formatting (#716)

* formatting
This commit is contained in:
Dhanya Thattil
2023-04-12 15:30:34 +02:00
committed by GitHub
parent a5022ff0ee
commit cb4f733350
4 changed files with 588 additions and 535 deletions

View File

@@ -9,7 +9,7 @@
#endif #endif
#include "slsDetectorData.h" #include "slsDetectorData.h"
//#define VERSION_V2 // #define VERSION_V2
/** /**
@short structure for a Detector Packet or Image Header @short structure for a Detector Packet or Image Header
@li frameNumber is the frame number @li frameNumber is the frame number
@@ -29,61 +29,63 @@
*/ */
namespace strixelSingleChip { namespace strixelSingleChip {
constexpr int nc_rawimg = 1024; //for full images //256; constexpr int nc_rawimg = 1024; // for full images //256;
constexpr int nr_rawimg = 512; constexpr int nr_rawimg = 512;
constexpr int nr_chip = 256; constexpr int nr_chip = 256;
constexpr int gr = 9; constexpr int gr = 9;
//Group 1: 25um pitch, groups of 3, 1 column of square pixels // Group 1: 25um pitch, groups of 3, 1 column of square pixels
constexpr int g1_ncols{ (nc_rawimg-(2*gr)-1)/3 }; //79 constexpr int g1_ncols{(nc_rawimg - (2 * gr) - 1) / 3}; // 79
constexpr int g1_nrows{ ( (nr_chip/4)-gr )*3 }; //165 constexpr int g1_nrows{((nr_chip / 4) - gr) * 3}; // 165
//Group 2: 15um pitch, groups of 5, 3 columns of square pixels // Group 2: 15um pitch, groups of 5, 3 columns of square pixels
constexpr int g2_ncols{ (nc_rawimg-(2*gr)-3)/5 }; //47 constexpr int g2_ncols{(nc_rawimg - (2 * gr) - 3) / 5}; // 47
constexpr int g2_nrows{ (nr_chip/4)*5 }; //320 constexpr int g2_nrows{(nr_chip / 4) * 5}; // 320
//Group 3: 18.75um pitch, groups of 4, 2 columns of square pixels (double the size of the other groups) // Group 3: 18.75um pitch, groups of 4, 2 columns of square pixels (double the
constexpr int g3_ncols{ (nc_rawimg-(2*gr)-2)/4 }; //59 // size of the other groups)
constexpr int g3_nrows{ ( ((nr_chip/4)*2)-gr )*4 }; //476 constexpr int g3_ncols{(nc_rawimg - (2 * gr) - 2) / 4}; // 59
constexpr int g3_nrows{(((nr_chip / 4) * 2) - gr) * 4}; // 476
constexpr int nc_strixel = 2*gr + 1 + g1_ncols; //group 1 is the "longest" group in x and has one extra square pixel constexpr int nc_strixel =
constexpr int nr_strixel = 2*gr + g1_nrows + g2_nrows + g3_nrows; 2 * gr + 1 + g1_ncols; // group 1 is the "longest" group in x and has one
// extra square pixel
constexpr int nr_strixel = 2 * gr + g1_nrows + g2_nrows + g3_nrows;
//chip and group boundaries in ASIC coordinates (pixels at both bounds are included in the group) // chip and group boundaries in ASIC coordinates (pixels at both bounds are
//y does NOT take into account the shifts for M408! // included in the group) y does NOT take into account the shifts for M408!
