_width*sc_height) {
// for (int i=0; i<sc_width*sc_height; i++) {
col=adc_nr[iadc]+(i%sc_width);
if (adc4%2==0) {
row=199-i/sc_width;
} else {
row=200+i/sc_width;
}
pix=sizeof(sls_detector_header)+(nadc*i+iadc)*2;//+16*(ip+1);
if (pix<0 || pix>=nSamples*2*32+sizeof(sls_detector_header))
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
ix=col;
iy=row;
#ifdef HOR
if (row%2==off) {
ix=2*col;
iy=row/2;
} else {
ix=2*col+1;
iy=row/2;
}
#endif
#ifdef VERT
if (col%2==off) {
ix=col/2;
iy=row*2+1;
} else {
ix=col/2;
iy=row*2;
}
#endif
dataMap[iy][ix]=pix;
}
}
}
}
/* int ipacket; */
/* int ibyte; */
/* int ii=0; */
/* for (ibyte=0; ibyte<sizeof(sls_detector_header)/2; ibyte++){ */
/* xmap[ibyte]=-1; */
/* ymap[ibyte]=-1; */
/* } */
/* int off=sizeof(sls_detector_header)/2; */
/* for (ipacket=0; ipacket<npackets; ipacket++) { */
/* for (ibyte=0; ibyte< 8192/2; ibyte++) { */
/* i=ipacket*8208/2+ibyte; */
/* isample=ii/nadc; */
/* if (isample<nSamples) { */
/* iadc=ii%nadc; */
/* adc4 = (int)iadc/4; */
/* ix=isample%sc_width; */
/* iy=isample/sc_width; */
/* if (adc4%2==0) { */
/* xmap[i+off]=adc_nr[iadc]+ix; */
/* ymap[i+off]=ny/2-1-iy; */
/* } else { */
/* xmap[i+off]=adc_nr[iadc]+ix; */
/* ymap[i+off]=ny/2+iy; */
/* } */
/* } */
/* ii++; */
/* // } */
/* } */
/* } */
iframe=0;
// cout << "data struct created" << endl;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
/* class jfrau_packet_header_t { */
/* public: */
/* unsigned char reserved[4]; */
/* unsigned char packetNumber[1]; */
/* unsigned char frameNumber[3]; */
/* unsigned char bunchid[8]; */
/* }; */
int getFrameNumber(char *buff){return ((sls_detector_header*)buff)->frameNumber;};//*((int*)(buff+5))&0xffffff;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
*/
int getPacketNumber(char *buff){return ((sls_detector_header*)buff)->packetNumber;}//((*(((int*)(buff+4))))&0xff)+1;};
/* /\** */
/* Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func */
/* \param data pointer to the memory to be analyzed */
/* \param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot */
/* \param dsize size of the memory slot to be analyzed */
/* \returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found */
/* *\/ */
/* virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;}; */
/* /\** */
/* Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors! */
/* \param filebin input file stream (binary) */
/* \returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete */
/* *\/ */
/* virtual char *readNextFrame(ifstream &filebin){ */
/* // int afifo_length=0; */
/* uint16_t *afifo_cont; */
/* int ib=0; */
/* if (filebin.is_open()) { */
/* afifo_cont=new uint16_t[dataSize/2]; */
/* while (filebin.read(((char*)afifo_cont)+ib,2)) { */
/* ib+=2; */
/* if (ib==dataSize) break; */
/* } */
/* if (ib>0) { */
/* iframe++; */
/* // cout << ib << "-" << endl; */
/* return (char*)afifo_cont; */
/* } else { */
/* delete [] afifo_cont; */
/* return NULL; */
/* } */
/* } */
/* return NULL; */
/* }; */
virtual char *readNextFrame(ifstream &filebin) {
int ff=-1, np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int &ff) {
int np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np) {
char *data=new char[dataSize];
char *d=readNextFrame(filebin, ff, np, data);
if (d==NULL) {delete [] data; data=NULL;}
return data;
}
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np, char *data) {
char *retval=0;
int nd;
int fnum = -1;
np=0;
int pn;
// cout << dataSize << endl;
if (ff>=0)
fnum=ff;
if (filebin.is_open()) {
if (filebin.read(data, dataSize) ){
ff=getFrameNumber(data);
np=getPacketNumber(data);
return data;
}
}
return NULL;
};
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){
if (dsize<dataSize) ndata=dsize;
else ndata=dataSize;
return data;
}
//int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;};
};
#endif

View File

@ -3,16 +3,16 @@
#include "slsDetectorData.h"
class moench03T1ZmqDataNew : public slsDetectorData<uint16_t> {
private:
int iframe;
// int iframe;
int nadc;
int sc_width;
int sc_height;
const int nSamples;
const int offset;
public:
@ -25,7 +25,7 @@ class moench03T1ZmqDataNew : public slsDetectorData<uint16_t> {
\param c crosstalk parameter for the output buffer
*/
moench03T1ZmqDataNew(int ns=5000): slsDetectorData<uint16_t>(400, 400, ns*32*2), nSamples(ns) {
moench03T1ZmqDataNew(int ns=5000): slsDetectorData<uint16_t>(400, 400, ns*32*2+sizeof(int)), nSamples(ns), offset(sizeof(int)) {
int nadc=32;
int sc_width=25;
@ -60,50 +60,48 @@ class moench03T1ZmqDataNew : public slsDetectorData<uint16_t> {
} else {
row=200+i/sc_width;
}
dataMap[row][col]=(nadc*i+iadc)*2;//+16*(ip+1);
if (dataMap[row][col]<0 || dataMap[row][col]>=nSamples*2*32)
dataMap[row][col]=(nadc*i+iadc)*2+offset;//+16*(ip+1);
if (dataMap[row][col]<0 || dataMap[row][col]>=dataSize)
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
}
}
}
}
int ipacket;
int ibyte;
int ii=0;
for (int ipacket=0; ipacket<npackets; ipacket++) {
for (int ibyte=0; ibyte< 8192/2; ibyte++) {
i=ipacket*8208/2+ibyte;
/* if (ibyte<8) { */
/* //header! */
/* xmap[i]=-1; */
/* ymap[i]=-1; */
/* } else { */
// ii=ibyte+128*32*ipacket;
isample=ii/nadc;
if (isample<nSamples) {
iadc=ii%nadc;
adc4 = (int)iadc/4;
ix=isample%sc_width;
iy=isample/sc_width;
if (adc4%2==0) {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2-1-iy;
} else {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2+iy;
}
}
ii++;
// }
int ii=0;
for (i=0; i< dataSize; i++) {
if (i<offset) {
//header! */
xmap[i]=-1;
ymap[i]=-1;
} else {
// ii=ibyte+128*32*ipacket;
isample=ii/nadc;
if (isample<nSamples) {
iadc=ii%nadc;
adc4 = (int)iadc/4;
ix=isample%sc_width;
iy=isample/sc_width;
if (adc4%2==0) {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2-1-iy;
} else {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2+iy;
}
}
ii++;
}
}
iframe=0;
// iframe=0;
// cout << "data struct created" << endl;
};
@ -127,7 +125,7 @@ class moench03T1ZmqDataNew : public slsDetectorData<uint16_t> {
int getFrameNumber(char *buff){return iframe;};//*((int*)(buff+5))&0xffffff;};
int getFrameNumber(char *buff){return *((int*)buff);};//*((int*)(buff+5))&0xffffff;};
/**
@ -215,8 +213,8 @@ class moench03T1ZmqDataNew : public slsDetectorData<uint16_t> {
if (filebin.is_open()) {
if (filebin.read(data, 32*2*nSamples) ){
iframe++;
ff=iframe;
// iframe++;
//ff=iframe;
return data;
}
}
@ -249,6 +247,8 @@ class moench03T1ZmqDataNew : public slsDetectorData<uint16_t> {
// virtual int setFrameNumber(int ff){iframe=ff};

View File

@ -49,19 +49,21 @@ class interpolatingDetector : public singlePhotonDetector {
int nd=100, int nnx=-1, int nny=-1) :
singlePhotonDetector(d, 3,nsigma,sign, cm, nped, nd, nnx, nny) , interp(inte), id(0) {
//cout << "**"<< xmin << " " << xmax << " " << ymin << " " << ymax << endl;
fi=new pthread_mutex_t ;
};
interpolatingDetector(interpolatingDetector *orig) : singlePhotonDetector(orig) {
interp=(orig->interp)->Clone();
id=orig->id;
/* xmin=orig->xmin; */
/* xmax=orig->xmax; */
/* ymin=orig->ymin; */
/* ymax=orig->ymax; */
// if (orig->interp)
// interp=(orig->interp)->Clone();
// else
interp=orig->interp;
id=orig->id;
fi=orig->fi;
}
@ -69,29 +71,50 @@ class interpolatingDetector : public singlePhotonDetector {
return new interpolatingDetector(this);
}
virtual int setId(int i) {id=i; interp->setId(id); return id;};
virtual int setId(int i) {
id=i;
// interp->setId(id);
return id;
};
virtual void prepareInterpolation(int &ok) {
cout << "*"<< endl;
#ifdef SAVE_ALL
char tit[1000];
sprintf(tit,"/scratch/ped_%d.tiff",id);
writePedestals(tit);
sprintf(tit,"/scratch/ped_rms_%d.tiff",id);
writePedestalRMS(tit);
if (gmap) {
sprintf(tit,"/scratch/gmap_%d.tiff",id);
writeGainMap(tit);
}
#endif
if (interp)
/* cout << "*"<< endl; */
/* #ifdef SAVE_ALL */
/* char tit[1000]; */
/* sprintf(tit,"/scratch/ped_%d.tiff",id); */
/* writePedestals(tit); */
/* sprintf(tit,"/scratch/ped_rms_%d.tiff",id); */
/* writePedestalRMS(tit); */
/* if (gmap) { */
/* sprintf(tit,"/scratch/gmap_%d.tiff",id); */
/* writeGainMap(tit); */
/* } */
/* #endif */
if (interp){
pthread_mutex_lock(fi);
interp->prepareInterpolation(ok);
pthread_mutex_unlock(fi);
}
}
void clearImage() {if (interp) interp->clearInterpolatedImage(); else singlePhotonDetector::clearImage();};
void clearImage() {
if (interp) {
pthread_mutex_lock(fi);
interp->clearInterpolatedImage();
pthread_mutex_unlock(fi);
} else
singlePhotonDetector::clearImage();
};
int getImageSize(int &nnx, int &nny, int &ns) {
if (interp)
return interp->getImageSize(nnx, nny, ns);
else
return analogDetector<uint16_t>::getImageSize(nnx, nny, ns);
};
int getImageSize(int &nnx, int &nny, int &ns) {if (interp) return interp->getImageSize(nnx, nny, ns); else return analogDetector<uint16_t>::getImageSize(nnx, nny, ns);};
#ifdef MYROOT1
virtual TH2F *getImage()
#endif
@ -104,7 +127,6 @@ class interpolatingDetector : public singlePhotonDetector {
return interp->getInterpolatedImage();
else
return analogDetector<uint16_t>::getImage();
//cout << "null " << endl;
}
#ifdef MYROOT1
@ -146,504 +168,104 @@ class interpolatingDetector : public singlePhotonDetector {
return NULL;
}
int addFrame(char *data, int *ph=NULL, int ff=0) {
singlePhotonDetector::processData(data,ph);
int nph=0;
double val[ny][nx];
int cy=(clusterSizeY+1)/2;
int cs=(clusterSize+1)/2;
int ir, ic;
double rms;
double int_x,int_y, eta_x, eta_y;
double max=0, tl=0, tr=0, bl=0,br=0, *v, vv;
// cout << "********** Add frame "<< iframe << endl;
if (ph==NULL)
ph=image;
if (iframe<nDark) {
addToPedestal(data);
return 0;
}
newFrame();
// cout << "********** Data "<< endl;
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
max=0;
tl=0;
tr=0;
bl=0;
br=0;
tot=0;
quadTot=0;
quad=UNDEFINED_QUADRANT;
eventMask[iy][ix]=PEDESTAL;
rms=getPedestalRMS(ix,iy);
(clusters+nph)->rms=rms;
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
if ((iy+ir)>=iy && (iy+ir)<ny && (ix+ic)>=ix && (ix+ic)<nx) {
val[iy+ir][ix+ic]=subtractPedestal(data,ix+ic,iy+ir);
}
v=&(val[iy+ir][ix+ic]);
tot+=*v;
if (ir<=0 && ic<=0)
bl+=*v;
if (ir<=0 && ic>=0)
br+=*v;
if (ir>=0 && ic<=0)
tl+=*v;
if (ir>=0 && ic>=0)
tr+=*v;
if (*v>max) {
max=*v;
}
if (ir==0 && ic==0) {
if (*v<-nSigma*rms)
eventMask[iy][ix]=NEGATIVE_PEDESTAL;
}
}
double int_x, int_y;
double eta_x, eta_y;
if (interp) {
// cout << "int" << endl;
pthread_mutex_lock(fi);
for (nph=0; nph<nphFrame; nph++) {
if (ff) {
interp->addToFlatField((clusters+nph)->quadTot,(clusters+nph)->quad,(clusters+nph)->get_cluster(),eta_x, eta_y);
} else {
interp->getInterpolatedPosition((clusters+nph)->x, (clusters+nph)->y, (clusters+nph)->quadTot,(clusters+nph)->quad,(clusters+nph)->get_cluster(),int_x, int_y);
interp->addToImage(int_x, int_y);
}
if (bl>=br && bl>=tl && bl>=tr) {
(clusters+nph)->quad=BOTTOM_LEFT;
(clusters+nph)->quadTot=bl;
} else if (br>=bl && br>=tl && br>=tr) {
(clusters+nph)->quad=BOTTOM_RIGHT;
(clusters+nph)->quadTot=br;
} else if (tl>=br && tl>=bl && tl>=tr) {
(clusters+nph)->quad=TOP_LEFT;
(clusters+nph)->quadTot=tl;
} else if (tr>=bl && tr>=tl && tr>=br) {
(clusters+nph)->quad=TOP_RIGHT;
(clusters+nph)->quadTot=tr;
}
if (max>nSigma*rms || tot>sqrt(clusterSizeY*clusterSize)*nSigma*rms || ((clusters+nph)->quadTot)>sqrt(cy*cs)*nSigma*rms) {
if (val[iy][ix]>=max) {
eventMask[iy][ix]=PHOTON_MAX;
(clusters+nph)->tot=tot;
(clusters+nph)->x=ix;
(clusters+nph)->y=iy;
(clusters+nph)->iframe=det->getFrameNumber(data);
(clusters+nph)->ped=getPedestal(ix,iy,0);
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
(clusters+nph)->set_data(val[iy+ir][ix+ic],ic,ir);
}
}
if (interp) {
if (ff) {
interp->addToFlatField((clusters+nph)->quadTot,(clusters+nph)->quad,(clusters+nph)->get_cluster(),eta_x, eta_y);
} else {
interp->getInterpolatedPosition(ix, iy, (clusters+nph)->quadTot,(clusters+nph)->quad,(clusters+nph)->get_cluster(),int_x, int_y);
interp->addToImage(int_x, int_y);
}
} else
image[ix+nx*iy]++;
nph++;
image[iy*nx+ix]++;
} else {
eventMask[iy][ix]=PHOTON;
}
} else if (eventMask[iy][ix]==PEDESTAL) {
addToPedestal(data,ix,iy);
}
}
pthread_mutex_unlock(fi);
}
nphFrame=nph;
nphTot+=nph;
//cout << nphFrame << endl;
// cout <<"**********************************"<< endl;
writeClusters();
return nphFrame;
};
/*********************************************************
int addFrame(char *data, int ff=0) {
double g=1;
single_photon_hit *cl;
single_photon_hit clust;
if (clusters)
cl=clusters;
else
cl=&clust;
int ccs=clusterSize;
int ccy=clusterSizeY;
double int_x,int_y, eta_x, eta_y;
int nph=0;
double rest[ny][nx];
int cy=(clusterSizeY+1)/2;
int cs=(clusterSize+1)/2;
int ir, ic;
double cc[2][2];
double max=0, tl=0, tr=0, bl=0,br=0, v, vv;
int xoff,yoff;
int skip=0;
// cout <<"fr"<< endl;
double tthr;
if (iframe<nDark) {
//cout << iframe << "+"<< nDark <<endl;
addToPedestal(data);
return 0;
}
newFrame();
// cout << xmin << " " << xmax << " " << ymin << " " << ymax << endl;
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
// for (int ix=clusterSize/2; ix<clusterSize/2-1; ix++) {
// for (int iy=clusterSizeY/2; iy<ny-clusterSizeY/2; iy++) {
// cout << ix << " " << iy << endl;
eventMask[iy][ix]=PEDESTAL;
tthr=nSigma*getPedestalRMS(ix,iy)/g;
if (ix==xmin || iy==ymin)
rest[iy][ix]=subtractPedestal(data,ix,iy);
max=0;
tl=0;
tr=0;
bl=0;
br=0;
tot=0;
quadTot=0;
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
if ((iy+ir)>=ymin && (iy+ir)<ymax && (ix+ic)>=xmin && (ix+ic)<xmax) {
//cluster->set_data(rest[iy+ir][ix+ic], ic, ir);
if (ir>=0 && ic>=0 )
rest[iy+ir][ix+ic]=subtractPedestal(data,ix+ic,iy+ir);
v=rest[iy+ir][ix+ic];//cluster->get_data(ic,ir);
tot+=v;
if (ir<=0 && ic<=0)
bl+=v;
if (ir<=0 && ic>=0)
br+=v;
if (ir>=0 && ic<=0)
tl+=v;
if (ir>=0 && ic>=0)
tr+=v;
if (v>max) {
max=v;
}
// if (ir==0 && ic==0) {
if (v>tthr) {
eventMask[iy][ix]=NEIGHBOUR;
}
//}
}
}
}
if (rest[iy][ix]<=-tthr) {
eventMask[iy][ix]=NEGATIVE_PEDESTAL;
//if (cluster->get_data(0,0)>=max) {
} else if (max>tthr || tot>sqrt(ccy*ccs)*tthr || quadTot>sqrt(cy*cs)*tthr) {
if (rest[iy][ix]>=max) {
if (bl>=br && bl>=tl && bl>=tr) {
cl->quad=BOTTOM_LEFT;
cl->quadTot=bl;
} else if (br>=bl && br>=tl && br>=tr) {
cl->quad=BOTTOM_RIGHT;
cl->quadTot=br;
} else if (tl>=br && tl>=bl && tl>=tr) {
cl->quad=TOP_LEFT;
cl->quadTot=tl;
} else if (tr>=bl && tr>=tl && tr>=br) {
cl->quad=TOP_RIGHT;
cl->quadTot=tr;
}
eventMask[iy][ix]=PHOTON_MAX;
cl->tot=tot;
cl->x=ix;
cl->y=iy;
cl->ped=getPedestal(ix,iy, 0);
cl->rms=getPedestalRMS(ix,iy);
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
if ((iy+ir)>=ymin && (iy+ir)<ymax && (ix+ic)>=xmin && (ix+ic)<xmax) {
cl->set_data(rest[iy+ir][ix+ic],ic,ir);
}
}
}
if (interp) {
if (ff) {
#ifdef M015
if (iy>100)
#endif
interp->addToFlatField(cl->quadTot,cl->quad,cl->get_cluster(),eta_x, eta_y);
// if ((eta_x<0.1 || eta_x>0.9)&&(eta_y<0.1 || eta_y>0.9))
// cout << ix << " " << iy << " " << eta_x <<" " << eta_y << endl;
} else {
interp->getInterpolatedPosition(ix, iy, cl->quadTot,cl->quad,cl->get_cluster(),int_x, int_y);
interp->addToImage(int_x, int_y);
}
} else
image[ix+nx*iy]++;
nph++;
if (clusters) cl=(clusters+nph);
// rest[iy][ix]-=tthr;
} else
eventMask[iy][ix]=PHOTON;
//else if (thr<=0 ) {
//addToPedestal(data,ix,iy);
// }
}
if (eventMask[iy][ix]==PEDESTAL) {
addToPedestal(data,ix,iy);
}
}
}
return nph;
}
******************************************/
/* for (int ix=0; ix<nx; ix++) { */
/* for (int iy=0; iy<ny; iy++) { */
/* skip=0; */
/* max=0; */
/* tl=0; */
/* tr=0; */
/* bl=0; */
/* br=0; */
/* tot=0; */
/* quadTot=0; */
/* quad=UNDEFINED_QUADRANT; */
/* cl->rms=getPedestalRMS(ix,iy); */
/* //(clusters+nph)->rms=getPedestalRMS(ix,iy); */
/* // cout << iframe << " " << nph << " " << ix << " " << iy << endl; */
/* if (ix==0 || iy==0) */
/* val[iy][ix]=subtractPedestal(data,ix,iy); */
/* if (val[iy][ix]<-nSigma*cl->rms) { */
/* eventMask[iy][ix]=NEGATIVE_PEDESTAL; */
/* // cout << "neg ped" << endl; */
/* } else { */
/* for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) { */
/* for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) { */
/* if ((iy+ir)>=0 && (iy+ir)<ny && (ix+ic)>=0 && (ix+ic)<nx) { */
/* if (ir>=0 && ic>=0) { */
/* val[iy+ir][ix+ic]=subtractPedestal(data,ix+ic,iy+ir); */
/* eventMask[iy+ir][ix+ic]=PEDESTAL; */
/* } */
/* // cout << ir << " " << ic << " " << val[iy+ir][ix+ic] << endl; */
/* v=&(val[iy+ir][ix+ic]); */
/* // if (skip==0) { */
/* tot+=*v; */
/* if (ir<=0 && ic<=0) */
/* bl+=*v; */
/* if (ir<=0 && ic>=0) */
/* br+=*v; */
/* if (ir>=0 && ic<=0) */
/* tl+=*v; */
/* if (ir>=0 && ic>=0) */
/* tr+=*v; */
/* if (*v>max) { */
/* max=*v; */
/* } */
/* } */
/* } */
/* } */
/* if (bl>=br && bl>=tl && bl>=tr) { */
/* cl->quad=BOTTOM_LEFT; */
/* cl->quadTot=bl; */
/* } else if (br>=bl && br>=tl && br>=tr) { */
/* cl->quad=BOTTOM_RIGHT; */
/* cl->quadTot=br; */
/* } else if (tl>=br && tl>=bl && tl>=tr) { */
/* cl->quad=TOP_LEFT; */
/* cl->quadTot=tl; */
/* } else if (tr>=bl && tr>=tl && tr>=br) { */
/* cl->quad=TOP_RIGHT; */
/* cl->quadTot=tr; */
/* } */
/* if (max>nSigma*cl->rms || tot>sqrt(clusterSizeY*clusterSize)*nSigma*cl->rms || (cl->quadTot)>sqrt(cy*cs)*nSigma*cl->rms) { */
/* if (val[iy][ix]>=max) { */
/* eventMask[iy][ix]=PHOTON_MAX; */
/* cl->tot=tot; */
/* cl->x=ix; */
/* cl->y=iy; */
/* cl->ped=getPedestal(ix,iy, 0); */
/* if (interp) { */
/* if (ff) { */
/* interp->addToFlatField(cl->quadTot,cl->quad,cl->get_cluster(),eta_x, eta_y); */
/* // if ((eta_x<0.1 || eta_x>0.9)&&(eta_y<0.1 || eta_y>0.9)) */
/* // cout << ix << " " << iy << " " << eta_x <<" " << eta_y << endl; */
/* } else { */
/* interp->getInterpolatedPosition(ix, iy, cl->quadTot,cl->quad,cl->get_cluster(),int_x, int_y); */
/* interp->addToImage(int_x, int_y); */
/* } */
/* } else */
/* image[ix+nx*iy]++; */
/* if (clusters) cl=(clusters+nph); */
/* nph++; */
/* } else { */
/* eventMask[iy][ix]=PHOTON; */
/* } */
/* } else if (eventMask[iy][ix]==PEDESTAL) { */
/* addToPedestal(data,ix,iy); */
/* } */
/* } */
/* } */
/* } */
/* return nph; */
/* }; */
virtual void processData(char *data, int *val=NULL) {
if (interp){
switch(fMode) {
case ePedestal:
addToPedestal(data);
switch (dMode) {
case eAnalog:
// cout << "an" << endl;
analogDetector<uint16_t>::processData(data,val);
break;
case eFlat:
addFrame(data,val,1);
case ePhotonCounting:
// cout << "spc" << endl;
singlePhotonDetector::processData(data,val);
break;
default:
addFrame(data,val,0);
//cout << "int" << endl;
switch(fMode) {
case ePedestal:
addToPedestal(data);
break;
case eFlat:
if (interp)
addFrame(data,val,1);
else
singlePhotonDetector::processData(data,val);
break;
default:
if (interp)
addFrame(data,val,0);
else
singlePhotonDetector::processData(data,val);
}
}
} else
singlePhotonDetector::processData(data,val);
};
virtual char *getInterpolation(){return (char*)interp;};
virtual slsInterpolation *getInterpolation(){
return interp;
};
virtual slsInterpolation *setInterpolation(slsInterpolation *ii){
int ok;
interp=ii;
/* pthread_mutex_lock(fi);
if (interp)
interp->prepareInterpolation(ok);
pthread_mutex_unlock(fi); */
// cout << "det" << endl;
return interp;
};
virtual void resetFlatField() { if (interp) {
pthread_mutex_lock(fi);
interp->resetFlatField();
pthread_mutex_unlock(fi);
}
}
virtual int getNSubPixels(){ if (interp) return interp->getNSubPixels(); else return 1;}
virtual int setNSubPixels(int ns) {
if (interp) {
pthread_mutex_lock(fi);
interp->getNSubPixels();
pthread_mutex_unlock(fi);
}
return getNSubPixels();
}
protected:
slsInterpolation *interp;
int id;
pthread_mutex_t *fi;
};

View File

@ -14,49 +14,18 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
public:
eta2InterpolationBase(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny, ns, nb, emin, emax) {
// cout << "e2ib " << nb << " " << emin << " " << emax << endl;
if (nbeta<=0) {
nbeta=nSubPixels*10;
}
if (etamin>=etamax) {
etamin=-1;
etamax=2;
cout << ":" <<endl;
}
etastep=(etamax-etamin)/nbeta;
#ifdef MYROOT1
delete heta;
delete hhx;
delete hhy;
heta=new TH2D("heta","heta",nbeta,etamin,etamax,nbeta,etamin,etamax);
hhx=new TH2D("hhx","hhx",nbeta,etamin,etamax,nbeta,etamin,etamax);
hhy=new TH2D("hhy","hhy",nbeta,etamin,etamax,nbeta,etamin,etamax);
#endif
#ifndef MYROOT1
delete [] heta;
delete [] hhx;
delete [] hhy;
heta=new int[nbeta*nbeta];
hhx=new float[nbeta*nbeta];
hhy=new float[nbeta*nbeta];
/* if (etamin>=etamax) { */
/* etamin=-1; */
/* etamax=2; */
/* // cout << ":" <<endl; */
/* } */
/* etastep=(etamax-etamin)/nbeta; */
#endif
// cout << nbeta << " " << etamin << " " << etamax << endl;
};
eta2InterpolationBase(eta2InterpolationBase *orig): etaInterpolationBase(orig){ };
virtual eta2InterpolationBase* Clone()=0;/* {
return new eta2InterpolationBase(this);
};
*/
//////////////////////////////////////////////////////////////////////////////
//////////// /*It return position hit for the event in input */ //////////////
@ -102,12 +71,7 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,double *cl,double &int_x, double &int_y) {
double cc[2][2];
double *cluster[3];
int xoff, yoff;
cluster[0]=cl;
cluster[1]=cl+3;
cluster[2]=cl+6;
switch (quad) {
case BOTTOM_LEFT:
xoff=0;
@ -130,10 +94,10 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
}
double etax, etay;
if (nSubPixels>2) {
cc[0][0]=cluster[yoff][xoff];
cc[1][0]=cluster[yoff+1][xoff];
cc[0][1]=cluster[yoff][xoff+1];
cc[1][1]=cluster[yoff+1][xoff+1];
cc[0][0]=cl[xoff+3*yoff];
cc[1][0]=cl[xoff+3*(yoff+1)];
cc[0][1]=cl[xoff+1+3*yoff];
cc[1][1]=cl[xoff+1+3*(yoff+1)];
calcEta(totquad,cc,etax,etay);
}
return getInterpolatedPosition(x,y,etax, etay,quad,int_x,int_y);
@ -145,11 +109,7 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,int *cl,double &int_x, double &int_y) {
double cc[2][2];
int *cluster[3];
int xoff, yoff;
cluster[0]=cl;
cluster[1]=cl+3;
cluster[2]=cl+6;
switch (quad) {
case BOTTOM_LEFT:
@ -173,10 +133,10 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
}
double etax, etay;
if (nSubPixels>2) {
cc[0][0]=cluster[yoff][xoff];
cc[1][0]=cluster[yoff+1][xoff];
cc[0][1]=cluster[yoff][xoff+1];
cc[1][1]=cluster[yoff+1][xoff+1];
cc[0][0]=cl[xoff+3*yoff];
cc[1][0]=cl[xoff+3*(yoff+1)];
cc[0][1]=cl[xoff+1+3*yoff];
cc[1][1]=cl[xoff+1+3*(xoff+1)];
calcEta(totquad,cc,etax,etay);
}
return getInterpolatedPosition(x,y,etax, etay,quad,int_x,int_y);
@ -223,60 +183,46 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
if (nSubPixels>2) {
#ifdef MYROOT1
xpos_eta=(hhx->GetBinContent(hhx->GetXaxis()->FindBin(etax),hhy->GetYaxis()->FindBin(etay)))/((double)nSubPixels);
ypos_eta=(hhy->GetBinContent(hhx->GetXaxis()->FindBin(etax),hhy->GetYaxis()->FindBin(etay)))/((double)nSubPixels);
#endif
#ifndef MYROOT1
ex=(etax-etamin)/etastep;
ey=(etay-etamin)/etastep;
if (ex<0) {
cout << "x*"<< ex << endl;
ex=0;
}
if (ex>=nbeta) {
cout << "x?"<< ex << endl;
ex=nbeta-1;
}
if (ey<0) {
cout << "y*"<< ey << endl;
ey=0;
}
if (ey>=nbeta) {
cout << "y?"<< ey << endl;
ey=nbeta-1;
}
ex=(etax-etamin)/etastep;
ey=(etay-etamin)/etastep;
if (ex<0) {
cout << "x*"<< ex << endl;
ex=0;
}
if (ex>=nbeta) {
cout << "x?"<< ex << endl;
ex=nbeta-1;
}
if (ey<0) {
cout << "y*"<< ey << endl;
ey=0;
}
if (ey>=nbeta) {
cout << "y?"<< ey << endl;
ey=nbeta-1;
}
xpos_eta=(((double)hhx[(ey*nbeta+ex)]))+dX ;///((double)nSubPixels);
ypos_eta=(((double)hhy[(ey*nbeta+ex)]))+dY ;///((double)nSubPixels);
//else
//return 0;
xpos_eta=(((double)hhx[(ey*nbeta+ex)]))+dX ;///((double)nSubPixels);
ypos_eta=(((double)hhy[(ey*nbeta+ex)]))+dY ;///((double)nSubPixels);
#endif
} else {
xpos_eta=0.5*dX+0.25;
ypos_eta=0.5*dY+0.25;
}
int_x=((double)x) + xpos_eta+0.5;
int_y=((double)y) + ypos_eta+0.5;
int_x=((double)x) + xpos_eta+0.5;
int_y=((double)y) + ypos_eta+0.5;
}
virtual int addToFlatField(double totquad,int quad,int *cl,double &etax, double &etay) {
virtual int addToFlatField(double totquad,int quad,int *cl,double &etax, double &etay) {
double cc[2][2];
int *cluster[3];
int xoff, yoff;
cluster[0]=cl;
cluster[1]=cl+3;
cluster[2]=cl+6;
switch (quad) {
case BOTTOM_LEFT:
@ -298,17 +244,11 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
default:
;
}
cc[0][0]=cluster[yoff][xoff];
cc[1][0]=cluster[yoff+1][xoff];
cc[0][1]=cluster[yoff][xoff+1];
cc[1][1]=cluster[yoff+1][xoff+1];
cc[0][0]=cl[xoff+3*yoff];
cc[1][0]=cl[xoff+3*(yoff+1)];
cc[0][1]=cl[xoff+1+3*yoff];
cc[1][1]=cl[xoff+1+3*(yoff+1)];
/* cout << cl[0] << " " << cl[1] << " " << cl[2] << endl; */
/* cout << cl[3] << " " << cl[4] << " " << cl[5] << endl; */
/* cout << cl[6] << " " << cl[7] << " " << cl[8] << endl; */
/* cout <<"******"<<totquad << " " << quad << endl; */
/* cout << cc[0][0]<< " " << cc[0][1] << endl; */
/* cout << cc[1][0]<< " " << cc[1][1] << endl; */
//calcMyEta(totquad,quad,cl,etax, etay);
calcEta(totquad, cc,etax, etay);
@ -320,11 +260,7 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
virtual int addToFlatField(double totquad,int quad,double *cl,double &etax, double &etay) {
double cc[2][2];
double *cluster[3];
int xoff, yoff;
cluster[0]=cl;
cluster[1]=cl+3;
cluster[2]=cl+6;
switch (quad) {
case BOTTOM_LEFT:
@ -346,10 +282,10 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
default:
;
}
cc[0][0]=cluster[yoff][xoff];
cc[1][0]=cluster[yoff+1][xoff];
cc[0][1]=cluster[yoff][xoff+1];
cc[1][1]=cluster[yoff+1][xoff+1];
cc[0][0]=cl[xoff+3*yoff];
cc[1][0]=cl[(yoff+1)*3+xoff];
cc[0][1]=cl[yoff*3+xoff+1];
cc[1][1]=cl[(yoff+1)*3+xoff+1];
/* cout << cl[0] << " " << cl[1] << " " << cl[2] << endl; */
/* cout << cl[3] << " " << cl[4] << " " << cl[5] << endl; */
@ -416,6 +352,37 @@ class eta2InterpolationBase : public virtual etaInterpolationBase {
return 0;
};
virtual int *getInterpolatedImage(){
int ipx, ipy;
// cout << "ff" << endl;
calcDiff(1, hhx, hhy); //get flat
double avg=0;
for (ipx=0; ipx<nSubPixels; ipx++)
for (ipy=0; ipy<nSubPixels; ipy++)
avg+=flat[ipx+ipy*nSubPixels];
avg/=nSubPixels*nSubPixels;
for (int ibx=0 ; ibx<nSubPixels*nPixelsX; ibx++) {
ipx=ibx%nSubPixels-nSubPixels/2;
if (ipx<0) ipx=nSubPixels+ipx;
for (int iby=0 ; iby<nSubPixels*nPixelsY; iby++) {
ipy=iby%nSubPixels-nSubPixels/2;
if (ipy<0) ipy=nSubPixels+ipy;
// cout << ipx << " " << ipy << " " << ibx << " " << iby << endl;
if (flat[ipx+ipy*nSubPixels]>0)
hintcorr[ibx+iby*nSubPixels*nPixelsX]=hint[ibx+iby*nSubPixels*nPixelsX]*(avg/flat[ipx+ipy*nSubPixels]);
else
hintcorr[ibx+iby*nSubPixels*nPixelsX]=hint[ibx+iby*nSubPixels*nPixelsX];
}
}
return hintcorr;
};
/* protected: */
/* #ifdef MYROOT1 */

