SlsDetector client library and servers. First import.

git-svn-id: file:///afs/psi.ch/project/sls_det_software/svn/slsDetectorSoftware@1 951219d9-93cf-4727-9268-0efd64621fa3
This commit is contained in:
bergamaschi
2009-10-09 14:10:09 +00:00
commit e2f9d69677
167 changed files with 36171 additions and 0 deletions

View File

@ -0,0 +1,516 @@
#include "communication_funcs.h"
//#include <sys/socket.h>
#include <netinet/tcp.h> /* for TCP_NODELAY */
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
//int socketDescriptor, file_des;
int socketDescriptor, file_des;
const int send_rec_max_size=SEND_REC_MAX_SIZE;
extern int errno;
//struct sockaddr_in address;
//#define VERY_VERBOSE
int bindSocket(unsigned short int port_number) {
int i;
struct sockaddr_in addressS;
file_des= -1;
socketDescriptor = socket(AF_INET, SOCK_STREAM,0); //tcp
//socketDescriptor = socket(PF_INET, SOCK_STREAM, 0);
if (socketDescriptor < 0) {
printf("Can not create socket\n");
} else {
i = 1;
setsockopt(socketDescriptor, SOL_SOCKET, SO_REUSEADDR, &i, sizeof(i));
// setsockopt(socketDescriptor, IPPROTO_TCP, TCP_NODELAY, (char *) &i, sizeof(i));
// TCP_CORK
// Set some fields in the serverAddress structure.
addressS.sin_family = AF_INET;
addressS.sin_addr.s_addr = htonl(INADDR_ANY);
addressS.sin_port = htons(port_number);
// memset(&address.sin_addr, 0, sizeof(address.sin_addr));
if(bind(socketDescriptor,(struct sockaddr *) &addressS,sizeof(addressS))<0){
printf("Can not create socket\n");
socketDescriptor=-1;
} else {
listen(socketDescriptor, 5);
}
}
//int getrlimit(int resource, struct rlimit *rlim);
return socketDescriptor;
}
/*
only client funcs
*/
/*
#ifndef C_ONLY
MySocketTCP::MySocketTCP(const char* const host_ip_or_name, unsigned short int const port_number):
last_keep_connection_open_action_was_a_send(0), file_des(-1), send_rec_max_size(SEND_REC_MAX_SIZE), is_a_server(0), portno(DEFAULT_PORTNO), socketDescriptor(-1)
{ // sender (client): where to? ip
//is_a_server = 0;
// SetupParameters();
strcpy(hostname,host_ip_or_name);
portno=port_number;
struct hostent *hostInfo = gethostbyname(host_ip_or_name);
if (hostInfo == NULL){
cerr << "Exiting: Problem interpreting host: " << host_ip_or_name << "\n";
} else {
// Set some fields in the serverAddress structure.
serverAddress.sin_family = hostInfo->h_addrtype;
memcpy((char *) &serverAddress.sin_addr.s_addr,
hostInfo->h_addr_list[0], hostInfo->h_length);
serverAddress.sin_port = htons(port_number);
socketDescriptor=0; //You can use send and recv, //would it work?????
