formatting (#716)

* formatting
This commit is contained in:
Dhanya Thattil
2023-04-12 15:30:34 +02:00
committed by GitHub
parent a5022ff0ee
commit cb4f733350
4 changed files with 588 additions and 535 deletions

View File

@ -9,7 +9,7 @@
#endif
#include "slsDetectorData.h"
//#define VERSION_V2
// #define VERSION_V2
/**
@short structure for a Detector Packet or Image Header
@li frameNumber is the frame number
@ -29,64 +29,66 @@
*/
namespace strixelSingleChip {
constexpr int nc_rawimg = 1024; //for full images //256;
constexpr int nr_rawimg = 512;
constexpr int nr_chip = 256;
constexpr int gr = 9;
constexpr int nc_rawimg = 1024; // for full images //256;
constexpr int nr_rawimg = 512;
constexpr int nr_chip = 256;
constexpr int gr = 9;
//Group 1: 25um pitch, groups of 3, 1 column of square pixels
constexpr int g1_ncols{ (nc_rawimg-(2*gr)-1)/3 }; //79
constexpr int g1_nrows{ ( (nr_chip/4)-gr )*3 }; //165
//Group 2: 15um pitch, groups of 5, 3 columns of square pixels
constexpr int g2_ncols{ (nc_rawimg-(2*gr)-3)/5 }; //47
constexpr int g2_nrows{ (nr_chip/4)*5 }; //320
//Group 3: 18.75um pitch, groups of 4, 2 columns of square pixels (double the size of the other groups)
constexpr int g3_ncols{ (nc_rawimg-(2*gr)-2)/4 }; //59
constexpr int g3_nrows{ ( ((nr_chip/4)*2)-gr )*4 }; //476
// Group 1: 25um pitch, groups of 3, 1 column of square pixels
constexpr int g1_ncols{(nc_rawimg - (2 * gr) - 1) / 3}; // 79
constexpr int g1_nrows{((nr_chip / 4) - gr) * 3}; // 165
constexpr int nc_strixel = 2*gr + 1 + g1_ncols; //group 1 is the "longest" group in x and has one extra square pixel
constexpr int nr_strixel = 2*gr + g1_nrows + g2_nrows + g3_nrows;
// Group 2: 15um pitch, groups of 5, 3 columns of square pixels
constexpr int g2_ncols{(nc_rawimg - (2 * gr) - 3) / 5}; // 47
constexpr int g2_nrows{(nr_chip / 4) * 5}; // 320
//chip and group boundaries in ASIC coordinates (pixels at both bounds are included in the group)
//y does NOT take into account the shifts for M408!
constexpr int c1g1_xstart = 256 + gr + 1; //266
constexpr int c1g2_xstart = 256 + gr + 3; //268
constexpr int c1g3_xstart = 256 + gr + 2; //267
constexpr int c1_xend = 255 + 256 - gr; //502
constexpr int c1g1_ystart = gr; // 9
constexpr int c1g1_yend = 63; // 63
constexpr int c1g2_ystart = c1g1_yend + 1; // 64
constexpr int c1g2_yend = c1g1_yend + 64; //127
constexpr int c1g3_ystart = c1g2_yend + 1; //128
constexpr int c1g3_yend = c1g2_yend + 2*64 - gr; //246
// Group 3: 18.75um pitch, groups of 4, 2 columns of square pixels (double the
// size of the other groups)
constexpr int g3_ncols{(nc_rawimg - (2 * gr) - 2) / 4}; // 59
constexpr int g3_nrows{(((nr_chip / 4) * 2) - gr) * 4}; // 476
constexpr int c6_xstart = 256 + 256 + gr; //521
constexpr int c6g1_xend = 255 + 2*256 - gr - 1; //757
constexpr int c6g2_xend = 256 + 2*256 - gr - 3; //755
constexpr int c6g3_xend = 256 + 2*256 - gr - 2; //756
constexpr int c6g3_ystart = 256 + gr; //265
constexpr int c6g3_yend = 255 + 2*64; //383
constexpr int c6g2_ystart = c6g3_yend + 1; //384
constexpr int c6g2_yend = c6g3_yend + 64; //447
constexpr int c6g1_ystart = c6g2_yend + 1; //448
constexpr int c6g1_yend = c6g2_yend + 64 - gr; //502
constexpr int nc_strixel =
2 * gr + 1 + g1_ncols; // group 1 is the "longest" group in x and has one
// extra square pixel
constexpr int nr_strixel = 2 * gr + g1_nrows + g2_nrows + g3_nrows;
//y shift due to faulty bonding (relevant for M408)
constexpr int bond_shift_y = 1; //CHANGE IF YOU CHANGE MODULE!
// chip and group boundaries in ASIC coordinates (pixels at both bounds are
// included in the group) y does NOT take into account the shifts for M408!
constexpr int c1g1_xstart = 256 + gr + 1; // 266
constexpr int c1g2_xstart = 256 + gr + 3; // 268
constexpr int c1g3_xstart = 256 + gr + 2; // 267
constexpr int c1_xend = 255 + 256 - gr; // 502
constexpr int c1g1_ystart = gr; // 9
constexpr int c1g1_yend = 63; // 63
constexpr int c1g2_ystart = c1g1_yend + 1; // 64
constexpr int c1g2_yend = c1g1_yend + 64; // 127
constexpr int c1g3_ystart = c1g2_yend + 1; // 128
constexpr int c1g3_yend = c1g2_yend + 2 * 64 - gr; // 246
}
constexpr int c6_xstart = 256 + 256 + gr; // 521
constexpr int c6g1_xend = 255 + 2 * 256 - gr - 1; // 757
constexpr int c6g2_xend = 256 + 2 * 256 - gr - 3; // 755
constexpr int c6g3_xend = 256 + 2 * 256 - gr - 2; // 756
constexpr int c6g3_ystart = 256 + gr; // 265
constexpr int c6g3_yend = 255 + 2 * 64; // 383
constexpr int c6g2_ystart = c6g3_yend + 1; // 384
constexpr int c6g2_yend = c6g3_yend + 64; // 447
constexpr int c6g1_ystart = c6g2_yend + 1; // 448
constexpr int c6g1_yend = c6g2_yend + 64 - gr; // 502
// y shift due to faulty bonding (relevant for M408)
constexpr int bond_shift_y = 1; // CHANGE IF YOU CHANGE MODULE!