View File

@ -15,9 +15,9 @@ class eta3InterpolationBase : public virtual etaInterpolationBase {
public:
eta3InterpolationBase(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx, ny, ns, nb, emin, emax) {
// cout << "e3ib " << nb << " " << emin << " " << emax << endl;
if (nbeta<=0) {
nbeta=nSubPixels*10;
}
/* if (nbeta<=0) { */
/* nbeta=nSubPixels*10; */
/* } */
if (etamin>=etamax) {
etamin=-1;
etamax=1;
@ -33,13 +33,13 @@ class eta3InterpolationBase : public virtual etaInterpolationBase {
hhy=new TH2D("hhy","hhy",nbeta,etamin,etamax,nbeta,etamin,etamax);
#endif
#ifndef MYROOT1
delete [] heta;
delete [] hhx;
delete [] hhy;
/* delete [] heta; */
/* delete [] hhx; */
/* delete [] hhy; */
heta=new int[nbeta*nbeta];
hhx=new float[nbeta*nbeta];
hhy=new float[nbeta*nbeta];
/* heta=new int[nbeta*nbeta]; */
/* hhx=new float[nbeta*nbeta]; */
/* hhy=new float[nbeta*nbeta]; */
#endif
// cout << nbeta << " " << etamin << " " << etamax << endl;
@ -47,7 +47,7 @@ class eta3InterpolationBase : public virtual etaInterpolationBase {
eta3InterpolationBase(eta3InterpolationBase *orig): etaInterpolationBase(orig){ };
virtual eta3InterpolationBase* Clone()=0;
/* virtual eta3InterpolationBase* Clone()=0; */

View File

@ -1,131 +1,137 @@
#ifndef ETA_INTERPOLATION_ADAPTIVEBINS_H
#define ETA_INTERPOLATION_ADAPTIVEBINS_H
#include <cmath>
#include "tiffIO.h"
//#include "etaInterpolationBase.h"
#include "etaInterpolationPosXY.h"
class etaInterpolationAdaptiveBins : public etaInterpolationPosXY {
// protected:
private:
double calcDiff(double avg, float *hx, float *hy) {
double p_tot=0;
double diff=0;
double bsize=1./nSubPixels;
for (int ipx=0; ipx<nSubPixels; ipx++) {
for (int ipy=0; ipy<nSubPixels; ipy++) {
p_tot=0;
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
if ( hx[ibx+iby*nbeta]>=((ipx)*bsize) && hx[ibx+iby*nbeta]<((ipx+1)*bsize) && hy[ibx+iby*nbeta]>=((ipy)*bsize) && hy[ibx+iby*nbeta]<((ipy+1)*bsize)) {
p_tot+=heta[ibx+iby*nbeta];
}
}
}
cout << p_tot << " \t ";
diff+=(p_tot-avg)*(p_tot-avg);
}
cout << "\n";
}
return diff;
}
void iterate(float *newhhx, float *newhhy) {
virtual void iterate(float *newhhx, float *newhhy) {
double bsize=1./nSubPixels;
double hy[nbeta]; //profile y
double hx[nbeta]; //profile x
double hix[nbeta]; //integral of projection x
double hiy[nbeta]; //integral of projection y
double hy[nSubPixels][nbeta]; //profile y
double hx[nSubPixels][nbeta]; //profile x
double hix[nSubPixels][nbeta]; //integral of projection x
double hiy[nSubPixels][nbeta]; //integral of projection y
int ipy, ipx;
double tot_eta_x[nSubPixels];
double tot_eta_y[nSubPixels];
//for (int ipy=0; ipy<nSubPixels; ipy++) {
double tot_eta_x=0;
double tot_eta_y=0;
for (int ipy=0; ipy<nSubPixels; ipy++) {
for (int ibx=0; ibx<nbeta; ibx++) {
hx[ibx]=0;
hy[ibx]=0;
for (ipy=0; ipy<nSubPixels; ipy++) {
for (int ibx=0; ibx<nbeta; ibx++) {
hx[ipy][ibx]=0;
hy[ipy][ibx]=0;
}
}
tot_eta_x=0;
tot_eta_y=0;
// cout << ipy << " " << ((ipy)*bsize) << " " << ((ipy+1)*bsize) << endl;
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
if (hhy[ibx+iby*nbeta]>=((ipy)*bsize) && hhy[ibx+iby*nbeta]<=((ipy+1)*bsize)) {
hx[ibx]+=heta[ibx+iby*nbeta];
tot_eta_x+=heta[ibx+iby*nbeta];
}
ipy=hhy[ibx+iby*nbeta]*nSubPixels;
if (ipy<0) ipy=0;
if (ipy>=nSubPixels) ipy=nSubPixels-1;
hx[ipy][ibx]+=heta[ibx+iby*nbeta];
if (hhx[ibx+iby*nbeta]>=((ipy)*bsize) && hhx[ibx+iby*nbeta]<=((ipy+1)*bsize)) {
hy[iby]+=heta[ibx+iby*nbeta];
tot_eta_y+=heta[ibx+iby*nbeta];
}
ipx=hhx[ibx+iby*nbeta]*nSubPixels;
if (ipx<0) ipx=0;
if (ipx>=nSubPixels) ipx=nSubPixels-1;
hy[ipx][iby]+=heta[ibx+iby*nbeta];
}
}
hix[0]=hx[0];
hiy[0]=hy[0];
for (int ib=1; ib<nbeta; ib++) {
hix[ib]=hix[ib-1]+hx[ib];
hiy[ib]=hiy[ib-1]+hy[ib];
}
// tot_eta_x=hix[nbeta-1];
// tot_eta_y=hiy[nbeta-1];
/* cout << "ipx " << ipy << " x: " << tot_eta_x << " " << hix[10]<< " " << hix[nbeta-1] << endl; */
/* cout << "ipy " << ipy << " y: " << tot_eta_y << " " << hiy[10]<< " " << hiy[nbeta-1] << endl; */
// for (int ipy=0; ipy<nSubPixels; ipy++) {
for (ipy=0; ipy<nSubPixels; ipy++) {
hix[ipy][0]=hx[ipy][0];
hiy[ipy][0]=hy[ipy][0];
for (int ib=1; ib<nbeta; ib++) {
hix[ipy][ib]=hix[ipy][ib-1]+hx[ipy][ib];
hiy[ipy][ib]=hiy[ipy][ib-1]+hy[ipy][ib];
}
tot_eta_x[ipy]=hix[ipy][nbeta-1]+1;
tot_eta_y[ipy]=hiy[ipy][nbeta-1]+1;
// cout << ipy << " " << tot_eta_x[ipy] << " " << tot_eta_y[ipy] << endl;
}
// for (int ipy=0; ipy<nSubPixels; ipy++) {
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
if ( hhy[ibx+iby*nbeta]>=((ipy)*bsize) && hhy[ibx+iby*nbeta]<=((ipy+1)*bsize)) {
newhhx[ibx+iby*nbeta]=hix[ibx]/((double)tot_eta_x);
if (newhhx[ibx+iby*nbeta]>1) cout << "***"<< ibx << " " << iby << newhhx[ibx+iby*nbeta] << endl;
// if ( hhy[ibx+iby*nbeta]>=((ipy)*bsize) && hhy[ibx+iby*nbeta]<=((ipy+1)*bsize)) {
ipy=hhy[ibx+iby*nbeta]*nSubPixels;
if (ipy<0) ipy=0;
if (ipy>=nSubPixels) ipy=nSubPixels-1;
if (ipy>=0 && ipy<nSubPixels)
if (tot_eta_x[ipy]>0)
newhhx[ibx+iby*nbeta]=hix[ipy][ibx]/(tot_eta_x[ipy]);
else
cout << "Bad tot_etax " << ipy << " " << tot_eta_x[ipy] << endl;
else
cout << "** Bad value ipy " << ibx << " " << iby << " "<< ipy << " " << hhy[ibx+iby*nbeta]*nSubPixels << endl;
// if (newhhx[ibx+iby*nbeta]>=1 || newhhx[ibx+iby*nbeta]<0 ) cout << "***"<< ibx << " " << iby << newhhx[ibx+iby*nbeta] << endl;
// if (ipy==3 && ibx==10) cout << newhhx[ibx+iby*nbeta] << " " << hix[ibx] << " " << ibx+iby*nbeta << endl;
}
if (hhx[ibx+iby*nbeta]>=((ipy)*bsize) && hhx[ibx+iby*nbeta]<=((ipy+1)*bsize)) {
newhhy[ibx+iby*nbeta]=hiy[iby]/((double)tot_eta_y);
if (newhhy[ibx+iby*nbeta]>1) cout << "***"<< ibx << " " << iby << newhhy[ibx+iby*nbeta] << endl;
// }
ipy=hhx[ibx+iby*nbeta]*nSubPixels;
//if (hhx[ibx+iby*nbeta]>=((ipy)*bsize) && hhx[ibx+iby*nbeta]<=((ipy+1)*bsize)) {
if (ipy<0) ipy=0;
if (ipy>=nSubPixels) ipy=nSubPixels-1;
if (ipy>=0 && ipy<nSubPixels)
if (tot_eta_y[ipy]>0)
newhhy[ibx+iby*nbeta]=hiy[ipy][iby]/(tot_eta_y[ipy]);
else
cout << "Bad tot_etay " << ipy << " " << tot_eta_y[ipy] << endl;
else
cout << "** Bad value ipx " << ibx << " " << iby << " "<< ipy << " " << hhx[ibx+iby*nbeta]*nSubPixels << endl;
// if (newhhy[ibx+iby*nbeta]>=1 || newhhy[ibx+iby*nbeta]<0 ) cout << "***"<< ibx << " " << iby << newhhy[ibx+iby*nbeta] << endl;
// if (ipy==3 && iby==10) cout << newhhy[ibx+iby*nbeta] << " " << hiy[iby] << " " << ibx+iby*nbeta << endl;
}
// }
}
}
}
// }
}
public:
etaInterpolationAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationPosXY(nx,ny,ns, nb, emin,emax){};
etaInterpolationAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationPosXY(nx,ny,ns, nb, emin,emax){
// flat=new double[nSubPixels*nSubPixels]; flat_x=new double[nSubPixels]; flat_y=new double[nSubPixels];
// flat=new double[nSubPixels*nSubPixels];
};
etaInterpolationAdaptiveBins(etaInterpolationAdaptiveBins *orig): etaInterpolationPosXY(orig){};
etaInterpolationAdaptiveBins(etaInterpolationAdaptiveBins *orig): etaInterpolationPosXY(orig){hintcorr=new int[nPixelsX*nPixelsY*nSubPixels];};
virtual etaInterpolationAdaptiveBins* Clone() {
virtual etaInterpolationAdaptiveBins* Clone()=0;
return new etaInterpolationAdaptiveBins(this);
/* return new etaInterpolationAdaptiveBins(this); */
};
/* }; */
virtual void prepareInterpolation(int &ok)
virtual void prepareInterpolation(int &ok) {
prepareInterpolation(ok, 1000);
}
virtual void prepareInterpolation(int &ok, int nint)
{
ok=1;
cout << "Adaptive bins" << endl;
///*Eta Distribution Rebinning*///
double bsize=1./nSubPixels; //precision
@ -153,65 +159,36 @@ class etaInterpolationAdaptiveBins : public etaInterpolationPosXY {
// }
// }
etaInterpolationPosXY::prepareInterpolation(ok);
etaInterpolationPosXY::prepareInterpolation(ok);
#ifdef SAVE_ALL
char tit[10000];
float *etah=new float[nbeta*nbeta];
int etabins=nbeta;
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=hhx[ii];
}
sprintf(tit,"/scratch/start_hhx.tiff");
WriteToTiff(etah, tit, etabins, etabins);
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=hhy[ii];
}
sprintf(tit,"/scratch/start_hhy.tiff");
WriteToTiff(etah, tit, etabins, etabins);
#endif
int nint=1000;
double thr=1./((double)nSubPixels);
double avg=tot_eta/((double)(nSubPixels*nSubPixels));
cout << "total eta entries is :"<< tot_eta << " avg: "<< avg << endl;
cout << "Start " << endl;
double rms=sqrt(tot_eta);
cout << "total eta entries is :"<< tot_eta << " avg: "<< avg << " rms: " << sqrt(tot_eta) << endl;
double old_diff=calcDiff(avg, hhx, hhy), new_diff=old_diff+1, best_diff=old_diff;
cout << " diff= " << old_diff << endl;
// cout << " chi2= " << old_diff << " (rms= " << sqrt(tot_eta) << ")" << endl;
cout << endl;
cout << endl;
debugSaveAll(0);
int iint=0;
float *newhhx=new float[nbeta*nbeta]; //profile x
float *newhhy=new float[nbeta*nbeta]; //profile y
float *besthhx=hhx; //profile x
float *besthhy=hhy; //profile y
while (iint<nint) {
cout << "Iteration " << iint << endl;
cout << "Iteration "<< iint << " Chi2: " << old_diff << endl; //" Best: "<< best_diff << " RMS: "<< rms<< endl;
while (iint<nint && best_diff > rms) {
/* #ifdef SAVE_ALL */
/* if (iint%10==0) */
/* debugSaveAll(iint); */
/* #endif */
// cout << "Iteration " << iint << endl;
iterate(newhhx,newhhy);
new_diff=calcDiff(avg, newhhx, newhhy);
cout << " diff= " << new_diff << endl;
/* #ifdef SAVE_ALL */
/* for (int ii=0; ii<etabins*etabins; ii++) { */
/* etah[ii]=newhhx[ii]; */
/* if (etah[ii]>1 || etah[ii]<0 ) cout << "***"<< ii << etah[ii] << endl; */
// cout << " chi2= " << new_diff << " (rms= " << sqrt(tot_eta) << ")"<<endl;
/* } */
/* sprintf(tit,"/scratch/neweta_hhx_%d.tiff",iint); */
/* WriteToTiff(etah, tit, etabins, etabins); */
/* for (int ii=0; ii<etabins*etabins; ii++) { */
/* etah[ii]=newhhy[ii]; */
/* if (etah[ii]>1 || etah[ii]<0 ) cout << "***"<< ii << etah[ii] << endl; */
/* } */
/* sprintf(tit,"/scratch/neweta_hhy_%d.tiff",iint); */
/* WriteToTiff(etah, tit, etabins, etabins); */
/* #endif */
if (new_diff<best_diff) {
best_diff=new_diff;
besthhx=newhhx;
@ -225,19 +202,33 @@ class etaInterpolationAdaptiveBins : public etaInterpolationPosXY {
hhx=newhhx;
hhy=newhhy;
#ifdef SAVE_ALL
if (new_diff<=best_diff) {
debugSaveAll(iint);
}
#endif
newhhx=new float[nbeta*nbeta]; //profile x
newhhy=new float[nbeta*nbeta]; //profile y
old_diff=new_diff;
//} /* else { */
/* cout << "Difference not decreasing after "<< iint << " iterations (" << old_diff << " < " << new_diff << ")"<< endl; */
/* break; */
/* } */
iint++;
/* if (new_diff<old_diff){ */
/* cout << "best difference at iteration "<< iint << " (" << new_diff << " < " << old_diff << ")"<< "Best: "<< best_diff << " RMS: "<< sqrt(tot_eta) << endl; */
/* ; */
/* } else { */
// break;
// }
old_diff=new_diff;
iint++;
cout << "Iteration "<< iint << " Chi2: " << new_diff << endl; //" Best: "<< best_diff << " RMS: "<< rms<< endl;
}
delete [] newhhx;
delete [] newhhy;
delete [] newhhx;
delete [] newhhy;
if (hhx!=besthhx)
delete [] hhx;
@ -248,34 +239,47 @@ class etaInterpolationAdaptiveBins : public etaInterpolationPosXY {
hhy=besthhy;
cout << "Iteration "<< iint << " Chi2: " << best_diff << endl; //" Best: "<< best_diff << " RMS: "<< rms<< endl;
#ifdef SAVE_ALL
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=hhx[ii];
}
sprintf(tit,"/scratch/eta_hhx_%d.tiff",id);
WriteToTiff(etah, tit, etabins, etabins);
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=hhy[ii];
}
sprintf(tit,"/scratch/eta_hhy_%d.tiff",id);
WriteToTiff(etah, tit, etabins, etabins);
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=heta[ii];
}
sprintf(tit,"/scratch/eta_%d.tiff",id);
WriteToTiff(etah, tit, etabins, etabins);
delete [] etah;
debugSaveAll(iint);
#endif
return ;
}
};
class eta2InterpolationAdaptiveBins : public virtual eta2InterpolationBase, public virtual etaInterpolationAdaptiveBins {
public:
eta2InterpolationAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta2InterpolationBase(nx,ny,ns, nb, emin,emax),etaInterpolationAdaptiveBins(nx,ny,ns, nb, emin,emax){
cout << "NSUBPIX is " << ns << " " << nSubPixels << endl;
// cout << "e2pxy " << nb << " " << emin << " " << emax << endl;
};
eta2InterpolationAdaptiveBins(eta2InterpolationAdaptiveBins *orig): etaInterpolationBase(orig), etaInterpolationAdaptiveBins(orig) {};
virtual eta2InterpolationAdaptiveBins* Clone() { return new eta2InterpolationAdaptiveBins(this);};
};
class eta3InterpolationAdaptiveBins : public virtual eta3InterpolationBase, public virtual etaInterpolationAdaptiveBins {
public:
eta3InterpolationAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta3InterpolationBase(nx,ny,ns, nb, emin,emax), etaInterpolationAdaptiveBins(nx,ny,ns, nb, emin,emax){
cout << "e3pxy " << nbeta << " " << etamin << " " << etamax << " " << nSubPixels<< endl;
};
eta3InterpolationAdaptiveBins(eta3InterpolationAdaptiveBins *orig): etaInterpolationBase(orig), etaInterpolationAdaptiveBins(orig) {};
virtual eta3InterpolationAdaptiveBins* Clone() { return new eta3InterpolationAdaptiveBins(this);};
};
#endif

View File

@ -19,82 +19,57 @@ class etaInterpolationBase : public slsInterpolation {
// cout << "eb " << nb << " " << emin << " " << emax << endl;
// cout << nb << " " << etamin << " " << etamax << endl;
if (nbeta<=0) {
cout << "aaa:" <<endl;
//cout << "aaa:" <<endl;
nbeta=nSubPixels*10;
}
if (etamin>=etamax) {
cout << "aaa:" <<endl;
etamin=-1;
etamax=2;
}
etastep=(etamax-etamin)/nbeta;
#ifdef MYROOT1
heta=new TH2D("heta","heta",nbeta,etamin,etamax,nbeta,etamin,etamax);
hhx=new TH2D("hhx","hhx",nbeta,etamin,etamax,nbeta,etamin,etamax);
hhy=new TH2D("hhy","hhy",nbeta,etamin,etamax,nbeta,etamin,etamax);
#endif
#ifndef MYROOT1
heta=new int[nbeta*nbeta];
hhx=new float[nbeta*nbeta];
hhy=new float[nbeta*nbeta];
rangeMin=etamin;
rangeMax=etamax;
flat= new double[nSubPixels*nSubPixels];
hintcorr=new int [nSubPixels*nSubPixels*nPixelsX*nPixelsY];
#endif
//cout << nbeta << " " << etamin << " " << etamax << endl;
};
etaInterpolationBase(etaInterpolationBase *orig): slsInterpolation(orig){
nbeta=orig->nbeta;
etamin=orig->etamin;
etamax=orig->etamax;
rangeMin=orig->rangeMin;
rangeMax=orig->rangeMax;
etastep=(etamax-etamin)/nbeta;
#ifdef MYROOT1
heta=(TH2D*)(orig->heta)->Clone("heta");
hhx=(TH2D*)(orig->hhx)->Clone("hhx");
hhy=(TH2D*)(orig->hhy)->Clone("hhy");
#endif
#ifndef MYROOT1
heta=new int[nbeta*nbeta];
memcpy(heta,orig->heta,nbeta*nbeta*sizeof(int));
hhx=new float[nbeta*nbeta];
memcpy(hhx,orig->hhx,nbeta*nbeta*sizeof(float));
hhy=new float[nbeta*nbeta];
memcpy(hhy,orig->hhy,nbeta*nbeta*sizeof(float));
#endif
hintcorr=new int [nSubPixels*nSubPixels*nPixelsX*nPixelsY];
};
virtual etaInterpolationBase* Clone()=0;/*{
return new etaInterpolationBase(this);
};
*/
#ifdef MYROOT1
TH2D *setEta(TH2D *h, int nb=-1, double emin=1, double emax=0)
{
if (h) { heta=h;
nbeta=heta->GetNbinsX();
etamin=heta->GetXaxis()->GetXmin();
etamax=heta->GetXaxis()->GetXmax();
etastep=(etamax-etamin)/nbeta;
}
return heta;
};
TH2D *setFlatField(TH2D *h, int nb=-1, double emin=1, double emax=0)
{
return setEta(h, nb, emin, emax);
virtual void resetFlatField() {
for (int ibx=0; ibx<nbeta*nbeta; ibx++) {
heta[ibx]=0;
hhx[ibx]=0;
hhy[ibx]=0;
}
};
TH2D *getFlatField(){return setEta(NULL);};
#endif
#ifndef MYROOT1
int *setEta(int *h, int nb=-1, double emin=1, double emax=0)
{
if (h) {
@ -108,6 +83,8 @@ class etaInterpolationBase : public slsInterpolation {
etamin=-1;
etamax=2;
}
rangeMin=etamin;
rangeMax=etamax;
etastep=(etamax-etamin)/nbeta;
}
return heta;
@ -117,11 +94,13 @@ class etaInterpolationBase : public slsInterpolation {
{
return setEta(h, nb, emin, emax);
};
int *getFlatField(){return setEta(NULL);};
int *getFlatField(int &nb, double &emin, double &emax){
nb=nbeta;
//cout << "igff* ff has " << nb << " bins " << endl;
emin=etamin;
emax=etamax;
return getFlatField();
@ -185,27 +164,7 @@ class etaInterpolationBase : public slsInterpolation {
#endif
/* ////////////////////////////////////////////////////////////////////////////// */
#ifdef MYROOT1
TH2D *gethhx()
{
hhx->Scale((double)nSubPixels);
return hhx;
};
TH2D *gethhy()
{
hhy->Scale((double)nSubPixels);
return hhy;
};
#endif
#ifndef MYROOT1
float *gethhx()
{
// hhx->Scale((double)nSubPixels);
@ -217,53 +176,193 @@ float *gethhx()
// hhy->Scale((double)nSubPixels);
return hhy;
};
#endif
//////////////////////////////////////////////////////////////////////////////
//////////// /*It return position hit for the event in input */ //////////////
/* virtual void getInterpolatedPosition(int x, int y, int *data, double &int_x, double &int_y)=0; */
/* virtual void getInterpolatedPosition(int x, int y, double *data, double &int_x, double &int_y)=0; */
/* virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,double *cl,double &int_x, double &int_y)=0; */
/* virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,int *cl,double &int_x, double &int_y)=0; */
/* virtual void getInterpolatedPosition(int x, int y, double etax, double etay, int corner, double &int_x, double &int_y)=0; */
/* virtual int addToFlatField(double totquad,int quad,int *cl,double &etax, double &etay)=0; */
/* virtual int addToFlatField(double totquad,int quad,double *cl,double &etax, double &etay)=0; */
/* virtual int addToFlatField(double *cluster, double &etax, double &etay)=0; */
/* virtual int addToFlatField(int *cluster, double &etax, double &etay)=0; */
virtual int addToFlatField(double etax, double etay){
#ifdef MYROOT1
heta->Fill(etax,etay);
#endif
#ifndef MYROOT1
int ex,ey;
ex=(etax-etamin)/etastep;
ey=(etay-etamin)/etastep;
if (ey<nbeta && ex<nbeta && ex>=0 && ey>=0)
heta[ey*nbeta+ex]++;
#endif
return 0;
};
// virtual void prepareInterpolation(int &ok)=0;
void debugSaveAll(int ind=0) {
int ib, ibx, iby;
char tit[10000];
float tot_eta=0;
float *etah=new float[nbeta*nbeta];
int etabins=nbeta;
int ibb=0;
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=heta[ii];
tot_eta+=heta[ii];
}
sprintf(tit,"/scratch/eta.tiff",ind);
WriteToTiff(etah, tit, etabins, etabins);
for (int ii=0; ii<etabins*etabins; ii++) {
ibb=(hhx[ii]*nSubPixels);
etah[ii]=ibb;
}
sprintf(tit,"/scratch/eta_hhx_%d.tiff",ind);
WriteToTiff(etah, tit, etabins, etabins);
for (int ii=0; ii<etabins*etabins; ii++) {
ibb=hhy[ii]*nSubPixels;
etah[ii]=ibb;
}
sprintf(tit,"/scratch/eta_hhy_%d.tiff",ind);
WriteToTiff(etah, tit, etabins, etabins);
float *ftest=new float[nSubPixels*nSubPixels];
for (int ib=0; ib<nSubPixels*nSubPixels; ib++) ftest[ib]=0;
//int ibx=0, iby=0;
for (int ii=0; ii<nbeta*nbeta; ii++) {
ibx=nSubPixels*hhx[ii];
iby=nSubPixels*hhy[ii];
if (ibx<0) ibx=0;
if (iby<0) iby=0;
if (ibx>=nSubPixels) ibx=nSubPixels-1;
if (iby>=nSubPixels) iby=nSubPixels-1;
if (ibx>=0 && ibx<nSubPixels && iby>=0 && iby<nSubPixels) {
//
// if (ibx>0 && iby>0) cout << ibx << " " << iby << " " << ii << endl;
ftest[ibx+iby*nSubPixels]+=heta[ii];
} else
cout << "Bad interpolation "<< ii << " " << ibx << " " << iby<< endl;
}
sprintf(tit,"/scratch/ftest_%d.tiff",ind);
WriteToTiff(ftest, tit, nSubPixels, nSubPixels);
//int ibx=0, iby=0;
tot_eta/=nSubPixels*nSubPixels;
int nbad=0;
for (int ii=0; ii<etabins*etabins; ii++) {
ibx=nSubPixels*hhx[ii];
iby=nSubPixels*hhy[ii];
if (ftest[ibx+iby*nSubPixels]<tot_eta*0.5) {
etah[ii]=1;
nbad++;
} else if(ftest[ibx+iby*nSubPixels]>tot_eta*2.){
etah[ii]=2;
nbad++;
} else
etah[ii]=0;
}
sprintf(tit,"/scratch/eta_bad_%d.tiff",ind);
WriteToTiff(etah, tit, etabins, etabins);
// cout << "Index: " << ind << "\t Bad bins: "<< nbad << endl;
//int ibx=0, iby=0;
delete [] ftest;
delete [] etah;
}
protected:
#ifdef MYROOT1
TH2D *heta;
TH2D *hhx;
TH2D *hhy;
#endif
#ifndef MYROOT1
double calcDiff(double avg, float *hx, float *hy) {
//double p_tot=0;
double diff=0, d;
double bsize=1./nSubPixels;
int nbad=0;
double p_tot_x[nSubPixels], p_tot_y[nSubPixels], p_tot[nSubPixels*nSubPixels];
double maxdiff=0, mindiff=avg*nSubPixels*nSubPixels;
int ipx, ipy;
for (ipy=0; ipy<nSubPixels; ipy++) {
for (ipx=0; ipx<nSubPixels; ipx++) {
p_tot[ipx+ipy*nSubPixels]=0;
}
p_tot_y[ipy]=0;
p_tot_x[ipy]=0;
}
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
ipx=hx[ibx+iby*nbeta]*nSubPixels;
if (ipx<0) ipx=0;
if (ipx>=nSubPixels) ipx=nSubPixels-1;
ipy=hy[ibx+iby*nbeta]*nSubPixels;
if (ipy<0) ipy=0;
if (ipy>=nSubPixels) ipy=nSubPixels-1;
p_tot[ipx+ipy*nSubPixels]+=heta[ibx+iby*nbeta];
p_tot_y[ipy]+=heta[ibx+iby*nbeta];
p_tot_x[ipx]+=heta[ibx+iby*nbeta];
}
}
// cout << endl << endl;
for (ipy=0; ipy<nSubPixels; ipy++) {
cout.width(5);
//flat_y[ipy]=p_tot_y[ipy];//avg/nSubPixels;
for (ipx=0; ipx<nSubPixels; ipx++) {
// flat_x[ipx]=p_tot_x[ipx];///avg/nSubPixels;
flat[ipx+nSubPixels*ipy]=p_tot[ipx+nSubPixels*ipy];///avg;
d=p_tot[ipx+nSubPixels*ipy]-avg;
if (d<0) d*=-1.;
if (d>5*sqrt(avg) )
nbad++;
diff+=d*d;
if (d<mindiff) mindiff=d;
if (d>maxdiff) maxdiff=d;
// cout << setprecision(4) << p_tot[ipx+nSubPixels*ipy] << " ";
}
/* cout << "** " << setprecision(4) << flat_y[ipy]; */
//cout << "\n";
}
/* cout << "**" << endl; cout.width(5); */
/* for (ipx=0; ipx<nSubPixels; ipx++) { */
/* cout << setprecision(4) << flat_x[ipx] << " "; */
/* } */
//cout << "**" << endl; cout.width(5);
//cout << "Min diff: " << mindiff/sqrt(avg) << " Max diff: " << maxdiff/sqrt(avg) << " Nbad: " << nbad << endl;
// cout << "Bad pixels: " << 100.*(float)nbad/((float)(nSubPixels*nSubPixels)) << " %" << endl;
return sqrt(diff);
}
int *heta;
float *hhx;
float *hhy;
#endif
int nbeta;
double etamin, etamax, etastep;
double rangeMin, rangeMax;
double *flat;
int *hintcorr;
};

View File

@ -0,0 +1,263 @@
#ifndef ETA_INTERPOLATION_CLEVER_ADAPTIVEBINS_H
#define ETA_INTERPOLATION_CLEVER_ADAPTIVEBINS_H
#include <cmath>
#include "tiffIO.h"
//#include "etaInterpolationBase.h"
#include "etaInterpolationAdaptiveBins.h"
//#define HSIZE 1
class etaInterpolationCleverAdaptiveBins : public etaInterpolationAdaptiveBins {
private:
// double *gradientX, *gradientY, *gradientXY;
virtual void iterate(float *newhhx, float *newhhy) {
double bsize=1./nSubPixels;
/* double hy[nSubPixels*HSIZE][nbeta]; //profile y */
/* double hx[nSubPixels*HSIZE][nbeta]; //profile x */
// double hix[nSubPixels*HSIZE][nbeta]; //integral of projection x
// double hiy[nSubPixels*HSIZE][nbeta]; //integral of projection y
int ipy, ipx, ippx, ippy;
// double tot_eta_x[nSubPixels*HSIZE];
//double tot_eta_y[nSubPixels*HSIZE];
double mean=0;
double maxflat=0, minflat=0, maxgradX=0, mingradX=0, maxgradY=0, mingradY=0, maxgr=0, mingr=0;
int ix_maxflat, iy_maxflat, ix_minflat, iy_minflat, ix_maxgrX, iy_maxgrX, ix_mingrX, iy_mingrX,ix_maxgrY, iy_maxgrY, ix_mingrY, iy_mingrY, ix_mingr, iy_mingr, ix_maxgr, iy_maxgr;
int maskMin[nSubPixels*nSubPixels], maskMax[nSubPixels*nSubPixels];
//for (int ipy=0; ipy<nSubPixels; ipy++) {
for (ipy=0; ipy<nSubPixels; ipy++) {
for (ipx=0; ipx<nSubPixels; ipx++) {
// cout << ipx << " " << ipy << endl;
mean+=flat[ipx+nSubPixels*ipy]/((double)(nSubPixels*nSubPixels));
}
}
// cout << "Mean is " << mean << endl;
/*** Find local minima and maxima within the staistical uncertainty **/
for (ipy=0; ipy<nSubPixels; ipy++) {
for (ipx=0; ipx<nSubPixels; ipx++) {
if (flat[ipx+nSubPixels*ipy]<mean-3.*sqrt(mean))maskMin[ipx+nSubPixels*ipy]=1; else maskMin[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>mean+3.*sqrt(mean)) maskMax[ipx+nSubPixels*ipy]=1; else maskMax[ipx+nSubPixels*ipy]=0;
if (ipx>0 && ipy>0) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx-1+nSubPixels*(ipy-1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx-1+nSubPixels*(ipy-1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipx>0 && ipy<nSubPixels-1) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx-1+nSubPixels*(ipy+1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx-1+nSubPixels*(ipy+1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipy>0 && ipx<nSubPixels-1) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+1+nSubPixels*(ipy-1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+1+nSubPixels*(ipy-1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipy<nSubPixels-1 && ipx<nSubPixels-1) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+1+nSubPixels*(ipy+1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+1+nSubPixels*(ipy+1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipy<nSubPixels-1 ) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+nSubPixels*(ipy+1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+nSubPixels*(ipy+1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipx<nSubPixels-1) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+1+nSubPixels*(ipy)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+1+nSubPixels*(ipy)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipy>0 ) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+nSubPixels*(ipy-1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+nSubPixels*(ipy-1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipx>0 ) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx-1+nSubPixels*(ipy)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx-1+nSubPixels*(ipy)]) maskMin[ipx+nSubPixels*ipy]=0;
}
// if (maskMin[ipx+nSubPixels*ipy]) cout << ipx << " " << ipy << " is a local minimum " << flat[ipx+nSubPixels*ipy] << endl;
// if (maskMax[ipx+nSubPixels*ipy]) cout << ipx << " " << ipy << " is a local maximum "<< flat[ipx+nSubPixels*ipy] << endl;
}
}
int is_a_border=0;
//initialize the new partition to the previous one
// int ibx_p, iby_p, ibx_n, iby_n;
int ibbx, ibby;
memcpy(newhhx,hhx,nbeta*nbeta*sizeof(float));
memcpy(newhhy,hhy,nbeta*nbeta*sizeof(float));
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
ippy=hhy[ibx+iby*nbeta]*nSubPixels;
ippx=hhx[ibx+iby*nbeta]*nSubPixels;
is_a_border=0;
if (maskMin[ippx+nSubPixels*ippy] || maskMax[ippx+nSubPixels*ippy]) {
for (int ix=-1; ix<2; ix++) {
ibbx=ibx+ix;
if (ibbx<0) ibbx=0;
if (ibbx>nbeta-1) ibbx=nbeta-1;
for (int iy=-1; iy<2; iy++) {
ibby=iby+iy;
if (ibby<0) ibby=0;
if (ibby>nbeta-1) ibby=nbeta-1;
ipy=hhy[ibbx+ibby*nbeta]*nSubPixels;
ipx=hhx[ibbx+ibby*nbeta]*nSubPixels;
if (ipx!=ippx || ipy!=ippy) {
is_a_border=1;
if (maskMin[ippx+nSubPixels*ippy]) {
//increase the region
newhhx[ibbx+ibby*nbeta]=((double)ippx+0.5)/((double)nSubPixels);
newhhy[ibbx+ibby*nbeta]=((double)ippy+0.5)/((double)nSubPixels);
}
if (maskMax[ippx+nSubPixels*ippy]) {
//reduce the region
newhhx[ibx+iby*nbeta]=((double)ipx+0.5)/((double)nSubPixels);
newhhy[ibx+iby*nbeta]=((double)ipy+0.5)/((double)nSubPixels);
}
// cout << ippx << " " << ippy << " " << ibx << " " << iby << " * " << ipx << " " << ipy << " " << ibbx << " " << ibby << endl;
}
}
}
}
}
}
//Check that the resulting histograms are monotonic and they don't have holes!
for (int ibx=0; ibx<nbeta-1; ibx++) {
for (int iby=0; iby<nbeta-1; iby++) {
ippy=newhhy[ibx+iby*nbeta]*nSubPixels;
ippx=newhhx[ibx+iby*nbeta]*nSubPixels;
ipy=newhhy[ibx+(iby+1)*nbeta]*nSubPixels;
ipx=newhhx[ibx+1+iby*nbeta]*nSubPixels;
if ( ippx>ipx)
newhhx[ibx+1+iby*nbeta]=newhhx[ibx+iby*nbeta];
else if (ipx >ippx+1)
newhhx[ibx+1+iby*nbeta]=((double)(ippx+1+0.5))/((double)nSubPixels);
if ( ippy>ipy)
newhhy[ibx+(iby+1)*nbeta]=newhhy[ibx+iby*nbeta];
else if (ipy >ippy+1)
newhhy[ibx+(iby+1)*nbeta]=((double)(ippy+1+0.5))/((double)nSubPixels);
}
}
}
public:
etaInterpolationCleverAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationAdaptiveBins(nx,ny,ns, nb, emin,emax){
};
etaInterpolationCleverAdaptiveBins(etaInterpolationCleverAdaptiveBins *orig): etaInterpolationAdaptiveBins(orig){};
virtual etaInterpolationCleverAdaptiveBins* Clone()=0;
/* return new etaInterpolationCleverAdaptiveBins(this); */
/* }; */
};
class eta2InterpolationCleverAdaptiveBins : public virtual eta2InterpolationBase, public virtual etaInterpolationCleverAdaptiveBins {
public:
eta2InterpolationCleverAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta2InterpolationBase(nx,ny,ns, nb, emin,emax),etaInterpolationCleverAdaptiveBins(nx,ny,ns, nb, emin,emax){
};
eta2InterpolationCleverAdaptiveBins(eta2InterpolationCleverAdaptiveBins *orig): etaInterpolationBase(orig), etaInterpolationCleverAdaptiveBins(orig) {};
virtual eta2InterpolationCleverAdaptiveBins* Clone() { return new eta2InterpolationCleverAdaptiveBins(this);};
// virtual int *getInterpolatedImage(){return eta2InterpolationBase::getInterpolatedImage();};
/* virtual int *getInterpolatedImage(){ */
/* int ipx, ipy; */
/* cout << "ff" << endl; */
/* calcDiff(1, hhx, hhy); //get flat */
/* double avg=0; */
/* for (ipx=0; ipx<nSubPixels; ipx++) */
/* for (ipy=0; ipy<nSubPixels; ipy++) */
/* avg+=flat[ipx+ipy*nSubPixels]; */
/* avg/=nSubPixels*nSubPixels; */
/* for (int ibx=0 ; ibx<nSubPixels*nPixelsX; ibx++) { */
/* ipx=ibx%nSubPixels-nSubPixels; */
/* if (ipx<0) ipx=nSubPixels+ipx; */
/* for (int iby=0 ; iby<nSubPixels*nPixelsY; iby++) { */
/* ipy=iby%nSubPixels-nSubPixels; */
/* if (ipy<0) ipy=nSubPixels+ipy; */
/* if (flat[ipx+ipy*nSubPixels]>0) */
/* hintcorr[ibx+iby*nSubPixels*nPixelsX]=hint[ibx+iby*nSubPixels*nPixelsX]*(avg/flat[ipx+ipy*nSubPixels]); */
/* else */
/* hintcorr[ibx+iby*nSubPixels*nPixelsX]=hint[ibx+iby*nSubPixels*nPixelsX]; */
/* } */
/* } */
/* return hintcorr; */
/* }; */
};
class eta3InterpolationCleverAdaptiveBins : public virtual eta3InterpolationBase, public virtual etaInterpolationCleverAdaptiveBins {
public:
eta3InterpolationCleverAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta3InterpolationBase(nx,ny,ns, nb, emin,emax), etaInterpolationCleverAdaptiveBins(nx,ny,ns, nb, emin,emax){
};
eta3InterpolationCleverAdaptiveBins(eta3InterpolationCleverAdaptiveBins *orig): etaInterpolationBase(orig), etaInterpolationCleverAdaptiveBins(orig) {};
virtual eta3InterpolationCleverAdaptiveBins* Clone() { return new eta3InterpolationCleverAdaptiveBins(this);};
};
#endif