}
}
int MySocketTCP::getHostname(char *name) {
if (is_a_server==0) {
strcpy(name,hostname);
}
return is_a_server;
};
#endif
*/
int getServerError()
{
if (socketDescriptor<0) return 1;
else return 0;
};
int acceptConnection() {
struct sockaddr_in addressC;
//socklen_t address_length;
size_t address_length=sizeof(struct sockaddr_in);
if(file_des>0) return file_des;
#ifndef C_ONLY
if(is_a_server){ //server; the server will wait for the clients connection
#endif
if (socketDescriptor>0) {
//if ((file_des = accept(socketDescriptor,(struct sockaddr *) &address, &address_length)) < 0) {
if ((file_des = accept(socketDescriptor,(struct sockaddr *) &addressC, &address_length)) < 0) {
printf("Error: with server accept, connection refused %d\n", errno);
switch(errno) {
case EWOULDBLOCK:
printf("ewouldblock eagain\n");
break;
case EBADF:
printf("ebadf\n");
break;
case ECONNABORTED:
printf("econnaborted\n");
break;
case EFAULT:
printf("efault\n");
break;
case EINTR:
printf("eintr\n");
break;
case EINVAL:
printf("einval\n");
break;
case EMFILE:
printf("emfile\n");
break;
case ENFILE:
printf("enfile\n");
break;
case ENOTSOCK:
printf("enotsock\n");
break;
case EOPNOTSUPP:
printf("eOPNOTSUPP\n");
break;
case ENOBUFS:
printf("ENOBUFS\n");
break;
case ENOMEM:
printf("ENOMEM\n");
break;
case ENOSR:
printf("ENOSR\n");
break;
case EPROTO:
printf("EPROTO\n");
break;
default:
printf("unknown error\n");
}
socketDescriptor=-1;
}
#ifdef VERY_VERBOSE
printf("client connected %d\n", file_des);
#endif
}
return file_des;
}
void closeConnection() {
//fflush(stdout);
//printf("Closing file_des %d\n", file_des);
//sleep(1);
#ifdef VERY_VERBOSE
#endif
if(file_des>=0)
close(file_des);
file_des=-1;
}
void exitServer() {
if (socketDescriptor>=0)
close(socketDescriptor);
#ifdef VERY_VERBOSE
printf("Closing server\n");
#endif
socketDescriptor=-1;
}
/* client close conenction */
/*
#ifndef C_ONLY
void MySocketTCP::Disconnect(){
if(file_des>=0){ //then was open
if(is_a_server){
close(file_des);
}
else {
close(socketDescriptor);
socketDescriptor=-1;
}
file_des=-1;
}
}
#endif
*/
int sendDataOnly(void* buf,int length) {
/*
int total_sent=0;
int nsending;
int nsent;
#ifdef VERY_VERBOSE
printf("want to send %d Bytes\n", length);
#endif
if (file_des<0) return -1;
while(length>0){
nsending = (length>send_rec_max_size) ? send_rec_max_size:length;
nsent = write(file_des,(char*)buf+total_sent,nsending);
if(!nsent) break;
length-=nsent;
total_sent+=nsent;
// cout<<"nsent: "<<nsent<<endl;
}
*/
return write(file_des, buf, length);
#ifdef VERBOSE
// printf("sent %d Bytes\n", total_sent);
#endif
}
int receiveDataOnly(void* buf,int length) {
int total_received=0;
int nreceiving;
int nreceived;
if (file_des<0) return -1;
#ifdef VERY_VERBOSE
printf("want to receive %d Bytes\n", length);
#endif
while(length>0){
nreceiving = (length>send_rec_max_size) ? send_rec_max_size:length;
nreceived = read(file_des,(char*)buf+total_received,nreceiving);
if(!nreceived) break;
length-=nreceived;
total_received+=nreceived;
// cout<<"nrec: "<<nreceived<<" waiting for ("<<length<<")"<<endl;
}
#ifdef VERY_VERBOSE
printf("received %d Bytes\n", total_received);
#endif
return total_received;
}
int sendChannel(sls_detector_channel *myChan) {
return sendDataOnly(myChan, sizeof(sls_detector_channel));
}
int sendChip(sls_detector_chip *myChip) {
int ts=0;
int nChans=myChip->nchan;
ts+=sendDataOnly(myChip,sizeof(sls_detector_chip));
ts+=sendDataOnly(myChip->chanregs,nChans*sizeof(int));
return ts;
}
int sendModule(sls_detector_module *myMod) {