} // namespace strixelSingleChip
typedef struct {
uint64_t bunchNumber; /**< is the frame number */
uint64_t pre; /**< something */
} jf_header; //Aldo's header
} jf_header; // Aldo's header
using namespace strixelSingleChip;
using namespace strixelSingleChip;
class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
private:
@ -96,209 +98,235 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
int chip_y0;
int x0, y0, x1, y1, shifty;
int getMultiplicator( const int group ) {
int multiplicator;
switch (group) {
default:
case 1:
multiplicator = 3;
break;
case 2:
multiplicator = 5;
break;
case 3:
multiplicator = 4;
break;
}
return multiplicator;
int getMultiplicator(const int group) {
int multiplicator;
switch (group) {
default:
case 1:
multiplicator = 3;
break;
case 2:
multiplicator = 5;
break;
case 3:
multiplicator = 4;
break;
}
return multiplicator;
}
void setMappingShifts( const int group ) {
void setMappingShifts(const int group) {
if ( mchip == 1 ) {
chip_x0=256;
chip_y0=bond_shift_y; //because of bump bonding issues(+1 row) on M408
switch (group) {
default:
case 1:
x0 = 10+chip_x0; //9 gr + 1 sq pixel
x1 = 246+chip_x0;
y0 = 9+chip_y0;
y1 = 63+chip_y0;
shifty = 0;
break;
case 2:
x0 = 12+chip_x0;
x1 = 247+chip_x0;
y0 = 64+chip_y0;
y1 = 127+chip_y0;
shifty = g1_nrows;
break;
case 3:
x0 = 11+chip_x0;
x1 = 247+chip_x0;
y0 = 128+chip_y0;
y1 = 246+chip_y0;
shifty = g2_nrows+g1_nrows;
break;
}
}
if (mchip == 1) {
if ( mchip == 6 ) {
chip_x0 = 256;
chip_y0 =
bond_shift_y; // because of bump bonding issues(+1 row) on M408
chip_x0=512;
chip_y0=256-bond_shift_y; //should be 256 but is 255 because of bump bonding issues (+1 row) on M408
switch (group) {
default:
case 1:
switch (group) {
default:
case 1:
x0 = 10 + chip_x0; // 9 gr + 1 sq pixel
x1 = 246 + chip_x0;
y0 = 9 + chip_y0;
y1 = 63 + chip_y0;
shifty = 0;
break;
case 2:
x0 = 12 + chip_x0;
x1 = 247 + chip_x0;
y0 = 64 + chip_y0;
y1 = 127 + chip_y0;
shifty = g1_nrows;
break;
case 3:
x0 = 11 + chip_x0;
x1 = 247 + chip_x0;
y0 = 128 + chip_y0;
y1 = 246 + chip_y0;
shifty = g2_nrows + g1_nrows;
break;
}
}
x0 = 9+chip_x0; //9 gr sq pixel
x1 = 246+chip_x0;
y0 = 192+chip_y0;
y1 = 244+chip_y0;
if (mchip == 6) {
shifty = g1_nrows+2*g2_nrows+2*g3_nrows;
break;
chip_x0 = 512;
chip_y0 =
256 - bond_shift_y; // should be 256 but is 255 because of bump
// bonding issues (+1 row) on M408
case 2:
x0 = 9+chip_x0;
x1 = 244+chip_x0;
y0 = 128+chip_y0;
y1 = 191+chip_y0;
switch (group) {
default:
case 1:
shifty = g1_nrows+g2_nrows+2*g3_nrows;;
break;
case 3:
x0 = 9 + chip_x0; // 9 gr sq pixel
x1 = 246 + chip_x0;
y0 = 192 + chip_y0;
y1 = 244 + chip_y0;
x0 = 9+chip_x0;
x1 = 244+chip_x0;
y0 = 9+chip_y0;
y1 = 127+chip_y0;
shifty =g1_nrows+g2_nrows+g3_nrows;
shifty = g1_nrows + 2 * g2_nrows + 2 * g3_nrows;
break;
break;
}
}
case 2:
x0 = 9 + chip_x0;
x1 = 244 + chip_x0;
y0 = 128 + chip_y0;
y1 = 191 + chip_y0;
shifty = g1_nrows + g2_nrows + 2 * g3_nrows;
;
break;
case 3:
x0 = 9 + chip_x0;
x1 = 244 + chip_x0;
y0 = 9 + chip_y0;
y1 = 127 + chip_y0;
shifty = g1_nrows + g2_nrows + g3_nrows;
break;
}
}
}
void remapGroup( const int group ) {
int multiplicator = getMultiplicator(group);
int shiftx;
int ix, iy=0;
void remapGroup(const int group) {
int multiplicator = getMultiplicator(group);
int shiftx;
int ix, iy = 0;
setMappingShifts(group);
//remapping loop
for ( int ipy=y0; ipy<=y1;ipy++) {
for ( int ipx=x0; ipx<=x1; ipx++ ) {
setMappingShifts(group);
ix = int ((ipx-x0)/multiplicator);
for ( int m=0; m<multiplicator;m++ ) {
if ( (ipx-x0)%multiplicator==m ) iy=(ipy-y0)*multiplicator +m + shifty;
}
// if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] = sizeof(header) + (nc_rawimg * ipy + ipx) * 2;
groupmap[iy][ix]=group-1;
}
}
// remapping loop
for (int ipy = y0; ipy <= y1; ipy++) {
for (int ipx = x0; ipx <= x1; ipx++) {
ix = int((ipx - x0) / multiplicator);
for (int m = 0; m < multiplicator; m++) {
if ((ipx - x0) % multiplicator == m)
iy = (ipy - y0) * multiplicator + m + shifty;
}
// if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] = sizeof(header) + (nc_rawimg * ipy + ipx) * 2;
groupmap[iy][ix] = group - 1;
}
}
}
void remapROI( uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax ) {
//determine group and chip selected by ROI
int group;
if ( ymax <= c1g1_yend+bond_shift_y ) { group = 1; mchip = 1; }
else if ( ymax <= c1g2_yend+bond_shift_y ) { group = 2; mchip = 1; }
else if ( ymax <= c1g3_yend+bond_shift_y ) { group = 3; mchip = 1; }
else if ( ymax <= c6g3_yend-bond_shift_y ) { group = 3; mchip = 6; }
else if ( ymax <= c6g2_yend-bond_shift_y ) { group = 2; mchip = 6; }
else if ( ymax <= c6g1_yend-bond_shift_y ) { group = 1; mchip = 6; }
int multiplicator = getMultiplicator(group);
setMappingShifts(group);
void remapROI(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax) {
// determine group and chip selected by ROI
int group;
if (ymax <= c1g1_yend + bond_shift_y) {
group = 1;
mchip = 1;
} else if (ymax <= c1g2_yend + bond_shift_y) {
group = 2;
mchip = 1;
} else if (ymax <= c1g3_yend + bond_shift_y) {
group = 3;
mchip = 1;
} else if (ymax <= c6g3_yend - bond_shift_y) {
group = 3;
mchip = 6;
} else if (ymax <= c6g2_yend - bond_shift_y) {
group = 2;
mchip = 6;
} else if (ymax <= c6g1_yend - bond_shift_y) {