constexpr int c1g1_xstart = 256 + gr + 1; //266 constexpr int c1g1_xstart = 256 + gr + 1; // 266
constexpr int c1g2_xstart = 256 + gr + 3; //268 constexpr int c1g2_xstart = 256 + gr + 3; // 268
constexpr int c1g3_xstart = 256 + gr + 2; //267 constexpr int c1g3_xstart = 256 + gr + 2; // 267
constexpr int c1_xend = 255 + 256 - gr; //502 constexpr int c1_xend = 255 + 256 - gr; // 502
constexpr int c1g1_ystart = gr; // 9 constexpr int c1g1_ystart = gr; // 9
constexpr int c1g1_yend = 63; // 63 constexpr int c1g1_yend = 63; // 63
constexpr int c1g2_ystart = c1g1_yend + 1; // 64 constexpr int c1g2_ystart = c1g1_yend + 1; // 64
constexpr int c1g2_yend = c1g1_yend + 64; //127 constexpr int c1g2_yend = c1g1_yend + 64; // 127
constexpr int c1g3_ystart = c1g2_yend + 1; //128 constexpr int c1g3_ystart = c1g2_yend + 1; // 128
constexpr int c1g3_yend = c1g2_yend + 2*64 - gr; //246 constexpr int c1g3_yend = c1g2_yend + 2 * 64 - gr; // 246
constexpr int c6_xstart = 256 + 256 + gr; //521 constexpr int c6_xstart = 256 + 256 + gr; // 521
constexpr int c6g1_xend = 255 + 2*256 - gr - 1; //757 constexpr int c6g1_xend = 255 + 2 * 256 - gr - 1; // 757
constexpr int c6g2_xend = 256 + 2*256 - gr - 3; //755 constexpr int c6g2_xend = 256 + 2 * 256 - gr - 3; // 755
constexpr int c6g3_xend = 256 + 2*256 - gr - 2; //756 constexpr int c6g3_xend = 256 + 2 * 256 - gr - 2; // 756
constexpr int c6g3_ystart = 256 + gr; //265 constexpr int c6g3_ystart = 256 + gr; // 265
constexpr int c6g3_yend = 255 + 2*64; //383 constexpr int c6g3_yend = 255 + 2 * 64; // 383
constexpr int c6g2_ystart = c6g3_yend + 1; //384 constexpr int c6g2_ystart = c6g3_yend + 1; // 384
constexpr int c6g2_yend = c6g3_yend + 64; //447 constexpr int c6g2_yend = c6g3_yend + 64; // 447
constexpr int c6g1_ystart = c6g2_yend + 1; //448 constexpr int c6g1_ystart = c6g2_yend + 1; // 448
constexpr int c6g1_yend = c6g2_yend + 64 - gr; //502 constexpr int c6g1_yend = c6g2_yend + 64 - gr; // 502
//y shift due to faulty bonding (relevant for M408) // y shift due to faulty bonding (relevant for M408)
constexpr int bond_shift_y = 1; //CHANGE IF YOU CHANGE MODULE! constexpr int bond_shift_y = 1; // CHANGE IF YOU CHANGE MODULE!
} } // namespace strixelSingleChip
typedef struct { typedef struct {
uint64_t bunchNumber; /**< is the frame number */ uint64_t bunchNumber; /**< is the frame number */
uint64_t pre; /**< something */ uint64_t pre; /**< something */
} jf_header; //Aldo's header } jf_header; // Aldo's header
using namespace strixelSingleChip; using namespace strixelSingleChip;
@@ -96,7 +98,7 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
int chip_y0; int chip_y0;
int x0, y0, x1, y1, shifty; int x0, y0, x1, y1, shifty;
int getMultiplicator( const int group ) { int getMultiplicator(const int group) {
int multiplicator; int multiplicator;
switch (group) { switch (group) {
default: default:
@@ -113,176 +115,202 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
return multiplicator; return multiplicator;
} }
void setMappingShifts( const int group ) { void setMappingShifts(const int group) {
if ( mchip == 1 ) { if (mchip == 1) {
chip_x0=256; chip_x0 = 256;
chip_y0=bond_shift_y; //because of bump bonding issues(+1 row) on M408 chip_y0 =
bond_shift_y; // because of bump bonding issues(+1 row) on M408
switch (group) { switch (group) {
default: default:
case 1: case 1:
x0 = 10+chip_x0; //9 gr + 1 sq pixel x0 = 10 + chip_x0; // 9 gr + 1 sq pixel
x1 = 246+chip_x0; x1 = 246 + chip_x0;
y0 = 9+chip_y0; y0 = 9 + chip_y0;
y1 = 63+chip_y0; y1 = 63 + chip_y0;
shifty = 0; shifty = 0;
break; break;
case 2: case 2:
x0 = 12+chip_x0; x0 = 12 + chip_x0;
x1 = 247+chip_x0; x1 = 247 + chip_x0;