int ts=0;
int nChips=myMod->nchip;
int nChans=myMod->nchan;
int nAdcs=myMod->nadc;
int nDacs=myMod->ndac;
ts+= sendDataOnly(myMod,sizeof(sls_detector_module));
ts+= sendDataOnly(myMod->dacs,sizeof(float)*nDacs);
ts+= sendDataOnly(myMod->adcs,sizeof(float)*nAdcs);
ts+=sendDataOnly(myMod->chipregs,sizeof(int)*nChips);
ts+=sendDataOnly(myMod->chanregs,sizeof(int)*nChans);
#ifdef VERBOSE
printf("module %d of size %d sent register %x\n",myMod->module, ts, myMod->reg);
#endif
return ts;
}
int receiveChannel(sls_detector_channel *myChan) {
return receiveDataOnly(myChan,sizeof(sls_detector_channel));
}
int receiveChip(sls_detector_chip* myChip) {
int *ptr=myChip->chanregs;
int ts=0;
int nChans, nchanold=myChip->nchan, chdiff;
ts+= receiveDataOnly(myChip,sizeof(sls_detector_chip));
myChip->chanregs=ptr;
nChans=myChip->nchan;
chdiff=nChans-nchanold;
if (nchanold!=nChans) {
printf("wrong number of channels received!\n");
}
#ifdef VERBOSE
printf("chip structure received\n");
printf("now receiving %d channels\n", nChans);
#endif
if (chdiff<=0)
ts+=receiveDataOnly(myChip->chanregs, sizeof(int)*nChans);
else {
ptr=malloc(chdiff*sizeof(int));
myChip->nchan=nchanold;
ts+=receiveDataOnly(myChip->chanregs, sizeof(int)*nchanold);
ts+=receiveDataOnly(ptr, sizeof(int)*chdiff);
free(ptr);
return FAIL;
}
#ifdef VERBOSE
printf("chip's channels received\n");
#endif
return ts;
}
int receiveModule(sls_detector_module* myMod) {
float *dacptr=myMod->dacs;
float *adcptr=myMod->adcs;
int *chipptr=myMod->chipregs, *chanptr=myMod->chanregs;
int ts=0;
int nChips, nchipold=myMod->nchip, nchipdiff;
int nChans, nchanold=myMod->nchan, nchandiff;
int nDacs, ndold=myMod->ndac, ndacdiff;
int nAdcs, naold=myMod->nadc, nadcdiff;
ts+= receiveDataOnly(myMod,sizeof(sls_detector_module));
myMod->dacs=dacptr;
myMod->adcs=adcptr;
myMod->chipregs=chipptr;
myMod->chanregs=chanptr;
nChips=myMod->nchip;
nchipdiff=nChips-nchipold;
if (nchipold!=nChips) {
printf("received wrong number of chips\n");
}
#ifdef VERBOSE
else
printf("received %d chips\n",nChips);
#endif
nChans=myMod->nchan;
nchandiff=nChans-nchanold;
if (nchanold!=nChans) {
printf("received wrong number of channels\n");
}
#ifdef VERBOSE
else
printf("received %d chans\n",nChans);
#endif
nDacs=myMod->ndac;
ndacdiff=nDacs-ndold;
if (ndold!=nDacs) {
printf("received wrong number of dacs\n");
}
#ifdef VERBOSE
else
printf("received %d dacs\n",nDacs);
#endif
nAdcs=myMod->nadc;
nadcdiff=nAdcs-naold;
if (naold!=nAdcs) {
printf("received wrong number of adcs\n");
}
#ifdef VERBOSE
else
printf("received %d adcs\n",nAdcs);
#endif
if (ndacdiff<=0) {
ts+=receiveDataOnly(myMod->dacs, sizeof(float)*nDacs);
#ifdef VERBOSE
printf("dacs received\n");
#endif
} else {
dacptr=malloc(ndacdiff*sizeof(float));
myMod->ndac=ndold;
ts+=receiveDataOnly(myMod->dacs, sizeof(float)*ndold);
ts+=receiveDataOnly(dacptr, sizeof(float)*ndacdiff);
free(dacptr);
return FAIL;
}
if (nadcdiff<=0) {
ts+=receiveDataOnly(myMod->adcs, sizeof(float)*nAdcs);
#ifdef VERBOSE
printf("adcs received\n");
#endif
} else {
adcptr=malloc(nadcdiff*sizeof(float));
myMod->nadc=naold;
ts+=receiveDataOnly(myMod->adcs, sizeof(float)*naold);
ts+=receiveDataOnly(adcptr, sizeof(float)*nadcdiff);
free(adcptr);
return FAIL;
}
if (nchipdiff<=0) {
ts+=receiveDataOnly(myMod->chipregs, sizeof(int)*nChips);
#ifdef VERBOSE
printf("chips received\n");
#endif
} else {
chipptr=malloc(nchipdiff*sizeof(int));
myMod->nchip=nchipold;
ts+=receiveDataOnly(myMod->chipregs, sizeof(int)*nchipold);