group = 1;
mchip = 6;
}
int multiplicator = getMultiplicator(group);
setMappingShifts(group);
std::cout << "group: " << group << ", m: " << multiplicator << ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0 << ", y1: " << y1 << std::endl;
std::cout << "group: " << group << ", m: " << multiplicator
<< ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0
<< ", y1: " << y1 << std::endl;
//get ROI raw image number of columns
int nc_roi = xmax - xmin + 1;
std::cout << "nc_roi = " << nc_roi << std::endl;
// get ROI raw image number of columns
int nc_roi = xmax - xmin + 1;
std::cout << "nc_roi = " << nc_roi << std::endl;
//make sure loop bounds are correct
if (y0<ymin) std::cout << "Error ymin" << std::endl;
if (y1>ymax) std::cout << "Error ymax - normal for G3 since ROI only 64 row" << std::endl;
if (x0<xmin) std::cout << "Error xmin" << std::endl;
if (x1>xmax) std::cout << "Error xmax" << std::endl;
// make sure loop bounds are correct
if (y0 < ymin)
std::cout << "Error ymin" << std::endl;
if (y1 > ymax)
std::cout << "Error ymax - normal for G3 since ROI only 64 row"
<< std::endl;
if (x0 < xmin)
std::cout << "Error xmin" << std::endl;
if (x1 > xmax)
std::cout << "Error xmax" << std::endl;
//remapping loop
int ix, iy=0;
for ( int ipy=y0; ipy<=y1; ++ipy) {
for ( int ipx=x0; ipx<=x1; ++ipx ) {
// remapping loop
int ix, iy = 0;
for (int ipy = y0; ipy <= y1; ++ipy) {
for (int ipx = x0; ipx <= x1; ++ipx) {
ix = int ((ipx-x0/*-xmin*/)/multiplicator);
for ( int m=0; m<multiplicator;m++ ) {
if ( (ipx-x0/*-xmin*/)%multiplicator==m ) iy=(ipy-y0/*-ymin*/)*multiplicator +m + shifty;
}
// if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] = sizeof(header) + (nc_roi * (ipy-ymin) + (ipx-xmin)) * 2;
groupmap[iy][ix]=group-1;
}
}
ix = int((ipx - x0 /*-xmin*/) / multiplicator);
for (int m = 0; m < multiplicator; m++) {
if ((ipx - x0 /*-xmin*/) % multiplicator == m)
iy = (ipy - y0 /*-ymin*/) * multiplicator + m + shifty;
}
// if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] =
sizeof(header) + (nc_roi * (ipy - ymin) + (ipx - xmin)) * 2;
groupmap[iy][ix] = group - 1;
}
}
}
public:
int groupmap[512*5][1024/3];
int groupmap[512 * 5][1024 / 3];
using header = sls::defs::sls_receiver_header;
jungfrauLGADStrixelsData( uint16_t xmin=0, uint16_t xmax=0, uint16_t ymin=0, uint16_t ymax=0 )
: slsDetectorData<uint16_t>( /*nc_strixel*/g1_ncols, /*nr_strixel*/ 2*g1_nrows+2*g2_nrows+2*g3_nrows,
g1_ncols* (2*g1_nrows+2*g2_nrows+2*g3_nrows) * 2 + sizeof(header) ) {
std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl;
jungfrauLGADStrixelsData(uint16_t xmin = 0, uint16_t xmax = 0,
uint16_t ymin = 0, uint16_t ymax = 0)
: slsDetectorData<uint16_t>(
/*nc_strixel*/ g1_ncols,
/*nr_strixel*/ 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows,
g1_ncols * (2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows) * 2 +
sizeof(header)) {
std::cout << "Jungfrau strixels 2X single chip with full module data "
<< std::endl;
// Fill all strixels with dummy values
for (int ix = 0; ix != g1_ncols; ++ix) {
for (int iy = 0; iy != 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows;
++iy) {
dataMap[iy][ix] = sizeof(header);
}
}
//Fill all strixels with dummy values
for (int ix = 0; ix != g1_ncols; ++ix) {
for (int iy = 0; iy != 2*g1_nrows+2*g2_nrows+2*g3_nrows; ++iy) {
dataMap[iy][ix] = sizeof(header);
std::cout << "sizeofheader = " << sizeof(header) << std::endl;
std::cout << "Jungfrau strixels 2X single chip with full module data "
<< std::endl;
}
}
if (xmin < xmax && ymin < ymax) {
std::cout << "sizeofheader = "<<sizeof(header)<<std::endl;
std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl;
dataSize =
(xmax - xmin + 1) * (ymax - ymin + 1) * 2 + sizeof(header);
std::cout << "datasize " << dataSize << std::endl;
remapROI(xmin, xmax, ymin, ymax);
if (xmin<xmax && ymin<ymax) {
} else {
dataSize=(xmax-xmin+1)*(ymax-ymin+1)*2 + sizeof(header);
std::cout << "datasize " << dataSize << std::endl;
remapROI( xmin, xmax, ymin, ymax );
} else {
mchip = 1;
remapGroup(1);
remapGroup(2);
remapGroup(3);
mchip = 1;
remapGroup(1);
remapGroup(2);
remapGroup(3);
mchip = 6;
remapGroup(1);
remapGroup(2);
remapGroup(3);
}
iframe = 0;
std::cout << "data struct created" << std::endl;
mchip = 6;
remapGroup(1);
remapGroup(2);
remapGroup(3);
}
iframe = 0;
std::cout << "data struct created" << std::endl;
};
/**
@ -323,13 +351,12 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
*/
int getFrameNumber(char *buff) {
#ifdef ALDO //VH
return ((header *)buff)->bunchNumber; //VH
#else //VH
return ((header *)buff)->detHeader.frameNumber;
#endif //VH
#ifdef ALDO // VH
return ((header *)buff)->bunchNumber; // VH
#else // VH
return ((header *)buff)->detHeader.frameNumber;
#endif // VH
};
/**
@ -342,17 +369,16 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
*/
int getPacketNumber(char *buff) {
#ifdef ALDO //VH
//uint32_t fakePacketNumber = 1000;
//return fakePacketNumber; //VH //TODO: Keep in mind in case of bugs! //This is definitely bad!
return 1000;
#else //VH
return ((header *)buff)->detHeader.packetNumber;
#endif //VH
#ifdef ALDO // VH
// uint32_t fakePacketNumber = 1000;
// return fakePacketNumber; //VH //TODO: Keep in mind in case of bugs!
// //This is definitely bad!