View File

@ -51,16 +51,26 @@ class etaInterpolationPosXY : public virtual etaInterpolationBase{
double hix[nbeta]; //integral of projection x
double hiy[nbeta]; //integral of projection y
int ii=0;
double etax, etay;
for (int ib=0; ib<nbeta; ib++) {
tot_eta_x=0;
tot_eta_y=0;
for (int iby=0; iby<nbeta; iby++) {
hx[iby]=heta[iby+ib*nbeta];
tot_eta_x+=hx[iby];
hy[iby]=heta[ib+iby*nbeta];
tot_eta_y+=hy[iby];
etax=etamin+iby*etastep;
//cout << etax << endl;
if (etax>=0 && etax<=1)
hx[iby]=heta[iby+ib*nbeta];
else {
hx[iby]=0;
}
// tot_eta_x+=hx[iby];
if (etax>=0 && etax<=1)
hy[iby]=heta[ib+iby*nbeta];
else
hy[iby]=0;
// tot_eta_y+=hy[iby];
}
hix[0]=hx[0];
@ -72,22 +82,17 @@ class etaInterpolationPosXY : public virtual etaInterpolationBase{
}
ii=0;
tot_eta_x=hix[nbeta-1]+1;
tot_eta_y=hiy[nbeta-1]+1;
for (int ibx=0; ibx<nbeta; ibx++) {
if (tot_eta_x==0) {
hhx[ibx+ib*nbeta]=((float)ibx)/((float)nbeta);
ii=(ibx)/nbeta;
if (tot_eta_x<=0) {
hhx[ibx+ib*nbeta]=-1;
//ii=(ibx)/nbeta;
} else //if (hix[ibx]>(ii+1)*tot_eta_x*bsize)
{
//ii++;
// cout << ib << " x " << ibx << " " << tot_eta_x << " " << (ii)*tot_eta_x*bsize << " " << ii << endl;
// }
#ifdef MYROOT1
hhx->SetBinContent(ibx+1,ib+1,ii);
#endif
#ifndef MYROOT1
hhx[ibx+ib*nbeta]=hix[ibx]/((float)tot_eta_x);//ii;
#endif
//if (hix[ibx]>tot_eta_x*(ii+1)/nSubPixels) ii++;
hhx[ibx+ib*nbeta]=hix[ibx]/tot_eta_x;
}
}
/* if (ii!=(nSubPixels-1)) */
@ -96,53 +101,55 @@ class etaInterpolationPosXY : public virtual etaInterpolationBase{
ii=0;
for (int ibx=0; ibx<nbeta; ibx++) {
if (tot_eta_y==0) {
hhx[ibx+ib*nbeta]=((float)ibx)/((float)nbeta);
ii=(ibx*nSubPixels)/nbeta;
} else //if (hiy[ibx]>(ii+1)*tot_eta_y*bsize)
{
//ii++;
//cout << ib << " y " << ibx << " " << tot_eta_y << " "<< (ii)*tot_eta_y*bsize << " " << ii << endl;
//}
#ifdef MYROOT1
hhy->SetBinContent(ib+1,ibx+1,ii);
#endif
#ifndef MYROOT1
hhy[ib+ibx*nbeta]=hiy[ibx]/((float)tot_eta_y);//ii;
#endif
}
if (tot_eta_y<=0) {
hhy[ib+ibx*nbeta]=-1;
//ii=(ibx*nSubPixels)/nbeta;
} else {
//if (hiy[ibx]>tot_eta_y*(ii+1)/nSubPixels) ii++;
hhy[ib+ibx*nbeta]=hiy[ibx]/tot_eta_y;
}
}
/* if (ii!=(nSubPixels-1)) */
/* cout << ib << " y " << tot_eta_y << " " << (ii+1)*tot_eta_y*bsize << " " << ii << " " << hiy[nbeta-1]<< endl; */
// cout << "y " << nbeta << " " << (ii+1)*tot_eta_x*bsize << " " << ii << endl;
}
int ibx, iby, ib;
iby=0;
while (hhx[iby*nbeta+nbeta/2]<0) iby++;
for (ib=0; ib<iby;ib++) {
for (ibx=0; ibx<nbeta;ibx++)
hhx[ibx+nbeta*ib]=hhx[ibx+nbeta*iby];
}
iby=nbeta-1;
while (hhx[iby*nbeta+nbeta/2]<0) iby--;
for (ib=iby+1; ib<nbeta;ib++) {
for (ibx=0; ibx<nbeta;ibx++)
hhx[ibx+nbeta*ib]=hhx[ibx+nbeta*iby];
}
iby=0;
while (hhy[nbeta/2*nbeta+iby]<0) iby++;
for (ib=0; ib<iby;ib++) {
for (ibx=0; ibx<nbeta;ibx++)
hhy[ib+nbeta*ibx]=hhy[iby+nbeta*ibx];
}
iby=nbeta-1;
while (hhy[nbeta/2*nbeta+iby]<0) iby--;
for (ib=iby+1; ib<nbeta;ib++) {
for (ibx=0; ibx<nbeta;ibx++)
hhy[ib+nbeta*ibx]=hhy[iby+nbeta*ibx];
}
#ifdef SAVE_ALL
char tit[10000];
float *etah=new float[nbeta*nbeta];
int etabins=nbeta;
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=hhx[ii];
}
sprintf(tit,"/scratch/eta_hhx_%d.tiff",id);
WriteToTiff(etah, tit, etabins, etabins);
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=hhy[ii];
}
sprintf(tit,"/scratch/eta_hhy_%d.tiff",id);
WriteToTiff(etah, tit, etabins, etabins);
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=heta[ii];
}
sprintf(tit,"/scratch/eta_%d.tiff",id);
WriteToTiff(etah, tit, etabins, etabins);
delete [] etah;
debugSaveAll();
#endif
return ;
}
@ -154,11 +161,15 @@ class eta2InterpolationPosXY : public virtual eta2InterpolationBase, public virt
eta2InterpolationPosXY(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta2InterpolationBase(nx,ny,ns, nb, emin,emax),etaInterpolationPosXY(nx,ny,ns, nb, emin,emax){
// cout << "e2pxy " << nb << " " << emin << " " << emax << endl;
};
eta2InterpolationPosXY(eta2InterpolationPosXY *orig): etaInterpolationBase(orig), etaInterpolationPosXY(orig) {};
virtual eta2InterpolationPosXY* Clone() { return new eta2InterpolationPosXY(this);};
};
class eta3InterpolationPosXY : public virtual eta3InterpolationBase, public virtual etaInterpolationPosXY {
public:
eta3InterpolationPosXY(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta3InterpolationBase(nx,ny,ns, nb, emin,emax), etaInterpolationPosXY(nx,ny,ns, nb, emin,emax){

View File

@ -93,7 +93,7 @@ class noInterpolation : public slsInterpolation{
virtual int addToFlatField(double totquad,int quad,int *cl,double &etax, double &etay){return 0;};
virtual void resetFlatField(){};
protected:
;
// TRandom *eventGenerator;

View File

@ -1,12 +1,6 @@
#ifndef SLS_INTERPOLATION_H
#define SLS_INTERPOLATION_H
#ifdef MYROOT1
#include <TObject.h>
#include <TTree.h>
#include <TH2F.h>
#endif
#include <cstdlib>
#ifndef MY_TIFF_IO_H
#include "tiffIO.h"
@ -37,13 +31,7 @@ class slsInterpolation
public:
slsInterpolation(int nx=400, int ny=400, int ns=25) :nPixelsX(nx), nPixelsY(ny), nSubPixels(ns), id(0) {
#ifdef MYROOT1
hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
#endif
#ifndef MYROOT1
hint=new int[ns*nx*ns*ny];
#endif
};
@ -51,23 +39,30 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
nPixelsX=orig->nPixelsX;
nPixelsY=orig->nPixelsY;
nSubPixels=orig->nSubPixels;
#ifdef MYROOT1
hint=(TH2F*)(orig->hint)->Clone("hint");
#endif
#ifndef MYROOT1
hint=new int[nSubPixels*nPixelsX*nSubPixels*nPixelsY];
memcpy(hint, orig->hint,nSubPixels*nPixelsX*nSubPixels*nPixelsY*sizeof(int));
#endif
hint=new int[nSubPixels*nPixelsX*nSubPixels*nPixelsY];
memcpy(hint, orig->hint,nSubPixels*nPixelsX*nSubPixels*nPixelsY*sizeof(int));
};
virtual int setId(int i) {id=i; return id;};
virtual slsInterpolation* Clone() = 0;
virtual slsInterpolation* Clone() =0; /*{
return new slsInterpolation(this);
}*/
int getNSubPixels() {return nSubPixels;};
int setNSubPixels(int ns) {
if (ns>0 && ns!=nSubPixels) {
delete [] hint;
nSubPixels=ns;
hint=new int[nSubPixels*nPixelsX*nSubPixels*nPixelsY];
}
return nSubPixels;
}
int getImageSize(int &nnx, int &nny, int &ns) {
nnx=nSubPixels*nPixelsX;
nny=nSubPixels*nPixelsY;
@ -82,11 +77,6 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
//create interpolated image
//returns interpolated image
#ifdef MYROOT1
virtual TH2F *getInterpolatedImage(){return hint;};
#endif
#ifndef MYROOT1
virtual int *getInterpolatedImage(){
// cout << "return interpolated image " << endl;
/* for (int i=0; i<nSubPixels* nSubPixels* nPixelsX*nPixelsY; i++) { */
@ -94,7 +84,6 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
/* } */
return hint;
};
#endif
@ -102,11 +91,12 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
void *writeInterpolatedImage(const char * imgname) {
//cout << "!" <<endl;
float *gm=NULL;
int *dummy=getInterpolatedImage();
gm=new float[ nSubPixels* nSubPixels* nPixelsX*nPixelsY];
if (gm) {
for (int ix=0; ix<nPixelsX*nSubPixels; ix++) {
for (int iy=0; iy<nPixelsY*nSubPixels; iy++) {
gm[iy*nPixelsX*nSubPixels+ix]=hint[iy*nPixelsX*nSubPixels+ix];
gm[iy*nPixelsX*nSubPixels+ix]=dummy[iy*nPixelsX*nSubPixels+ix];
}
}
WriteToTiff(gm, imgname,nSubPixels* nPixelsX ,nSubPixels* nPixelsY);
@ -130,16 +120,11 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
virtual void clearInterpolatedImage() {
#ifdef MYROOT1
hint->Reset();
#endif
#ifndef MYROOT1
for (int ix=0; ix<nPixelsX*nSubPixels; ix++) {
for (int iy=0; iy<nPixelsY*nSubPixels; iy++) {
hint[iy*nPixelsX*nSubPixels+ix]=0;
}
}
#endif
};
@ -147,11 +132,6 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
#ifdef MYROOT1
TH2F *addToImage(double int_x, double int_y){hint->Fill(int_x, int_y); return hint;};
#endif
#ifndef MYROOT1
virtual int *addToImage(double int_x, double int_y){
int iy=((double)nSubPixels)*int_y;
int ix=((double)nSubPixels)*int_x;
@ -164,7 +144,6 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
return hint;
};
#endif
virtual int addToFlatField(double *cluster, double &etax, double &etay)=0;
@ -173,19 +152,13 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
virtual int addToFlatField(double totquad,int quad,double *cluster,double &etax, double &etay)=0;
virtual int addToFlatField(double etax, double etay)=0;
#ifdef MYROOT1
virtual TH2D *getFlatField(){return NULL;};
virtual TH2D *setFlatField(TH2D *h, int nb=-1, double emin=-1, double emax=-1){return NULL;};
virtual TH2D *getFlatField(int &nb, double &emin, double &emax){nb=0; emin=0; emax=0; return getFlatField();};
#endif
#ifndef MYROOT1
virtual int *getFlatField(){return NULL;};
virtual int *setFlatField(int *h, int nb=-1, double emin=-1, double emax=-1){return NULL;};
void *writeFlatField(const char * imgname){return NULL;};
void *readFlatField(const char * imgname, int nb=-1, double emin=1, double emax=0){return NULL;};
virtual void *writeFlatField(const char * imgname){return NULL;};
virtual void *readFlatField(const char * imgname, int nb=-1, double emin=1, double emax=0){return NULL;};
virtual int *getFlatField(int &nb, double &emin, double &emax){nb=0; emin=0; emax=0; return getFlatField();};
#endif
virtual void resetFlatField()=0;
//virtual void Streamer(TBuffer &b);
@ -201,10 +174,10 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
static int calcQuad(double *cl, double &sum, double &totquad, double sDum[2][2]){
int corner = UNDEFINED_QUADRANT;
double *cluster[3];
cluster[0]=cl;
cluster[1]=cl+3;
cluster[2]=cl+6;
/* double *cluster[3]; */
/* cluster[0]=cl; */
/* cluster[1]=cl+3; */
/* cluster[2]=cl+6; */
sum=0;
double sumBL=0;
@ -214,11 +187,11 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
int xoff=0, yoff=0;
for (int ix=0; ix<3; ix++) {
for (int iy=0; iy<3; iy++) {
sum+=cluster[iy][ix];
if (ix<=1 && iy<=1) sumBL+=cluster[iy][ix];
if (ix<=1 && iy>=1) sumTL+=cluster[iy][ix];
if (ix>=1 && iy<=1) sumBR+=cluster[iy][ix];
if (ix>=1 && iy>=1) sumTR+=cluster[iy][ix];
sum+=cl[ix+3*iy];
if (ix<=1 && iy<=1) sumBL+=cl[ix+iy*3];
if (ix<=1 && iy>=1) sumTL+=cl[ix+iy*3];
if (ix>=1 && iy<=1) sumBR+=cl[ix+iy*3];
if (ix>=1 && iy>=1) sumTR+=cl[ix+iy*3];
}
}
@ -226,6 +199,8 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
/* sDum[0][1] = cluster[0][1]; sDum[1][1] = cluster[1][1]; */
corner = BOTTOM_LEFT;
totquad=sumBL;
xoff=0;
yoff=0;
if(sumTL >= totquad){
@ -260,7 +235,7 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
for (int ix=0; ix<2; ix++) {
for (int iy=0; iy<2; iy++) {
sDum[iy][ix] = cluster[iy+yoff][ix+xoff];
sDum[iy][ix] = cl[ix+xoff+(iy+yoff)*3];
}
}
@ -382,7 +357,7 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
// int quad;
for (int ix=0; ix<3; ix++) {
for (int iy=0; iy<3; iy++) {
val=cl[iy+3*ix];
val=cl[ix+3*iy];
sum+=val;
if (iy==0) l+=val;
if (iy==2) r+=val;
@ -426,92 +401,92 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
}
static int calcMyEta(double totquad, int quad, double *cl, double &etax, double &etay) {
double l,r,t,b, sum;
int yoff;
switch (quad) {
case BOTTOM_LEFT:
case BOTTOM_RIGHT:
yoff=0;
break;
case TOP_LEFT:
case TOP_RIGHT:
yoff=1;
break;
default:
;
}
l=cl[0+yoff*3]+cl[0+yoff*3+3];
r=cl[2+yoff*3]+cl[2+yoff*3+3];
b=cl[0+yoff*3]+cl[1+yoff*3]*cl[2+yoff*3];
t=cl[0+yoff*3+3]+cl[1+yoff*3+3]*cl[0+yoff*3+3];
sum=t+b;
if (sum>0) {
etax=(-l+r)/sum;
etay=(+t)/sum;
}
/* static int calcMyEta(double totquad, int quad, double *cl, double &etax, double &etay) { */
/* double l,r,t,b, sum; */
/* int yoff; */
/* switch (quad) { */
/* case BOTTOM_LEFT: */
/* case BOTTOM_RIGHT: */
/* yoff=0; */
/* break; */
/* case TOP_LEFT: */
/* case TOP_RIGHT: */
/* yoff=1; */
/* break; */
/* default: */
/* ; */
/* } */
/* l=cl[0+yoff*3]+cl[0+yoff*3+3]; */
/* r=cl[2+yoff*3]+cl[2+yoff*3+3]; */
/* b=cl[0+yoff*3]+cl[1+yoff*3]*cl[2+yoff*3]; */
/* t=cl[0+yoff*3+3]+cl[1+yoff*3+3]*cl[0+yoff*3+3]; */
/* sum=t+b; */
/* if (sum>0) { */
/* etax=(-l+r)/sum; */
/* etay=(+t)/sum; */
/* } */
return -1;
}
/* return -1; */
/* } */
static int calcMyEta(double totquad, int quad, int *cl, double &etax, double &etay) {
double l,r,t,b, sum;
int yoff;
switch (quad) {
case BOTTOM_LEFT:
case BOTTOM_RIGHT:
yoff=0;
break;
case TOP_LEFT:
case TOP_RIGHT:
yoff=1;
break;
default:
;
}
l=cl[0+yoff*3]+cl[0+yoff*3+3];
r=cl[2+yoff*3]+cl[2+yoff*3+3];
b=cl[0+yoff*3]+cl[1+yoff*3]*cl[2+yoff*3];
t=cl[0+yoff*3+3]+cl[1+yoff*3+3]*cl[0+yoff*3+3];
sum=t+b;
if (sum>0) {
etax=(-l+r)/sum;
etay=(+t)/sum;
}
/* static int calcMyEta(double totquad, int quad, int *cl, double &etax, double &etay) { */
/* double l,r,t,b, sum; */
/* int yoff; */
/* switch (quad) { */
/* case BOTTOM_LEFT: */
/* case BOTTOM_RIGHT: */
/* yoff=0; */
/* break; */
/* case TOP_LEFT: */
/* case TOP_RIGHT: */
/* yoff=1; */
/* break; */
/* default: */
/* ; */
/* } */
/* l=cl[0+yoff*3]+cl[0+yoff*3+3]; */
/* r=cl[2+yoff*3]+cl[2+yoff*3+3]; */
/* b=cl[0+yoff*3]+cl[1+yoff*3]*cl[2+yoff*3]; */
/* t=cl[0+yoff*3+3]+cl[1+yoff*3+3]*cl[0+yoff*3+3]; */
/* sum=t+b; */
/* if (sum>0) { */
/* etax=(-l+r)/sum; */
/* etay=(+t)/sum; */
/* } */
return -1;
}
/* return -1; */
/* } */
static int calcEta3X(double *cl, double &etax, double &etay, double &sum) {
double l,r,t,b;
sum=cl[0]+cl[1]+cl[2]+cl[3]+cl[4]+cl[5]+cl[6]+cl[7]+cl[8];
if (sum>0) {
l=cl[3];
r=cl[5];
b=cl[1];
t=cl[7];
etax=(-l+r)/sum;
etay=(-b+t)/sum;
}
return -1;
}
/* static int calcEta3X(double *cl, double &etax, double &etay, double &sum) { */
/* double l,r,t,b; */
/* sum=cl[0]+cl[1]+cl[2]+cl[3]+cl[4]+cl[5]+cl[6]+cl[7]+cl[8]; */
/* if (sum>0) { */
/* l=cl[3]; */
/* r=cl[5]; */
/* b=cl[1]; */
/* t=cl[7]; */
/* etax=(-l+r)/sum; */
/* etay=(-b+t)/sum; */
/* } */
/* return -1; */
/* } */
static int calcEta3X(int *cl, double &etax, double &etay, double &sum) {
double l,r,t,b;
sum=cl[0]+cl[1]+cl[2]+cl[3]+cl[4]+cl[5]+cl[6]+cl[7]+cl[8];
if (sum>0) {
l=cl[3];
r=cl[5];
b=cl[1];
t=cl[7];
etax=(-l+r)/sum;
etay=(-b+t)/sum;
}
return -1;
}
/* static int calcEta3X(int *cl, double &etax, double &etay, double &sum) { */
/* double l,r,t,b; */
/* sum=cl[0]+cl[1]+cl[2]+cl[3]+cl[4]+cl[5]+cl[6]+cl[7]+cl[8]; */
/* if (sum>0) { */
/* l=cl[3]; */
/* r=cl[5]; */
/* b=cl[1]; */
/* t=cl[7]; */
/* etax=(-l+r)/sum; */
/* etay=(-b+t)/sum; */
/* } */
/* return -1; */
/* } */
@ -521,14 +496,8 @@ hint=new TH2F("hint","hint",ns*nx, 0, nx, ns*ny, 0, ny);
protected:
int nPixelsX, nPixelsY;
int nSubPixels;
#ifdef MYROOT1
TH2F *hint;
#endif
#ifndef MYROOT1
int *hint;
#endif
int id;
int *hint;
};
#endif

View File

@ -0,0 +1,34 @@
#module add CBFlib/0.9.5
INCDIR=-I. -I../ -I../interpolations -I../interpolations/etaVEL -I../dataStructures -I../../slsReceiverSoftware/include
LDFLAG= ../tiffIO.cpp -L/usr/lib64/ -lpthread -lm -lstdc++ -pthread -lrt -ltiff -O3
MAIN=moench03ClusterFinder.cpp
all: moenchClusterFinder moenchMakeEta moenchInterpolation moenchNoInterpolation moenchPhotonCounter moenchAnalog
moenchClusterFinder: moench03ClusterFinder.cpp $(INCS) clean
g++ -o moenchClusterFinder moench03ClusterFinder.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DSAVE_ALL -DNEWRECEIVER
moenchMakeEta: moench03Interpolation.cpp $(INCS) clean
g++ -o moenchMakeEta moench03Interpolation.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DFF
moenchInterpolation: moench03Interpolation.cpp $(INCS) clean
g++ -o moenchInterpolation moench03Interpolation.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF)
moenchNoInterpolation: moench03NoInterpolation.cpp $(INCS) clean
g++ -o moenchNoInterpolation moench03NoInterpolation.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF)
moenchPhotonCounter: moenchPhotonCounter.cpp $(INCS) clean
g++ -o moenchPhotonCounter moenchPhotonCounter.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DNEWRECEIVER
moenchAnalog: moenchPhotonCounter.cpp $(INCS) clean
g++ -o moenchAnalog moenchPhotonCounter.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DNEWRECEIVER -DANALOG
clean:
rm -f moenchClusterFinder moenchMakeEta moenchInterpolation moenchNoInterpolation moenchPhotonCounter moenchAnalog

View File

@ -5,13 +5,17 @@ LIBRARYCBF=$(CBFLIBDIR)/lib/*.o
INCDIR=-I../../slsReceiverSoftware/include -I$(CBFLIBDIR)/include/ -I. -I../dataStructures ../tiffIO.cpp -I../ -I../interpolations/
LIBHDF5=
#-I../interpolations/etaVEL
LDFLAG= -L/usr/lib64/ -lpthread -lm -lstdc++ -L. -lzmq -pthread -lrt -lhdf5 -ltiff -L$(ZMQLIB) -L$(CBFLIBDIR)/lib/
LDFLAG= -L/usr/lib64/ -lpthread -lm -lstdc++ -L. -lzmq -pthread -lrt -lhdf5 -ltiff -L$(ZMQLIB) -L$(CBFLIBDIR)/lib/ -O3
#-L../../bin
#DESTDIR?=../bin
aaa: moenchZmqProcess
all: moenchZmqClusterFinder moenchZmqInterpolating moenchZmqAnalog
moenchZmqProcess: moenchZmqProcess.cpp $(INCS) clean
g++ -o moenchZmqProcess moenchZmqProcess.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DNEWZMQ
moenchZmqInterpolating: $(MAIN) $(INCS) clean
g++ -o moenchZmqInterpolating moenchZmqInterpolating.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DSAVE_ALL
@ -23,6 +27,6 @@ moenchZmqAnalog: $(MAIN) $(INCS) clean
g++ -o moenchZmqAnalog moenchZmqAnalog.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DSAVE_ALL
clean:
rm -f moench03ZmqInterpolating moench03ZmqClusterFinder moenchZmqAnalog
rm -f moench03ZmqInterpolating moench03ZmqClusterFinder moenchZmqAnalog moenchZmqProcess

View File

@ -0,0 +1,17 @@
ZMQLIB=../../slsReceiverSoftware/include
INCDIR= -I$(ZMQLIB) -I. -I../dataStructures ../tiffIO.cpp -I../ -I../interpolations/
LDFLAG= -L/usr/lib64/ -lpthread -lm -lstdc++ -lzmq -pthread -lrt -ltiff -L$(ZMQLIB) -O3 -g
#-L../../bin -lhdf5 -L.
#DESTDIR?=../bin
all: moenchZmqProcess
moenchZmqProcess: moenchZmqProcess.cpp clean
g++ -o moenchZmqProcess moenchZmqProcess.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DNEWZMQ -DINTERP
clean:
rm -f moenchZmqProcess

View File

@ -2,11 +2,19 @@
#include <iostream>
//#include "moench03T1ZmqData.h"
#ifdef NEWRECEIVER
#ifndef RECT
#include "moench03T1ReceiverDataNew.h"
#endif
#ifdef RECT
#include "moench03T1ReceiverDataNewRect.h"
#endif
#endif
#ifdef CSAXS_FP
#include "moench03T1ReceiverData.h"
#endif
@ -40,7 +48,7 @@ int main(int argc, char *argv[]) {
}
int p=10000;
int fifosize=1000;
int nthreads=1;
int nthreads=24;
int nsubpix=25;
int etabins=nsubpix*10;
double etamin=-1, etamax=2;
@ -58,6 +66,9 @@ int main(int argc, char *argv[]) {
#ifdef NEWRECEIVER
#ifdef RECT
cout << "Should be rectangular!" <<endl;
#endif
moench03T1ReceiverDataNew *decoder=new moench03T1ReceiverDataNew();
cout << "RECEIVER DATA WITH ONE HEADER!"<<endl;
#endif
@ -135,6 +146,7 @@ int main(int argc, char *argv[]) {
multiThreadedAnalogDetector *mt=new multiThreadedAnalogDetector(filter,nthreads,fifosize);
mt->setDetectorMode(ePhotonCounting);
mt->setFrameMode(eFrame);
mt->StartThreads();
mt->popFree(buff);