ts+=receiveDataOnly(chipptr, sizeof(int)*nchipdiff);
free(chipptr);
return FAIL;
}
if (nchandiff<=0) {
ts+=receiveDataOnly(myMod->chanregs, sizeof(int)*nChans);
#ifdef VERBOSE
printf("chans received\n");
#endif
} else {
chanptr=malloc(nchandiff*sizeof(int));
myMod->nchan=nchanold;
ts+=receiveDataOnly(myMod->chanregs, sizeof(int)*nchanold);
ts+=receiveDataOnly(chanptr, sizeof(int)*nchandiff);
free(chanptr);
return FAIL;
}
#ifdef VERBOSE
printf("received module %d of size %d register %x\n",myMod->module,ts,myMod->reg);
#endif
return ts;
}

View File

@ -0,0 +1,32 @@
#ifndef COMMUNICATION_FUNCS_H
#define COMMUNICATION_FUNCS_H
#define SEND_REC_MAX_SIZE 4096
#define DEFAULT_PORTNO 1952
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#include <unistd.h>
#include "sls_detector_defs.h"
int bindSocket(unsigned short int port_number);
int acceptConnection();
void closeConnection();
void exitServer();
int sendDataOnly(void* buf,int length);
int receiveDataOnly(void* buf,int length);
int getServerError();
int sendChannel(sls_detector_channel *myChan);
int sendChip(sls_detector_chip *myChip);
int sendModule(sls_detector_module *myMod);
int receiveChannel(sls_detector_channel *myChan);
int receiveChip(sls_detector_chip* myChip);
int receiveModule(sls_detector_module* myMod);
#endif

View File

@ -0,0 +1,434 @@
#ifndef SLS_DETECTOR_DEFS_H
#define SLS_DETECTOR_DEFS_H
#include <stdint.h>
/**
\file sls_detector_defs.h
This file contains all the basic definitions common to the slsDetector class
and to the server programs running on the detector
* @author Anna Bergamaschi
* @version 0.1alpha (any string)
* @see slsDetector
*/
/** default maximum string length */
#define MAX_STR_LENGTH 1000
/** get flag form most functions */
#define GET_FLAG -1
/**
structure for a detector channel
should not be used by unexperienced users
\see ::channelRegisterBit
*/
typedef struct {
int chan; /**< is the channel number */
int chip; /**< is the chip number */
int module; /**< is the module number */
int64_t reg; /**< is the is the channel register (e.g. trimbits, calibration enable, comparator enable...) */
} sls_detector_channel;
/**
structure for a detector chip
should not be used by unexperienced users
\see ::chipRegisterBit ::channelRegisterBit
*/
typedef struct {
int chip; /**< is the chip number */
int module; /**< is the module number */
int nchan; /**< is the number of channels in the chip */
int reg; /**<is the chip register (e.g. output analogue buffer enable)
\see ::chipRegisterBit */
int *chanregs; /**< is the pointer to the array of the channel registers
\see ::channelRegisterBit */
} sls_detector_chip;
/**
structure for a detector module
should not be used by unexperienced users
\see :: moduleRegisterBit ::chipRegisterBit :channelRegisterBit
@li reg is the module register (e.g. dynamic range? see moduleRegisterBit)
@li dacs is the pointer to the array of dac values (in V)
@li adcs is the pointer to the array of adc values (in V)
@li chipregs is the pointer to the array of chip registers
@li chanregs is the pointer to the array of channel registers
@li gain is the module gain
@li offset is the module offset
*/
typedef struct {
int module; /**< is the module number */
int serialnumber; /**< is the module serial number */
int nchan; /**< is the number of channels per chip */
int nchip; /**< is the number of chips on the module */
int ndac; /**< is the number of dacs on the module */
int nadc; /**< is the number of adcs on the module */
int reg; /**< is the module register (e.g. dynamic range?)