return 1000;
#else // VH
return ((header *)buff)->detHeader.packetNumber;
#endif // VH
};
char *readNextFrame(std::ifstream &filebin) {
int ff = -1, np = -1;
return readNextFrame(filebin, ff, np);
@ -373,20 +399,20 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
return data;
};
char *readNextFrame(std::ifstream &filebin, int &ff, int &np,char *data) {
char *readNextFrame(std::ifstream &filebin, int &ff, int &np, char *data) {
char *retval = 0;
int nd;
int fnum = -1;
np = 0;
int pn;
//std::cout << dataSize << std::endl;
// std::cout << dataSize << std::endl;
if (ff >= 0)
fnum = ff;
if (filebin.is_open()) {
if (filebin.read(data, dataSize)) {
std::cout << "*";
std::cout << "*";
ff = getFrameNumber(data);
np = getPacketNumber(data);
return data;
@ -396,12 +422,18 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
};
/* Loops over a memory slot until a complete frame is found (i.e. all */
/* packets 0 to nPackets, same frame number). purely virtual func \param */
/* data pointer to the memory to be analyzed \param ndata reference to the */
/* amount of data found for the frame, in case the frame is incomplete at */
/* the end of the memory slot \param dsize size of the memory slot to be */
/* analyzed \returns pointer to the beginning of the last good frame (might */
/* be incomplete if ndata smaller than dataSize), or NULL if no frame is */
/* packets 0 to nPackets, same frame number). purely virtual func \param
*/
/* data pointer to the memory to be analyzed \param ndata reference to
* the */
/* amount of data found for the frame, in case the frame is incomplete at
*/
/* the end of the memory slot \param dsize size of the memory slot to be
*/
/* analyzed \returns pointer to the beginning of the last good frame
* (might */
/* be incomplete if ndata smaller than dataSize), or NULL if no frame is
*/
/* found */
/* *\/ */

View File

@ -1,6 +1,6 @@
// SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package
//#include "sls/ansi.h"
// #include "sls/ansi.h"
#include <iostream>
#undef CORR
@ -10,7 +10,8 @@
#define RAWDATA
#if !defined JFSTRX && !defined JFSTRXOLD && !defined JFSTRXCHIP1 && !defined JFSTRXCHIP6
#if !defined JFSTRX && !defined JFSTRXOLD && !defined JFSTRXCHIP1 && \
!defined JFSTRXCHIP6
#ifndef MODULE
#include "jungfrauHighZSingleChipData.h"
#endif
@ -38,34 +39,38 @@
#include <sys/stat.h>
#include <ctime>
//using namespace std;
// using namespace std;
int main(int argc, char *argv[]) {
if (argc < 5) {
std::cout << "Usage is " << argv[0]
<< "indir outdir fname(with formatting, no extension) fextension [runmin] [runmax] [pedfile (raw or tiff)] [threshold] "
"[nframes] [xmin xmax ymin ymax] [gainmap]"
<< std::endl;
std::cout << "threshold <0 means analog; threshold=0 means cluster finder; "
"threshold>0 means photon counting"
<< std::endl;
std::cout << "nframes <0 means sum everything; nframes=0 means one file per "
"run; nframes>0 means one file every nframes"
<< std::endl;
std::cout
<< "Usage is " << argv[0]
<< "indir outdir fname(with formatting, no extension) fextension "
"[runmin] [runmax] [pedfile (raw or tiff)] [threshold] "
"[nframes] [xmin xmax ymin ymax] [gainmap]"
<< std::endl;
std::cout
<< "threshold <0 means analog; threshold=0 means cluster finder; "
"threshold>0 means photon counting"
<< std::endl;
std::cout
<< "nframes <0 means sum everything; nframes=0 means one file per "
"run; nframes>0 means one file every nframes"
<< std::endl;
return 1;
}
int fifosize = 1000;
int nthreads = 10;
int csize = 3; //3
int csize = 3; // 3
int nsigma = 5;
int nped = 10000;
int cf = 0;
double *gainmap = NULL;
//float *gm;
// float *gm;
int ff, np;
// cout << " data size is " << dsize;
@ -110,9 +115,9 @@ int main(int argc, char *argv[]) {
char imgfname[10000];
char cfname[10000];
//Define decoders...
#if !defined JFSTRX && !defined JFSTRXOLD && !defined JFSTRXCHIP1 && !defined JFSTRXCHIP6
// Define decoders...
#if !defined JFSTRX && !defined JFSTRXOLD && !defined JFSTRXCHIP1 && \
!defined JFSTRXCHIP6
#ifndef MODULE
jungfrauHighZSingleChipData *decoder = new jungfrauHighZSingleChipData();
int nx = 256, ny = 256;
@ -125,67 +130,71 @@ int main(int argc, char *argv[]) {
#ifdef JFSTRX
cout << "Jungfrau strixel full module readout" << endl;
//ROI
uint16_t xxmin=0;
uint16_t xxmax=0;
uint16_t yymin=0;
uint16_t yymax=0;
// ROI
uint16_t xxmin = 0;
uint16_t xxmax = 0;
uint16_t yymin = 0;
uint16_t yymax = 0;
#ifndef ALDO
using header = sls::defs::sls_receiver_header;
//check if there is a roi in the header
// check if there is a roi in the header
typedef struct {
uint16_t xmin;
uint16_t xmax;
uint16_t ymin;
uint16_t ymax;
uint16_t xmin;
uint16_t xmax;
uint16_t ymin;
uint16_t ymax;
} receiverRoi_compact;
receiverRoi_compact croi;
sprintf(ffname, "%s/%s.%s", indir, fformat, fext);
sprintf(fname, (const char*)ffname, runmin);
std::cout << "Reading header of file " << fname << " to check for ROI " << std::endl;
sprintf(fname, (const char *)ffname, runmin);
std::cout << "Reading header of file " << fname << " to check for ROI "
<< std::endl;
filebin.open((const char *)(fname), ios::in | ios::binary);
if (filebin.is_open()) {
header hbuffer;
std::cout << "sizeof(header) = " << sizeof(header) << std::endl;
if ( filebin.read( (char *)&hbuffer, sizeof(header) ) ) {
memcpy(&croi, &hbuffer.detHeader.detSpec1, 8);
std::cout << "Read ROI [" << croi.xmin << ", " << croi.xmax << ", " << croi.ymin << ", " << croi.ymax << "]" << std::endl;
xxmin = croi.xmin;
xxmax = croi.xmax;
yymin = croi.ymin;
yymax = croi.ymax;
} else
std::cout << "reading error" << std::endl;
filebin.close();
header hbuffer;
std::cout << "sizeof(header) = " << sizeof(header) << std::endl;
if (filebin.read((char *)&hbuffer, sizeof(header))) {
memcpy(&croi, &hbuffer.detHeader.detSpec1, 8);
std::cout << "Read ROI [" << croi.xmin << ", " << croi.xmax << ", "
<< croi.ymin << ", " << croi.ymax << "]" << std::endl;
xxmin = croi.xmin;
xxmax = croi.xmax;
yymin = croi.ymin;
yymax = croi.ymax;
} else
std::cout << "reading error" << std::endl;
filebin.close();
} else
std::cout << "Could not open " << fname << " for reading " << std::endl;
std::cout << "Could not open " << fname << " for reading " << std::endl;
#endif
jungfrauLGADStrixelsData *decoder = new jungfrauLGADStrixelsData( xxmin, xxmax, yymin, yymax );
int nx = 1024/3, ny = 512*5;
jungfrauLGADStrixelsData *decoder =
new jungfrauLGADStrixelsData(xxmin, xxmax, yymin, yymax);
int nx = 1024 / 3, ny = 512 * 5;
#endif
#ifdef JFSTRXCHIP1
std::cout << "Jungfrau strixel LGAD single chip 1" << std::endl;
jungfrauLGADStrixelsDataSingleChip *decoder = new jungfrauLGADStrixelsDataSingleChip(1);
int nx = 256/3, ny = 256*5;