View File

@ -14,39 +14,61 @@
#include "single_photon_hit.h"
#endif
#include "etaInterpolationPosXY.h"
//#include "etaInterpolationPosXY.h"
#include "noInterpolation.h"
//#include "etaInterpolationAdaptiveBins.h"
#include "etaInterpolationCleverAdaptiveBins.h"
//#include "etaInterpolationRandomBins.h"
using namespace std;
#define NC 400
#define NR 400
#define MAX_ITERATIONS (nSubPixels*100)
#define XTALK
int main(int argc, char *argv[]) {
/**
* trial.o [socket ip] [starting port number] [outfname]
*
*/
#ifndef FF
if (argc<9) {
cout << "Wrong usage! Should be: "<< argv[0] << " infile " << " etafile outfile runmin runmax ns cmin cmax" << endl;
cout << "Wrong usage! Should be: "<< argv[0] << " infile etafile outfile runmin runmax ns cmin cmax" << endl;
return 1;
}
#endif
#ifdef FF
if (argc<7) {
cout << "Wrong usage! Should be: "<< argv[0] << " infile etafile runmin runmax cmin cmax" << endl;
return 1;
}
#endif
int iarg=4;
char infname[10000];
char fname[10000];
char outfname[10000];
int runmin=atoi(argv[4]);
int runmax=atoi(argv[5]);
int nsubpix=atoi(argv[6]);
float cmin=atof(argv[7]);
float cmax=atof(argv[8]);
#ifndef FF
iarg=4;
#endif
#ifdef FF
iarg=3;
#endif
int runmin=atoi(argv[iarg++]);
int runmax=atoi(argv[iarg++]);
cout << "Run min: " << runmin << endl;
cout << "Run max: " << runmax << endl;
int nsubpix=4;
#ifndef FF
nsubpix=atoi(argv[iarg++]);
cout << "Subpix: " << nsubpix << endl;
#endif
float cmin=atof(argv[iarg++]);
float cmax=atof(argv[iarg++]);
cout << "Energy min: " << cmin << endl;
cout << "Energy max: " << cmax << endl;
//int etabins=500;
int etabins=1000;//nsubpix*2*100;
double etamin=-1, etamax=2;
//double etamin=-0.1, etamax=1.1;
double eta3min=-2, eta3max=2;
int quad;
double sum, totquad;
@ -58,9 +80,6 @@ int main(int argc, char *argv[]) {
int ix, iy, isx, isy;
int nframes=0, lastframe=-1;
double d_x, d_y, res=5, xx, yy;
#ifdef MANYFILES
int ff=1000;
#endif
int nph=0, badph=0, totph=0;
FILE *f=NULL;
@ -72,32 +91,29 @@ int main(int argc, char *argv[]) {
single_photon_hit cl(3,3);
#endif
#ifdef XTALK
int old_val[3][3];
int new_val[3][3];
double xcorr=0.04;
// int ix=0;
int nSubPixels=nsubpix;
#ifndef NOINTERPOLATION
eta2InterpolationPosXY *interp=new eta2InterpolationPosXY(NC, NR, nsubpix, etabins, etamin, etamax);
//eta2InterpolationCleverAdaptiveBins *interp=new eta2InterpolationCleverAdaptiveBins(NC, NR, nsubpix, etabins, etamin, etamax);
#endif
#ifdef NOINTERPOLATION
noInterpolation *interp=new noInterpolation(NC, NR, nsubpix);
#endif
eta2InterpolationPosXY *interp=new eta2InterpolationPosXY(NC, NR, nsubpix, etabins, etamin, etamax);
eta3InterpolationPosXY *interp3=new eta3InterpolationPosXY(NC, NR, nsubpix, etabins, eta3min, eta3max);
noInterpolation *dummy=new noInterpolation(NC, NR, nsubpix);
noInterpolation *nointerp=new noInterpolation(NC, NR, nsubpix);
noInterpolation *mult=new noInterpolation(NC, NR, nsubpix);
//etaInterpolationAdaptiveBins *interp=new etaInterpolationAdaptiveBins (NC, NR, nsubpix, etabins, etamin, etamax);
//etaInterpolationRandomBins *interp=new etaInterpolationRandomBins (NC, NR, nsubpix, etabins, etamin, etamax);
//#ifndef FF
cout << "read ff " << argv[2] << endl;
sprintf(fname,"%s_eta2.tiff",argv[2]);
interp->readFlatField(fname);
interp->prepareInterpolation(ok);
sprintf(fname,"%s_eta3.tiff",argv[2]);
interp3->readFlatField(fname);
interp3->prepareInterpolation(ok);
//#endif
#ifndef FF
#ifndef NOINTERPOLATION
cout << "read ff " << argv[2] << endl;
sprintf(fname,"%s",argv[2]);
interp->readFlatField(fname);
interp->prepareInterpolation(ok);//, MAX_ITERATIONS);
#endif
// return 0;
#endif
#ifdef FF
cout << "Will write eta file " << argv[2] << endl;
#endif
int *img;
float *totimg=new float[NC*NR*nsubpix*nsubpix];
@ -110,20 +126,18 @@ int main(int argc, char *argv[]) {
}
}
}
#ifdef FF
float ff[nsubpix*nsubpix];
float *ffimg=new float[NC*NR*nsubpix*nsubpix];
float totff=0;
sprintf(outfname,argv[2]);
#endif
int irun;
for (irun=runmin; irun<runmax; irun++) {
sprintf(infname,argv[1],irun);
#ifndef MANYFILES
#ifndef FF
sprintf(outfname,argv[3],irun);
#endif
f=fopen(infname,"r");
if (f) {
cout << infname << endl;
@ -138,185 +152,98 @@ int main(int argc, char *argv[]) {
// f0=cl.iframe;
if (nframes==0) f0=lastframe;
nframes++;
#ifdef MANYFILES
if (nframes%ff==0) {
sprintf(outfname,argv[3],irun,nframes-ff);
cout << outfname << endl;
interp->writeInterpolatedImage(outfname);
interp->clearInterpolatedImage();
}
#endif
}
#ifdef XTALK
if ((cl.x+1)%25!=0) {
for (int ix=-1; ix<2; ix++) {
for (int iy=-1; iy<2; iy++) {
old_val[iy+1][ix+1]=cl.get_data(ix,iy);
if (ix>=0) {
new_val[iy+1][ix+1]=old_val[iy+1][ix+1]-old_val[iy+1][ix]*xcorr;
cl.set_data(new_val[iy+1][ix+1],ix,iy);
}
}
}
}
#endif
quad=interp->calcQuad(cl.get_cluster(), sum, totquad, sDum);
if (sum>cmin && totquad/sum>0.8 && totquad/sum<1.2 && totquad<cmax && quad<cmax) {
nph++;
// if (sum>200 && sum<580) {
// interp->getInterpolatedPosition(cl.x,cl.y, totquad,quad,cl.get_cluster(),int_x, int_y);
interp->getInterpolatedPosition(cl.x,cl.y, cl.get_cluster(),int_x, int_y);
//quad=interp->calcQuad(cl.get_cluster(), sum, totquad, sDum);
quad=interp->calcEta(cl.get_cluster(), etax, etay, sum, totquad, sDum);
if (sum>cmin && totquad/sum>0.8 && totquad/sum<1.2 && sum<cmax ) {
nph++;
// if (sum>200 && sum<580) {
// interp->getInterpolatedPosition(cl.x,cl.y, totquad,quad,cl.get_cluster(),int_x, int_y);
// #ifdef SOLEIL
// if (cl.x>210 && cl.x<240 && cl.y>210 && cl.y<240) {
// #endif
#ifndef FF
// interp->getInterpolatedPosition(cl.x,cl.y, cl.get_cluster(),int_x, int_y);
interp->getInterpolatedPosition(cl.x,cl.y, etax, etay, quad,int_x, int_y);
// cout <<"**************"<< endl;
// cout << cl.x << " " << cl.y << " " << sum << endl;
// cl.print();
// cout << int_x << " " << int_y << endl;
// cout <<"**************"<< endl;
// if (etax!=0 && etay!=0 && etax!=1 && etay!=1)
interp->addToImage(int_x, int_y);
interp3->getInterpolatedPosition(cl.x,cl.y, cl.get_cluster(),int3_x, int3_y);
interp3->addToImage(int3_x, int3_y);
nointerp->getInterpolatedPosition(cl.x,cl.y, cl.get_cluster(),noint_x, noint_y);
nointerp->addToImage(noint_x, noint_y);
d_x= (int_x-int3_x)*25.;
d_y= (int_y-int3_y)*25.;
dummy->calcEta(totquad, sDum, etax, etay);
xx=int_x;
yy=int_y;
if (etax<0.1 || etax>0.9) xx=int3_x;
if (etay<0.1 || etay>0.9) yy=int3_y;
dummy->addToImage(xx,yy);
if (d_x>res || d_x<-res || d_y>res || d_y<-res) {
badph++;
// cout << "delta (um): "<< d_x << " " << d_y << " " << cl.x << " " << cl.y << endl;
// cout << sum << " " << totquad << " " << etax << " "<< etay << endl;
// //cout<< int_x << " " << int_y << " " << int3_x << " " << int3_y << endl;
if (int_x<0 || int_y<0 || int_x>400 || int_y>400) {
cout <<"**************"<< endl;
cout << cl.x << " " << cl.y << " " << sum << endl;
cl.print();
cout << int_x << " " << int_y << endl;
cout <<"**************"<< endl;
}
mult->addToImage(noint_x, noint_y);
#endif
#ifdef FF
// interp->addToFlatField(cl.get_cluster(), etax, etay);
// #ifdef UCL
// if (cl.x>50)
// #endif
// if (etax!=0 && etay!=0 && etax!=1 && etay!=1)
interp->addToFlatField(etax, etay);
// if (etax==0 || etay==0) cout << cl.x << " " << cl.y << endl;
if (nph%1000000==0) cout << nph << endl;
if (nph%100000000==0) {
sprintf(outfname,"%s_inteta2.tiff", argv[3]);
#endif
// #ifdef SOLEIL
// }
// #endif
if (nph%1000000==0) cout << nph << endl;
if (nph%10000000==0) {
#ifndef FF
interp->writeInterpolatedImage(outfname);
sprintf(outfname,"%s_inteta3.tiff", argv[3]);
interp3->writeInterpolatedImage(outfname);
sprintf(outfname,"%s_mix.tiff", argv[3]);
dummy->writeInterpolatedImage(outfname);
sprintf(outfname,"%s_noint.tiff", argv[3]);
nointerp->writeInterpolatedImage(outfname);
sprintf(outfname,"%s_mult.tiff", argv[3]);
mult->writeInterpolatedImage(outfname);
}
} else {
mult->getInterpolatedPosition(cl.x,cl.y, cl.get_cluster(),int_x, int_y);
for (int imult=0; imult<2.*sum/(cmax+cmin); imult++) mult->addToImage(int_x, int_y);
}
#endif
#ifdef FF
interp->writeFlatField(outfname);
#endif
}
}
}
fclose(f);
#ifdef FF
interp->writeFlatField(outfname);
#endif
#ifndef FF
interp->writeInterpolatedImage(outfname);
img=interp->getInterpolatedImage();
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
ff[isy*nsubpix+isx]=0;
}
}
totff=0;
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR-100; iy++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
ff[isy*nsubpix+isx]+=img[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)];
}
}
}
}
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
totff+=ff[isy*nsubpix+isx];
}
}
totff/=nsubpix*nsubpix;
if (totff) {
cout << "ff: " << totff << endl;
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
ff[isy*nsubpix+isx]/=totff;
cout << ff[isy*nsubpix+isx] << "\t";
}
cout << endl;
}
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
ffimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]=img[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]/ff[isy*nsubpix+isx];
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]+=ffimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)];
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]+=img[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)];
}
}
}
}
cout << "writing eta!" << endl;
WriteToTiff(ffimg, outfname,NC*nsubpix,NR*nsubpix);
}
#endif
#ifndef FF
#ifdef MANYFILES
sprintf(outfname,argv[3],irun,nframes-ff);
cout << outfname << endl;
#endif
sprintf(outfname,"%s_inteta2.tiff", argv[3]);
interp->writeInterpolatedImage(outfname);
sprintf(outfname,"%s_inteta3.tiff", argv[3]);
interp3->writeInterpolatedImage(outfname);
sprintf(outfname,"%s_mix.tiff", argv[3]);
dummy->writeInterpolatedImage(outfname);
sprintf(outfname,"%s_mult.tiff", argv[3]);
mult->writeInterpolatedImage(outfname);
#ifndef MANYFILES
img=interp->getInterpolatedImage();
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]+=img[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)];
}
}
}
}
#endif
#endif
cout << "Read " << nframes << " frames (first frame: " << f0 << " last frame: " << lastframe << " delta:" << lastframe-f0 << ")"<<endl;
cout << "Read " << nframes << " frames (first frame: " << f0 << " last frame: " << lastframe << " delta:" << lastframe-f0 << ") nph="<< nph <<endl;
interp->clearInterpolatedImage();
interp3->clearInterpolatedImage();
dummy->clearInterpolatedImage();
mult->clearInterpolatedImage();
#endif
} else
cout << "could not open file " << infname << endl;
}
cout << irun << " " << runmax << endl;
#ifndef MANYFILES
#ifndef FF
sprintf(outfname,argv[3],11111);
WriteToTiff(totimg, outfname,NC*nsubpix,NR*nsubpix);
#endif
cout << "Filled " << nph << " (/"<< totph <<") of which " << badph << " badly interpolated " << endl;
#ifdef FF
interp->writeFlatField(outfname);
#endif
cout << "Filled " << nph << " (/"<< totph <<") " << endl;
return 0;
}

View File

@ -0,0 +1,269 @@
#include "ansi.h"
#include <iostream>
//#include "moench03T1ZmqData.h"
//#define DOUBLE_SPH
//#define MANYFILES
#ifdef DOUBLE_SPH
#include "single_photon_hit_double.h"
#endif
#ifndef DOUBLE_SPH
#include "single_photon_hit.h"
#endif
//#include "etaInterpolationPosXY.h"
#include "noInterpolation.h"
#include "etaInterpolationCleverAdaptiveBins.h"
//#include "etaInterpolationRandomBins.h"
using namespace std;
#define NC 400
#define NR 400
#define MAX_ITERATIONS (nSubPixels*100)
#define MAX_EBINS 100
#define XTALK
int main(int argc, char *argv[]) {
#ifndef FF
if (argc<9) {
cout << "Wrong usage! Should be: "<< argv[0] << " infile etafile outfile runmin runmax ns cmin cmax" << endl;
return 1;
}
#endif
#ifdef FF
if (argc<7) {
cout << "Wrong usage! Should be: "<< argv[0] << " infile etafile runmin runmax cmin cmax" << endl;
return 1;
}
#endif
int iarg=4;
char infname[10000];
char fname[10000];
char outfname[10000];
#ifndef FF
iarg=4;
#endif
#ifdef FF
iarg=3;
#endif
int runmin=atoi(argv[iarg++]);
int runmax=atoi(argv[iarg++]);
cout << "Run min: " << runmin << endl;
cout << "Run max: " << runmax << endl;
int nsubpix=4;
#ifndef FF
nsubpix=atoi(argv[iarg++]);
cout << "Subpix: " << nsubpix << endl;
#endif
float cmin=atof(argv[iarg++]);
float cmax=atof(argv[iarg++]);
cout << "Energy min: " << cmin << endl;
cout << "Energy max: " << cmax << endl;
int n_ebins=1;
if (argc>iarg)
n_ebins=atoi(argv[iarg++]);
//int etabins=500;
int etabins=1000;//nsubpix*2*100;
double etamin=-1, etamax=2;
//double etamin=-0.1, etamax=1.1;
double eta3min=-2, eta3max=2;
int quad;
double sum, totquad;
double sDum[2][2];
double etax, etay, int_x, int_y;
double eta3x, eta3y, int3_x, int3_y, noint_x, noint_y;
int ok;
int f0=-1;
int ix, iy, isx, isy;
int nframes=0, lastframe=-1;
double d_x, d_y, res=5, xx, yy;
int nph=0, badph=0, totph=0;
FILE *f=NULL;
#ifdef DOUBLE_SPH
single_photon_hit_double cl(3,3);
#endif
#ifndef DOUBLE_SPH
single_photon_hit cl(3,3);
#endif
int nSubPixels=nsubpix;
int iebin=0;
double eb_size=(cmax-cmin)/n_ebins;
#ifndef NOINTERPOLATION
// eta2InterpolationPosXY *interp[MAX_EBINS];
eta2InterpolationCleverAdaptiveBins *interp[MAX_EBINS];
for (int i=0; i< n_ebins; i++) {
//interp[i]=new eta2InterpolationPosXY(NC, NR, nsubpix, etabins, etamin, etamax);
interp[i]=new eta2InterpolationCleverAdaptiveBins(NC, NR, nsubpix, etabins, etamin, etamax);
}
#endif
#ifdef NOINTERPOLATION
noInterpolation *interp=new noInterpolation(NC, NR, nsubpix);
#endif
#ifndef FF
#ifndef NOINTERPOLATION
cout << "read ff " << argv[2] << endl;
for (int i=0; i< n_ebins; i++) {
sprintf(fname,argv[2],i);
interp[i]->readFlatField(fname);
interp[i]->prepareInterpolation(ok);//, MAX_ITERATIONS);
}
#endif
// return 0;
#endif
#ifdef FF
cout << "Will write eta file " << argv[2] << endl;
#endif
int *img;
float *totimg=new float[NC*NR*nsubpix*nsubpix];
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]=0;
}
}
}
}
#ifdef FF
sprintf(outfname,argv[2]);
#endif
int irun;
for (irun=runmin; irun<runmax; irun++) {
sprintf(infname,argv[1],irun);
#ifndef FF
sprintf(outfname,argv[3],irun);
#endif
f=fopen(infname,"r");
if (f) {
cout << infname << endl;
nframes=0;
f0=-1;
while (cl.read(f)) {
totph++;
if (lastframe!=cl.iframe) {
lastframe=cl.iframe;
// cout << cl.iframe << endl;
// f0=cl.iframe;
if (nframes==0) f0=lastframe;
nframes++;
}
//quad=interp->calcQuad(cl.get_cluster(), sum, totquad, sDum);
quad=interp[0]->calcEta(cl.get_cluster(), etax, etay, sum, totquad, sDum);
if (sum>cmin && totquad/sum>0.8 && totquad/sum<1.2 && sum<cmax ) {
nph++;
iebin=(sum-cmin)/eb_size;
if (iebin>=0 && iebin<n_ebins) {
// if (sum>200 && sum<580) {
// interp->getInterpolatedPosition(cl.x,cl.y, totquad,quad,cl.get_cluster(),int_x, int_y);
// #ifdef SOLEIL
// if (cl.x>210 && cl.x<240 && cl.y>210 && cl.y<240) {
// #endif
#ifndef FF
// interp->getInterpolatedPosition(cl.x,cl.y, cl.get_cluster(),int_x, int_y);
interp[iebin]->getInterpolatedPosition(cl.x,cl.y, etax, etay, quad,int_x, int_y);
// cout <<"**************"<< endl;
// cout << cl.x << " " << cl.y << " " << sum << endl;
// cl.print();
// cout << int_x << " " << int_y << endl;
// cout <<"**************"<< endl;
if (etax!=0 && etay!=0 && etax!=1 && etay!=1)
interp[iebin]->addToImage(int_x, int_y);
#endif
#ifdef FF
// interp->addToFlatField(cl.get_cluster(), etax, etay);
#ifdef UCL
if (cl.x>50)
#endif
if (etax!=0 && etay!=0 && etax!=1 && etay!=1)
interp[iebin]->addToFlatField(etax, etay);
// if (etax==0 || etay==0) cout << cl.x << " " << cl.y << endl;
#endif
// #ifdef SOLEIL
// }
// #endif
if (nph%1000000==0) cout << nph << endl;
if (nph%10000000==0) {
#ifndef FF
for (int i=0; i<n_ebins; i++) {
sprintf(outfname,argv[3],i);
interp[i]->writeInterpolatedImage(outfname);
}
#endif
#ifdef FF
for (int i=0; i<n_ebins; i++) {
sprintf(outfname,argv[2],i);
cout << outfname << " " << argv[2] << " " << i << endl;
interp[i]->writeFlatField(outfname);
}
#endif
}
}
}
}
fclose(f);
#ifdef FF
for (int i=0; i<n_ebins; i++) {
sprintf(outfname,argv[2],i);
cout << outfname << " " << argv[2] << " " << i << endl;
interp[i]->writeFlatField(outfname);
}
#endif
#ifndef FF
for (int i=0; i<n_ebins; i++) {
sprintf(outfname,argv[3],i,irun);
interp[i]->writeInterpolatedImage(outfname);
img=interp[i]->getInterpolatedImage();
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]+=img[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)];
}
}
}
}
//interp[i]->clearInterpolatedImage();
}
cout << "Read " << nframes << " frames (first frame: " << f0 << " last frame: " << lastframe << " delta:" << lastframe-f0 << ")"<<endl;
#endif
} else
cout << "could not open file " << infname << endl;
}
#ifndef FF
sprintf(outfname,argv[3], 11111);
WriteToTiff(totimg, outfname,NC*nsubpix,NR*nsubpix);
#endif
#ifdef FF
interp[iebin]->writeFlatField(outfname);
#endif
cout << "Filled " << nph << " (/"<< totph <<") " << endl;
return 0;
}

View File

@ -0,0 +1,242 @@
//#include "ansi.h"
#include <iostream>
//#include "moench03T1ZmqData.h"
#ifdef NEWRECEIVER
#include "moench03T1ReceiverDataNew.h"
#endif
#ifdef CSAXS_FP
#include "moench03T1ReceiverData.h"
#endif
#ifdef OLDDATA
#include "moench03Ctb10GbT1Data.h"
#endif
// #include "interpolatingDetector.h"
//#include "etaInterpolationPosXY.h"
// #include "linearInterpolation.h"
// #include "noInterpolation.h"
#include "multiThreadedAnalogDetector.h"
#include "singlePhotonDetector.h"
//#include "interpolatingDetector.h"
#include <stdio.h>
#include <map>
#include <fstream>
#include <sys/stat.h>
#include <ctime>
using namespace std;
int main(int argc, char *argv[]) {
if (argc<4) {
cout << "Usage is " << argv[0] << "indir outdir fname [pedfile] [threshold]" << endl;
return 1;
}
int p=10000;
int fifosize=1000;
int nthreads=8;
int nsubpix=25;
int etabins=nsubpix*10;
double etamin=-1, etamax=2;
int csize=3;
int nx=400, ny=400;
int save=1;
int nsigma=5;
int nped=1000;
int ndark=100;
int ok;
int iprog=0;
#ifdef NEWRECEIVER
moench03T1ReceiverDataNew *decoder=new moench03T1ReceiverDataNew();
cout << "RECEIVER DATA WITH ONE HEADER!"<<endl;
#endif
#ifdef CSAXS_FP
moench03T1ReceiverData *decoder=new moench03T1ReceiverData();
cout << "RECEIVER DATA WITH ALL HEADERS!"<<endl;
#endif
#ifdef OLDDATA
moench03Ctb10GbT1Data *decoder=new moench03Ctb10GbT1Data();
cout << "OLD RECEIVER DATA!"<<endl;
#endif
#ifndef ANALOG
//moench03T1ZmqData *decoder=new moench03T1ZmqData();
singlePhotonDetector *filter=new singlePhotonDetector(decoder,csize, nsigma, 1, 0, nped, 200);
// char tit[10000];
cout << "filter " << endl;
#endif
#ifdef ANALOG
//moench03T1ZmqData *decoder=new moench03T1ZmqData();
analogDetector<uint16_t> *filter=new analogDetector<uint16_t>(decoder, 1, 0, nped);
// char tit[10000];
cout << "filter " << endl;
#endif
// filter->readPedestals("/scratch/ped_100.tiff");
// interp->readFlatField("/scratch/eta_100.tiff",etamin,etamax);
// cout << "filter "<< endl;
int size = 327680;////atoi(argv[3]);
int* image;
//int* image =new int[327680/sizeof(int)];
filter->newDataSet();
int ff, np;
int dsize=decoder->getDataSize();
cout << " data size is " << dsize;
char data[dsize];
ifstream filebin;
char *indir=argv[1];
char *outdir=argv[2];
char *fformat=argv[3];
char *pedfile=NULL;
if (argc>=5) {
pedfile=argv[4];
}
double thr=0;
if (argc>=6) {
thr=atoi(argv[5]);
}
char fname[10000];
char imgfname[10000];
// strcpy(pedfname,argv[6]);
char fn[10000];
std::time_t end_time;
FILE *of=NULL;
cout << "input directory is " << indir << endl;
cout << "output directory is " << outdir << endl;
cout << "input file is " << fformat << endl;
if (pedfile)
cout << "pedestal file is " << pedfile << endl;
if (thr>0) {
cout << "threshold is " << thr << endl;
filter->setThreshold(thr);
}
filter->setROI(0,150,0,150);
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
char* buff;
multiThreadedAnalogDetector *mt=new multiThreadedAnalogDetector(filter,nthreads,fifosize);
mt->StartThreads();
mt->popFree(buff);
cout << "mt " << endl;
int ifr=0;
for (int irun=0; irun<2; irun++) {
if (irun>0) {
mt->setFrameMode(eFrame);
// sprintf(fn,fformat,irun);
sprintf(fname,"%s/%s.raw",indir,fformat);
// sprintf(outfname,"%s/%s.clust",outdir,fn);
sprintf(imgfname,"%s/%s.tiff",outdir,fformat);
} else {
mt->setFrameMode(ePedestal);
// sprintf(fn,fformat,irun);
sprintf(fname,"%s/%s.raw",indir,pedfile);
// sprintf(outfname,"%s/%s.clust",outdir,fn);
// sprintf(imgfname,"%s/%s.tiff",outdir,fn);
}
cout << fname << endl;
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
// cout << fname << " " << outfname << " " << imgfname << endl;
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
if (filebin.is_open()){
// of=fopen(outfname,"w");
// if (of) {
// mt->setFilePointer(of);
// // cout << "file pointer set " << endl;
// } else {
// cout << "Could not open "<< outfname << " for writing " << endl;
// mt->setFilePointer(NULL);
// return 1;
// }
// //while read frame
ff=-1;
while (decoder->readNextFrame(filebin, ff, np,buff)) {
// cout << "*"<<ifr++<<"*"<<ff<< endl;
// cout << ff << " " << np << endl;
// //push
mt->pushData(buff);
// // //pop
mt->nextThread();
// // // cout << " " << (void*)buff;
mt->popFree(buff);
ifr++;
if (ifr%10000==0) cout << ifr << " " << ff << endl;
ff=-1;
}
cout << "--" << endl;
filebin.close();
// //close file
// //join threads
while (mt->isBusy()) {;}//wait until all data are processed from the queues
// if (of)
// fclose(of);
if (irun>0) {
cout << "Writing tiff to " << imgfname << endl;
mt->writeImage(imgfname);
// mt->clearImage();
}
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
} else
cout << "Could not open "<< fname << " for reading " << endl;
}
return 0;
}

View File

@ -0,0 +1,347 @@
//#include "ansi.h"
#include <iostream>
//#include "moench03T1ZmqData.h"
#ifdef NEWRECEIVER
#ifndef RECT
#include "moench03T1ReceiverDataNew.h"
#endif
#ifdef RECT
#include "moench03T1ReceiverDataNewRect.h"
#endif
#endif
#ifdef CSAXS_FP
#include "moench03T1ReceiverData.h"
#endif
#ifdef OLDDATA
#include "moench03Ctb10GbT1Data.h"
#endif
// #include "interpolatingDetector.h"
//#include "etaInterpolationPosXY.h"
// #include "linearInterpolation.h"
// #include "noInterpolation.h"
#include "multiThreadedAnalogDetector.h"
#include "singlePhotonDetector.h"
//#include "interpolatingDetector.h"
#include <stdio.h>
#include <map>
#include <fstream>
#include <sys/stat.h>
#include <ctime>
using namespace std;
int main(int argc, char *argv[]) {
if (argc<4) {
cout << "Usage is " << argv[0] << "indir outdir fname [runmin] [runmax] [pedfile] [threshold] [nframes] [xmin xmax ymin ymax]" << endl;
cout << "threshold <0 means analog; threshold=0 means cluster finder; threshold>0 means photon counting" << endl;
cout << "nframes <0 means sum everything; nframes=0 means one file per run; nframes>0 means one file every nframes" << endl;
return 1;
}
int p=10000;
int fifosize=1000;
int nthreads=8;
int nsubpix=25;
int etabins=nsubpix*10;
double etamin=-1, etamax=2;
int csize=3;
int save=1;
int nsigma=5;
int nped=1000;
int ndark=100;
int ok;
int iprog=0;
int cf=0;
#ifdef NEWRECEIVER
#ifdef RECT
cout << "Should be rectangular!" <<endl;
#endif
moench03T1ReceiverDataNew *decoder=new moench03T1ReceiverDataNew();
cout << "RECEIVER DATA WITH ONE HEADER!"<<endl;
#endif
#ifdef CSAXS_FP
moench03T1ReceiverData *decoder=new moench03T1ReceiverData();
cout << "RECEIVER DATA WITH ALL HEADERS!"<<endl;
#endif
#ifdef OLDDATA
moench03Ctb10GbT1Data *decoder=new moench03Ctb10GbT1Data();
cout << "OLD RECEIVER DATA!"<<endl;
#endif
int nx=400, ny=400;
decoder->getDetectorSize(nx,ny);
singlePhotonDetector *filter=new singlePhotonDetector(decoder,csize, nsigma, 1, 0, nped, 200);
int size = 327680;////atoi(argv[3]);
int* image;
//int* image =new int[327680/sizeof(int)];
filter->newDataSet();
int ff, np;
int dsize=decoder->getDataSize();
//cout << " data size is " << dsize;
char data[dsize];
ifstream filebin;
char *indir=argv[1];
char *outdir=argv[2];
char *fformat=argv[3];
int runmin=0;
// cout << "argc is " << argc << endl;
if (argc>=5) {
runmin=atoi(argv[4]);
}
int runmax=runmin;
if (argc>=6) {
runmax=atoi(argv[5]);
}
char *pedfile=NULL;
if (argc>=7) {
pedfile=argv[6];
}
double thr=0;
double thr1=1;
if (argc>=8) {
thr=atoi(argv[7]);
}
int nframes=0;
if (argc>=9) {
nframes=atoi(argv[8]);
}
int xmin=0, xmax=nx, ymin=0, ymax=ny;
if (argc>=13) {
xmin=atoi(argv[9]);
xmax=atoi(argv[10]);
ymin=atoi(argv[11]);
ymax=atoi(argv[12]);
}
char ffname[10000];
char fname[10000];
char imgfname[10000];
char cfname[10000];
char fn[10000];
std::time_t end_time;
FILE *of=NULL;
cout << "input directory is " << indir << endl;
cout << "output directory is " << outdir << endl;
cout << "input file is " << fformat << endl;
cout << "runmin is " << runmin << endl;
cout << "runmax is " << runmax << endl;
if (pedfile)
cout << "pedestal file is " << pedfile << endl;
//#ifndef ANALOG
if (thr>0) {
cout << "threshold is " << thr << endl;
filter->setThreshold(thr);
} else
cf=1;
//#endif
filter->setROI(xmin,xmax,ymin,ymax);
#ifdef SOLEIL
filter->setROI(150,210,170,230);
nframes=-1;
#endif
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
char* buff;
multiThreadedAnalogDetector *mt=new multiThreadedAnalogDetector(filter,nthreads,fifosize);
#ifndef ANALOG
mt->setDetectorMode(ePhotonCounting);
cout << "Counting!" << endl;
if (thr>0) {
cf=0;
}
#endif
//{
#ifdef ANALOG
mt->setDetectorMode(eAnalog);
cout << "Analog!" << endl;
cf=0;
// #ifdef ANALOG
// thr1=thr;
#endif
// }
mt->StartThreads();
mt->popFree(buff);
// cout << "mt " << endl;
int ifr=0;
if (pedfile) {
cout << "PEDESTAL " ;
sprintf(fname,"%s.raw",pedfile);
cout << fname << endl ;
sprintf(imgfname,"%s/pedestals.tiff",outdir,fformat);
std::time(&end_time);
cout << "aaa" << std::ctime(&end_time) << endl;
mt->setFrameMode(ePedestal);
// sprintf(fn,fformat,irun);
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
if (filebin.is_open()){
ff=-1;
while (decoder->readNextFrame(filebin, ff, np,buff)) {
mt->pushData(buff);
mt->nextThread();
mt->popFree(buff);
ifr++;
if (ifr%10000==0)
cout << ifr << " " << ff << " " << np << endl;
ff=-1;
}
filebin.close();
while (mt->isBusy()) {;}
mt->writePedestal(imgfname);
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
} else
cout << "Could not open "<< fname << " for reading " << endl;
}
ifr=0;
int ifile=0;
for (int irun=runmin; irun<=runmax; irun++) {
cout << "DATA " ;
mt->setFrameMode(eFrame);
// sprintf(fn,fformat,irun);
sprintf(ffname,"%s/%s.raw",indir,fformat);
sprintf(fname,ffname,irun);
sprintf(ffname,"%s/%s.tiff",outdir,fformat);
sprintf(imgfname,ffname,irun);
sprintf(ffname,"%s/%s.clust",outdir,fformat);
sprintf(cfname,ffname,irun);
cout << fname << " " ;
cout << imgfname << endl;
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
// cout << fname << " " << outfname << " " << imgfname << endl;
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
ifile=0;
if (filebin.is_open()){
if (thr<=0) {
if (cf) {
if (of==NULL) {
of=fopen(cfname,"w");
if (of) {
mt->setFilePointer(of);
cout << "file pointer set " << endl;
} else {
cout << "Could not open "<< cfname << " for writing " << endl;
mt->setFilePointer(NULL);
return 1;
}
}
}
}
// //while read frame
ff=-1;
ifr=0;
while (decoder->readNextFrame(filebin, ff, np,buff)) {
// cout << "*"<<ifr++<<"*"<<ff<< endl;
// cout << ff << " " << np << endl;
// //push
mt->pushData(buff);
// // //pop
mt->nextThread();
// // // cout << " " << (void*)buff;
mt->popFree(buff);
ifr++;
if (ifr%1000==0) cout << ifr << " " << ff << endl;
if (nframes>0) {
if (ifr%nframes==0) {
//The name has an additional "_fXXXXX" at the end, where "XXXXX" is the initial frame number of the image (0,1000,2000...)
sprintf(ffname,"%s/%s_f%05d.tiff",outdir,fformat,ifile);
sprintf(imgfname,ffname,irun);
//cout << "Writing tiff to " << imgfname << " " << thr1 << endl;
mt->writeImage(imgfname, thr1);
mt->clearImage();
ifile++;
}
}
ff=-1;
}
cout << "--" << endl;
filebin.close();
// //close file
// //join threads
while (mt->isBusy()) {;}
if (nframes>=0) {
if (nframes>0) {
sprintf(ffname,"%s/%s_f%05d.tiff",outdir,fformat,ifile);
sprintf(imgfname,ffname,irun);
}
sprintf(ffname,"%s/%s.tiff",outdir,fformat);
sprintf(imgfname,ffname,irun);
cout << "Writing tiff to " << imgfname << " " << thr1 <<endl;
mt->writeImage(imgfname, thr1);
mt->clearImage();
if (of) {
fclose(of);
of=NULL;
mt->setFilePointer(NULL);
}
}
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
} else
cout << "Could not open "<< fname << " for reading " << endl;
}
return 0;
}