\see moduleRegisterBit */
float *dacs; /**< is the pointer to the array of the dac values (in V) */
float *adcs; /**< is the pointer to the array of the adc values (in V) */
int *chipregs; /**< is the pointer to the array of the chip registers
\see ::chipRegisterBit */
int *chanregs; /**< is the pointer to the array of the channel registers
\see ::channelRegisterBit */
float gain; /**< is the module gain (V/keV) */
float offset; /**< is the module offset (V) */
} sls_detector_module;
/**
structure for a region of interest
xmin,xmax,ymin,ymax define the limits of the region
*/
typedef struct {
int xmin; /**< is the roi xmin (in channel number) */
int xmax; /**< is the roi xmax (in channel number)*/
int ymin; /**< is the roi ymin (in channel number)*/
int ymax; /**< is the roi ymax (in channel number)*/
} ROI ;
/**
structure for a generic integer array
*/
typedef struct {
int len; /**< is the number of elements of the array */
int *iptr; /**< is the pointer to the array */
} iarray ;
/**
Type of the detector
*/
enum detectorType {
GET_DETECTOR_TYPE, /**< the detector will return its type */
GENERIC, /**< generic sls detector */
MYTHEN, /**< mythen */
PILATUS, /**< pilatus */
EIGER, /**< eiger */
GOTTHARD, /**< gotthard */
AGIPD /**< agipd */
};
/**
Communication protocol (normally TCP)
*/
enum communicationProtocol{
TCP, /**< TCP/IP */
UDP /**< UDP */
};
/**
flags to get (or set) the size of the detector
*/
enum numberOf {
MAXMODX, /**<maximum number of module in X direction */
MAXMODY, /**<maximum number of module in Y direction */
NMODX, /**<installed number of module in X direction */
NMODY, /**<installed number of module in Y direction */
NCHANSX, /**<number of channels in X direction */
NCHANSY, /**<number of channels in Y direction */
NCHIPSX, /**<number of chips in X direction */
NCHIPSY /**<number of chips in Y direction */
};
/**
dimension indexes
*/
enum dimension {
X=0, /**< X dimension */
Y=1, /**< Y dimension */
Z=2 /**< Z dimension */
};
/**
return values
*/
enum {
OK, /**< function succeeded */
FAIL /**< function failed */
};
/**
enable/disable flags
*/
enum {
DISABLED, /**<flag disabled */
ENABLED /**<flag enabled */
};
/**
use of the external signals
*/
enum externalSignalFlag {
GET_EXTERNAL_SIGNAL_FLAG, /**<return flag for signal */
SIGNAL_OFF, /**<signal unused*/
GATE_IN_ACTIVE_HIGH, /**<input gate active high*/
GATE_IN_ACTIVE_LOW, /**<input gate active low */
TRIGGER_IN_RISING_EDGE, /**<input exposure trigger on rising edge */
TRIGGER_IN_FALLING_EDGE, /**<input exposure trigger on falling edge */
RO_TRIGGER_IN_RISING_EDGE, /**<input raedout trigger on rising edge */
RO_TRIGGER_IN_FALLING_EDGE, /**<input readout trigger on falling edge */
GATE_OUT_ACTIVE_HIGH, /**<output active high when detector is exposing*/
GATE_OUT_ACTIVE_LOW, /**<output active low when detector is exposing*/
TRIGGER_OUT_RISING_EDGE, /**<output trigger rising edge at start of exposure */
TRIGGER_OUT_FALLING_EDGE, /**<output trigger falling edge at start of exposure */
RO_TRIGGER_OUT_RISING_EDGE, /**<output trigger rising edge at start of readout */
RO_TRIGGER_OUT_FALLING_EDGE /**<output trigger falling edge at start of readout */
};
/**
communication mode using external signals (obsolete: it will be authomatically determined by the external signal flags)
\see ::externalSignalFlag
*/
enum externalCommunicationMode{
GET_EXTERNAL_COMMUNICATION_MODE,
AUTO,
TRIGGER_EXPOSURE,
TRIGGER_READOUT,
TRIGGER_COINCIDENCE_WITH_INTERNAL_ENABLE,
GATE_FIX_NUMBER,
GATE_FIX_DURATION,
GATE_WITH_START_TRIGGER,
GATE_COINCIDENCE_WITH_INTERNAL_ENABLE
};
/**
detector IDs/versions
*/
enum idMode{
MODULE_SERIAL_NUMBER, /**<return module serial number */
MODULE_FIRMWARE_VERSION, /**<return module firmware */