jungfrauLGADStrixelsDataSingleChip *decoder =
new jungfrauLGADStrixelsDataSingleChip(1);
int nx = 256 / 3, ny = 256 * 5;
#endif
#ifdef JFSTRXCHIP6
std::cout << "Jungfrau strixel LGAD single chip 6" << std::endl;
jungfrauLGADStrixelsDataSingleChip *decoder = new jungfrauLGADStrixelsDataSingleChip(6);
int nx = 256/3, ny = 256*5;
jungfrauLGADStrixelsDataSingleChip *decoder =
new jungfrauLGADStrixelsDataSingleChip(6);
int nx = 256 / 3, ny = 256 * 5;
#endif
#ifdef JFSTRXOLD
std::cout << "Jungfrau strixels old design" << std::endl;
jungfrauStrixelsHalfModuleOldDesign *decoder = new jungfrauStrixelsHalfModuleOldDesign();
int nx = 1024*3, ny = 512/3;
jungfrauStrixelsHalfModuleOldDesign *decoder =
new jungfrauStrixelsHalfModuleOldDesign();
int nx = 1024 * 3, ny = 512 / 3;
#endif
decoder->getDetectorSize(nx, ny);
std::cout << "Detector size is " << nx << " " << ny << std::endl;
int xmin = 0, xmax = nx, ymin = 0, ymax = ny;
if (argc >= 14) {
xmin = atoi(argv[10]);
@ -193,12 +202,13 @@ int main(int argc, char *argv[]) {
ymin = atoi(argv[12]);
ymax = atoi(argv[13]);
}
std::cout << xmin << " " << xmax << " " << ymin << " " << ymax << " " << std::endl;
std::cout << xmin << " " << xmax << " " << ymin << " " << ymax << " "
<< std::endl;
char *gainfname = NULL;
if (argc > 14) {
gainfname = argv[14];
std::cout << "Gain map file name is: " << gainfname << std::endl;
std::cout << "Gain map file name is: " << gainfname << std::endl;
}
std::time_t end_time;
@ -210,34 +220,32 @@ int main(int argc, char *argv[]) {
std::cout << "runmin is " << runmin << std::endl;
std::cout << "runmax is " << runmax << std::endl;
if (pedfile)
std::cout << "pedestal file is " << pedfile << std::endl;
std::cout << "pedestal file is " << pedfile << std::endl;
if (thr > 0)
std::cout << "threshold is " << thr << std::endl;
std::cout << "threshold is " << thr << std::endl;
std::cout << "Nframes is " << nframes << std::endl;
//std::cout << "HHHEEEEEEEEEEEEEEEEEEEEEEERE!!!!!" << std::endl;
// std::cout << "HHHEEEEEEEEEEEEEEEEEEEEEEERE!!!!!" << std::endl;
uint32_t nnx, nny;
singlePhotonDetector *filter = new singlePhotonDetector(
decoder, 3, nsigma, 1, NULL, nped, 200, -1, -1, gainmap, NULL);
if (gainfname) {
if (filter->readGainMap(gainfname))
std::cout << "using gain map " << gainfname << std::endl;
std::cout << "using gain map " << gainfname << std::endl;
else
std::cout << "Could not open gain map " << gainfname << std::endl;
std::cout << "Could not open gain map " << gainfname << std::endl;
} else
thr = 0.15 * thr;
filter->newDataSet();
//int dsize = decoder->getDataSize();
// int dsize = decoder->getDataSize();
if (thr > 0) {
std::cout << "threshold is " << thr << std::endl;
filter->setThreshold(thr);
cf = 0;
std::cout << "threshold is " << thr << std::endl;
filter->setThreshold(thr);
cf = 0;
} else
cf = 1;
@ -252,7 +260,7 @@ int main(int argc, char *argv[]) {
// multiThreadedAnalogDetector(filter,nthreads,fifosize);
multiThreadedCountingDetector *mt =
new multiThreadedCountingDetector(filter, nthreads, fifosize);
mt->setClusterSize(csize,csize);
mt->setClusterSize(csize, csize);
#ifndef ANALOG
mt->setDetectorMode(ePhotonCounting);
@ -278,186 +286,193 @@ int main(int argc, char *argv[]) {
int ifr = 0;
char froot[1000];
double *ped=new double[nx * ny];//, *ped1;
double *ped = new double[nx * ny]; //, *ped1;
int pos,pos1;
int pos, pos1;
if (pedfile) {
if (string(pedfile).find(".dat") != std::string::npos) {
pos1=string(pedfile).rfind("/");
strcpy(froot,pedfile+pos1);
pos=string(froot).find(".dat");
froot[pos]='\0';
}
if (string(pedfile).find(".dat") != std::string::npos) {
pos1 = string(pedfile).rfind("/");
strcpy(froot, pedfile + pos1);
pos = string(froot).find(".dat");
froot[pos] = '\0';
}
std::cout << "PEDESTAL " << std::endl;
// sprintf(imgfname, "%s/pedestals.tiff", outdir);
std::cout << "PEDESTAL " << std::endl;
// sprintf(imgfname, "%s/pedestals.tiff", outdir);
if (string(pedfile).find(".tif") == std::string::npos) {
sprintf(fname, "%s", pedfile);
std::cout << fname << std::endl;
std::time(&end_time);
std::cout << "aaa" << std::ctime(&end_time) << std::endl;
mt->setFrameMode(ePedestal);
// sprintf(fn,fformat,irun);
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
if (filebin.is_open()) {
std::cout << "bbbb" << std::ctime(&end_time) << std::endl;
ff = -1;
while (decoder->readNextFrame(filebin, ff, np, buff)) {
// if (np == 40) {
if ((ifr+1) % 100 == 0) {
std::cout << " ****" << decoder->getValue(buff,20,20);// << endl;
}
mt->pushData(buff);
mt->nextThread();
mt->popFree(buff);
ifr++;
if (ifr % 100 == 0) {
std::cout << " ****" << ifr << " " << ff << " " << np << std::endl;
} //else
//cout << ifr << " " << ff << " " << np << endl;
if (ifr>=1000)
break;
ff = -1;
}
filebin.close();
while (mt->isBusy()) {
;
}
sprintf(imgfname, "%s/%s_ped.tiff", outdir, froot);
mt->writePedestal(imgfname);
sprintf(imgfname, "%s/%s_rms.tiff", outdir, froot);
mt->writePedestalRMS(imgfname);
} else
std::cout << "Could not open pedestal file " << fname
<< " for reading " << std::endl;
} else {
float *pp = ReadFromTiff(pedfile, nny, nnx);
if (pp && (int)nnx == nx && (int)nny == ny) {
for (int i = 0; i < nx * ny; i++) {
ped[i] = pp[i];
}
delete[] pp;
mt->setPedestal(ped);
std::cout << "Pedestal set from tiff file " << pedfile << std::endl;
} else {
std::cout << "Could not open pedestal tiff file " << pedfile
<< " for reading " << std::endl;
}
}
std::time(&end_time);
std::cout << std::ctime(&end_time) << std::endl;
if (string(pedfile).find(".tif") == std::string::npos) {
sprintf(fname, "%s", pedfile);
std::cout << fname << std::endl;
std::time(&end_time);
std::cout << "aaa" << std::ctime(&end_time) << std::endl;
mt->setFrameMode(ePedestal);
// sprintf(fn,fformat,irun);
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
if (filebin.is_open()) {
std::cout << "bbbb" << std::ctime(&end_time) << std::endl;
ff = -1;
while (decoder->readNextFrame(filebin, ff, np, buff)) {
// if (np == 40) {
if ((ifr + 1) % 100 == 0) {
std::cout
<< " ****"
<< decoder->getValue(buff, 20, 20); // << endl;
}
mt->pushData(buff);
mt->nextThread();
mt->popFree(buff);
ifr++;
if (ifr % 100 == 0) {
std::cout << " ****" << ifr << " " << ff << " " << np
<< std::endl;
} // else
// cout << ifr << " " << ff << " " << np << endl;
if (ifr >= 1000)
break;
ff = -1;
}
filebin.close();
while (mt->isBusy()) {
;
}
sprintf(imgfname, "%s/%s_ped.tiff", outdir, froot);
mt->writePedestal(imgfname);
sprintf(imgfname, "%s/%s_rms.tiff", outdir, froot);
mt->writePedestalRMS(imgfname);
} else
std::cout << "Could not open pedestal file " << fname
<< " for reading " << std::endl;
} else {
float *pp = ReadFromTiff(pedfile, nny, nnx);