View File

@ -8,6 +8,12 @@
#include <fstream>
#include "tiffIO.h"
//#define NEWZMQ
#ifdef NEWZMQ
#include <rapidjson/document.h> //json header in zmq stream
#endif
#include<iostream>
//#include "analogDetector.h"
@ -30,87 +36,129 @@ int main(int argc, char *argv[]) {
int fifosize=1000;
int nthreads=20;
// help
if (argc < 3 ) {
cprintf(RED, "Help: ./trial [receive socket ip] [receive starting port number] [send_socket ip] [send starting port number]\n");
if (argc < 3 ) {
cprintf(RED, "Help: ./trial [receive socket ip] [receive starting port number] [send_socket ip] [send starting port number]\n");
return EXIT_FAILURE;
}
// receive parameters
bool send = false;
char* socketip=argv[1];
uint32_t portnum = atoi(argv[2]);
int maxSize = 32*2*8192;//5000;//atoi(argv[3]);
int size= 32*2*5000;
int multisize=size;
// send parameters if any
char* socketip2 = 0;
uint32_t portnum2 = 0;
if (argc > 3) {
send = true;
socketip2 = argv[3];
portnum2 = atoi(argv[4]);
}
cout << "\nrx socket ip : " << socketip <<
"\nrx port num : " << portnum ;
if (send) {
cout << "\nsd socket ip : " << socketip2 <<
"\nsd port num : " << portnum2;
}
cout << endl;
//slsDetectorData *det=new moench03T1ZmqDataNew();
moench03T1ZmqDataNew *det=new moench03T1ZmqDataNew();
//analogDetector<uint16_t> *filter=new analogDetector<uint16_t>(det,1,NULL,1000);
singlePhotonDetector *filter=new singlePhotonDetector(det,3, 5, 1, 0, 1000, 10);
char* buff;
multiThreadedAnalogDetector *mt=new multiThreadedAnalogDetector(filter,nthreads,fifosize);
mt->setFrameMode(eFrame);
mt->StartThreads();
mt->popFree(buff);
ZmqSocket* zmqsocket=NULL;
#ifdef NEWZMQ
// receive socket
try{
#endif
zmqsocket = new ZmqSocket(socketip,portnum);
#ifdef NEWZMQ
} catch (...) {
cprintf(RED, "Error: Could not create Zmq socket on port %d with ip %s\n", portnum, socketip);
delete zmqsocket;
return EXIT_FAILURE;
}
// receive parameters
bool send = false;
char* socketip=argv[1];
uint32_t portnum = atoi(argv[2]);
int size = 32*2*5000;//atoi(argv[3]);
// send parameters if any
char* socketip2 = 0;
uint32_t portnum2 = 0;
if (argc > 3) {
send = true;
socketip2 = argv[3];
portnum2 = atoi(argv[4]);
}
cout << "\nrx socket ip : " << socketip <<
"\nrx port num : " << portnum ;
if (send) {
cout << "\nsd socket ip : " << socketip2 <<
"\nsd port num : " << portnum2;
}
cout << endl;
//slsDetectorData *det=new moench03T1ZmqDataNew();
moench03T1ZmqDataNew *det=new moench03T1ZmqDataNew();
//analogDetector<uint16_t> *filter=new analogDetector<uint16_t>(det,1,NULL,1000);
singlePhotonDetector *filter=new singlePhotonDetector(det,3, 5, 1, 0, 1000, 10);
char* buff;
multiThreadedAnalogDetector *mt=new multiThreadedAnalogDetector(filter,nthreads,fifosize);
mt->setFrameMode(eFrame);
mt->StartThreads();
mt->popFree(buff);
// receive socket
ZmqSocket* zmqsocket = new ZmqSocket(socketip,portnum);
}
#endif
#ifndef NEWZMQ
if (zmqsocket->IsError()) {
cprintf(RED, "Error: Could not create Zmq socket on port %d with ip %s\n", portnum, socketip);
delete zmqsocket;
return EXIT_FAILURE;
}
zmqsocket->Connect();
printf("Zmq Client at %s\n", zmqsocket->GetZmqServerAddress());
#endif
if (zmqsocket->Connect()) {
cprintf(RED, "Error: Could not connect to socket %s\n",
zmqsocket->GetZmqServerAddress());
delete zmqsocket;
return EXIT_FAILURE;
} else
printf("Zmq Client at %s\n", zmqsocket->GetZmqServerAddress());
// send socket
ZmqSocket* zmqsocket2 = 0;
cout << "zmq2 " << endl;
if (send) {
#ifdef NEWZMQ
// receive socket
try{
#endif
zmqsocket2 = new ZmqSocket(portnum2, socketip2);
#ifdef NEWZMQ
} catch (...) {
cprintf(RED, "Error: Could not create Zmq socket server on port %d and ip %s\n", portnum2, socketip2);
delete zmqsocket2;
delete zmqsocket;
return EXIT_FAILURE;
}
#endif
#ifndef NEWZMQ
if (zmqsocket2->IsError()) {
bprintf(RED, "Error: Could not create Zmq socket server on port %d and ip %s\n", portnum2, socketip2);
cprintf(RED, "Error: Could not create Zmq socket server on port %d and ip %s\n", portnum2, socketip2);
delete zmqsocket2;
delete zmqsocket;
return EXIT_FAILURE;
}
zmqsocket2->Connect();
printf("Zmq Server started at %s\n", zmqsocket2->GetZmqServerAddress());
#endif
if (zmqsocket2->Connect()) {
cprintf(RED, "Error: Could not connect to socket %s\n",
zmqsocket2->GetZmqServerAddress());
delete zmqsocket2;
return EXIT_FAILURE;
} else
printf("Zmq Client at %s\n", zmqsocket2->GetZmqServerAddress());
}
// header variables
uint64_t acqIndex = -1;
uint64_t frameIndex = -1;
uint32_t subframeIndex = -1;
uint32_t subFrameIndex = -1;
uint64_t fileindex = -1;
string filename = "";
char* image = new char[size];
// char* image = new char[size];
//int* image = new int[(size/sizeof(int))]();
uint32_t flippedDataX = -1;
int *nph;
int iframe=0;
char ofname[10000];
@ -119,17 +167,57 @@ int main(int argc, char *argv[]) {
int length;
int *detimage;
int nnx, nny,nns;
uint32_t imageSize = 0, nPixelsX = 0, nPixelsY = 0, dynamicRange = 0;
filter->getImageSize(nnx, nny,nns);
int16_t *dout=new int16_t [nnx*nny];
// infinite loop
uint32_t packetNumber = 0;
uint64_t bunchId = 0;
uint64_t timestamp = 0;
int16_t modId = 0;
uint16_t xCoord = 0;
uint16_t yCoord = 0;
uint16_t zCoord = 0;
uint32_t debug = 0;
uint32_t dr = 16;
uint16_t roundRNumber = 0;
uint8_t detType = 0;
uint8_t version = 0;
int* flippedData = 0;
char* additionalJsonHeader = 0;
uint32_t threshold=0;
uint32_t xmin=0, xmax=400, ymin=0, ymax=400;
string frameMode_s, detectorMode_s;
int emin, emax;
int newFrame=1;
while(1) {
// cout << "+++++++++++++++++++++++++++++++LOOP" << endl;
// get header, (if dummy, fail is on parse error or end of acquisition)
#ifndef NEWZMQ
if (!zmqsocket->ReceiveHeader(0, acqIndex, frameIndex, subframeIndex, filename, fileindex)){
#endif
#ifdef NEWZMQ
rapidjson::Document doc;
if (!zmqsocket->ReceiveHeader(0, doc, SLS_DETECTOR_JSON_HEADER_VERSION)) {
zmqsocket->CloseHeaderMessage();
#endif
// if (!zmqsocket->ReceiveHeader(0, acqIndex, frameIndex, subframeIndex, filename, fileindex)) {
cprintf(RED, "Got Dummy\n");
while (mt->isBusy()) {;}//wait until all data are processed from the queues
@ -142,8 +230,18 @@ int main(int argc, char *argv[]) {
if (send) {
strcpy(fname,filename.c_str());
// zmqsocket2->SendHeaderData(0, false, SLS_DETECTOR_JSON_HEADER_VERSION,16,fileindex,400,400,400*400, acqIndex,frameIndex,fname, acqIndex, 0,0,0,0,0,0,0,0,0,0,0,1);
zmqsocket2->SendHeaderData(0, false, SLS_DETECTOR_JSON_HEADER_VERSION,0,0,0,0,0, 0,0,fname, 0, 0,0,0,0,0,0,0,0,0,0,0,1);
#ifdef NEWZMQ
//zmqsocket2->SendHeaderData (0, false, SLS_DETECTOR_JSON_HEADER_VERSION, dynamicRange, fileindex,
// nnx, nny, nns*dynamicRange/8,acqIndex, frameIndex, fname, acqIndex, subFrameIndex, packetNumber,bunchId, timestamp, modId, xCoord, yCoord, zCoord,debug, roundRNumber, detType, version, flippedData, additionalJsonHeader);
zmqsocket2->SendHeaderData (0, false, SLS_DETECTOR_JSON_HEADER_VERSION, dr, fileindex,
nnx, nny, nns*dr/8,acqIndex, frameIndex, fname, acqIndex, subFrameIndex, packetNumber,bunchId, timestamp, modId, xCoord, yCoord, zCoord,debug, roundRNumber, detType, version, flippedData, additionalJsonHeader);
#endif
#ifndef NEWZMQ
zmqsocket2->SendHeaderData(0, false, SLS_DETECTOR_JSON_HEADER_VERSION,0,0,0,0,0, 0,0,fname, 0, 0,0,0,0,0,0,0,0,0,0,0,1);
#endif
zmqsocket2->SendData((char*)dout,length);
cprintf(GREEN, "Sent Data\n");
@ -161,9 +259,112 @@ int main(int argc, char *argv[]) {
of=NULL;
}
newFrame=1;
continue; //continue to not get out
}
#ifdef NEWZMQ
if (newFrame) {
// acqIndex, frameIndex, subframeIndex, filename, fileindex
size = doc["size"].GetUint();
multisize = size;// * zmqsocket->size();
dynamicRange = doc["bitmode"].GetUint();
nPixelsX = doc["shape"][0].GetUint();
nPixelsY = doc["shape"][1].GetUint();
filename = doc["fname"].GetString();
acqIndex = doc["acqIndex"].GetUint64();
frameIndex = doc["fIndex"].GetUint64();
fileindex = doc["fileIndex"].GetUint64();
subFrameIndex = doc["expLength"].GetUint();
xCoord = doc["xCoord"].GetUint();
yCoord = doc["yCoord"].GetUint();
zCoord = doc["zCoord"].GetUint();
flippedDataX=doc["flippedDataX"].GetUint();
packetNumber=doc["packetNumber"].GetUint();
bunchId=doc["bunchId"].GetUint();
timestamp=doc["timestamp"].GetUint();
modId=doc["modId"].GetUint();
debug=doc["debug"].GetUint();
roundRNumber=doc["roundRNumber"].GetUint();
detType=doc["detType"].GetUint();
version=doc["version"].GetUint();
cprintf(BLUE, "Header Info:\n"
"size: %u\n"
"multisize: %u\n"
"dynamicRange: %u\n"
"nPixelsX: %u\n"
"nPixelsY: %u\n"
"currentFileName: %s\n"
"currentAcquisitionIndex: %lu\n"
"currentFrameIndex: %lu\n"
"currentFileIndex: %lu\n"
"currentSubFrameIndex: %u\n"
"xCoordX: %u\n"
"yCoordY: %u\n"
"zCoordZ: %u\n"
"flippedDataX: %u\n"
"packetNumber: %u\n"
"bunchId: %u\n"
"timestamp: %u\n"
"modId: %u\n"
"debug: %u\n"
"roundRNumber: %u\n"
"detType: %u\n"
"version: %u\n",
size, multisize, dynamicRange, nPixelsX, nPixelsY,
filename.c_str(), acqIndex,
frameIndex, fileindex, subFrameIndex,
xCoord, yCoord,zCoord,
flippedDataX, packetNumber, bunchId, timestamp, modId, debug, roundRNumber, detType, version);
if (doc.HasMember("threshold")) {
version=doc["threshold"].GetUint();
}
if (doc.HasMember("roi")) {
xmin=doc["roi"][0].GetUint();
xmax=doc["roi"][1].GetUint();
ymin=doc["roi"][2].GetUint();
ymax=doc["roi"][3].GetUint();
}
if (doc.HasMember("frameMode")) {
frameMode_s=doc["frameMode"].GetString();
}
if (doc.HasMember("detectorMode")) {
detectorMode_s=doc["detectorMode"].GetString();
}
if (doc.HasMember("energyRange")) {
emin=doc["energyRange"][0].GetUint();
emax=doc["energyRange"][0].GetUint();
}
if (doc.HasMember("dynamicRange")) {
dr=doc["dynamicRange"].GetUint();
}
if (doc.HasMember("nSubPixels")) {
nsubPixels=doc["nSubPixels"].GetUint();
}
newFrame=0;
zmqsocket->CloseHeaderMessage();
}
#endif
if (of==NULL) {
sprintf(ofname,"%s_%d.clust",filename.c_str(),fileindex);

View File

@ -0,0 +1,710 @@
#define WRITE_QUAD
#include "sls_receiver_defs.h"
#include "ZmqSocket.h"
#include "moench03T1ZmqDataNew.h"
#include <vector>
#include <string>
#include <sstream>
#include <iomanip>
#include <fstream>
#include "tiffIO.h"
//#define NEWZMQ
#ifdef NEWZMQ
#include <rapidjson/document.h> //json header in zmq stream
#endif
#include<iostream>
//#include "analogDetector.h"
//#include "multiThreadedAnalogDetector.h"
//#include "singlePhotonDetector.h"
//#include "interpolatingDetector.h"
//#include "multiThreadedCountingDetector.h"
#include "multiThreadedInterpolatingDetector.h"
#include "etaInterpolationPosXY.h"
#include "ansi.h"
#include <iostream>
//#include <chrono>
#include <ctime> // time_t
#include <cstdio>
using namespace std;
//using namespace std::chrono;
//#define SLS_DETECTOR_JSON_HEADER_VERSION 0x2
// myDet->setNetworkParameter(ADDITIONAL_JSON_HEADER, " \"what\":\"nothing\" ");
int main(int argc, char *argv[]) {
/**
* trial.o [socket ip] [starting port number] [send_socket ip] [send port number]
*
*/
FILE *of=NULL;
int fifosize=5000;
int etabins=1000;//nsubpix*2*100;
double etamin=-1, etamax=2;
// help
if (argc < 3 ) {
cprintf(RED, "Help: ./trial [receive socket ip] [receive starting port number] [send_socket ip] [send starting port number] [nthreads] [nsubpix] [etafile]\n");
return EXIT_FAILURE;
}
// receive parameters
bool send = false;
char* socketip=argv[1];
uint32_t portnum = atoi(argv[2]);
// send parameters if any
char* socketip2 = 0;
uint32_t portnum2 = 0;
int ok;
// high_resolution_clock::time_point t1;
// high_resolution_clock::time_point t2 ;
time_t begin,end,finished;
if (argc > 4) {
socketip2 = argv[3];
portnum2 = atoi(argv[4]);
if (portnum2>0)
send = true;
}
cout << "\nrx socket ip : " << socketip <<
"\nrx port num : " << portnum ;
if (send) {
cout << "\ntx socket ip : " << socketip2 <<
"\ntx port num : " << portnum2;
}
int nthreads=5;
if (argc>5)
nthreads=atoi(argv[5]);
cout << "Number of threads is: " << nthreads << endl;
int nSubPixels=2;
if (argc>6)
nSubPixels=atoi(argv[6]);
cout << "Number of subpixels is: " << nSubPixels << endl;
char *etafname=NULL;
if (argc>7) {
etafname=argv[7];
cout << "Eta file name is: " << etafname << endl;
}
//slsDetectorData *det=new moench03T1ZmqDataNew();
moench03T1ZmqDataNew *det=new moench03T1ZmqDataNew();
cout << endl << " det" <<endl;
int npx, npy;
det->getDetectorSize(npx, npy);
int maxSize = npx*npy*2;//32*2*8192;//5000;//atoi(argv[3]);
int size= maxSize;//32*2*5000;
int multisize=size;
int dataSize=size;
char dummybuff[size];
//analogDetector<uint16_t> *filter=new analogDetector<uint16_t>(det,1,NULL,1000);
#ifndef INTERP
singlePhotonDetector *filter=new singlePhotonDetector(det,3, 5, 1, 0, 1000, 10);
multiThreadedCountingDetector *mt=new multiThreadedCountingDetector(filter,nthreads,fifosize);
// multiThreadedAnalogDetector *mt=new multiThreadedAnalogDetector(filter,nthreads,fifosize);
#endif
#ifdef INTERP
eta2InterpolationPosXY *interp=new eta2InterpolationPosXY(npx, npy, nSubPixels, etabins, etamin, etamax);
if (etafname) interp->readFlatField(etafname);
interpolatingDetector *filter=new interpolatingDetector(det,interp, 5, 1, 0, 1000, 10);
multiThreadedInterpolatingDetector *mt=new multiThreadedInterpolatingDetector(filter,nthreads,fifosize);
#endif
char* buff;
mt->setFrameMode(eFrame);
mt->StartThreads();
mt->popFree(buff);
ZmqSocket* zmqsocket=NULL;
#ifdef NEWZMQ
// receive socket
try{
#endif
zmqsocket = new ZmqSocket(socketip,portnum);
#ifdef NEWZMQ
} catch (...) {
cprintf(RED, "Error: Could not create Zmq socket on port %d with ip %s\n", portnum, socketip);
delete zmqsocket;
return EXIT_FAILURE;
}
#endif
#ifndef NEWZMQ
if (zmqsocket->IsError()) {
cprintf(RED, "Error: Could not create Zmq socket on port %d with ip %s\n", portnum, socketip);
delete zmqsocket;
return EXIT_FAILURE;
}
#endif
if (zmqsocket->Connect()) {
cprintf(RED, "Error: Could not connect to socket %s\n",
zmqsocket->GetZmqServerAddress());
delete zmqsocket;
return EXIT_FAILURE;
} else
printf("Zmq Client at %s\n", zmqsocket->GetZmqServerAddress());
// send socket
ZmqSocket* zmqsocket2 = 0;
// cout << "zmq2 " << endl;
if (send) {
#ifdef NEWZMQ
// receive socket
try{
#endif
zmqsocket2 = new ZmqSocket(portnum2, socketip2);
#ifdef NEWZMQ
} catch (...) {
cprintf(RED, "Error: Could not create Zmq socket server on port %d and ip %s\n", portnum2, socketip2);
// delete zmqsocket2;
// zmqsocket2=NULL;
// delete zmqsocket;
// return EXIT_FAILURE;
send = false;
}
#endif
#ifndef NEWZMQ
if (zmqsocket2->IsError()) {
cprintf(RED, "AAA Error: Could not create Zmq socket server on port %d and ip %s\n", portnum2, socketip2);
// delete zmqsocket2;
//delete zmqsocket;
// return EXIT_FAILURE;
send = false;
}
#endif
if (zmqsocket2->Connect()) {
cprintf(RED, "BBB Error: Could not connect to socket %s\n",
zmqsocket2->GetZmqServerAddress());
// delete zmqsocket2;
send = false;
// return EXIT_FAILURE;
} else
printf("Zmq Client at %s\n", zmqsocket2->GetZmqServerAddress());
}
// header variables
uint64_t acqIndex = -1;
uint64_t frameIndex = -1;
uint32_t subFrameIndex = -1;
uint64_t fileindex = -1;
string filename = "";
// char* image = new char[size];
//int* image = new int[(size/sizeof(int))]();
uint32_t flippedDataX = -1;
int *nph;
int iframe=0;
char ofname[10000];
char fname[10000];
int length;
int *detimage;
int nnx, nny,nns;
uint32_t imageSize = 0, nPixelsX = 0, nPixelsY = 0, dynamicRange = 0;
// infinite loop
uint32_t packetNumber = 0;
uint64_t bunchId = 0;
uint64_t timestamp = 0;
int16_t modId = 0;
uint16_t xCoord = 0;
uint16_t yCoord = 0;
uint16_t zCoord = 0;
uint32_t debug = 0;
//uint32_t dr = 16;
//int16_t *dout;//=new int16_t [nnx*nny];
uint32_t dr = 32;
int32_t *dout=NULL;//=new int32_t [nnx*nny];
uint32_t nSigma=5;
uint16_t roundRNumber = 0;
uint8_t detType = 0;
uint8_t version = 0;
int* flippedData = 0;
char* additionalJsonHeader = 0;
int32_t threshold=0;
int32_t xmin=0, xmax=400, ymin=0, ymax=400;
string frameMode_s, detectorMode_s, intMode_s;
int emin, emax;
int resetFlat=0;
int resetPed=0;
int nsubPixels=1;
int isPedestal;
int isFlat=0;
int newFrame=1;
detectorMode dMode;
frameMode fMode;
double *ped;
filter->getImageSize(nnx, nny,nns);
while(1) {
// cout << "+++++++++++++++++++++++++++++++LOOP" << endl;
// get header, (if dummy, fail is on parse error or end of acquisition)
#ifndef NEWZMQ
if (!zmqsocket->ReceiveHeader(0, acqIndex, frameIndex, subframeIndex, filename, fileindex)){
#endif
#ifdef NEWZMQ
rapidjson::Document doc;
if (!zmqsocket->ReceiveHeader(0, doc, SLS_DETECTOR_JSON_HEADER_VERSION)) {
/* zmqsocket->CloseHeaderMessage();*/
#endif
// if (!zmqsocket->ReceiveHeader(0, acqIndex, frameIndex, subframeIndex, filename, fileindex)) {
// cprintf(RED, "Got Dummy\n");
// t1=high_resolution_clock::now();
time(&end);
while (mt->isBusy()) {;}//wait until all data are processed from the queues
if (of) {
fclose(of);
of=NULL;
}
if (newFrame>0) {
cprintf(RED,"DIDn't receive any data!\n");
if (send) {
zmqsocket2->SendHeaderData(0, true, SLS_DETECTOR_JSON_HEADER_VERSION);
cprintf(RED, "Sent Dummy\n");
}
} else {
if (fMode==ePedestal) {
sprintf(ofname,"%s_%d_ped.tiff",fname,fileindex);
mt->writePedestal(ofname);
cout << "Writing pedestal to " << ofname << endl;
}
#ifdef INTERP
else if (fMode==eFlat) {
mt->prepareInterpolation(ok);
sprintf(ofname,"%s_%d_eta.tiff",fname,fileindex);
mt->writeFlatField(ofname);
cout << "Writing eta to " << ofname << endl;
}
#endif
else {
sprintf(ofname,"%s_%d.tiff",fname,fileindex);
mt->writeImage(ofname);
cout << "Writing image to " << ofname << endl;
}
// cout << nns*nnx*nny*nns*dr/8 << " " << length << endl;
if (send) {
if (fMode==ePedestal) {
cprintf(MAGENTA,"Get pedestal!\n");
nns=1;
nnx=npx;
nny=npy;
//dout= new int16_t[nnx*nny*nns*nns];
dout= new int32_t[nnx*nny*nns*nns];
// cout << "get pedestal " << endl;
ped=mt->getPedestal();
// cout << "got pedestal " << endl;
for (int ix=0; ix<nnx*nny; ix++) {
dout[ix]=ped[ix];
// if (ix<100*400)
// cout << ix << " " << ped[ix] << endl;
}
}
#ifdef INTERP
else if (fMode==eFlat) {
int nb;
double emi, ema;
int *ff=mt->getFlatField(nb, emi, ema);
nnx=nb;
nny=nb;
dout= new int32_t[nb*nb];
for (int ix=0; ix<nb*nb; ix++) {
dout[ix]=ff[ix];
}
}
#endif
else {
detimage=mt->getImage(nnx,nny,nns);
cprintf(MAGENTA,"Get image!\n");
cout << nnx << " " << nny << " " << nns << endl;
// nns=1;
// nnx=npx;
// nny=npy;
// nnx=nnx*nns;
//nny=nny*nns;
dout= new int32_t[nnx*nny];
for (int ix=0; ix<nnx*nny; ix++) {
// for (int iy=0; iy<nny*nns; iy++) {
// for (int isx=0; isx<nns; isx++) {
// for (int isy=0; isy<nns; isy++) {
// if (isx==0 && isy==0)
// dout[iy*nnx+ix]=detimage[(iy+isy)*nnx*nns+ix+isx];
// else
// dout[iy*nnx+ix]+=detimage[(iy+isy)*nnx*nns+ix+isx];
// }
// }
dout[ix]=detimage[ix];
if (dout[ix]<0) dout[ix]=0;
// cout << ix << " " << dout[ix] << endl;
// }
}
}
#ifdef NEWZMQ
cout << "Sending image size " << nnx << " " << nny << endl;
zmqsocket2->SendHeaderData (0, false, SLS_DETECTOR_JSON_HEADER_VERSION, dr, fileindex, nnx, nny, nnx*nny*dr/8,acqIndex, frameIndex, fname, acqIndex, subFrameIndex, packetNumber,bunchId, timestamp, modId, xCoord, yCoord, zCoord,debug, roundRNumber, detType, version, flippedData, additionalJsonHeader);
#endif
#ifndef NEWZMQ
zmqsocket2->SendHeaderData(0, false, SLS_DETECTOR_JSON_HEADER_VERSION,0,0,0,0,0, 0,0,fname, 0, 0,0,0,0,0,0,0,0,0,0,0,1);
#endif
zmqsocket2->SendData((char*)dout,nnx*nny*dr/8);
cprintf(GREEN, "Sent Data\n");
zmqsocket2->SendHeaderData(0, true, SLS_DETECTOR_JSON_HEADER_VERSION);
cprintf(RED, "Sent Dummy\n");
if (dout)
delete [] dout;
dout=NULL;
}
}
mt->clearImage();
newFrame=1;
//t2 = high_resolution_clock::now();
time(&finished);
// auto meas_duration = duration_cast<microseconds>( t2 - t0 ).count();
// auto real_duration = duration_cast<microseconds>( t2 - t1 ).count();
cout << "Measurement lasted " << difftime(end,begin) << endl;
cout << "Processing lasted " << difftime(finished,begin) << endl;
continue; //continue to not get out
}
#ifdef NEWZMQ
if (newFrame) {
time(&begin);
// t0 = high_resolution_clock::now();
//cout <<"new frame" << endl;
// acqIndex, frameIndex, subframeIndex, filename, fileindex
size = doc["size"].GetUint();
// multisize = size;// * zmqsocket->size();
dynamicRange = doc["bitmode"].GetUint();
// nPixelsX = doc["shape"][0].GetUint();
// nPixelsY = doc["shape"][1].GetUint();
filename = doc["fname"].GetString();
//acqIndex = doc["acqIndex"].GetUint64();
//frameIndex = doc["fIndex"].GetUint64();
fileindex = doc["fileIndex"].GetUint64();
//subFrameIndex = doc["expLength"].GetUint();
//packetNumber=doc["packetNumber"].GetUint();
//bunchId=doc["bunchId"].GetUint();
//timestamp=doc["timestamp"].GetUint();
//modId=doc["modId"].GetUint();
//debug=doc["debug"].GetUint();
//roundRNumber=doc["roundRNumber"].GetUint();
//detType=doc["detType"].GetUint();
//version=doc["version"].GetUint();
dataSize=size;
strcpy(fname,filename.c_str());
// cprintf(BLUE, "Header Info:\n"
// "size: %u\n"
// "multisize: %u\n"
// "dynamicRange: %u\n"
// "nPixelsX: %u\n"
// "nPixelsY: %u\n"
// "currentFileName: %s\n"
// "currentAcquisitionIndex: %lu\n"
// "currentFrameIndex: %lu\n"
// "currentFileIndex: %lu\n"
// "currentSubFrameIndex: %u\n"
// "xCoordX: %u\n"
// "yCoordY: %u\n"
// "zCoordZ: %u\n"
// "flippedDataX: %u\n"
// "packetNumber: %u\n"
// "bunchId: %u\n"
// "timestamp: %u\n"
// "modId: %u\n"
// "debug: %u\n"
// "roundRNumber: %u\n"
// "detType: %u\n"
// "version: %u\n",
// size, multisize, dynamicRange, nPixelsX, nPixelsY,
// filename.c_str(), acqIndex,
// frameIndex, fileindex, subFrameIndex,
// xCoord, yCoord,zCoord,
// flippedDataX, packetNumber, bunchId, timestamp, modId, debug, roundRNumber, detType, version);
/* Analog detector commands */
isPedestal=0;
isFlat=0;
fMode=eFrame;
frameMode_s="frame";
cprintf(MAGENTA, "Frame mode: ");
if (doc.HasMember("frameMode")) {
if (doc["frameMode"].IsString()) {
frameMode_s=doc["frameMode"].GetString();
if (frameMode_s == "pedestal"){
fMode=ePedestal;
isPedestal=1;
} else if (frameMode_s == "newPedestal"){
mt->newDataSet(); //resets pedestal
// cprintf(MAGENTA, "Resetting pedestal\n");
fMode=ePedestal;
isPedestal=1;
}
#ifdef INTERP
else if (frameMode_s == "flatfield") {
fMode=eFlat;
isFlat=1;
} else if (frameMode_s == "newFlatfield") {
mt->resetFlatField();
isFlat=1;
cprintf(MAGENTA, "Resetting flatfield\n");
fMode=eFlat;
}
#endif
else {
fMode=eFrame;
isPedestal=0;
isFlat=0;
fMode=eFrame;
frameMode_s="frame";
}
}
}
cprintf(MAGENTA, "%s\n" , frameMode_s.c_str());
mt->setFrameMode(fMode);
// threshold=0;
cprintf(MAGENTA, "Threshold: ");
if (doc.HasMember("threshold")) {
if (doc["threshold"].IsInt()) {
threshold=doc["threshold"].GetInt();
mt->setThreshold(threshold);
}
}
cprintf(MAGENTA, "%d\n", threshold);
xmin=0;
xmax=npx;
ymin=0;
ymax=npy;
cprintf(MAGENTA, "ROI: ");
if (doc.HasMember("roi")) {
if (doc["roi"].IsArray()) {
if (doc["roi"].Size() > 0 )
if (doc["roi"][0].IsInt())
xmin=doc["roi"][0].GetInt();
if (doc["roi"].Size() > 1 )
if (doc["roi"][1].IsInt())
xmax=doc["roi"][1].GetInt();
if (doc["roi"].Size() > 2 )
if (doc["roi"][2].IsInt())
ymin=doc["roi"][2].GetInt();
if (doc["roi"].Size() > 3 )
if (doc["roi"][3].IsInt())
ymax=doc["roi"][3].GetInt();
}
}
cprintf(MAGENTA, "%d %d %d %d\n", xmin, xmax, ymin, ymax);
mt->setROI(xmin, xmax, ymin, ymax);
if (doc.HasMember("dynamicRange")) {
dr=doc["dynamicRange"].GetUint();
dr=32;
}
dMode=eAnalog;
detectorMode_s="analog";
cprintf(MAGENTA, "Detector mode: ");
if (doc.HasMember("detectorMode")) {
if (doc["detectorMode"].IsString()) {
detectorMode_s=doc["detectorMode"].GetString();
#ifdef INTERP
if (detectorMode_s == "interpolating"){
dMode=eInterpolating;
mt->setInterpolation(interp);
} else
#endif
if (detectorMode_s == "counting"){
dMode=ePhotonCounting;
#ifdef INTERP
mt->setInterpolation(NULL);
#endif
} else {
dMode=eAnalog;
#ifdef INTERP
mt->setInterpolation(NULL);
#endif
}
}
}
mt->setDetectorMode(dMode);
cprintf(MAGENTA, "%s\n" , detectorMode_s.c_str());
// cout << "done " << endl;
// /* Single Photon Detector commands */
// nSigma=5;
// if (doc.HasMember("nSigma")) {
// if (doc["nSigma"].IsInt())
// nSigma=doc["nSigma"].GetInt();
// mt->setNSigma(nSigma);
// }
// emin=-1;
// emax=-1;
// if (doc.HasMember("energyRange")) {
// if (doc["energyRange"].IsArray()) {
// if (doc["energyRange"].Size() > 0 )
// if (doc["energyRange"][0].IsInt())
// emin=doc["energyRange"][0].GetInt();
// if (doc["energyRange"].Size() > 1 )
// if (doc["energyRange"][1].IsInt())
// emax=doc["energyRange"][1].GetUint();
// }
// }
// if (doc.HasMember("eMin")) {
// if (doc["eMin"][1].IsInt())
// emin=doc["eMin"].GetInt();
// }
// if (doc.HasMember("eMax")) {
// if (doc["eMax"][1].IsInt())
// emin=doc["eMax"].GetInt();
// }
// mt->setEnergyRange(emin,emax);
// /* interpolating detector commands */
// if (doc.HasMember("nSubPixels")) {
// if (doc["nSubPixels"].IsUint())
// nSubPixels=doc["nSubPixels"].GetUint();
// mt->setNSubPixels(nSubPixels);
// }
newFrame=0;
/* zmqsocket->CloseHeaderMessage();*/
}
#endif
// cout << "file" << endl;
// cout << "data " << endl;
if (of==NULL) {
sprintf(ofname,"%s_%d.clust",filename.c_str(),fileindex);
of=fopen(ofname,"w");
if (of) {
mt->setFilePointer(of);
}else {
cout << "Could not open "<< ofname << " for writing " << endl;
mt->setFilePointer(NULL);
}
}
// cout << "data" << endl;
// get data
// acqIndex = doc["acqIndex"].GetUint64();
frameIndex = doc["fIndex"].GetUint64();
// subFrameIndex = doc["expLength"].GetUint();
// bunchId=doc["bunchId"].GetUint();
// timestamp=doc["timestamp"].GetUint();
packetNumber=doc["packetNumber"].GetUint();
// cout << acqIndex << " " << frameIndex << " " << subFrameIndex << " "<< bunchId << " " << timestamp << " " << packetNumber << endl;
if (packetNumber>=40) {
//*((int*)buff)=frameIndex;
memcpy(buff,&frameIndex,sizeof(int));
length = zmqsocket->ReceiveData(0, buff+sizeof(int), size);
mt->pushData(buff);
mt->nextThread();
mt->popFree(buff);
} else {
cprintf(RED, "Incomplete frame: received only %d packet\n", packetNumber);
length = zmqsocket->ReceiveData(0, dummybuff, size);
}
iframe++;
} // exiting infinite loop
delete zmqsocket;
if (send)
delete zmqsocket2;
cout<<"Goodbye"<< endl;
return 0;
}