DETECTOR_SERIAL_NUMBER, /**<return detector system serial number */
DETECTOR_FIRMWARE_VERSION, /**<return detector system firmware version */
DETECTOR_SOFTWARE_VERSION, /**<return detector system software version */
THIS_SOFTWARE_VERSION /**<return this software version */
};
/**
detector digital test modes
*/
enum digitalTestMode {
CHIP_TEST, /**< test chips */
MODULE_FIRMWARE_TEST, /**< test module firmware */
DETECTOR_FIRMWARE_TEST, /**< test detector system firmware */
DETECTOR_MEMORY_TEST, /**< test detector system memory */
DETECTOR_BUS_TEST, /**< test detector system CPU-FPGA bus */
DETECTOR_SOFTWARE_TEST /**< test detector system software */
};
/**
detector analogue test modes
*/
enum analogTestMode {
CALIBRATION_PULSES, /**< test using calibration pulses */
MY_ANALOG_TEST_MODE /**< other possible test modes */
};
/**
detector dacs indexes
*/
enum dacIndex {
THRESHOLD, /**< comparator threshold level */
CALIBRATION_PULSE, /**< calibration input pulse height */
TRIMBIT_SIZE, /**< voltage to determine the trimbits LSB */
PREAMP, /**< preamp feedback */
SHAPER1, /**< shaper1 feedback */
SHAPER2, /**< shaper2 feedback */
TEMPERATURE, /**< temperature sensor (adc) */
HUMIDITY, /**< humidity sensor (adc) */
DETECTOR_BIAS /**< detector bias */
};
/**
detector settings indexes
*/
enum detectorSettings{
GET_SETTINGS=-1, /**< return current detector settings */
STANDARD, /**< standard settings */
FAST, /**< fast settings */
HIGHGAIN, /**< highgain settings */
UNDEFINED, /**< undefined or custom settings */
UNINITIALIZED /**< uninitialiazed (status at startup) */
};
/**
meaning of the channel register bits
\see ::sls_detector_channel
*/
enum channelRegisterBit {
TRIMBIT_OFF, /**< offset of trimbit value in the channel register */
COMPARATOR_ENABLE=0x100, /**< mask of the comparator enable bit */
ANALOG_SIGNAL_ENABLE=0x200, /**< mask of the analogue output enable bit */
CALIBRATION_ENABLE=0x300, /**< mask of the calibration input enable bit */
};
/**
meaning of the chip register bits
\see ::sls_detector_chip
*/
enum chipRegisterBit {
ENABLE_ANALOG_OUTPUT=0x1, /**< mask of the analogue output enable bit */
CHIP_OUTPUT_WIDTH=0x2 /**< mask of the chip output width */
};
/**
meaning of the module register bits
*/
enum moduleRegisterBit {
MY_MODULE_REGISTER_BIT, /**< possible module register bit meaning */
MODULE_OUTPUT_WIDTH /**< possibly module dynamic range */
};
/**
indexes for the acquisition timers
*/
enum timerIndex {
FRAME_NUMBER, /**< number of real time frames: total number of acquisitions is number or frames*number of cycles */
ACQUISITION_TIME, /**< exposure time */
FRAME_PERIOD, /**< period between exposures */
DELAY_AFTER_TRIGGER, /**< delay between trigger and start of exposure or readout (in triggered mode) */
GATES_NUMBER, /**< number of gates per frame (in gated mode) */
PROBES_NUMBER, /**< number of probe types in pump-probe mode */
CYCLES_NUMBER /**< number of cycles: total number of acquisitions is number or frames*number of cycles */
};
/**
readout flags
*/
enum readOutFlags {
GET_READOUT_FLAGS=-1, /**< return readout flags */
NORMAL_READOUT=0, /**< no flag */
STORE_IN_RAM=0x1, /**< data are stored in ram and sent only after end of acquisition for faster frame rate */
READ_HITS=0x2, /**< return only the number of the channel which counted ate least one */
ZERO_COMPRESSION=0x4,/**< returned data are 0-compressed */
PUMP_PROBE_MODE=0x8,/**<pump-probe mode */
BACKGROUND_CORRECTIONS=0x1000 /**<background corrections */
};
/**
trimming modes
*/
enum trimMode {
NOISE_TRIMMING, /**< trim with noise */
BEAM_TRIMMING, /**< trim with x-rays (on all 63 bits) */
IMPROVE_TRIMMING, /**< trim with x-rays (on a limited range of bits - should start from an already trimmed mode) */