if (pp && (int)nnx == nx && (int)nny == ny) {
for (int i = 0; i < nx * ny; i++) {
ped[i] = pp[i];
}
delete[] pp;
mt->setPedestal(ped);
std::cout << "Pedestal set from tiff file " << pedfile
<< std::endl;
} else {
std::cout << "Could not open pedestal tiff file " << pedfile
<< " for reading " << std::endl;
}
}
std::time(&end_time);
std::cout << std::ctime(&end_time) << std::endl;
}
ifr = 0;
int ifile = 0;
mt->setFrameMode(eFrame);
for (int irun = runmin; irun <= runmax; irun++) {
std::cout << "DATA ";
// sprintf(fn,fformat,irun);
sprintf(ffname, "%s/%s.%s", indir, fformat, fext);
sprintf(fname, (const char*)ffname, irun);
sprintf(ffname, "%s/%s.tiff", outdir, fformat);
sprintf(imgfname, (const char*)ffname, irun);
sprintf(ffname, "%s/%s.clust", outdir, fformat);
sprintf(cfname, (const char*)ffname, irun);
std::cout << fname << " ";
std::cout << imgfname << std::endl;
std::time(&end_time);
std::cout << std::ctime(&end_time) << std::endl;
// cout << fname << " " << outfname << " " << imgfname << endl;
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
ifile = 0;
if (filebin.is_open()) {
if (thr <= 0 && cf != 0) { // cluster finder
if (of == NULL) {
of = fopen(cfname, "w");
if (of) {
mt->setFilePointer(of);
std::cout << "file pointer set " << std::endl;
} else {
std::cout << "Could not open " << cfname << " for writing "
<< std::endl;
mt->setFilePointer(NULL);
return 1;
}
}
}
// //while read frame
ff = -1;
ifr = 0;
while (decoder->readNextFrame(filebin, ff, np, buff)) {
// if (np == 40) {
// //push
if ((ifr+1) % 100 == 0) {
std::cout << " ****" << decoder->getValue(buff,20,20);// << endl;
}
mt->pushData(buff);
// // //pop
mt->nextThread();
mt->popFree(buff);
ifr++;
if (ifr % 100 == 0)
std::cout << " " << ifr << " " << ff << std::endl;
if (nframes > 0) {
if (ifr % nframes == 0) {
sprintf(ffname, "%s/%s_f%05d.tiff", outdir, fformat,
ifile);
sprintf(imgfname, (const char*)ffname, irun);
mt->writeImage(imgfname, thr1);
mt->clearImage();
ifile++;
}
}
// } else
// cout << ifr << " " << ff << " " << np << endl;
ff = -1;
}
std::cout << "--" << std::endl;
filebin.close();
while (mt->isBusy()) {
;
}
if (nframes >= 0) {
if (nframes > 0) {
sprintf(ffname, "%s/%s_f%05d.tiff", outdir, fformat, ifile);
sprintf(imgfname, (const char*)ffname, irun);
} else {
sprintf(ffname, "%s/%s.tiff", outdir, fformat);
sprintf(imgfname, (const char*)ffname, irun);
}
std::cout << "Writing tiff to " << imgfname << " " << thr1 << std::endl;
mt->writeImage(imgfname, thr1);
mt->clearImage();
if (of) {
fclose(of);
of = NULL;
mt->setFilePointer(NULL);
}
}
std::time(&end_time);
std::cout << std::ctime(&end_time) << std::endl;
} else
std::cout << "Could not open " << fname << " for reading " << std::endl;
std::cout << "DATA ";
// sprintf(fn,fformat,irun);
sprintf(ffname, "%s/%s.%s", indir, fformat, fext);
sprintf(fname, (const char *)ffname, irun);
sprintf(ffname, "%s/%s.tiff", outdir, fformat);
sprintf(imgfname, (const char *)ffname, irun);
sprintf(ffname, "%s/%s.clust", outdir, fformat);
sprintf(cfname, (const char *)ffname, irun);
std::cout << fname << " ";
std::cout << imgfname << std::endl;
std::time(&end_time);
std::cout << std::ctime(&end_time) << std::endl;
// cout << fname << " " << outfname << " " << imgfname << endl;
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
ifile = 0;
if (filebin.is_open()) {
if (thr <= 0 && cf != 0) { // cluster finder
if (of == NULL) {
of = fopen(cfname, "w");
if (of) {
mt->setFilePointer(of);
std::cout << "file pointer set " << std::endl;
} else {
std::cout << "Could not open " << cfname
<< " for writing " << std::endl;
mt->setFilePointer(NULL);
return 1;
}
}
}
// //while read frame
ff = -1;
ifr = 0;
while (decoder->readNextFrame(filebin, ff, np, buff)) {
// if (np == 40) {
// //push
if ((ifr + 1) % 100 == 0) {
std::cout << " ****"
<< decoder->getValue(buff, 20, 20); // << endl;
}
mt->pushData(buff);
// // //pop
mt->nextThread();
mt->popFree(buff);
ifr++;
if (ifr % 100 == 0)
std::cout << " " << ifr << " " << ff << std::endl;
if (nframes > 0) {
if (ifr % nframes == 0) {
sprintf(ffname, "%s/%s_f%05d.tiff", outdir, fformat,
ifile);
sprintf(imgfname, (const char *)ffname, irun);
mt->writeImage(imgfname, thr1);
mt->clearImage();
ifile++;
}
}
// } else
// cout << ifr << " " << ff << " " << np << endl;
ff = -1;
}
std::cout << "--" << std::endl;
filebin.close();
while (mt->isBusy()) {
;
}
if (nframes >= 0) {
if (nframes > 0) {
sprintf(ffname, "%s/%s_f%05d.tiff", outdir, fformat, ifile);
sprintf(imgfname, (const char *)ffname, irun);
} else {
sprintf(ffname, "%s/%s.tiff", outdir, fformat);
sprintf(imgfname, (const char *)ffname, irun);
}
std::cout << "Writing tiff to " << imgfname << " " << thr1
<< std::endl;
mt->writeImage(imgfname, thr1);
mt->clearImage();
if (of) {
fclose(of);
of = NULL;
mt->setFilePointer(NULL);
}
}
std::time(&end_time);
std::cout << std::ctime(&end_time) << std::endl;
} else
std::cout << "Could not open " << fname << " for reading "
<< std::endl;
}
if (nframes < 0) {
sprintf(ffname, "%s/%s.tiff", outdir, fformat);
strcpy(imgfname, ffname);
std::cout << "Writing tiff to " << imgfname << " " << thr1 << std::endl;
mt->writeImage(imgfname, thr1);
sprintf(ffname, "%s/%s.tiff", outdir, fformat);
strcpy(imgfname, ffname);
std::cout << "Writing tiff to " << imgfname << " " << thr1 << std::endl;
mt->writeImage(imgfname, thr1);
}
return 0;
}

View File

@ -622,11 +622,9 @@
#define PATTERN_WAIT_TIMER_5_LSB_REG (0x91 << MEM_MAP_SHIFT)
#define PATTERN_WAIT_TIMER_5_MSB_REG (0x92 << MEM_MAP_SHIFT)
/* Slow ADC SPI Value RO register */
#define ADC_SLOW_DATA_REG (0x93 << MEM_MAP_SHIFT)
/* Slow ADC SPI Value Config register */
#define ADC_SLOW_CFG_REG (0x94 << MEM_MAP_SHIFT)
/** Read back CFG Register */
@ -636,13 +634,13 @@
/** Channel sequencer */
#define ADC_SLOW_CFG_SEQ_OFST (3)
#define ADC_SLOW_CFG_SEQ_MSK (0x00000003 << ADC_SLOW_CFG_SEQ_OFST)
#define ADC_SLOW_CFG_SEQ_DSBLE_VAL \
#define ADC_SLOW_CFG_SEQ_DSBLE_VAL \
((0x0 << ADC_SLOW_CFG_SEQ_OFST) & ADC_SLOW_CFG_SEQ_MSK)
#define ADC_SLOW_CFG_SEQ_UPDTE_DRNG_SQNCE_VAL \
#define ADC_SLOW_CFG_SEQ_UPDTE_DRNG_SQNCE_VAL \
((0x1 << ADC_SLOW_CFG_SEQ_OFST) & ADC_SLOW_CFG_SEQ_MSK)
#define ADC_SLOW_CFG_SEQ_SCN_WTH_TMP_VAL \
#define ADC_SLOW_CFG_SEQ_SCN_WTH_TMP_VAL \
((0x2 << ADC_SLOW_CFG_SEQ_OFST) & ADC_SLOW_CFG_SEQ_MSK)
#define ADC_SLOW_CFG_SEQ_SCN_WTHT_TMP_VAL \
#define ADC_SLOW_CFG_SEQ_SCN_WTHT_TMP_VAL \
((0x3 << ADC_SLOW_CFG_SEQ_OFST) & ADC_SLOW_CFG_SEQ_MSK)
/** Reference/ buffer selection */
@ -650,32 +648,33 @@
#define ADC_SLOW_CFG_REF_MSK (0x00000007 << ADC_SLOW_CFG_REF_OFST)
/** Internal reference. REF = 2.5V buffered output. Temperature sensor enabled.