View File

@ -1,6 +1,8 @@
#ifndef MULTITHREADED_ANALOG_DETECTOR_H
#define MULTITHREADED_ANALOG_DETECTOR_H
#define MAXTHREADS 1000
#include <vector>
#include <string>
#include <sstream>
@ -14,11 +16,8 @@
#include <cstdlib>
#include <pthread.h>
//#include "analogDetector.h"
#include "singlePhotonDetector.h"
//#include "interpolatingDetector.h"
#include "analogDetector.h"
#include "circularFifo.h"
#include "slsInterpolation.h"
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
@ -28,6 +27,7 @@
using namespace std;
class threadedAnalogDetector
{
public:
@ -36,12 +36,25 @@ public:
det=d;
fifoFree=new CircularFifo<char>(fs);
fifoData=new CircularFifo<char>(fs);
mem=(char*)malloc(fs*det->getDataSize());
// cout << "data size is " << det->getDataSize()*fs << endl;
for (int i=0; i<fs; i++) {
mm=mem+i*det->getDataSize();
fifoFree->push(mm);
/* mem=(char*)calloc(fs, det->getDataSize()); */
/* if (mem) */
/* memset(mem,0, fs*det->getDataSize()); */
int i;
for (i=0; i<fs; i++) {
//
// mm=mem+i*det->getDataSize();
// cout << i << endl;
mm=(char*)calloc(1, det->getDataSize());
if (mm) {
//memset(mm,0, det->getDataSize());
fifoFree->push(mm);
} else
break;
}
if (i<fs) cout << "Could allocate only "<< i <<" frames";
busy=0;
stop=1;
fMode=eFrame;
@ -49,7 +62,26 @@ public:
}
virtual int setFrameMode(int fm) {fMode=fm; if (fMode>=0) det->setFrameMode((frameMode)fMode);};
virtual int setFrameMode(int fm) {
if (fm>=0) {
det->setFrameMode((frameMode)fm);
fMode=fm;
}
return fMode;
};
virtual double setThreshold(double th) {return det->setThreshold(th);};
virtual void setROI(int xmin, int xmax, int ymin, int ymax) {det->setROI(xmin,xmax,ymin,ymax);};
virtual int setDetectorMode(int dm) {
if (dm>=0) {
det->setDetectorMode((detectorMode)dm);
dMode=dm;
}
return dMode;
};
virtual void newDataSet(){det->newDataSet();};
//fMode=fm; return fMode;}
@ -91,46 +123,10 @@ public:
//protected:
/** Implement this method in your subclass with the code you want your thread to run. */
//virtual void InternalThreadEntry() = 0;
virtual void *writeImage(const char * imgname) {cout << "a" <<endl; return det->writeImage(imgname);};
virtual void *writeImage(const char * imgname) {return det->writeImage(imgname);};
virtual void clearImage(){det->clearImage();};
virtual void prepareInterpolation(int &ok){
slsInterpolation *interp=(slsInterpolation*)det->getInterpolation();
if (interp)
interp->prepareInterpolation(ok);
}
virtual int *getFlatField(){
slsInterpolation *interp=(slsInterpolation*)det->getInterpolation();
if (interp)
return interp->getFlatField();
else
return NULL;
}
virtual int *setFlatField(int *ff, int nb, double emin, double emax){
slsInterpolation *interp=(slsInterpolation*)det->getInterpolation();
if (interp)
return interp->setFlatField(ff, nb, emin, emax);
else
return NULL;
}
virtual int *getFlatField(int &nb, double emi, double ema){
slsInterpolation *interp=(slsInterpolation*)det->getInterpolation();
int *ff;
if (interp) {
ff=interp->getFlatField(nb,emi,ema);
// cout << "tdgff* ff has " << nb << " bins " << endl;
return ff;
} else
return NULL;
}
virtual char *getInterpolation() {
return det->getInterpolation();
}
virtual void setPedestal(double *ped, double *rms=NULL, int m=-1){det->setPedestal(ped,rms,m);};
@ -157,11 +153,79 @@ public:
FILE *getFilePointer(){return det->getFilePointer();};
void setMutex(pthread_mutex_t *fmutex){det->setMutex(fmutex);};
private:
virtual double setNSigma(double n) {return det->setNSigma(n);};
virtual void setEnergyRange(double emi, double ema) {det->setEnergyRange(emi,ema);};
virtual void prepareInterpolation(int &ok){
slsInterpolation *interp=det->getInterpolation();
if (interp)
interp->prepareInterpolation(ok);
}
virtual int *getFlatField(){
slsInterpolation *interp=(det)->getInterpolation();
if (interp)
return interp->getFlatField();
else
return NULL;
}
virtual int *setFlatField(int *ff, int nb, double emin, double emax){
slsInterpolation *interp=(det)->getInterpolation();
if (interp)
return interp->setFlatField(ff, nb, emin, emax);
else
return NULL;
}
void *writeFlatField(const char * imgname) {
slsInterpolation *interp=(det)->getInterpolation();
cout << "interp " << interp << endl;
if (interp) {
cout << imgname << endl;
interp->writeFlatField(imgname);
}
}
void *readFlatField(const char * imgname, int nb=-1, double emin=1, double emax=0){
slsInterpolation *interp=(det)->getInterpolation();
if (interp)
interp->readFlatField(imgname, nb, emin, emax);
}
virtual int *getFlatField(int &nb, double emi, double ema){
slsInterpolation *interp=(det)->getInterpolation();
int *ff=NULL;
if (interp) {
ff=interp->getFlatField(nb,emi,ema);
}
return ff;
}
virtual slsInterpolation *getInterpolation() {
return (det)->getInterpolation();
}
virtual void resetFlatField() {
slsInterpolation *interp=(det)->getInterpolation();
if (interp) interp->resetFlatField();//((interpolatingDetector*)det)->resetFlatField();
}
virtual int setNSubPixels(int ns) {
slsInterpolation *interp=(det)->getInterpolation();
if (interp) return interp->setNSubPixels(ns);
else return 1;};
virtual slsInterpolation *setInterpolation(slsInterpolation *f){
return (det)->setInterpolation(f);
};
protected:
analogDetector<uint16_t> *det;
int fMode;
int dMode;
int *dataSize;
pthread_t _thread;
char *mem;
@ -176,6 +240,7 @@ private:
threadedAnalogDetector *This=((threadedAnalogDetector *)ptr);
return This->processData();
}
void * processData() {
busy=1;
while (!stop) {
@ -201,7 +266,7 @@ private:
class multiThreadedAnalogDetector
{
public:
multiThreadedAnalogDetector(analogDetector<uint16_t> *d, int n, int fs=1000) : nThreads(n), ithread(0) {
multiThreadedAnalogDetector(analogDetector<uint16_t> *d, int n, int fs=1000) : stop(0), nThreads(n), ithread(0) {
dd[0]=d;
if (nThreads==1)
dd[0]->setId(100);
@ -213,14 +278,14 @@ public:
}
for (int i=0; i<nThreads; i++) {
cout << "**" << i << endl;
dets[i]=new threadedAnalogDetector(dd[i], fs);
}
int nnx, nny, ns;
int nn=dets[0]->getImageSize(nnx, nny,ns);
image=new int[nn];
image=NULL;
ff=NULL;
ped=NULL;
cout << "Ithread is " << ithread << endl;
}
~multiThreadedAnalogDetector() {
@ -229,17 +294,29 @@ public:
delete dets[i];
for (int i=1; i<nThreads; i++)
delete dd[i];
delete [] image;
//delete [] image;
}
int setFrameMode(int fm) { int ret; for (int i=0; i<nThreads; i++) ret=dets[i]->setFrameMode(fm); return ret;};
virtual int setFrameMode(int fm) { int ret; for (int i=0; i<nThreads; i++) { ret=dets[i]->setFrameMode(fm);} return ret;};
virtual double setThreshold(int fm) { double ret; for (int i=0; i<nThreads; i++) ret=dets[i]->setThreshold(fm); return ret;};
virtual int setDetectorMode(int dm) { int ret; for (int i=0; i<nThreads; i++) ret=dets[i]->setDetectorMode(dm); return ret;};
virtual void setROI(int xmin, int xmax, int ymin, int ymax) { for (int i=0; i<nThreads; i++) dets[i]->setROI(xmin, xmax,ymin,ymax);};
void newDataSet(){for (int i=0; i<nThreads; i++) dets[i]->newDataSet();};
int *getImage(int &nnx, int &nny, int &ns) {
virtual void newDataSet(){for (int i=0; i<nThreads; i++) dets[i]->newDataSet();};
virtual int *getImage(int &nnx, int &nny, int &ns) {
int *img;
// int nnx, nny, ns;
int nn=dets[0]->getImageSize(nnx, nny, ns);
// int nnx, nny, ns;
int nn=dets[0]->getImageSize(nnx, nny,ns);
if (image) {
delete image;
image=NULL;
}
image=new int[nn];
//int nn=dets[0]->getImageSize(nnx, nny, ns);
//for (i=0; i<nn; i++) image[i]=0;
for (int ii=0; ii<nThreads; ii++) {
@ -259,7 +336,7 @@ public:
}
void clearImage() {
virtual void clearImage() {
for (int ii=0; ii<nThreads; ii++) {
dets[ii]->clearImage();
@ -267,7 +344,7 @@ public:
}
virtual void *writeImage(const char * imgname) {
virtual void *writeImage(const char * imgname, double t=1) {
/* #ifdef SAVE_ALL */
/* for (int ii=0; ii<nThreads; ii++) { */
/* char tit[10000];cout << "m" <<endl; */
@ -282,8 +359,12 @@ public:
float *gm=new float[nn];
if (gm) {
for (int ix=0; ix<nn; ix++) {
gm[ix]=image[ix];
// if (image[ix]>0 && ix/nnx<350) cout << ix/nnx << " " << ix%nnx << " " << image[ix]<< " " << gm[ix] << endl;
if (t)
gm[ix]=(image[ix])/t;
else
gm[ix]=image[ix];
//if (image[ix]>0 && ix/nnx<350) cout << ix/nnx << " " << ix%nnx << " " << image[ix]<< " " << gm[ix] << endl;
}
//cout << "image " << nnx << " " << nny << endl;
WriteToTiff(gm,imgname ,nnx, nny);
@ -294,11 +375,12 @@ public:
virtual void StartThreads() {
for (int i=0; i<nThreads; i++)
for (int i=0; i<nThreads; i++) {
dets[i]->StartThread();
}
}
virtual void StopThreads() {
@ -308,7 +390,7 @@ public:
}
int isBusy() {
virtual int isBusy() {
int ret=0, ret1;
for (int i=0; i<nThreads; i++) {
ret1=dets[i]->isBusy();
@ -319,125 +401,21 @@ public:
}
bool pushData(char* &ptr) {
virtual bool pushData(char* &ptr) {
dets[ithread]->pushData(ptr);
}
bool popFree(char* &ptr) {
virtual bool popFree(char* &ptr) {
// cout << ithread << endl;
dets[ithread]->popFree(ptr);
}
int nextThread() {
virtual int nextThread() {
ithread++;
if (ithread==nThreads) ithread=0;
return ithread;
}
virtual void prepareInterpolation(int &ok){
getFlatField(); //sum up all etas
setFlatField(); //set etas to all detectors
for (int i=0; i<nThreads; i++) {
dets[i]->prepareInterpolation(ok);
}
}
virtual int *getFlatField(){
int nb=0;
double emi, ema;
int *f0;
slsInterpolation* inte=(slsInterpolation*)dets[0]->getInterpolation();
if (inte) {
if (inte->getFlatField(nb,emi,ema)) {
if (ff) delete [] ff;
ff=new int[nb*nb];
for (int i=0; i<nThreads; i++) {
// cout << "mtgff* ff has " << nb << " bins " << endl;
inte=(slsInterpolation*)dets[i]->getInterpolation();
f0=inte->getFlatField();
if (f0) {
// cout << "ff " << i << endl;
for (int ib=0; ib<nb*nb; ib++) {
if (i==0)
ff[ib]=f0[ib];
else
ff[ib]+=f0[ib];
/* if (i==0 && f0[ib]>0) */
/* cout << i << " " << ib << " " << f0[ib] << " " << ff[ib] << endl; */
}
}
}
return ff;
}
}
return NULL;
}
virtual int *setFlatField(int *h=NULL, int nb=-1, double emin=1, double emax=0){
//int nb=0;
double emi, ema;
slsInterpolation* inte=(slsInterpolation*)dets[0]->getFlatField(nb,emi,ema);
if (inte) {
if (h==NULL) h=ff;
for (int i=0; i<nThreads; i++) {
dets[i]->setFlatField(h, nb, emin, emax);
}
}
return NULL;
};
void *writeFlatField(const char * imgname){
int nb=0;
double emi, ema;
slsInterpolation* inte=(slsInterpolation*)dets[0]->getFlatField(nb,emi,ema);
if (inte) {
if (getFlatField()) {
// cout << "mtwff* ff has " << nb << " bins " << endl;
float *gm=new float[nb*nb];
if (gm) {
for (int ix=0; ix<nb*nb; ix++) {
gm[ix]=ff[ix];
}
WriteToTiff(gm,imgname ,nb, nb);
delete [] gm;
} else cout << "Could not allocate float image " << endl;
}
} else
cout << "Detector without flat field! " << endl;
return NULL;
};
void *readFlatField(const char * imgname, int nb=-1, double emin=1, double emax=0){
int* inte=(int*)dets[0]->getFlatField(nb,emin,emax);
if (inte) {
uint32 nnx;
uint32 nny;
float *gm=ReadFromTiff(imgname, nnx, nny);
if (ff) delete [] ff;
if (nnx>nb) nb=nnx;
if (nny>nb) nb=nny;
ff=new int[nb*nb];
for (int ix=0; ix<nb*nb; ix++) {
ff[ix]=gm[ix];
}
delete [] gm;
return setFlatField(ff,nb,emin,emax);
} else
cout << "Not interpolating detector! " << endl;
return NULL;
};
virtual double *getPedestal(){
int nx, ny;
@ -448,15 +426,25 @@ public:
for (int i=0; i<nThreads; i++) {
//inte=(slsInterpolation*)dets[i]->getInterpolation(nb,emi,ema);
// cout << i << endl;
p0=dets[i]->getPedestal(p0);
if (p0) {
if (i==0) {
for (int ib=0; ib<nx*ny; ib++) {
ped[ib]=p0[ib]/((double)nThreads);
// cout << p0[ib] << " ";
}
} else {
for (int ib=0; ib<nx*ny; ib++) {
ped[ib]+=p0[ib]/((double)nThreads);
// cout << p0[ib] << " ";
}
}
}
delete [] p0;
}
delete [] p0;
return ped;
};
@ -477,7 +465,7 @@ public:
void *writePedestal(const char * imgname){
virtual void *writePedestal(const char * imgname){
int nx, ny;
dets[0]->getDetectorSize(nx,ny);
@ -497,7 +485,7 @@ public:
};
void *readPedestal(const char * imgname, int nb=-1, double emin=1, double emax=0){
virtual void *readPedestal(const char * imgname, int nb=-1, double emin=1, double emax=0){
int nx, ny;
dets[0]->getDetectorSize(nx,ny);
@ -526,7 +514,7 @@ public:
\param f file pointer
\returns current file pointer
*/
FILE *setFilePointer(FILE *f){
virtual FILE *setFilePointer(FILE *f){
for (int i=0; i<nThreads; i++) {
dets[i]->setFilePointer(f);
//dets[i]->setMutex(&fmutex);
@ -534,18 +522,18 @@ public:
return dets[0]->getFilePointer();
};
/** gets file pointer where to write the clusters to
\returns current file pointer
*/
FILE *getFilePointer(){return dets[0]->getFilePointer();};
/** gets file pointer where to write the clusters to
\returns current file pointer
*/
virtual FILE *getFilePointer(){return dets[0]->getFilePointer();};
private:
protected:
bool stop;
const int nThreads;
threadedAnalogDetector *dets[20];
analogDetector<uint16_t> *dd[20];
threadedAnalogDetector *dets[MAXTHREADS];
analogDetector<uint16_t> *dd[MAXTHREADS];
int ithread;
int *image;
int *ff;

View File

@ -0,0 +1,51 @@
#ifndef MULTITHREADED_COUNTING_DETECTOR_H
#define MULTITHREADED_COUNTING_DETECTOR_H
#include "singlePhotonDetector.h"
#include "multiThreadedAnalogDetector.h"
//#include <mutex>
using namespace std;
/* class threadedCountingDetector : public threadedAnalogDetector */
/* { */
/* public: */
/* threadedCountingDetector(singlePhotonDetector *d, int fs=10000) : threadedAnalogDetector(d,fs) {}; */
/* }; */
class multiThreadedCountingDetector : public multiThreadedAnalogDetector
{
public:
multiThreadedCountingDetector(singlePhotonDetector *d, int n, int fs=1000) : multiThreadedAnalogDetector(d,n,fs) { };
virtual double setNSigma(double n) {double ret; for (int i=0; i<nThreads; i++) ret=(dets[i])->setNSigma(n); return ret;};
virtual void setEnergyRange(double emi, double ema) {for (int i=0; i<nThreads; i++) (dets[i])->setEnergyRange(emi,ema);};
};
#endif

View File

@ -0,0 +1,112 @@
#ifndef MULTITHREADED_INTERPOLATING_DETECTOR_H
#define MULTITHREADED_INTERPOLATING_DETECTOR_H
#include "interpolatingDetector.h"
#include "multiThreadedCountingDetector.h"
//#include <mutex>
using namespace std;
class multiThreadedInterpolatingDetector : public multiThreadedCountingDetector
{
public:
multiThreadedInterpolatingDetector(interpolatingDetector *d, int n, int fs=1000) : multiThreadedCountingDetector(d,n,fs) { };
virtual void prepareInterpolation(int &ok){
/* getFlatField(); //sum up all etas */
/* setFlatField(); //set etas to all detectors */
/* for (int i=0; i<nThreads; i++) { */
(dets[0])->prepareInterpolation(ok);
// }
}
virtual int *getFlatField(){
return (dets[0])->getFlatField();
}
virtual int *getFlatField(int &nb, double emi, double ema){
return (dets[0])->getFlatField(nb,emi,ema);
}
virtual int *setFlatField(int *h=NULL, int nb=-1, double emin=1, double emax=0){
return (dets[0])->setFlatField(h,nb,emin,emax);
};
void *writeFlatField(const char * imgname){
dets[0]->writeFlatField(imgname);
};
void *readFlatField(const char * imgname, int nb=-1, double emin=1, double emax=0){
(dets[0])->readFlatField(imgname, nb, emin, emax);
};
virtual int setNSubPixels(int ns) { return (dets[0])->setNSubPixels(ns);};
virtual void resetFlatField() {(dets[0])->resetFlatField();};
/** sets file pointer where to write the clusters to
\param f file pointer
\returns current file pointer
*/
virtual slsInterpolation *setInterpolation(slsInterpolation *f){
int ok;
for (int i=0; i<nThreads; i++)
(dets[i])->setInterpolation(f);
return (dets[0])->getInterpolation();
};
virtual slsInterpolation *getInterpolation(){
return (dets[0])->getInterpolation();
};
virtual int *getImage(int &nnx, int &nny, int &ns) {
if (getInterpolation()==NULL) return multiThreadedAnalogDetector::getImage(nnx,nny,ns);
//if one interpolates, the whole image is stored in detector 0;
int *img;
// int nnx, nny, ns;
// int nnx, nny, ns;
int nn=dets[0]->getImageSize(nnx, nny,ns);
if (image) {
delete image;
image=NULL;
}
image=new int[nn];
img=dets[0]->getImage();
for (int i=0; i<nn; i++) {
image[i]=img[i];
}
return image;
};
};
#endif

View File

@ -58,11 +58,13 @@ public analogDetector<uint16_t> {
int sign=1,
commonModeSubtraction *cm=NULL,
int nped=1000,
int nd=100, int nnx=-1, int nny=-1, double *gm=NULL) : analogDetector<uint16_t>(d, sign, cm, nped, nnx, nny, gm), nDark(nd), eventMask(NULL),nSigma (nsigma), clusterSize(csize), clusterSizeY(csize), clusters(NULL), quad(UNDEFINED_QUADRANT), tot(0), quadTot(0) {
int nd=100, int nnx=-1, int nny=-1, double *gm=NULL) : analogDetector<uint16_t>(d, sign, cm, nped, nnx, nny, gm), nDark(nd), eventMask(NULL),nSigma (nsigma), clusterSize(csize), clusterSizeY(csize), clusters(NULL), quad(UNDEFINED_QUADRANT), tot(0), quadTot(0), eMin(-1), eMax(-1) {
fm=new pthread_mutex_t ;
eventMask=new eventType*[ny];
for (int i=0; i<ny; i++) {
eventMask[i]=new eventType[nx];
@ -101,6 +103,8 @@ public analogDetector<uint16_t> {
for (int i=0; i<ny; i++) {
eventMask[i]=new eventType[nx];
}
eMin=orig->eMin;
eMax=orig->eMax;
nSigma=orig->nSigma;
@ -112,6 +116,7 @@ public analogDetector<uint16_t> {
// cluster=clusters;
setClusterSize(clusterSize);
fm=orig->fm;
quad=UNDEFINED_QUADRANT;
tot=0;
@ -136,7 +141,7 @@ public analogDetector<uint16_t> {
\param n number of sigma to be set (0 or negative gets)
\returns actual number of sigma parameter
*/
double setNSigma(double n=-1){if (n>0) nSigma=n; return nSigma;}
double setNSigma(double n=-1){if (n>=0) nSigma=n; return nSigma;}
/** sets/gets cluster size
\param n cluster size to be set, (0 or negative gets). If even is incremented by 1.
@ -178,11 +183,11 @@ public analogDetector<uint16_t> {
//nph=new int[nx*ny];
double rest[ny][nx];
int cy=(clusterSizeY+1)/2;
int cs=(clusterSize+1)/2;
int cy=(clusterSizeY+1)/2; //quad size
int cs=(clusterSize+1)/2; //quad size
int ccs=clusterSize;
int ccy=clusterSizeY;
int ccs=clusterSize; //cluster size
int ccy=clusterSizeY; //cluster size
double g=1.;
@ -210,210 +215,122 @@ public analogDetector<uint16_t> {
if (thr>0) {
newFrame();
if (cmSub) {
cout << "add to common mode?"<< endl;
addToCommonMode(data);
}
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
for (int ix=xmin; ix<xmax; ix++) {
if (det->isGood(ix,iy)) {
val=subtractPedestal(data,ix,iy, cm);
val=subtractPedestal(data,ix,iy, cm);
nn=analogDetector<uint16_t>::getNPhotons(data,ix,iy);//val/thr;//
if (nn>0) {
nph[ix+nx*iy]+=nn;
rest[iy][ix]=(val-nn*thr);//?+0.5*thr
nphFrame+=nn;
nphTot+=nn;
} else
rest[iy][ix]=val;
nn=val/tthr;//analogDetector<uint16_t>::getNPhotons(data,ix,iy);
nph[ix+nx*iy]+=nn;
rest[iy][ix]=(val-nn*tthr);
nphFrame+=nn;
nphTot+=nn;
}
}
}
// }
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
for (int ix=xmin; ix<xmax; ix++) {
// for (int ix=clusterSize/2; ix<clusterSize/2-1; ix++) {
// for (int iy=clusterSizeY/2; iy<ny-clusterSizeY/2; iy++) {
eventMask[iy][ix]=PEDESTAL;
max=0;
tl=0;
tr=0;
bl=0;
br=0;
tot=0;
quadTot=0;
if (det->isGood(ix,iy)) {
eventMask[iy][ix]=PEDESTAL;
max=0;
tl=0;
tr=0;
bl=0;
br=0;
tot=0;
quadTot=0;
if (rest[iy][ix]>0.25*tthr) {
eventMask[iy][ix]=NEIGHBOUR;
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
if ((iy+ir)>=0 && (iy+ir)<ny && (ix+ic)>=0 && (ix+ic)<nx) {
//clusters->set_data(rest[iy+ir][ix+ic], ic, ir);
if (rest[iy][ix]>0.25*thr) {
eventMask[iy][ix]=NEIGHBOUR;
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
if ((iy+ir)>=0 && (iy+ir)<ny && (ix+ic)>=0 && (ix+ic)<nx) {
//clusters->set_data(rest[iy+ir][ix+ic], ic, ir);
v=rest[iy+ir][ix+ic];//clusters->get_data(ic,ir);
tot+=v;
v=rest[iy+ir][ix+ic];//clusters->get_data(ic,ir);
tot+=v;
if (ir<=0 && ic<=0)
bl+=v;
if (ir<=0 && ic>=0)
br+=v;
if (ir>=0 && ic<=0)
tl+=v;
if (ir>=0 && ic>=0)
tr+=v;
if (ir<=0 && ic<=0)
bl+=v;
if (ir<=0 && ic>=0)
br+=v;
if (ir>=0 && ic<=0)
tl+=v;
if (ir>=0 && ic>=0)
tr+=v;
if (v>max) {
max=v;
if (v>max) {
max=v;
}
// if (ir==0 && ic==0) {
//}
}
// if (ir==0 && ic==0) {
//}
}
if (rest[iy][ix]>=max) {
if (bl>=br && bl>=tl && bl>=tr) {
quad=BOTTOM_LEFT;
quadTot=bl;
} else if (br>=bl && br>=tl && br>=tr) {
quad=BOTTOM_RIGHT;
quadTot=br;
} else if (tl>=br && tl>=bl && tl>=tr) {
quad=TOP_LEFT;
quadTot=tl;
} else if (tr>=bl && tr>=tl && tr>=br) {
quad=TOP_RIGHT;
quadTot=tr;
}
if (nSigma==0) {
tthr=thr;
tthr1=thr;
tthr2=thr;
} else {
rms=getPedestalRMS(ix,iy);
tthr=nSigma*rms;
tthr1=nSigma*sqrt(clusterSize*clusterSizeY)*rms;
tthr2=nSigma*sqrt((clusterSize+1)/2.*((clusterSizeY+1)/2.))*rms;
if (thr>2*tthr) tthr=thr-tthr;
if (thr>2*tthr1) tthr1=tthr-tthr1;
if (thr>2*tthr2) tthr2=tthr-tthr2;
}
if (tot>tthr1 || quadTot>tthr2 || max>tthr) {
eventMask[iy][ix]=PHOTON;
nph[ix+nx*iy]++;
rest[iy][ix]-=thr;
nphFrame++;
nphTot++;
}
}
}
if (rest[iy][ix]>=max) {
if (bl>=br && bl>=tl && bl>=tr) {
quad=BOTTOM_LEFT;
quadTot=bl;
} else if (br>=bl && br>=tl && br>=tr) {
quad=BOTTOM_RIGHT;
quadTot=br;
} else if (tl>=br && tl>=bl && tl>=tr) {
quad=TOP_LEFT;
quadTot=tl;
} else if (tr>=bl && tr>=tl && tr>=br) {
quad=TOP_RIGHT;
quadTot=tr;
}
rms=getPedestalRMS(ix,iy);
tthr1=tthr-sqrt(ccy*ccs)*rms;
tthr2=tthr-sqrt(cy*cs)*rms;
if (tthr>sqrt(ccy*ccs)*rms) tthr1=tthr-sqrt(ccy*ccs)*rms; else tthr1=sqrt(ccy*ccs)*rms;
if (tthr>sqrt(cy*cs)*rms) tthr2=tthr-sqrt(cy*cs)*rms; else tthr2=sqrt(cy*cs)*rms;
if (tot>tthr1 || quadTot>tthr2) {
eventMask[iy][ix]=PHOTON;
nph[ix+nx*iy]++;
nphFrame++;
nphTot++;
}
}
}
}
}
}
// cout << iframe << " " << nphFrame << " " << nphTot << endl;
//cout << iframe << " " << nph << endl;
} else return getClusters(data, nph);
}
return NULL;
};
/** finds event type for pixel and fills cluster structure. The algorithm loops only if the evenMask for this pixel is still undefined.
if pixel or cluster around it are above threshold (nsigma*pedestalRMS) cluster is filled and pixel mask is PHOTON_MAX (if maximum in cluster) or NEIGHBOUR; If PHOTON_MAX, the elements of the cluster are also set as NEIGHBOURs in order to speed up the looping
if below threshold the pixel is either marked as PEDESTAL (and added to the pedestal calculator) or NEGATIVE_PEDESTAL is case it's lower than -threshold, otherwise the pedestal average would drift to negative values while it should be 0.
/param data pointer to the data
/param ix pixel x coordinate
/param iy pixel y coordinate
/param cm enable(1)/disable(0) common mode subtraction (if defined).
/returns event type for the given pixel
*/
eventType getEventType(char *data, int ix, int iy, int cm=0) {
// eventType ret=PEDESTAL;
double max=0, tl=0, tr=0, bl=0,br=0, v;
// cout << iframe << endl;
int cy=(clusterSizeY+1)/2;
int cs=(clusterSize+1)/2;
double val;
tot=0;
quadTot=0;
quad=UNDEFINED_QUADRANT;
if (iframe<nDark) {
addToPedestal(data, ix,iy);
return UNDEFINED_EVENT;
}
// if (eventMask[iy][ix]==UNDEFINED) {
eventMask[iy][ix]=PEDESTAL;
clusters->x=ix;
clusters->y=iy;
clusters->rms=getPedestalRMS(ix,iy);
clusters->ped=getPedestal(ix,iy, cm);
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
if ((iy+ir)>=0 && (iy+ir)<ny && (ix+ic)>=0 && (ix+ic)<nx) {
v=subtractPedestal(data, ix+ic, iy+ir);
clusters->set_data(v, ic, ir);
// v=clusters->get_data(ic,ir);
tot+=v;
if (ir<=0 && ic<=0)
bl+=v;
if (ir<=0 && ic>=0)
br+=v;
if (ir>=0 && ic<=0)
tl+=v;
if (ir>=0 && ic>=0)
tr+=v;
if (v>max) {
max=v;
}
if (ir==0 && ic==0) {
if (v<-nSigma*clusters->rms)
eventMask[iy][ix]=NEGATIVE_PEDESTAL;
}
}
}
}
if (bl>=br && bl>=tl && bl>=tr) {
quad=BOTTOM_LEFT;
quadTot=bl;
} else if (br>=bl && br>=tl && br>=tr) {
quad=BOTTOM_RIGHT;
quadTot=br;
} else if (tl>=br && tl>=bl && tl>=tr) {
quad=TOP_LEFT;
quadTot=tl;
} else if (tr>=bl && tr>=tl && tr>=br) {
quad=TOP_RIGHT;
quadTot=tr;
}
if (max>nSigma*clusters->rms || tot>sqrt(clusterSizeY*clusterSize)*nSigma*clusters->rms || quadTot>cy*cs*nSigma*clusters->rms) {
if (clusters->get_data(0,0)>=max) {
eventMask[iy][ix]=PHOTON_MAX;
} else {
eventMask[iy][ix]=PHOTON;
}
} else if (eventMask[iy][ix]==PEDESTAL) {
if (cm==0) {
if (det)
val=dataSign*det->getValue(data, ix, iy);
else
val=((double**)data)[iy][ix];
addToPedestal(val,ix,iy);
}
}
return eventMask[iy][ix];
};
@ -436,6 +353,7 @@ int *getClusters(char *data, int *ph=NULL) {
double max=0, tl=0, tr=0, bl=0,br=0, *v, vv;
int cm=0;
int good=1;
if (cmSub) cm=1;
if (ph==NULL)
ph=image;
@ -452,103 +370,112 @@ int *getClusters(char *data, int *ph=NULL) {
addToCommonMode(data);
for (int ix=xmin; ix<xmax; ix++) {
for (int iy=ymin; iy<ymax; iy++) {
max=0;
tl=0;
tr=0;
bl=0;
br=0;
tot=0;
quadTot=0;
quad=UNDEFINED_QUADRANT;
for (int ix=xmin; ix<xmax; ix++) {
if (det->isGood(ix,iy)) {
max=0;
tl=0;
tr=0;
bl=0;
br=0;
tot=0;
quadTot=0;
quad=UNDEFINED_QUADRANT;
eventMask[iy][ix]=PEDESTAL;
eventMask[iy][ix]=PEDESTAL;
(clusters+nph)->rms=getPedestalRMS(ix,iy);
// cluster=clusters+nph;
(clusters+nph)->rms=getPedestalRMS(ix,iy);
// cluster=clusters+nph;
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
if ((iy+ir)>=iy && (iy+ir)<ny && (ix+ic)>=ix && (ix+ic)<nx) {
val[iy+ir][ix+ic]=subtractPedestal(data,ix+ic,iy+ir, cm);
}
v=&(val[iy+ir][ix+ic]);
tot+=*v;
if (ir<=0 && ic<=0)
bl+=*v;
if (ir<=0 && ic>=0)
br+=*v;
if (ir>=0 && ic<=0)
tl+=*v;
if (ir>=0 && ic>=0)
tr+=*v;
if (*v>max) {
max=*v;
}
if (ir==0 && ic==0) {
if (*v<-nSigma*(clusters+nph)->rms)
eventMask[iy][ix]=NEGATIVE_PEDESTAL;
else if (*v>nSigma*(clusters+nph)->rms)
eventMask[iy][ix]=PHOTON;
}
if ((iy+ir)>=iy && (iy+ir)<ny && (ix+ic)>=ix && (ix+ic)<nx) {
val[iy+ir][ix+ic]=subtractPedestal(data,ix+ic,iy+ir, cm);
}
v=&(val[iy+ir][ix+ic]);
tot+=*v;
if (ir<=0 && ic<=0)
bl+=*v;
if (ir<=0 && ic>=0)
br+=*v;
if (ir>=0 && ic<=0)
tl+=*v;
if (ir>=0 && ic>=0)
tr+=*v;
if (*v>max) {
max=*v;
}
if (ir==0 && ic==0) {
if (*v<-nSigma*(clusters+nph)->rms)
eventMask[iy][ix]=NEGATIVE_PEDESTAL;
}
}
}
if (eventMask[iy][ix]==PHOTON && val[iy][ix]<max)
continue;
if (bl>=br && bl>=tl && bl>=tr) {
(clusters+nph)->quad=BOTTOM_LEFT;
(clusters+nph)->quadTot=bl;
} else if (br>=bl && br>=tl && br>=tr) {
(clusters+nph)->quad=BOTTOM_RIGHT;
if (bl>=br && bl>=tl && bl>=tr) {
(clusters+nph)->quad=BOTTOM_LEFT;
(clusters+nph)->quadTot=bl;
} else if (br>=bl && br>=tl && br>=tr) {
(clusters+nph)->quad=BOTTOM_RIGHT;
(clusters+nph)->quadTot=br;
} else if (tl>=br && tl>=bl && tl>=tr) {
(clusters+nph)->quad=TOP_LEFT;
(clusters+nph)->quadTot=tl;
} else if (tr>=bl && tr>=tl && tr>=br) {
(clusters+nph)->quad=TOP_RIGHT;
(clusters+nph)->quadTot=tr;
}
} else if (tl>=br && tl>=bl && tl>=tr) {
(clusters+nph)->quad=TOP_LEFT;
(clusters+nph)->quadTot=tl;
} else if (tr>=bl && tr>=tl && tr>=br) {
(clusters+nph)->quad=TOP_RIGHT;
(clusters+nph)->quadTot=tr;
}
if (max>nSigma*(clusters+nph)->rms || tot>sqrt(clusterSizeY*clusterSize)*nSigma*(clusters+nph)->rms || ((clusters+nph)->quadTot)>sqrt(cy*cs)*nSigma*(clusters+nph)->rms) {
if (val[iy][ix]>=max) {
if (max>nSigma*(clusters+nph)->rms || tot>sqrt(clusterSizeY*clusterSize)*nSigma*(clusters+nph)->rms || ((clusters+nph)->quadTot)>sqrt(cy*cs)*nSigma*(clusters+nph)->rms) {
if (val[iy][ix]>=max) {
eventMask[iy][ix]=PHOTON_MAX;
(clusters+nph)->tot=tot;
(clusters+nph)->x=ix;
(clusters+nph)->y=iy;
(clusters+nph)->iframe=det->getFrameNumber(data);
// (clusters+nph)->iframe=det->getFrameNumber(data);
// cout << det->getFrameNumber(data) << " " << (clusters+nph)->iframe << endl;
(clusters+nph)->ped=getPedestal(ix,iy,0);
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
(clusters+nph)->set_data(val[iy+ir][ix+ic],ic,ir);
}
}
// cout << (clusters+nph)->iframe << " " << ix << " " << nph << " " << tot << " " << (clusters+nph)->quadTot << endl;
nph++;
image[iy*nx+ix]++;
good=1;
if (eMin>0 && tot<eMin) good=0;
if (eMax>0 && tot>eMax) good=0;
if (good) {
nph++;
image[iy*nx+ix]++;
}
} else {
eventMask[iy][ix]=PHOTON;
}
} else if (eventMask[iy][ix]==PEDESTAL) {
addToPedestal(data,ix,iy,cm);
} else if (eventMask[iy][ix]==PEDESTAL) {
addToPedestal(data,ix,iy,cm);
}
}
}
}
nphFrame=nph;
nphTot+=nph;
//cout << nphFrame << endl;
// cout <<"**********************************"<< endl;
writeClusters();
// cout <<"**********************************"<< det->getFrameNumber(data) << " " << nphFrame << endl;
writeClusters(det->getFrameNumber(data));
return image;
};
@ -633,13 +560,27 @@ int *getClusters(char *data, int *ph=NULL) {
*/
static void writeClusters(FILE *f, single_photon_hit *clusters, int nph){for (int i=0; i<nph; i++) (clusters+i)->write(f);};
void writeClusters(FILE *f){for (int i=0; i<nphFrame; i++) (clusters+i)->write(f);};
void writeClusters(){if (myFile) {
static void writeClusters(FILE *f, single_photon_hit *cl, int nph, int fn=0){
/* #ifndef OLDFORMAT */
/* if (fwrite((void*)&fn, 1, sizeof(int), f)) */
/* if (fwrite((void*)&nph, 1, sizeof(int), f)) */
/* #endif */
for (int i=0; i<nph; i++) (cl+i)->write(f);
};
void writeClusters(FILE *f, int fn=0){
writeClusters(f,clusters,nphFrame, fn);
//for (int i=0; i<nphFrame; i++)
//(clusters+i)->write(f);
};
void writeClusters(int fn){
if (myFile) {
//cout << "++" << endl;
pthread_mutex_lock(fm);
for (int i=0; i<nphFrame; i++)
(clusters+i)->write(myFile);
// cout <<"**********************************"<< fn << " " << nphFrame << endl;
writeClusters(myFile,clusters,nphFrame, fn);
// for (int i=0; i<nphFrame; i++)
// (clusters+i)->write(myFile);
pthread_mutex_unlock(fm);
//cout << "--" << endl;
}
@ -650,21 +591,36 @@ void writeClusters(FILE *f){for (int i=0; i<nphFrame; i++) (clusters+i)->write(f
// cout << "sp" << endl;
switch(fMode) {
case ePedestal:
//cout <<"spc add to ped " << endl;
addToPedestal(data);
break;
default:
getNPhotons(data,val);
switch (dMode) {
case eAnalog:
analogDetector<uint16_t>::processData(data,val);
break;
default:
// cout <<"spc " << endl;
getNPhotons(data,val);
}
}
iframe++;
// cout << "done" << endl;
};
int getPhFrame(){return nphFrame;};
int getPhTot(){return nphTot;};
void setEnergyRange(double emi, double ema){eMin=emi; eMax=ema;};
void getEnergyRange(double &emi, double &ema){emi=eMin; ema=eMax;};
void setMutex(pthread_mutex_t *m){fm=m;};
protected:
int nDark; /**< number of frames to be used at the beginning of the dataset to calculate pedestal without applying photon discrimination */
eventType **eventMask; /**< matrix of event type or each pixel */
double nSigma; /**< number of sigma parameter for photon discrimination */
double eMin, eMax;
int clusterSize; /**< cluster size in the x direction */
int clusterSizeY; /**< cluster size in the y direction i.e. 1 for strips, clusterSize for pixels */
// single_photon_hit *cluster; /**< single photon hit data structure */
@ -675,6 +631,7 @@ void writeClusters(FILE *f){for (int i=0; i<nphFrame; i++) (clusters+i)->write(f
int nphTot;
int nphFrame;
pthread_mutex_t *fm;
};