FIXEDSETTINGS_TRIMMING,/**< trim without optimizing the threshold and the trimbit size */
OFFLINE_TRIMMING /**< trimming is performed offline */
};
/**
data correction flags
*/
enum correctionFlags {
DISCARD_BAD_CHANNELS, /**< bad channels are discarded */
AVERAGE_NEIGHBOURS_FOR_BAD_CHANNELS, /**< bad channels are replaced with the avergae of the neighbours */
FLAT_FIELD_CORRECTION, /**< data are flat field corrected */
RATE_CORRECTION, /**< data are rate corrected */
ANGULAR_CONVERSION,/**< angular conversion is calculated */
I0_NORMALIZATION
};
/**
function indexes to call on the server
All set functions with argument -1 work as get, when possible
*/
enum {
// General purpose functions
F_EXEC_COMMAND, /**< command is executed */
F_GET_ERROR, /**< return detector error status */
// configuration functions
F_GET_DETECTOR_TYPE, /**< return detector type */
F_SET_NUMBER_OF_MODULES, /**< set/get number of installed modules */
F_GET_MAX_NUMBER_OF_MODULES, /**< get maximum number of installed modules */
F_SET_EXTERNAL_SIGNAL_FLAG, /**< set/get flag for external signal */
F_SET_EXTERNAL_COMMUNICATION_MODE, /**< set/get external communication mode (obsolete) */
// Tests and identification
F_GET_ID, /**< get detector id of version */
F_DIGITAL_TEST, /**< digital test of the detector */
F_ANALOG_TEST, /**<analog test of the detector */
F_ENABLE_ANALOG_OUT, /**<enable the analog output */
F_CALIBRATION_PULSE, /**<pulse the calibration input */
// Initialization functions
F_SET_DAC, /**< set DAC value */
F_GET_ADC, /**< get ADC value */
F_WRITE_REGISTER, /**< write to register */
F_READ_REGISTER, /**< read register */
F_WRITE_MEMORY, /**< write to memory */
F_READ_MEMORY, /**< read memory */
F_SET_CHANNEL, /**< initialize channel */
F_GET_CHANNEL, /**< get channel register */
F_SET_ALL_CHANNELS, /**< initialize all channels */
F_SET_CHIP, /**< initialize chip */
F_GET_CHIP, /**< get chip status */
F_SET_ALL_CHIPS, /**< initialize all chips */
F_SET_MODULE, /**< initialize module */
F_GET_MODULE, /**< get module status */
F_SET_ALL_MODULES, /**< initialize all modules */
F_SET_SETTINGS, /**< set detector settings */
F_GET_THRESHOLD_ENERGY, /**< get detector threshold (in eV) */
F_SET_THRESHOLD_ENERGY, /**< set detector threshold (in eV) */
// Acquisition functions
F_START_ACQUISITION, /**< start acquisition */
F_STOP_ACQUISITION, /**< stop acquisition */
F_START_READOUT, /**< start readout */
F_GET_RUN_STATUS, /**< get acquisition status */
F_START_AND_READ_ALL, /**< start acquisition and read all frames*/
F_READ_FRAME, /**< read one frame */
F_READ_ALL, /**< read alla frames */
//Acquisition setup functions
F_SET_TIMER, /**< set/get timer value */
F_GET_TIME_LEFT, /**< get current value of the timer (time left) */
F_SET_DYNAMIC_RANGE, /**< set/get detector dynamic range */
F_SET_READOUT_FLAGS, /**< set/get readout flags */
F_SET_ROI, /**< set/get region of interest */
//Trimming
F_EXECUTE_TRIMMING, /**< execute trimming */
F_EXIT_SERVER /**< turnoff detector server */
};
/**
angular conversion constant for a module
*/
typedef struct {
float center; /**< center of the module (channel at which the radius is perpendicular to the module surface) */
float ecenter; /**< error in the center determination */
float r_conversion; /**< detector pixel size (or strip pitch) divided by the diffractometer radius */
float er_conversion; /**< error in the r_conversion determination */
float offset; /**< the module offset i.e. the position of channel 0 with respect to the diffractometer 0 */
float eoffset; /**< error in the offset determination */
float tilt; /**< ossible tilt in the orthogonal direction (unused)*/
float etilt; /**< error in the tilt determination */
} angleConversionConstant;
#endif