*/
#define ADC_SLOW_CFG_REF_INT_2500MV_VAL \
#define ADC_SLOW_CFG_REF_INT_2500MV_VAL \
((0x0 << ADC_SLOW_CFG_REF_OFST) & ADC_SLOW_CFG_REF_OFST)
/** Internal reference. REF = 4.096V buffered output. Temperature sensor
* enabled. */
#define ADC_SLOW_CFG_REF_INT_4096MV_VAL \
#define ADC_SLOW_CFG_REF_INT_4096MV_VAL \
((0x1 << ADC_SLOW_CFG_REF_OFST) & ADC_SLOW_CFG_REF_MSK)
/** External reference. Temperature sensor enabled. Internal buffer disabled. */
#define ADC_SLOW_CFG_REF_EXT_TMP_VAL \
#define ADC_SLOW_CFG_REF_EXT_TMP_VAL \
((0x2 << ADC_SLOW_CFG_REF_OFST) & ADC_SLOW_CFG_REF_MSK)
/** External reference. Temperature sensor enabled. Internal buffer enabled. */
#define ADC_SLOW_CFG_REF_EXT_TMP_INTBUF_VAL \
#define ADC_SLOW_CFG_REF_EXT_TMP_INTBUF_VAL \
((0x3 << ADC_SLOW_CFG_REF_OFST) & ADC_SLOW_CFG_REF_MSK)
/** External reference. Temperature sensor disabled. Internal buffer disabled.
*/
#define ADC_SLOW_CFG_REF_EXT_VAL \
#define ADC_SLOW_CFG_REF_EXT_VAL \
((0x6 << ADC_SLOW_CFG_REF_OFST) & ADC_SLOW_CFG_REF_MSK)
/** External reference. Temperature sensor disabled. Internal buffer enabled. */
#define ADC_SLOW_CFG_REF_EXT_INTBUF_VAL \
#define ADC_SLOW_CFG_REF_EXT_INTBUF_VAL \
((0x7 << ADC_SLOW_CFG_REF_OFST) & ADC_SLOW_CFG_REF_MSK)
/** bandwidth of low pass filter */
#define ADC_SLOW_CFG_BW_OFST (8)
#define ADC_SLOW_CFG_BW_MSK (0x00000001 << ADC_SLOW_CFG_REF_OFST)
#define ADC_SLOW_CFG_BW_ONE_FOURTH_VAL \
#define ADC_SLOW_CFG_BW_ONE_FOURTH_VAL \
((0x0 << ADC_SLOW_CFG_BW_OFST) & ADC_SLOW_CFG_BW_MSK)
#define ADC_SLOW_CFG_BW_FULL_VAL ((0x1 << ADC_SLOW_CFG_BW_OFST) & ADC_SLOW_CFG_BW_MSK)
#define ADC_SLOW_CFG_BW_FULL_VAL \
((0x1 << ADC_SLOW_CFG_BW_OFST) & ADC_SLOW_CFG_BW_MSK)
/** input channel selection IN0 - IN7 */
#define ADC_SLOW_CFG_IN_OFST (9)
@ -684,28 +683,27 @@
/** input channel configuration */
#define ADC_SLOW_CFG_INCC_OFST (12)
#define ADC_SLOW_CFG_INCC_MSK (0x00000007 << ADC_SLOW_CFG_INCC_OFST)
#define ADC_SLOW_CFG_INCC_BPLR_DFFRNTL_PRS_VAL \
#define ADC_SLOW_CFG_INCC_BPLR_DFFRNTL_PRS_VAL \
((0x0 << ADC_SLOW_CFG_INCC_OFST) & ADC_SLOW_CFG_INCC_MSK)
#define ADC_SLOW_CFG_INCC_BPLR_IN_COM_VAL \
#define ADC_SLOW_CFG_INCC_BPLR_IN_COM_VAL \
((0x2 << ADC_SLOW_CFG_INCC_OFST) & ADC_SLOW_CFG_INCC_MSK)
#define ADC_SLOW_CFG_INCC_TMP_VAL \
#define ADC_SLOW_CFG_INCC_TMP_VAL \
((0x3 << ADC_SLOW_CFG_INCC_OFST) & ADC_SLOW_CFG_INCC_MSK)
#define ADC_SLOW_CFG_INCC_UNPLR_DFFRNTL_PRS_VAL \
#define ADC_SLOW_CFG_INCC_UNPLR_DFFRNTL_PRS_VAL \
((0x4 << ADC_SLOW_CFG_INCC_OFST) & ADC_SLOW_CFG_INCC_MSK)
#define ADC_SLOW_CFG_INCC_UNPLR_IN_COM_VAL \
#define ADC_SLOW_CFG_INCC_UNPLR_IN_COM_VAL \
((0x6 << ADC_SLOW_CFG_INCC_OFST) & ADC_SLOW_CFG_INCC_MSK)
#define ADC_SLOW_CFG_INCC_UNPLR_IN_GND_VAL \
#define ADC_SLOW_CFG_INCC_UNPLR_IN_GND_VAL \
((0x7 << ADC_SLOW_CFG_INCC_OFST) & ADC_SLOW_CFG_INCC_MSK)
/** configuration update */
#define ADC_SLOW_CFG_CFG_OFST (15)
#define ADC_SLOW_CFG_CFG_MSK (0x00000001 << ADC_SLOW_CFG_CFG_OFST)
#define ADC_SLOW_CFG_CFG_NO_UPDATE_VAL \
#define ADC_SLOW_CFG_CFG_NO_UPDATE_VAL \
((0x0 << ADC_SLOW_CFG_CFG_OFST) & ADC_SLOW_CFG_CFG_MSK)
#define ADC_SLOW_CFG_CFG_OVRWRTE_VAL \
#define ADC_SLOW_CFG_CFG_OVRWRTE_VAL \
((0x1 << ADC_SLOW_CFG_CFG_OFST) & ADC_SLOW_CFG_CFG_MSK)
/* Slow ADC SPI Value Control register */
#define ADC_SLOW_CTRL_REG (0x95 << MEM_MAP_SHIFT)

View File

@ -1487,31 +1487,33 @@ int getSlowADC(int ichan) {
// configure for channel
bus_w(ADC_SLOW_CFG_REG,
// don't read back config reg
ADC_SLOW_CFG_RB_MSK |
// disable sequencer (different from config)
ADC_SLOW_CFG_SEQ_DSBLE_VAL |
// Internal reference. REF = 2.5V buffered output. Temperature sensor
// enabled.