View File

@ -38,8 +38,62 @@ class single_photon_hit {
size_t write(FILE *myFile) {
//fwrite((void*)this, 1, 3*sizeof(int)+4*sizeof(double)+sizeof(quad), myFile);
if (fwrite((void*)this, 1, sizeof(int)+2*sizeof(int16_t), myFile))
// if (fwrite((void*)this, 1, sizeof(int)+2*sizeof(int16_t), myFile))
//#ifdef OLDFORMAT
if (fwrite((void*)&iframe, 1, sizeof(int), myFile)) {};
//#endif
#ifndef WRITE_QUAD
//printf("no quad ");
if (fwrite((void*)&x, 2, sizeof(int16_t), myFile))
return fwrite((void*)data, 1, dx*dy*sizeof(int), myFile);
#endif
#ifdef WRITE_QUAD
// printf("quad ");
int qq[4];
switch(quad) {
case TOP_LEFT:
qq[0]=data[3];
qq[1]=data[4];
qq[2]=data[6];
qq[3]=data[7];
x=x-1;
y=y;
break;
case TOP_RIGHT:
qq[0]=data[4];
qq[1]=data[5];
qq[2]=data[7];
qq[3]=data[8];
x=x;
y=y;
break;
case BOTTOM_LEFT:
qq[0]=data[0];
qq[1]=data[1];
qq[2]=data[3];
qq[3]=data[4];
x=x-1;
y=y-1;
break;
case BOTTOM_RIGHT:
qq[0]=data[1];
qq[1]=data[2];
qq[2]=data[4];
qq[3]=data[5];
x=x;
y=y-1;
break;
default:
;
}
if (fwrite((void*)&x, 2, sizeof(int16_t), myFile))
return fwrite((void*)qq, 1, 4*sizeof(int), myFile);
#endif
return 0;
};
@ -50,11 +104,126 @@ class single_photon_hit {
size_t read(FILE *myFile) {
//fread((void*)this, 1, 3*sizeof(int)+4*sizeof(double)+sizeof(quad), myFile);
if (fread((void*)this, 1, sizeof(int)+2*sizeof(int16_t), myFile))
//#ifdef OLDFORMAT
if (fread((void*)&iframe, 1, sizeof(int), myFile)) {}
//#endif
#ifndef WRITE_QUAD
// printf( "no quad \n");
if (fread((void*)&x, 2, sizeof(int16_t), myFile))
return fread((void*)data, 1, dx*dy*sizeof(int), myFile);
#endif
#ifdef WRITE_QUAD
int qq[4];
// printf( "quad \n");
if (fread((void*)&x, 2, sizeof(int16_t), myFile))
if (fread((void*)qq, 1, 4*sizeof(int), myFile)) {
quad=TOP_RIGHT;
int mm=qq[0];
for (int i=1; i<4; i++) {
if (qq[i]<mm) {
switch (i) {
case 1:
quad=TOP_LEFT;
break;
case 2:
quad=BOTTOM_RIGHT;
break;
case 3:
quad=BOTTOM_LEFT;
break;
default:
;
}
}
}
switch(quad) {
case TOP_LEFT:
data[0]=0;
data[1]=0;
data[2]=0;
data[3]=qq[0];
data[4]=qq[1];
data[5]=0;
data[6]=qq[2];
data[7]=qq[3];
data[8]=0;
x=x+1;
y=y;
break;
case TOP_RIGHT:
data[0]=0;
data[1]=0;
data[2]=0;
data[3]=0;
data[4]=qq[0];
data[5]=qq[1];
data[6]=0;
data[7]=qq[2];
data[8]=qq[3];
x=x;
y=y;
break;
case BOTTOM_LEFT:
data[0]=qq[0];
data[1]=qq[1];
data[2]=0;
data[3]=qq[2];
data[4]=qq[3];
data[5]=0;
data[6]=0;
data[7]=0;
data[8]=0;
x=x+1;
y=y+1;
break;
case BOTTOM_RIGHT:
data[0]=0;
data[1]=qq[0];
data[2]=qq[1];
data[3]=0;
data[4]=qq[2];
data[5]=qq[3];
data[6]=0;
data[7]=0;
data[8]=0;
x=x;
y=y+1;
break;
default:
;
}
return 1;
}
#endif
return 0;
};
void print() {
int ix, iy;
for (int iy=0; iy<dy; iy++) {
for (int ix=0; ix<dx; ix++) {
printf("%d \t",data[ix+iy*dx]);
}
printf("\n");
}
}
/**
assign the value to the element of the cluster matrix, with relative coordinates where the center of the cluster is (0,0)
\param v value to be set

View File

@ -331,8 +331,6 @@ class slsDetectorData {
*/
virtual char *readNextFrame(ifstream &filebin)=0;
};

View File

@ -18,7 +18,7 @@ void *WriteToTiff(float * imgData, const char * imgname, int nrow, int ncol){
int sampleperpixel=1;
// unsigned char * buff=NULL;
tsize_t linebytes;
cout << "--" <<endl;
// cout << "--" <<endl;
TIFF * tif = TIFFOpen(imgname,"w");
if (tif) {
TIFFSetField(tif,TIFFTAG_IMAGEWIDTH,ncol);

View File

@ -1,9 +1,9 @@
Path: slsDetectorsPackage/slsDetectorGui
URL: origin git@github.com:slsdetectorgroup/slsDetectorPackage.git
Repository Root: origin git@github.com:slsdetectorgroup/slsDetectorPackage.git
Repsitory UUID: 3c774478681813e451df683e2bc8403b37490323
Revision: 524
Branch: 4.0.1
Repsitory UUID: 907d1655d1f6cf2bb8cf6ccd7e91e82f479dd2ca
Revision: 525
Branch: developer
Last Changed Author: Dhanya_Thattil
Last Changed Rev: 4084
Last Changed Rev: 4101
Last Changed Date: 2019-02-07 18:05:28.000000002 +0100 ./src/qTabSettings.cpp

View File

@ -1,6 +1,6 @@
#define GITURL "git@github.com:slsdetectorgroup/slsDetectorPackage.git"
#define GITREPUUID "3c774478681813e451df683e2bc8403b37490323"
#define GITREPUUID "907d1655d1f6cf2bb8cf6ccd7e91e82f479dd2ca"
#define GITAUTH "Dhanya_Thattil"
#define GITREV 0x4084
#define GITREV 0x4101
#define GITDATE 0x20190207
#define GITBRANCH "4.0.1"
#define GITBRANCH "developer"

View File

@ -31,6 +31,9 @@ int myport=-1;
//struct sockaddr_in address;
//#define VERBOSE
#define BLACKFIN_DRVR_SND_LMT (30000) // rough limit
#define BLACKFIN_RSND_PCKT_LOOP (10)
#define BLACKFIN_RSND_WAIT_US (1)
int bindSocket(unsigned short int port_number) {
int i;
@ -314,13 +317,46 @@ int receiveData(int file_des, void* buf,int length, intType itype){
return ret;
}
int sendDataOnly(int file_des, void* buf,int length) {
int sendDataOnly(int file_des, void* buf,int length) {
if (!length)
return 0;
int ret = write(file_des, buf, length); //value of -1 is other end socket crash as sigpipe is ignored
if (ret < 0) cprintf(BG_RED, "Error writing to socket. Possible socket crash\n");
return ret;
int bytesSent = 0;
int retry = 0; // retry index when buffer is blocked (write returns 0)
while (bytesSent < length) {
// setting a max packet size for blackfin driver (and network driver does not do a check if packets sent)
int bytesToSend = length - bytesSent;
if (bytesToSend > BLACKFIN_DRVR_SND_LMT)
bytesToSend = BLACKFIN_DRVR_SND_LMT;
// send
int rc = write(file_des, (char*)((char*)buf + bytesSent), bytesToSend);
// error
if (rc < 0) {
cprintf(BG_RED, "Error writing to socket. Possible socket crash: left=%d rc=%d length=%d sent=%d\n", bytesToSend, rc, length, bytesSent);
return bytesSent;
}
// also error, wrote nothing, buffer blocked up, too fast sending for client
if (rc == 0) {
cprintf(RED, "Error writing to socket. Buffer full. Retry: %d\n", retry);
++retry;
// wrote nothing for many loops
if (retry >= BLACKFIN_RSND_PCKT_LOOP) {
cprintf(BG_RED, "Error writing to socket. Buffer full! Too fast! No more.\n");
return bytesSent;
}
usleep(BLACKFIN_RSND_WAIT_US);
}
// wrote something, reset retry
else {
retry = 0;
}
bytesSent += rc;
}
return bytesSent;
}

View File

@ -378,6 +378,8 @@ enum dacIndex {
M_vIbiasSh, /**< mythen 3 >*/
M_vIcin, /**< mythen 3 >*/
M_vIpreOut, /**< mythen 3 >*/
ZMQ_emin, /**< ZMQ */
ZMQ_emax,/**< ZMQ */
V_POWER_A = 100, /**new chiptest board */
V_POWER_B = 101, /**new chiptest board */
V_POWER_C = 102, /**new chiptest board */
@ -473,13 +475,28 @@ enum readOutFlags {
READ_HITS=0x2, /**< return only the number of the channel which counted ate least one */
ZERO_COMPRESSION=0x4,/**< returned data are 0-compressed */
PUMP_PROBE_MODE=0x8,/**<pump-probe mode */
PEDESTAL=0x10,/**< frame mode set to pedestal */
FLAT=0x20,/**< frame mode set to flat */
NEWPEDESTAL=0x40,/**< frame mode set to pedestal and reset */
NEWFLAT=0x80,/**< frame mode set to flat and reset */
FRAME=0x100, /**< frame mode set to normal frame */
ANALOG=0x200, /**<detector working in analog mode */
COUNTING=0x400, /**<detector working in counting mode */
INTERPOLATING=0x800, /**<detector working in interpolating mode */
BACKGROUND_CORRECTIONS=0x1000, /**<background corrections */
TOT_MODE=0x2000,/**< pump-probe mode */
CONTINOUS_RO=0x4000,/**< pump-probe mode */
PARALLEL=0x10000,/**< eiger parallel mode */
NONPARALLEL=0x20000,/**< eiger serial mode */
SAFE=0x40000/**< eiger safe mode */,
DIGITAL_ONLY=0x80000, /** chiptest board read only digital bits (not adc values)*/
ANALOG_AND_DIGITAL=0x100000, /** chiptest board read adc values and digital bits digital bits */
DUT_CLK=0x200000, /** chiptest board fifo clock comes from device under test */
SHOW_OVERFLOW=0x400000, /** eiger 32 bit mode, show saturated for overflow of single subframes */

View File

@ -1,9 +1,9 @@
Path: slsDetectorsPackage/slsDetectorSoftware
URL: origin git@github.com:slsdetectorgroup/slsDetectorPackage.git
Repository Root: origin git@github.com:slsdetectorgroup/slsDetectorPackage.git
Repsitory UUID: 3c774478681813e451df683e2bc8403b37490323
Revision: 2071
Branch: 4.0.1
Repsitory UUID: 907d1655d1f6cf2bb8cf6ccd7e91e82f479dd2ca
Revision: 2076
Branch: developer
Last Changed Author: Dhanya_Thattil
Last Changed Rev: 4084
Last Changed Date: 2019-02-08 17:25:57.000000002 +0100 ./threadFiles/ThreadPool.o
Last Changed Rev: 4101
Last Changed Date: 2019-02-11 14:35:41.000000002 +0100 ./threadFiles/ThreadPool.o

View File

@ -6,7 +6,7 @@
CROSS = bfin-uclinux-
CC = $(CROSS)gcc
CFLAGS += -Wall -DMOENCHD -DMCB_FUNCS -DDACS_INT -DDEBUG -DV1 -DCTB -DOLDVERSION #-DVERBOSE #-DVERYVERBOSE #-DVIRTUAL #-DDACS_INT_CSERVER
CFLAGS += -Wall -DMOENCHD -DMCB_FUNCS -DDACS_INT -DDEBUG -DV1 -DCTB
PROGS= jctbDetectorServer
@ -24,22 +24,18 @@ OBJS = $(SRCS:%.c=%.o)
all: clean versioning $(PROGS)
test: clean jungfrauADCTEst
test: clean jungfrauADCTest
boot: $(OBJS)
versioning:
@echo `tput setaf 6; ./updateGitVersion.sh; tput sgr0;`
jctbDetectorServerNew: $(OBJS)
jctbDetectorServer: $(OBJS)
echo $(OBJS)
$(CC) $(CFLAGS) -o $@ $^ $(LDLIBS_$@) $(LDFLAGS_$@)
jctbDetectorServer: $(OBJS)
echo $(OBJS)
$(CC) $(CFLAGS) -o $@ $^ $(LDLIBS_$@) $(LDFLAGS_$@) -DOLDVERSION
jungfrauADCTEst: $(OBJS)
jungfrauADCTest: $(OBJS)
echo $(OBJS)
$(CC) $(CFLAGS) -o $@ $^ $(LDLIBS_$@) $(LDFLAGS_$@) -DTESTADC

View File

@ -28,7 +28,7 @@
#include "registers_m.h"
//for memory mapping
u_int32_t CSP0BASE;
u_int64_t CSP0BASE;
u_int16_t volatile *values;
@ -43,8 +43,8 @@ int mapCSP0(void) {
}
printf("/dev/mem opened\n");
CSP0BASE = (u_int32_t)mmap(0, MEM_SIZE, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, fd, CSP0);
if (CSP0BASE == (u_int32_t)MAP_FAILED) {
CSP0BASE = mmap(0, MEM_SIZE, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, fd, CSP0);
if (CSP0BASE == MAP_FAILED) {
printf("\nCan't map memmory area!!\n");
return FAIL;
}
@ -61,8 +61,8 @@ int mapCSP0(void) {
return FAIL;
}
#endif
printf("CSPObase is 0x%08x \n",CSP0BASE);
printf("CSPOBASE=from %08x to %08x\n",CSP0BASE,CSP0BASE+MEM_SIZE);
printf("CSPObase is 0x%08llx \n",CSP0BASE);
printf("CSPOBASE=from %08llx to %08llx\n",CSP0BASE,CSP0BASE+MEM_SIZE);
u_int32_t address;
address = FIFO_DATA_REG;//_OFF;
@ -73,12 +73,24 @@ int mapCSP0(void) {
return OK;
}
u_int16_t bus_r16(u_int32_t offset){
u_int16_t a_bus_r16(u_int32_t offset){
volatile u_int16_t *ptr1;
ptr1=(u_int16_t*)(CSP0BASE+offset*2);
return *ptr1;
}
u_int16_t bus_r16(u_int32_t offset){
u_int16_t r= a_bus_r16(offset);
/* #ifndef OLDVERSION */
/* while (r!=a_bus_r16(offset)) */
/* r=a_bus_r16(offset); */
/* #endif */
return r;
}
u_int16_t bus_w16(u_int32_t offset, u_int16_t data) {
volatile u_int16_t *ptr1;
ptr1=(u_int16_t*)(CSP0BASE+offset*2);
@ -97,12 +109,21 @@ u_int32_t bus_w(u_int32_t offset, u_int32_t data) {
}
u_int32_t bus_r(u_int32_t offset) {
u_int32_t a_bus_r(u_int32_t offset) {
volatile u_int32_t *ptr1;
ptr1=(u_int32_t*)(CSP0BASE+offset*2);
return *ptr1;
}
u_int32_t bus_r(u_int32_t offset){
u_int32_t r= a_bus_r(offset);
/* #ifndef OLDVERSION */
/* while (r!=a_bus_r(offset)) */
/* r=a_bus_r(offset); */
/* #endif */
return r;
}
// program dacq settings
int64_t set64BitReg(int64_t value, int aLSB, int aMSB){

View File

@ -75,7 +75,8 @@ typedef struct ip_header_struct {
struct timeval tss,tse,tsss; //for timing
#define MAXDAC 32
u_int32_t dac[MAXDAC];
FILE *debugfp, *datafp;
@ -890,107 +891,33 @@ int setTiming(int ti) {
int ret=GET_EXTERNAL_COMMUNICATION_MODE;
int val;
int g=-1, t=-1, rot=-1;
int i;
val=bus_r(EXT_SIGNAL_REG);
switch (ti) {
case AUTO_TIMING:
timingMode=ti;
// disable all gates/triggers in except if used for master/slave synchronization
for (i=0; i<4; i++) {
if (getFPGASignal(i)>0 && getFPGASignal(i)<GATE_OUT_ACTIVE_HIGH && signals[i]!=MASTER_SLAVE_SYNCHRONIZATION)
setFPGASignal(i,SIGNAL_OFF);
}
bus_w(EXT_SIGNAL_REG,val&~(0x1));
break;
case TRIGGER_EXPOSURE:
timingMode=ti;
// if one of the signals is configured to be trigger, set it and unset possible gates
for (i=0; i<4; i++) {
if (signals[i]==TRIGGER_IN_RISING_EDGE || signals[i]==TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,signals[i]);
else if (signals[i]==GATE_IN_ACTIVE_HIGH || signals[i]==GATE_IN_ACTIVE_LOW)
setFPGASignal(i,SIGNAL_OFF);
else if (signals[i]==RO_TRIGGER_IN_RISING_EDGE || signals[i]==RO_TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
}
bus_w(EXT_SIGNAL_REG,val|(0x1));
break;
case TRIGGER_READOUT:
timingMode=ti;
// if one of the signals is configured to be trigger, set it and unset possible gates
for (i=0; i<4; i++) {
if (signals[i]==RO_TRIGGER_IN_RISING_EDGE || signals[i]==RO_TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,signals[i]);
else if (signals[i]==GATE_IN_ACTIVE_HIGH || signals[i]==GATE_IN_ACTIVE_LOW)
setFPGASignal(i,SIGNAL_OFF);
else if (signals[i]==TRIGGER_IN_RISING_EDGE || signals[i]==TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
}
break;
case GATE_FIX_NUMBER:
timingMode=ti;
// if one of the signals is configured to be trigger, set it and unset possible gates
for (i=0; i<4; i++) {
if (signals[i]==RO_TRIGGER_IN_RISING_EDGE || signals[i]==RO_TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
else if (signals[i]==GATE_IN_ACTIVE_HIGH || signals[i]==GATE_IN_ACTIVE_LOW)
setFPGASignal(i,signals[i]);
else if (signals[i]==TRIGGER_IN_RISING_EDGE || signals[i]==TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
}
break;
case GATE_WITH_START_TRIGGER:
timingMode=ti;
for (i=0; i<4; i++) {
if (signals[i]==RO_TRIGGER_IN_RISING_EDGE || signals[i]==RO_TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
else if (signals[i]==GATE_IN_ACTIVE_HIGH || signals[i]==GATE_IN_ACTIVE_LOW)
setFPGASignal(i,signals[i]);
else if (signals[i]==TRIGGER_IN_RISING_EDGE || signals[i]==TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,signals[i]);
}
break;
default:
break;
}
for (i=0; i<4; i++) {
if (signals[i]!=MASTER_SLAVE_SYNCHRONIZATION) {
if (getFPGASignal(i)==RO_TRIGGER_IN_RISING_EDGE || getFPGASignal(i)==RO_TRIGGER_IN_FALLING_EDGE)
rot=i;
else if (getFPGASignal(i)==GATE_IN_ACTIVE_HIGH || getFPGASignal(i)==GATE_IN_ACTIVE_LOW)
g=i;
else if (getFPGASignal(i)==TRIGGER_IN_RISING_EDGE || getFPGASignal(i)==TRIGGER_IN_FALLING_EDGE)
t=i;
}
}
if (g>=0 && t>=0 && rot<0) {
ret=GATE_WITH_START_TRIGGER;
} else if (g<0 && t>=0 && rot<0) {
if (bus_r(EXT_SIGNAL_REG)&0x1)
ret=TRIGGER_EXPOSURE;
} else if (g>=0 && t<0 && rot<0) {
ret=GATE_FIX_NUMBER;
} else if (g<0 && t<0 && rot>0) {
ret=TRIGGER_READOUT;
} else if (g<0 && t<0 && rot<0) {
else
ret=AUTO_TIMING;
}
// timingMode=ret;
@ -1671,22 +1598,28 @@ int initHighVoltage(int val, int imod){
codata=((dacvalue)&0xff);
valw=bus_r(offw)&0x7fff; //switch off HV
valw=(bus_r(offw) & 0x7fff) | 0x00ff;
bus_w(offw,(valw)); // start point
valw=((valw&(~(0x1<<csdx))));bus_w(offw,valw); //chip sel bar down
for (i=0;i<8;i++) {
valw=(valw&(~(0x1<<cdx)));bus_w(offw,valw); //cldwn
valw=((valw&(~(0x1<<ddx)))+(((codata>>(7-i))&0x1)<<ddx));bus_w(offw,valw);//write data (i)
valw=((valw&(~(0x1<<cdx)))+(0x1<<cdx));bus_w(offw,valw);//clkup
valw=(valw&(~(0x1<<cdx)));bus_w(offw,valw); //cldwn
valw=((valw&(~(0x1<<ddx)))+(((codata>>(7-i))&0x1)<<ddx));bus_w(offw,valw);//write data (i)
valw=((valw&(~(0x1<<cdx)))+(0x1<<cdx));bus_w(offw,valw);//clkup
}
valw=((valw&(~(0x1<<csdx)))+(0x1<<csdx));bus_w(offw,valw); //csup
valw=(valw&(~(0x1<<cdx)));bus_w(offw,valw); //cldwn
if (dacvalue>=0) {
valw=bus_r(offw)|0xff00;; //switch on HV
if (val>=0) {
valw=bus_r(offw) | 0x8000;; //switch on HV
printf("switch on HV in CTB4 %x\n");
} else {
valw=bus_r(offw)&0x7fff;//switch off HV
valw=bus_r(offw) & 0x7fff;//switch off HV
printf("switch off HV in CTB4\n");
}
@ -1695,6 +1628,22 @@ int initHighVoltage(int val, int imod){
bus_w(HV_REG,val);
//added for CTB5!
// valw=bus_r(POWER_ON_REG);
if (val>=0) {
i=bus_r(POWER_ON_REG) | 0x80000000;; //switch on HV
printf("switch on HV in CTB5 %08x\n", i);
} else {
i=bus_r(POWER_ON_REG) & 0x7fffffff;//switch off HV
printf("switch off HV in CTB5 %08x\n", i);
}
bus_w(POWER_ON_REG,i);
// }
}
@ -2003,7 +1952,7 @@ int startStateMachine(){
bus_w16(CONTROL_REG, FIFO_RESET_BIT);
bus_w16(CONTROL_REG, 0x0);
bus_w16(CONTROL_REG, START_ACQ_BIT | START_EXPOSURE_BIT);
// usleep(20);
usleep(20);
bus_w16(CONTROL_REG, 0x0);
//verify
/* if(bus_r(STATUS_REG) & RUN_BUSY_BIT) */
@ -2128,46 +2077,40 @@ u_int16_t* fifo_read_event(int ns)
a=bus_r16(LOOK_AT_ME_REG);
while(a==0) {
if (runBusy()==0) {
usleep(100);
a = bus_r(LOOK_AT_ME_REG);
if (a==0) {
printf("no frame found and acquisition finished - exiting\n");
printf("%08x %08x\n", runState(), bus_r(LOOK_AT_ME_REG));
return NULL;
printf("no frame found and acquisition finished - exiting\n");
printf("%08x %08x\n", runState(), bus_r(LOOK_AT_ME_REG));
return NULL;
} else {
break;
}
}
a = bus_r(LOOK_AT_ME_REG);
//#ifdef VERBOSE
//printf(".");
//#endif
a = bus_r16(LOOK_AT_ME_REG);
}
/* #ifdef TIMEDBG */
/* // tsss=tss; */
/* gettimeofday(&tss,NULL); */
/* printf("look for data = %ld usec\n", (tss.tv_usec) - (tse.tv_usec)); */
/* #endif */
// printf("LAM: %08x\n",a);
}
// printf(".");
a = bus_r(LOOK_AT_ME_REG);
//a = bus_r16(LOOK_AT_ME_REG);
if (analogEnable) {
printf("*");
// printf("*");
bus_w16(DUMMY_REG,1<<8); // read strobe to all fifos
bus_w16(DUMMY_REG,0);
for (i=0; i<32; i++) {
if (~(mask&adcDisableMask)) {
*((u_int16_t*)now_ptr)=*values;//bus_r16(FIFO_DATA_REG);
if (i!=0 || ns!=0) {
a=0;
while (*((u_int16_t*)now_ptr)==*((u_int16_t*)(now_ptr)-1) && a++<10) {
*((u_int16_t*)now_ptr)=*values;
}
}
*((u_int16_t*)now_ptr)=bus_r16(FIFO_DATA_REG);
/* if (i!=0 || ns!=0) { */
/* a=0; */
/* while (*((u_int16_t*)now_ptr)==*((u_int16_t*)(now_ptr)-1) && a++<10 && *((u_int16_t*)now_ptr)!=0 && *((u_int16_t*)now_ptr)!=0x3ff) { */
/* printf("%d .",i); */
/* *((u_int16_t*)now_ptr)=bus_r16(FIFO_DATA_REG);//\*values; */
/* } */
/* } */
while (*((u_int16_t*)now_ptr)!=bus_r16(FIFO_DATA_REG)) {
printf("%d ,",i);
*((u_int16_t*)now_ptr)=bus_r16(FIFO_DATA_REG);
}
now_ptr+=2;
}
mask=mask<<1;
@ -2186,17 +2129,17 @@ u_int16_t* fifo_read_event(int ns)
now_ptr+=8;
}
// bus_w16(DUMMY_REG,0); //
/* #ifdef TIMEDBG */
// bus_w16(DUMMY_REG,0); //
/* #ifdef TIMEDBG */
/* gettimeofday(&tss,NULL); */
/* printf("read data loop = %ld usec\n",(tss.tv_usec) - (tse.tv_usec)); */
/* gettimeofday(&tss,NULL); */
/* printf("read data loop = %ld usec\n",(tss.tv_usec) - (tse.tv_usec)); */
/* #endif */
//#ifdef VERBOSE
// printf("*");
// printf("*");
//#endif
// printf("\n");
// printf("\n");
return ram_values;
}
@ -2213,8 +2156,10 @@ u_int16_t* fifo_read_frame()
now_ptr=(char*)ram_values;
while(ns<nSamples && fifo_read_event(ns)) {
// now_ptr+=dataBytes;
// printf("%d %x\n",ns,bus_r16(LOOK_AT_ME_REG));
ns++;
}
// printf("Data in fifo %x\n",bus_r16(LOOK_AT_ME_REG));
#ifdef TIMEDBG
// usleep(10);
gettimeofday(&tss,NULL);
@ -3216,12 +3161,22 @@ int setDacRegister(int dacnum,int dacvalue) {
/* printf("Dac register %x wrote %08x\n",(DAC_REG_OFF+dacnum/2)<<11,val); */
/* bus_w((DAC_REG_OFF+dacnum/2)<<11, val); */
#ifdef CTB4
bus_w(DAC_NUM_REG, dacnum);
bus_w(DAC_VAL_REG, dacvalue);
bus_w(DAC_NUM_REG, dacnum | (1<<16));
bus_w(DAC_NUM_REG, dacnum);
printf("Wrote dac register value %d address %d\n",bus_r(DAC_VAL_REG),bus_r(DAC_NUM_REG)) ;
#endif
#ifndef CTB4
if (dacnum<MAXDAC) {
printf("dac variable %d set to value %d\n",dacnum, dacvalue) ;
dac[dacnum]=dacvalue;
} else
printf("Bad dac index %d\n", dacnum);
#endif
return getDacRegister(dacnum);
@ -3229,9 +3184,22 @@ int setDacRegister(int dacnum,int dacvalue) {
int getDacRegister(int dacnum) {
#ifdef CTB4
bus_w(DAC_NUM_REG, dacnum);
printf("READ dac register value %d address %d\n",(int16_t)bus_r(DAC_VAL_OUT_REG),bus_r(DAC_NUM_REG)) ;
return (int16_t)bus_r(DAC_VAL_OUT_REG);
#endif
#ifndef CTB4
if (dacnum<MAXDAC) {
printf("dac variable %d is %d\n",dacnum,dac[dacnum]) ;
return dac[dacnum];
}else
printf("Bad dac index %d\n", dacnum);
#endif
return -1;
/* #define DAC_VAL_REG 121<<11 */
/* #define DAC_NUM_REG 122<<11 */
/* #define DAC_VAL_OUT_REG 42<<11 */
@ -3537,6 +3505,7 @@ int powerChip(int arg) {
u_int32_t preg=bus_r(POWER_ON_REG);
if (myDetectorType!=JUNGFRAUCTB) {
printf("This is not a JCTB!\n");
if (arg>=0) {
if (arg)
bus_w(POWER_ON_REG,preg|0xffff0000);

View File

@ -1,9 +1,9 @@
Path: slsDetectorsPackage/slsDetectorSoftware/jctbDetectorServer
URL: origin git@github.com:slsdetectorgroup/slsDetectorPackage.git
Repository Root: origin git@github.com:slsdetectorgroup/slsDetectorPackage.git
Repsitory UUID: 9ae128961675230ad322ff2867f1862dbe8566a7
Revision: 25
Repsitory UUID: 9e5ec6a57bf206fe9384260fc4040867a9bbd71c
Revision: 33
Branch: developer
Last Changed Author: Anna_Bergamaschi
Last Changed Rev: 3764
Last Changed Date: 2018-05-07 14:30:14.000000002 +0200 ./Makefile
Last Changed Author: Erik_Frojdh
Last Changed Rev: 4065
Last Changed Date: 2019-01-30 17:38:35.000000002 +0100 ./firmware_funcs.c

View File

@ -1,6 +1,6 @@
#define GITURL "git@github.com:slsdetectorgroup/slsDetectorPackage.git"
#define GITREPUUID "9ae128961675230ad322ff2867f1862dbe8566a7"
#define GITAUTH "Anna_Bergamaschi"
#define GITREV 0x3764
#define GITDATE 0x20180507
#define GITREPUUID "9e5ec6a57bf206fe9384260fc4040867a9bbd71c"
#define GITAUTH "Erik_Frojdh"
#define GITREV 0x4065
#define GITDATE 0x20190130
#define GITBRANCH "developer"

View File

@ -70,6 +70,8 @@ int N_CHANS=NCHANS;
int init_detector(int b, int checkType) {
int i;
int ret;
int ii;
if (mapCSP0()==FAIL) { printf("Could not map memory\n");
exit(1);
}
@ -81,8 +83,18 @@ int init_detector(int b, int checkType) {
for (i=0; i<1000000; i++) {
bus_w(SET_DELAY_LSB_REG, i*100);
bus_r(FPGA_VERSION_REG);
if (i*100!=bus_r(SET_DELAY_LSB_REG))
printf("ERROR: wrote 0x%x, read 0x%x\n",i*100,bus_r(SET_DELAY_LSB_REG));
//usleep(100);
ii=0;
// usleep(100);
//usleep(100);
// ret=bus_r(SET_DELAY_LSB_REG);
ret=bus_r(SET_DELAY_LSB_REG);
while (ret!=i*100 && ii<100) {
//if (i*100!=ret)
printf("ERROR %d: wrote 0x%x, read 0x%x\n",i, i*100,ret);
ret=bus_r(SET_DELAY_LSB_REG);
}
}
printf("Finished\n");
}else
@ -1865,6 +1877,7 @@ int start_acquisition(int file_des) {
ret=FAIL;
sprintf(mess,"Detector locked by %s\n",lastClientIP);
} else {
nframes = 0;
ret=startStateMachine();
}
if (ret==FAIL)
@ -2045,7 +2058,7 @@ int read_frame(int file_des) {
printf("sending pointer %x of size %d\n",(unsigned int)(dataretval),dataBytes);
#endif
n=sendDataOnly(file_des,dataretval,dataBytes);
printf("Sent %d bytes\n",n);
printf("Frame %d, Sent %d bytes\n", nframes, n);
} else {
if (getFrames()>-1) {
dataret=FAIL;
@ -2110,7 +2123,7 @@ int start_and_read_all(int file_des) {
return dataret;
}
nframes = 0;
startStateMachine();
/* ret=startStateMachine();

View File

@ -2382,7 +2382,7 @@ int* multiSlsDetector::startAndReadAll() {
while ((retval = getDataFromDetector())) {
++i;
#ifdef VERBOSE
std::cout << i << std::endl;
std::cout << i << " " retval << std::endl;
#endif
dataQueue.push(retval);
}
@ -2460,7 +2460,7 @@ int* multiSlsDetector::getDataFromDetector() {
int nodatadet = -1;
int nodatadetectortype = false;
detectorType types = getDetectorsType();
if (types == EIGER || types == JUNGFRAU || GOTTHARD || PROPIX) {
if (types == EIGER || types == JUNGFRAU || types == GOTTHARD || types == PROPIX) {
nodatadetectortype = true;
}
@ -3280,6 +3280,7 @@ int multiSlsDetector::setROI(int n, ROI roiLimits[], int imod) {
if ((n < 0) || (roiLimits == NULL))
return FAIL;
// cout << "Setting ROI for " << n << "rois:" << endl;
//ensures min < max
verifyMinMaxROI(n, roiLimits);
#ifdef VERBOSE
@ -3294,7 +3295,7 @@ int multiSlsDetector::setROI(int n, ROI roiLimits[], int imod) {
xmax = roiLimits[i].xmax;
ymin = roiLimits[i].ymin;
ymax = roiLimits[i].ymax;
if (getDetectorsType() != JUNGFRAUCTB) {
//check roi max values
idet = decodeNChannel(xmax, ymax, channelX, channelY);
#ifdef VERBOSE
@ -3302,7 +3303,8 @@ int multiSlsDetector::setROI(int n, ROI roiLimits[], int imod) {
cout << "det:" << idet << "\t" << xmax << "\t" << ymax << "\t"
<< channelX << "\t" << channelY << endl;
#endif
if (idet == -1) {
//std::cout << getDetectorsType() << endl;
if (idet == -1 ) {
cout << "invalid roi" << endl;
continue;
}
@ -3367,6 +3369,17 @@ int multiSlsDetector::setROI(int n, ROI roiLimits[], int imod) {
if ((lastChannelX + offsetX) == xmax)
xmin = xmax + 1;
}
}else {
idet=0;
nroi[idet]=n;
index = 0;
allroi[idet][index].xmin = xmin;
allroi[idet][index].xmax = xmax;
allroi[idet][index].ymin = ymin;
allroi[idet][index].ymax = ymax;
// nroi[idet] = nroi[idet] + 1;
}
}
#ifdef VERBOSE
@ -3415,6 +3428,7 @@ slsDetectorDefs::ROI* multiSlsDetector::getROI(int& n, int imod) {
//get each detector's roi array
for (unsigned i = 0; i < detectors.size(); ++i) {
temp = detectors[i]->getROI(index);
// cout << index << endl;
if (detectors[i]->getErrorMask())
setErrorMask(getErrorMask() | (1 << i));

View File

@ -1,6 +1,6 @@
#define GITURL "git@github.com:slsdetectorgroup/slsDetectorPackage.git"
#define GITREPUUID "3c774478681813e451df683e2bc8403b37490323"
#define GITREPUUID "907d1655d1f6cf2bb8cf6ccd7e91e82f479dd2ca"
#define GITAUTH "Dhanya_Thattil"
#define GITREV 0x4084
#define GITDATE 0x20190208
#define GITBRANCH "4.0.1"
#define GITREV 0x4101
#define GITDATE 0x20190211
#define GITBRANCH "developer"

View File

@ -145,7 +145,7 @@ double* slsDetector::decodeData(int *datain, int &nn, double *fdata) {
dataout[ichan]=*((u_int16_t*)ptr);
ptr+=2;
}
std::cout<< "decoded "<< ichan << " channels" << std::endl;
//std::cout<< "decoded "<< ichan << " channels" << std::endl;
} else {
switch (nbits) {
case 1:
@ -1061,14 +1061,18 @@ void slsDetector::disconnectControl() {
int slsDetector::connectData() {
//cout << "connect" << endl;
if (dataSocket){
if (dataSocket->Connect() >= 0)
return OK;
else{
if (dataSocket->Connect() >= 0) {
//cout << "ok" << endl;
return OK;
} else{
std::cout << "cannot connect to receiver" << endl;
setErrorMask((getErrorMask())|(CANNOT_CONNECT_TO_RECEIVER));
//cout << "fail" << endl;
return FAIL;}
}
//cout << "undefined" << endl;
return UNDEFINED;
}
@ -2938,6 +2942,30 @@ int slsDetector::getThresholdEnergy(int imod) {
updateDetector();
}
}
if(thisDetector->myDetectorType==JUNGFRAUCTB) {
int en=-1;
string header=getNetworkParameter(ADDITIONAL_JSON_HEADER);
std::cout<< "Json header: " << header << std::endl;
//must be in the format '\"label1\":\"value1\",\"label2\":\"value2\"' etc."
//
size_t pos0;
pos0=header.find("\"threshold\"");
if (pos0!=std::string::npos) {
if (sscanf(header.substr(pos0).c_str(),"\"threshold\":%d", &en))
thisDetector->currentThresholdEV=en;
}
}
return thisDetector->currentThresholdEV;
}
@ -2981,6 +3009,62 @@ int slsDetector::setThresholdEnergy(int e_eV, int imod, detectorSettings isetti
} else {
thisDetector->currentThresholdEV=e_eV;
}
/* add threshold to zmq header */
string header=getNetworkParameter(ADDITIONAL_JSON_HEADER);
std::cout<< "Old json header: " << header << std::endl;
//must be in the format '\"label1\":\"value1\",\"label2\":\"value2\"' etc."
//
size_t pos0;
pos0=header.find(",\"threshold\"");
if (pos0==std::string::npos) {
pos0=header.find("\"threshold\"");
}
if (pos0!=std::string::npos) {
// remove old roi
// std::cout<< header.substr(0,pos) << std::endl;
// size_t pos0=header.find_last_of(",",0,pos);
// if (pos0==std::string::npos) {
// pos0=pos;
// } else
// std::cout<< header.substr(pos0) << std::endl;
size_t pos1=header.find_first_of(",",pos0+1);
// std::cout << pos0 << " " << pos1 << std::endl;
std::cout<< "Replacing old threshold: " << header.substr(pos0,pos1-pos0) << std::endl;
// if (pos1!=std::string::npos)
header.erase(pos0,pos1-pos0);
// else
// header.erase(pos0);
}
if (header.length()>0) {
if (header.at(0)==',')
header.erase(0,1);
if (header.length()>0)
header.append(",");
}
// std::cout<< "Left: " << header << std::endl;
char h[1000];
sprintf(h,"\"threshold\":%d",e_eV);
// std::cout<< "new ROI: " << h << std::endl;
header.append(h);
std::cout<< "New json header: " << header << std::endl;
setReceiverOnline(ONLINE_FLAG);
setNetworkParameter(ADDITIONAL_JSON_HEADER, header);
/***** END FOR ZMQ HEADER */
ret=OK;
if (thisDetector->myDetectorType==JUNGFRAUCTB) {
thisDetector->currentThresholdEV=e_eV;
}
return thisDetector->currentThresholdEV;
}
@ -3739,8 +3823,8 @@ int* slsDetector::startAndReadAll() {
//#ifdef VERBOSE
#ifdef VERBOSE
int i=0;
#endif
//#endif
#endif
if(thisDetector->myDetectorType == EIGER) {
if (prepareAcquisition() == FAIL)
return NULL;
@ -3750,15 +3834,15 @@ int* slsDetector::startAndReadAll() {
// std::cout<< "started" << std::endl;
//#endif
while ((retval=getDataFromDetector())){
#ifdef VERBOSE
#ifdef VERBOSE
++i;
std::cout<< i << std::endl;
// std::cout<< i << std::endl;
//#else
//std::cout<< "-" << flush;
#endif
#endif
dataQueue.push(retval);
//std::cout<< "pushed" << std::endl;
// std::cout<< "pushed" << retval << std::endl;
}
disconnectControl();
@ -3766,7 +3850,7 @@ int* slsDetector::startAndReadAll() {
std::cout<< "received "<< i<< " frames" << std::endl;
//#else
// std::cout << std::endl;
#endif
#endif
return dataQueue.front(); // check what we return!
/* while ((retval=getDataFromDetectorNoWait()))
++i;
@ -3810,10 +3894,13 @@ int* slsDetector::getDataFromDetector(int *retval) {
int nodatadetectortype = false;
detectorType types = getDetectorsType();
if(types == EIGER || types == JUNGFRAU || GOTTHARD || PROPIX){
// cout << types << endl;
if(types == EIGER || types == JUNGFRAU || types == GOTTHARD || types == PROPIX){
nodatadetectortype = true;
}
//cout << "nodata det" << nodatadetectortype << endl;
if (!nodatadetectortype && retval==NULL)
retval=new int[nel];
@ -3835,22 +3922,22 @@ int* slsDetector::getDataFromDetector(int *retval) {
std::cout<< "Detector returned: " << mess << " " << n << std::endl;
} else {
;
#ifdef VERBOSE
#ifdef VERBOSE
std::cout<< "Detector successfully returned: " << mess << " " << n
<< std::endl;
#endif
#endif
}
if ((!nodatadetectortype) && (r==NULL)){
delete [] retval;
}
return NULL;
} else if (!nodatadetectortype){
// cout <<"??" << endl;
n=controlSocket->ReceiveDataOnly(retval,thisDetector->dataBytes);
n=controlSocket->ReceiveDataOnly(retval,thisDetector->dataBytes);
#ifdef VERBOSE
#ifdef VERBOSE
std::cout<< "Received "<< n << " data bytes" << std::endl;
#endif
#endif
if (n!=thisDetector->dataBytes) {
std::cout<< "wrong data size received from detector: received " <<
n << " but expected " << thisDetector->dataBytes << std::endl;
@ -3866,7 +3953,8 @@ int* slsDetector::getDataFromDetector(int *retval) {
}
// cout << "get data returning " << endl;
// cout << "get data returning " << retval << endl;
// cout << endl;
return retval;
@ -4556,10 +4644,10 @@ int slsDetector::getDataBytesInclGapPixels() {
dacs_t slsDetector::setDAC(dacs_t val, dacIndex index, int mV, int imod) {
dacs_t retval[2];
retval[0] = -1;
retval[1] = -1;
if (index!=ZMQ_emin && index!=ZMQ_emax) {
int fnum=F_SET_DAC;
int ret=FAIL;
char mess[MAX_STR_LENGTH]="";
@ -4620,8 +4708,91 @@ dacs_t slsDetector::setDAC(dacs_t val, dacIndex index, int mV, int imod) {
}
if(mV)
return retval[1];
} else if(thisDetector->myDetectorType==JUNGFRAUCTB) {
return retval[0];
string header=getNetworkParameter(ADDITIONAL_JSON_HEADER);
std::cout<< "Old json header: " << header << std::endl;
if (index==ZMQ_emin) {
size_t pos0, pos1;
pos0=header.find(",\"eMin\"");
if (pos0==std::string::npos) {
pos0=header.find("\"eMin\"");
} else pos0++;
if (pos0!=std::string::npos) {
pos1=header.find_first_of(",",pos0);
// std::cout << pos0 << " " << pos1 << std::endl;
std::cout<< "Replacing old eMin: " << header.substr(pos0,pos1-pos0) << std::endl;
// if (pos1!=std::string::npos)
if (val>=0)
header.erase(pos0,pos1-pos0);
// else
// header.erase(pos0);
}
if (val>=0) {
if (header.length()>0) {
if (header.at(0)==',')
header.erase(0,1);
if (header.length()>0)
header.append(",");
}
// std::cout<< "Left: " << header << std::endl;
char h[1000];
sprintf(h,"\"eMin\":%d",val);
// std::cout<< "new ROI: " << h << std::endl;
header.append(h);
} else {
sscanf(header.substr(pos0,pos1-pos0).c_str(),"\"eMin\":%d",&val);
}
} else if (index==ZMQ_emax) {
size_t pos0, pos1;
pos0=header.find(",\"eMax\"");
if (pos0==std::string::npos) {
pos0=header.find("\"eMax\"");
} else pos0++;
if (pos0!=std::string::npos) {
pos1=header.find_first_of(",",pos0);
// std::cout << pos0 << " " << pos1 << std::endl;
std::cout<< "Replacing old eMax: " << header.substr(pos0,pos1-pos0) << std::endl;
// if (pos1!=std::string::npos)
if (val>=0)
header.erase(pos0,pos1-pos0);
// else
// header.erase(pos0);
}
if (val>=0) {
if (header.length()>0) {
if (header.at(0)==',')
header.erase(0,1);
if (header.length()>0)
header.append(",");
}
// std::cout<< "Left: " << header << std::endl;
char h[1000];
sprintf(h,"\"eMax\":%d",val);
// std::cout<< "new ROI: " << h << std::endl;
header.append(h);
} else {
sscanf(header.substr(pos0,pos1-pos0).c_str(),"\"eMax\":%d",&val);
}
}
std::cout<< "New json header: " << header << std::endl;
setReceiverOnline(ONLINE_FLAG);
setNetworkParameter(ADDITIONAL_JSON_HEADER, header);
/***** END FOR ZMQ HEADER */
retval[0]=val;
}
return retval[0];
}
@ -4792,13 +4963,14 @@ int slsDetector::setReadOutFlags(readOutFlags flag) {
int fnum=F_SET_READOUT_FLAGS;
readOutFlags retval;
//readOutFlags retval;
int retval;
char mess[MAX_STR_LENGTH]="";
int ret=OK;
#ifdef VERBOSE
std::cout<< "Setting readout flags to "<< flag << std::endl;
#endif
//#ifdef VERBOSE
std::cout<< "Setting readout flags to "<< hex << flag << dec << std::endl;
//#endif
if (thisDetector->onlineFlag==ONLINE_FLAG) {
if (connectControl() == OK){
@ -4811,10 +4983,11 @@ int slsDetector::setReadOutFlags(readOutFlags flag) {
setErrorMask((getErrorMask())|(COULD_NOT_SET_READOUT_FLAGS));
} else {
controlSocket->ReceiveDataOnly(&retval,sizeof(retval));
thisDetector->roFlags=retval;
thisDetector->roFlags=(readOutFlags)retval;
if (thisDetector->myDetectorType==JUNGFRAUCTB) {
getTotalNumberOfChannels();
int nn=getTotalNumberOfChannels();
cout << "Total number of channels is " << nn << endl;
//thisDetector->dataBytes=getTotalNumberOfChannels()*
//thisDetector->dynamicRange/8*thisDetector->timerValue[SAMPLES_JCTB];
}
@ -4828,6 +5001,150 @@ int slsDetector::setReadOutFlags(readOutFlags flag) {
thisDetector->roFlags=flag;
}
// std::cout<< "***ZMQ: " << hex<< flag << std::endl;
if (flag & (PEDESTAL | NEWPEDESTAL | NEWFLAT | FLAT | FRAME)) {
std::cout<< "***frameMode: " << std::endl;
string header=getNetworkParameter(ADDITIONAL_JSON_HEADER);
std::cout<< "Old json header: " << header << std::endl;
//must be in the format '\"label1\":\"value1\",\"label2\":\"value2\"' etc."
//
size_t pos0;
pos0=header.find(",\"frameMode\"");
if (pos0==std::string::npos) {
pos0=header.find("\"frameMode\"");
}
if (pos0!=std::string::npos) {
size_t pos1=header.find_first_of(",",pos0+1);
// if (pos1!=std::string::npos)
if (flag!=GET_READOUT_FLAGS) {
cout << dec<< pos0 << " " << pos1 << endl;
std::cout<< "Replacing frame Mode: " << header.substr(pos0,pos1-pos0) << std::endl;
header.erase(pos0,pos1-pos0);
}
else if (header.substr(pos0,pos1+pos0)=="\"frameMode\":\"pedestal\"")
retval|=PEDESTAL;
else if (header.substr(pos0,pos1+pos0)=="\"frameMode\":\"newPedestal\"")
retval|=NEWPEDESTAL;
else if (header.substr(pos0,pos1+pos0)=="\"frameMode\":\"flatfield\"")
retval|=FLAT;
else if (header.substr(pos0,pos1+pos0)=="\"frameMode\":\"newFlatfield\"")
retval|=NEWFLAT;
else
retval|=FRAME;
}
char h[1000];
switch (flag) {
case PEDESTAL:
retval|=PEDESTAL;
strcpy(h,"\"frameMode\":\"pedestal\"");
break;
case NEWPEDESTAL:
retval|=NEWPEDESTAL;
strcpy(h,"\"frameMode\":\"newPedestal\"");
break;
case FLAT:
retval|=FLAT;
strcpy(h,"\"frameMode\":\"flatfield\"");
break;
case NEWFLAT:
retval|=NEWFLAT;
strcpy(h,"\"frameMode\":\"newFlatfield\"");
break;
default:
retval|=FRAME;
strcpy(h,"\"frameMode\":\"frame\"");
}
if (flag!=GET_READOUT_FLAGS) {
if (header.length()>0) {
if (header.at(0)==',')
header.erase(0,1);
if (header.length()>0)
header.append(",");
}
header.append(h);
setReceiverOnline(ONLINE_FLAG);
setNetworkParameter(ADDITIONAL_JSON_HEADER, header);
}
std::cout<< "New json header: " << header << std::endl;
/***** END FOR ZMQ HEADER */
ret=OK;
// retval=flag;
}
if (flag & (COUNTING | INTERPOLATING | ANALOG)) {
std::cout<< "***detectorMode: " << std::endl;
string header=getNetworkParameter(ADDITIONAL_JSON_HEADER);
std::cout<< "Old json header: " << header << std::endl;
//must be in the format '\"label1\":\"value1\",\"label2\":\"value2\"' etc."
//
size_t pos0;
pos0=header.find(",\"detectorMode\"");
if (pos0==std::string::npos) {
pos0=header.find("\"detectorMode\"");
}
if (pos0!=std::string::npos) {
size_t pos1=header.find_first_of(",",pos0+1);
// if (pos1!=std::string::npos)
if (flag!=GET_READOUT_FLAGS) {
cout << dec<< pos0 << " " << pos1 << endl;
std::cout<< "Replacing detector Mode: " << header.substr(pos0,pos1-pos0) << std::endl;
header.erase(pos0,pos1-pos0);
}
else if (header.substr(pos0,pos1+pos0)=="\"detectorMode\":\"counting\"")
retval|=COUNTING;
else if (header.substr(pos0,pos1+pos0)=="\"detectorMode\":\"interpolating\"")
retval|=INTERPOLATING;
else
retval|=ANALOG;
}
char h[1000];
switch (flag) {
case COUNTING:
strcpy(h,"\"detectorMode\":\"counting\"");
retval|=COUNTING;
break;
case INTERPOLATING:
retval|=INTERPOLATING;
strcpy(h,"\"detectorMode\":\"interpolating\"");
break;
default:
retval|=ANALOG;
strcpy(h,"\"detectorMode\":\"analog\"");
}
if (flag!=GET_READOUT_FLAGS) {
if (header.length()>0) {
if (header.at(0)==',')
header.erase(0,1);
if (header.length()>0)
header.append(",");
}
header.append(h);
setReceiverOnline(ONLINE_FLAG);
setNetworkParameter(ADDITIONAL_JSON_HEADER, header);
/***** END FOR ZMQ HEADER */
// retval=flag;
}
std::cout<< "New json header: " << header << std::endl;
ret=OK;
}
if (ret==OK) {
// thisDetector->roFlags=flag;
thisDetector->roFlags=(readOutFlags)retval;
}
std::cout<< retval << std::endl;
#ifdef VERBOSE
std::cout<< "Readout flag set to "<< retval << std::endl;
#endif
@ -5571,12 +5888,14 @@ string slsDetector::setAdditionalJsonHeader(string jsonheader) {
strcpy(arg, jsonheader.c_str());
if(thisDetector->receiverOnlineFlag==ONLINE_FLAG){
#ifdef VERBOSE
std::cout << "Sending additional json header " << arg << std::endl;
#endif
//#ifdef VERBOSE
// std::cout << "* Sending additional json header " << arg << std::endl;
//#endif
if (connectData() == OK){
ret=thisReceiver->sendString(fnum,retval,arg);
disconnectData();
// std::cout << "** Sending additional json header " << arg << std::endl;
ret=thisReceiver->sendString(fnum,retval,arg);
disconnectData();
}
if(ret==FAIL) {
setErrorMask((getErrorMask())|(COULDNOT_SET_NETWORK_PARAMETER));
@ -6027,6 +6346,70 @@ int slsDetector::setROI(int n,ROI roiLimits[], int imod) {
//sort ascending order
int temp;
/***** NEW PART FOR ZMQ HEADER */
//std::cout<< "******* ROI" << std::endl;
// char header[1000];
string header=getNetworkParameter(ADDITIONAL_JSON_HEADER);
std::cout<< "Old json header: " << header << std::endl;
//must be in the format '\"label1\":\"value1\",\"label2\":\"value2\"' etc."
//
size_t pos0;
pos0=header.find(",\"roi\"");
if (pos0==std::string::npos) {
pos0=header.find("\"roi\"");
}
if (pos0!=std::string::npos) {
// remove old roi
// std::cout<< header.substr(0,pos) << std::endl;
// size_t pos0=header.find_last_of(",",0,pos);
// if (pos0==std::string::npos) {
// pos0=pos;
// } else
// std::cout<< header.substr(pos0) << std::endl;
size_t pos1=header.find_first_of("]",pos0+1);
// std::cout << pos0 << " " << pos1 << std::endl;
std::cout<< "Replacing old ROI: " << header.substr(pos0,pos1-pos0+1) << std::endl;
// if (pos1!=std::string::npos)
header.erase(pos0,pos1-pos0+1);
// else
// header.erase(pos0);
}
if (header.length()>0) {
if (header.at(0)==',')
header.erase(0,1);
if (header.length()>0)
header.append(",");
}
// std::cout<< "Left: " << header << std::endl;
char h[1000];
if (n) {
sprintf(h,"\"roi\":[%d, %d, %d, %d]",roiLimits[0].xmin, roiLimits[0].xmax, roiLimits[0].ymin, roiLimits[0].ymax);
// std::cout<< "new ROI: " << h << std::endl;
} else {
sprintf(h,"\"roi\":[%d, %d, %d, %d]",-1, -1, -1, -1);
}
header.append(h);
std::cout<< "New json header: " << header << std::endl;
setReceiverOnline(ONLINE_FLAG);
setNetworkParameter(ADDITIONAL_JSON_HEADER, header);
/***** END FOR ZMQ HEADER */
ret=OK;
if(thisDetector->myDetectorType==JUNGFRAUCTB) {
thisDetector->nROI = n;
thisDetector->roiLimits[0].xmin=roiLimits[0].xmin;
thisDetector->roiLimits[0].xmax=roiLimits[0].xmax;
thisDetector->roiLimits[0].ymin=roiLimits[0].ymin;
thisDetector->roiLimits[0].ymax=roiLimits[0].ymax;
// std::cout << "** " << thisDetector->nROI << endl;
getTotalNumberOfChannels();
// std::cout << "*** " << thisDetector->nROI << endl;
return ret;
}
// if(thisDetector->myDetectorType==JUNGFRAUCTB)
for(int i=0;i<n;++i){
// cout << "*** ROI "<< i << " xmin " << roiLimits[i].xmin << " xmax "
@ -6052,6 +6435,9 @@ int slsDetector::setROI(int n,ROI roiLimits[], int imod) {
}
ret = sendROI(n,roiLimits);
if(ret==FAIL)
setErrorMask((getErrorMask())|(COULDNOT_SET_ROI));
if(thisDetector->myDetectorType==JUNGFRAUCTB) getTotalNumberOfChannels();
return ret;
@ -6059,9 +6445,41 @@ int slsDetector::setROI(int n,ROI roiLimits[], int imod) {
slsDetectorDefs::ROI* slsDetector::getROI(int &n, int imod) {
sendROI(-1,NULL);
n=thisDetector->nROI;
if(thisDetector->myDetectorType==JUNGFRAUCTB) getTotalNumberOfChannels();
if(thisDetector->myDetectorType==JUNGFRAUCTB) {
int xmin, xmax, ymin, ymax;
string header=getNetworkParameter(ADDITIONAL_JSON_HEADER);
std::cout<< "Json header: " << header << std::endl;
//must be in the format '\"label1\":\"value1\",\"label2\":\"value2\"' etc."
//
size_t pos0;
pos0=header.find("\"roi\"");
if (pos0!=std::string::npos) {
sscanf(header.substr(pos0).c_str(),"\"roi\":[%d, %d, %d, %d]", &xmin, &xmax, &ymin, &ymax);
if (xmin<0 && xmax<0 && ymin<0 && ymax<0)
thisDetector->nROI=0;
else {
thisDetector->nROI=1;
thisDetector->roiLimits[0].xmin=xmin;
thisDetector->roiLimits[0].xmax=xmax;
thisDetector->roiLimits[0].ymin=ymin;
thisDetector->roiLimits[0].ymax=ymax;
}
} else {
thisDetector->nROI=0;
}
// cout << thisDetector->nROI << endl;
getTotalNumberOfChannels();
} else {
sendROI(-1,NULL);
n=thisDetector->nROI;
}
return thisDetector->roiLimits;
}

View File

@ -176,30 +176,32 @@ int slsDetectorActions::setScan(int iscan, string script, int nvalues, double *v
if (par!="")
strcpy(scanParameter[iscan],par.c_str());
if (nvalues>=0) {
if (nvalues==0)
scanMode[iscan]=noScan;
else {
nScanSteps[iscan]=nvalues;
if (nvalues>=0) {
// cout << "nvalues " << nvalues << endl;
if (nvalues==0)
scanMode[iscan]=noScan;
else {
nScanSteps[iscan]=nvalues;
if (nvalues>MAX_SCAN_STEPS)
nScanSteps[iscan]=MAX_SCAN_STEPS;
}
}
}
if (values && scanMode[iscan]>0 ) {
for (int iv=0; iv<nScanSteps[iscan]; iv++) {
scanSteps[iscan][iv]=values[iv];
}
if (values && scanMode[iscan]>0 ) {
for (int iv=0; iv<nScanSteps[iscan]; iv++) {
scanSteps[iscan][iv]=values[iv];
// cout << values[iv] << endl;
}
}
if (precision>=0)
scanPrecision[iscan]=precision;
if (precision>=0)
scanPrecision[iscan]=precision;
if (scanMode[iscan]>0){
if (scanMode[iscan]>0){
*actionMask |= 1<< (iscan+MAX_ACTIONS);
} else {
*actionMask &= ~(1 << (iscan+MAX_ACTIONS));
}
} else {
*actionMask &= ~(1 << (iscan+MAX_ACTIONS));
}

View File

@ -1011,9 +1011,12 @@ slsDetectorCommand::slsDetectorCommand(slsDetectorUtils *det) {
descrToFuncMap[i].m_pFuncPtr=&slsDetectorCommand::cmdImage;
++i;
/*! \page data
- <b>gainimage fn</b> Loads the gain image to the detector from file fn (gain map for translation into number of photons of an analog detector). Cannot get.
*/
descrToFuncMap[i].m_pFuncName="flatimage"; //
descrToFuncMap[i].m_pFuncPtr=&slsDetectorCommand::cmdImage;
++i;
@ -1123,7 +1126,19 @@ slsDetectorCommand::slsDetectorCommand(slsDetectorUtils *det) {
\section settingsdacs DACs
commands to configure DACs of detector
*/
/*! \page settings
- <b>emin [i] </b> Sets/gets detector minimum energy threshold for the CTB (soft setting)
*/
descrToFuncMap[i].m_pFuncName="emin"; //
descrToFuncMap[i].m_pFuncPtr=&slsDetectorCommand::cmdDAC;
++i;
/*! \page settings
- <b>emax [i] </b> Sets/gets detector maximum energy threshold for the CTB (soft setting)
*/
descrToFuncMap[i].m_pFuncName="emax"; //
descrToFuncMap[i].m_pFuncPtr=&slsDetectorCommand::cmdDAC;
++i;
/*! \page settings
- <b>vthreshold [i] [mv]</b> Sets/gets detector threshold voltage for single photon counters. Normally in DAC units unless \c mv is specified at the end of the command line. \c Returns \c (int ["mV"])
*/
@ -4098,7 +4113,6 @@ string slsDetectorCommand::cmdNetworkParameter(int narg, char *args[], int actio
t=ADDITIONAL_JSON_HEADER;
}
else return ("unknown network parameter")+cmd;
if (action==PUT_ACTION) {
myDet->setNetworkParameter(t, args[1]);
// switch it back on, if it had been switched on
@ -4475,6 +4489,7 @@ string slsDetectorCommand::cmdDetectorSize(int narg, char *args[], int action) {
if ((val<0) || (narg!=((val*4)+2)) )
return helpDetectorSize(narg,args,action);
ROI allroi[val];
// pos=1;
pos=2;
for(i=0;i<val;++i){
if ((!sscanf(args[pos++],"%d",&allroi[i].xmin)) ||
@ -5248,6 +5263,10 @@ string slsDetectorCommand::cmdDAC(int narg, char *args[], int action) {
dac=M_vIbiasSh;
else if (cmd== "vIpreOut")
dac=M_vIpreOut;
else if (cmd== "emin")
dac=ZMQ_emin;
else if (cmd== "emax")
dac=ZMQ_emax;
else
return string("cannot decode dac ")+cmd;
@ -5985,29 +6004,45 @@ string slsDetectorCommand::cmdAdvanced(int narg, char *args[], int action) {
if (action==PUT_ACTION) {
string sval=string(args[1]);
if (sval=="none")
flag=NORMAL_READOUT;
flag=NORMAL_READOUT;
else if (sval=="storeinram")
flag=STORE_IN_RAM;
flag=STORE_IN_RAM;
else if (sval=="tot")
flag=TOT_MODE;
flag=TOT_MODE;
else if (sval=="continous")
flag=CONTINOUS_RO;
flag=CONTINOUS_RO;
else if (sval=="parallel")
flag=PARALLEL;
flag=PARALLEL;
else if (sval=="nonparallel")
flag=NONPARALLEL;
flag=NONPARALLEL;
else if (sval=="safe")
flag=SAFE;
flag=SAFE;
else if (sval=="digital")
flag=DIGITAL_ONLY;
flag=DIGITAL_ONLY;
else if (sval=="analog_digital")
flag=ANALOG_AND_DIGITAL;
flag=ANALOG_AND_DIGITAL;
else if (sval=="overflow")
flag=SHOW_OVERFLOW;
flag=SHOW_OVERFLOW;
else if (sval=="nooverflow")
flag=NOOVERFLOW;
flag=NOOVERFLOW;
else if (sval=="pedestal")
flag=PEDESTAL;
else if (sval=="flatfield")
flag=FLAT;
else if (sval=="newpedestal")
flag=NEWPEDESTAL;
else if (sval=="newflatfield")
flag=NEWFLAT;
else if (sval=="frame")
flag=FRAME;
else if (sval=="analog")
flag=ANALOG;
else if (sval=="counting")
flag=COUNTING;
else if (sval=="interpolating")
flag=INTERPOLATING;
else
return string("could not scan flag ")+string(args[1]);
return string("could not scan flag ")+string(args[1]);
}
myDet->setOnline(ONLINE_FLAG);
@ -6038,6 +6073,22 @@ string slsDetectorCommand::cmdAdvanced(int narg, char *args[], int action) {
strcat(answer,"overflow ");
if (retval & NOOVERFLOW)
strcat(answer,"nooverflow ");
if (retval & PEDESTAL)
strcat(answer,"pedestal ");
if (retval & NEWPEDESTAL)
strcat(answer,"newpedestal ");
if (retval & NEWFLAT)
strcat(answer,"newflat ");
if (retval & FLAT)
strcat(answer,"flatfield ");
if (retval & FRAME)
strcat(answer,"frame ");
if (retval & ANALOG)
strcat(answer,"analog ");
if (retval & COUNTING)
strcat(answer,"counting ");
if (retval & INTERPOLATING)
strcat(answer,"interpolating ");
if(strlen(answer))
return string(answer);
@ -6992,8 +7043,7 @@ string slsDetectorCommand::cmdPattern(int narg, char *args[], int action) {
}
os << hex << reg << dec;
if (myDet->isMultiSlsDetectorClass() && aa != NULL)
delete [] aa;
delete [] aa;
//os <<" "<< hex << myDet->readRegister(120) << dec;

View File

@ -249,7 +249,7 @@ class slsDetectorUsers
int getPositions(double *pos=NULL);
/**
@short sets the detector size (only 1 ROI)
@short sets the detector size (only 1 ROI) (not Mythen supported anymore)
\param x0 horizontal position origin in channel number (-1 unchanged)
\param y0 vertical position origin in channel number (-1 unchanged)
\param nx number of channels in horiziontal (-1 unchanged)
@ -259,7 +259,7 @@ class slsDetectorUsers
int setDetectorSize(int x0=-1, int y0=-1, int nx=-1, int ny=-1);
/**
@short gets detector size (roi size if only one roi)
@short gets detector size (roi size if only one roi) (not Mythen supported anymore)
\param x0 horizontal position origin in channel number
\param y0 vertical position origin in channel number
\param nx number of channels in horiziontal

View File

@ -125,7 +125,7 @@ int fileIO::writeDataFile(void *data, int iframe) {
int fileIO::closeDataFile() {
cout << "close file...." << endl;
// cout << "close file...." << endl;
if (filefd)
fclose(filefd);
filefd=NULL;

View File

@ -1,9 +1,9 @@
Path: slsDetectorsPackage/slsReceiverSoftware
URL: origin git@github.com:slsdetectorgroup/slsDetectorPackage.git
Repository Root: origin git@github.com:slsdetectorgroup/slsDetectorPackage.git
Repsitory UUID: 3c774478681813e451df683e2bc8403b37490323
Revision: 858
Branch: 4.0.1
Repsitory UUID: 907d1655d1f6cf2bb8cf6ccd7e91e82f479dd2ca
Revision: 859
Branch: developer
Last Changed Author: Dhanya_Thattil
Last Changed Rev: 4084
Last Changed Date: 2019-02-08 16:44:46.000000002 +0100 ./src/Listener.cpp
Last Changed Rev: 4101
Last Changed Date: 2019-02-11 14:04:47.000000002 +0100 ./src/slsReceiverTCPIPInterface.cpp

View File

@ -666,7 +666,9 @@ public:
if (tcpfd<0) return -1;
while(length>0){
nsending = (length>packet_size) ? packet_size:length;
// std::cout << "*"<<nsending << std::endl;
nsent = read(tcpfd,(char*)buf+total_sent,nsending);
// std::cout << "+"<<nsent << std::endl;
if(!nsent) {
if(!total_sent) {
return -1; //to handle it
@ -675,6 +677,7 @@ public:
}
length-=nsent;
total_sent+=nsent;
// std::cout << "+"<< length << " " << total_sent << std::endl;
}
if (total_sent>0)

View File

@ -1,6 +1,6 @@
#define GITURL "git@github.com:slsdetectorgroup/slsDetectorPackage.git"
#define GITREPUUID "3c774478681813e451df683e2bc8403b37490323"
#define GITREPUUID "907d1655d1f6cf2bb8cf6ccd7e91e82f479dd2ca"
#define GITAUTH "Dhanya_Thattil"
#define GITREV 0x4084
#define GITDATE 0x20190208
#define GITBRANCH "4.0.1"
#define GITREV 0x4101
#define GITDATE 0x20190211
#define GITBRANCH "developer"

View File

@ -568,14 +568,20 @@ uint32_t Listener::ListenToAnImage(char* buf) {
lastCaughtFrameIndex = fnum;
#ifdef VERBOSE
//#ifdef VERBOSE
//if (!index)
cprintf(GREEN,"Listening %d: currentfindex:%lu, fnum:%lu, pnum:%u numpackets:%u\n",
index,currentFrameIndex, fnum, pnum, numpackets);
#endif
//#endif
if (!measurementStartedFlag)
RecordFirstIndices(fnum);
if (pnum >= pperFrame ) {
cprintf(RED,"bad packet, throwing away. packets caught so far: %d\n", numpackets);
return 0; // bad packet
}
//future packet by looking at image number (all other detectors)
if (fnum != currentFrameIndex) {
//cprintf(RED,"setting carry over flag to true num:%llu nump:%u\n",fnum, numpackets );
@ -611,6 +617,7 @@ uint32_t Listener::ListenToAnImage(char* buf) {
memcpy(buf + fifohsize + (pnum * dsize) - 2, listeningPacket + hsize, dsize+2);
break;
case JUNGFRAUCTB:
if (pnum == (pperFrame-1))
memcpy(buf + fifohsize + (pnum * dsize), listeningPacket + hsize, corrected_dsize);
else

View File

@ -158,6 +158,7 @@ void slsReceiverTCPIPInterface::startTCPServer(){
#ifdef VERY_VERBOSE
FILE_LOG(logDEBUG5) << "Conenction accepted";
#endif
// std::cout << "connected" << std::endl;
v = decode_function();
#ifdef VERY_VERBOSE
FILE_LOG(logDEBUG5) << "function executed";
@ -2580,11 +2581,12 @@ int slsReceiverTCPIPInterface::set_additional_json_header() {
char arg[MAX_STR_LENGTH];
memset(arg, 0, sizeof(arg));
char* retval=NULL;
// std::cout << "set additional json header" << std::endl;
// receive arguments
if (mySock->ReceiveDataOnly(arg,MAX_STR_LENGTH) < 0 )
return printSocketReadError();
// std::cout << arg << endl;
// execute action
#ifdef SLS_RECEIVER_UDP_FUNCTIONS
if (receiverBase == NULL)