ADC_SLOW_CFG_REF_INT_2500MV_VAL |
// full bandwidth of low pass filter
ADC_SLOW_CFG_BW_FULL_VAL |
// specific channel (different from config)
((ichan << ADC_SLOW_CFG_IN_OFST) & ADC_SLOW_CFG_IN_MSK) |
// input channel configuration (unipolar. inx to gnd)
ADC_SLOW_CFG_INCC_UNPLR_IN_GND_VAL |
// overwrite configuration
ADC_SLOW_CFG_CFG_OVRWRTE_VAL);
// don't read back config reg
ADC_SLOW_CFG_RB_MSK |
// disable sequencer (different from config)
ADC_SLOW_CFG_SEQ_DSBLE_VAL |
// Internal reference. REF = 2.5V buffered output. Temperature
// sensor enabled.
ADC_SLOW_CFG_REF_INT_2500MV_VAL |
// full bandwidth of low pass filter
ADC_SLOW_CFG_BW_FULL_VAL |
// specific channel (different from config)
((ichan << ADC_SLOW_CFG_IN_OFST) & ADC_SLOW_CFG_IN_MSK) |
// input channel configuration (unipolar. inx to gnd)
ADC_SLOW_CFG_INCC_UNPLR_IN_GND_VAL |
// overwrite configuration
ADC_SLOW_CFG_CFG_OVRWRTE_VAL);
// start converting
bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) | ADC_SLOW_CTRL_STRT_MSK);
bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) & ~ADC_SLOW_CTRL_STRT_MSK);
bus_w(ADC_SLOW_CTRL_REG,
bus_r(ADC_SLOW_CTRL_REG) & ~ADC_SLOW_CTRL_STRT_MSK);
// wait for it to be done
volatile int done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >> ADC_SLOW_CTRL_DONE_OFST);
volatile int done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >>
ADC_SLOW_CTRL_DONE_OFST);
while (!done) {
done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >> ADC_SLOW_CTRL_DONE_OFST);
done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >>
ADC_SLOW_CTRL_DONE_OFST);
}
// readout
@ -1522,16 +1524,18 @@ int getSlowADC(int ichan) {
int regMinuv = 0;
int maxSteps = 0xFFFF + 1;
int retval = 0;
if (ConvertToDifferentRange(0, maxSteps, regMinuv, refMaxuv, regval, &retval) == FAIL) {
LOG(logERROR, ("Could not convert slow adc channel (regval:0x%x) to uv\n", regval));
return -1;
if (ConvertToDifferentRange(0, maxSteps, regMinuv, refMaxuv, regval,
&retval) == FAIL) {
LOG(logERROR,
("Could not convert slow adc channel (regval:0x%x) to uv\n",
regval));
return -1;
}
LOG(logINFO,
("\tRead slow adc [%d]: %d uV (reg: 0x%x)\n", ichan, retval, regval));
return retval;
}
int getSlowADCTemperature() {
@ -1539,30 +1543,33 @@ int getSlowADCTemperature() {
// configure for channel
bus_w(ADC_SLOW_CFG_REG,
// don't read back config reg
ADC_SLOW_CFG_RB_MSK |
// disable sequencer (different from config)
ADC_SLOW_CFG_SEQ_DSBLE_VAL |
// Internal reference. REF = 2.5V buffered output. Temperature sensor
// enabled.
ADC_SLOW_CFG_REF_INT_2500MV_VAL |
// full bandwidth of low pass filter
ADC_SLOW_CFG_BW_FULL_VAL |
// all channels
ADC_SLOW_CFG_IN_MSK |
// temp sensor
ADC_SLOW_CFG_INCC_TMP_VAL |
// overwrite configuration
ADC_SLOW_CFG_CFG_OVRWRTE_VAL);
// don't read back config reg
ADC_SLOW_CFG_RB_MSK |
// disable sequencer (different from config)
ADC_SLOW_CFG_SEQ_DSBLE_VAL |
// Internal reference. REF = 2.5V buffered output. Temperature
// sensor enabled.
ADC_SLOW_CFG_REF_INT_2500MV_VAL |
// full bandwidth of low pass filter
ADC_SLOW_CFG_BW_FULL_VAL |
// all channels
ADC_SLOW_CFG_IN_MSK |
// temp sensor
ADC_SLOW_CFG_INCC_TMP_VAL |
// overwrite configuration
ADC_SLOW_CFG_CFG_OVRWRTE_VAL);
// start converting
bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) | ADC_SLOW_CTRL_STRT_MSK);
bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) & ~ADC_SLOW_CTRL_STRT_MSK);
bus_w(ADC_SLOW_CTRL_REG,
bus_r(ADC_SLOW_CTRL_REG) & ~ADC_SLOW_CTRL_STRT_MSK);
// wait for it to be done
volatile int done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >> ADC_SLOW_CTRL_DONE_OFST);
volatile int done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >>
ADC_SLOW_CTRL_DONE_OFST);
while (!done) {
done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >> ADC_SLOW_CTRL_DONE_OFST);
done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >>
ADC_SLOW_CTRL_DONE_OFST);
}
// readout
@ -1574,9 +1581,10 @@ int getSlowADCTemperature() {
int maxSteps = 0xFFFF + 1;
int minmv = 0;
int maxmv = 2500;
if (ConvertToDifferentRange(0, maxSteps, minmv,
maxmv, regval, &retval) == FAIL) {
LOG(logERROR, ("Could not convert slow adc temp (regval:0x%x) to uv\n", regval));
if (ConvertToDifferentRange(0, maxSteps, minmv, maxmv, regval, &retval) ==
FAIL) {
LOG(logERROR,
("Could not convert slow adc temp (regval:0x%x) to uv\n", regval));
return -1;
}
LOG(logDEBUG1, ("voltage read for temp: %d mV\n", retval));
@ -1585,7 +1593,7 @@ int getSlowADCTemperature() {
double tempCFor1mv = (25.00 / 283.00);
double tempValue = tempCFor1mv * (double)retval;
LOG(logINFO, ("\tTemp slow adc : %f °C (reg: %d)\n", tempValue, regval));
return tempValue;
}