y0 = 64+chip_y0; y0 = 64 + chip_y0;
y1 = 127+chip_y0; y1 = 127 + chip_y0;
shifty = g1_nrows; shifty = g1_nrows;
break; break;
case 3: case 3:
x0 = 11+chip_x0; x0 = 11 + chip_x0;
x1 = 247+chip_x0; x1 = 247 + chip_x0;
y0 = 128+chip_y0; y0 = 128 + chip_y0;
y1 = 246+chip_y0; y1 = 246 + chip_y0;
shifty = g2_nrows+g1_nrows; shifty = g2_nrows + g1_nrows;
break; break;
} }
} }
if ( mchip == 6 ) { if (mchip == 6) {
chip_x0=512; chip_x0 = 512;
chip_y0=256-bond_shift_y; //should be 256 but is 255 because of bump bonding issues (+1 row) on M408 chip_y0 =
256 - bond_shift_y; // should be 256 but is 255 because of bump
// bonding issues (+1 row) on M408
switch (group) { switch (group) {
default: default:
case 1: case 1:
x0 = 9+chip_x0; //9 gr sq pixel x0 = 9 + chip_x0; // 9 gr sq pixel
x1 = 246+chip_x0; x1 = 246 + chip_x0;
y0 = 192+chip_y0; y0 = 192 + chip_y0;
y1 = 244+chip_y0; y1 = 244 + chip_y0;
shifty = g1_nrows+2*g2_nrows+2*g3_nrows; shifty = g1_nrows + 2 * g2_nrows + 2 * g3_nrows;
break; break;
case 2: case 2:
x0 = 9+chip_x0; x0 = 9 + chip_x0;
x1 = 244+chip_x0; x1 = 244 + chip_x0;
y0 = 128+chip_y0; y0 = 128 + chip_y0;
y1 = 191+chip_y0; y1 = 191 + chip_y0;
shifty = g1_nrows + g2_nrows + 2 * g3_nrows;
shifty = g1_nrows+g2_nrows+2*g3_nrows;; ;
break; break;
case 3: case 3:
x0 = 9+chip_x0; x0 = 9 + chip_x0;
x1 = 244+chip_x0; x1 = 244 + chip_x0;
y0 = 9+chip_y0; y0 = 9 + chip_y0;
y1 = 127+chip_y0; y1 = 127 + chip_y0;
shifty =g1_nrows+g2_nrows+g3_nrows; shifty = g1_nrows + g2_nrows + g3_nrows;
break; break;
} }
} }
} }
void remapGroup( const int group ) { void remapGroup(const int group) {
int multiplicator = getMultiplicator(group); int multiplicator = getMultiplicator(group);
int shiftx; int shiftx;
int ix, iy=0; int ix, iy = 0;
setMappingShifts(group); setMappingShifts(group);
//remapping loop // remapping loop
for ( int ipy=y0; ipy<=y1;ipy++) { for (int ipy = y0; ipy <= y1; ipy++) {
for ( int ipx=x0; ipx<=x1; ipx++ ) { for (int ipx = x0; ipx <= x1; ipx++) {
ix = int ((ipx-x0)/multiplicator); ix = int((ipx - x0) / multiplicator);
for ( int m=0; m<multiplicator;m++ ) { for (int m = 0; m < multiplicator; m++) {
if ( (ipx-x0)%multiplicator==m ) iy=(ipy-y0)*multiplicator +m + shifty; if ((ipx - x0) % multiplicator == m)
iy = (ipy - y0) * multiplicator + m + shifty;
} }
// if (iy< 40) cout << iy << " " << ix <<endl; // if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] = sizeof(header) + (nc_rawimg * ipy + ipx) * 2; dataMap[iy][ix] = sizeof(header) + (nc_rawimg * ipy + ipx) * 2;
groupmap[iy][ix]=group-1; groupmap[iy][ix] = group - 1;
}
} }
} }
} void remapROI(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax) {
// determine group and chip selected by ROI
void remapROI( uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax ) {
//determine group and chip selected by ROI
int group; int group;
if ( ymax <= c1g1_yend+bond_shift_y ) { group = 1; mchip = 1; } if (ymax <= c1g1_yend + bond_shift_y) {
else if ( ymax <= c1g2_yend+bond_shift_y ) { group = 2; mchip = 1; } group = 1;
else if ( ymax <= c1g3_yend+bond_shift_y ) { group = 3; mchip = 1; } mchip = 1;
else if ( ymax <= c6g3_yend-bond_shift_y ) { group = 3; mchip = 6; } } else if (ymax <= c1g2_yend + bond_shift_y) {
else if ( ymax <= c6g2_yend-bond_shift_y ) { group = 2; mchip = 6; } group = 2;
else if ( ymax <= c6g1_yend-bond_shift_y ) { group = 1; mchip = 6; } mchip = 1;
} else if (ymax <= c1g3_yend + bond_shift_y) {
group = 3;
mchip = 1;
} else if (ymax <= c6g3_yend - bond_shift_y) {
group = 3;
mchip = 6;
} else if (ymax <= c6g2_yend - bond_shift_y) {
group = 2;
mchip = 6;
} else if (ymax <= c6g1_yend - bond_shift_y) {
group = 1;
mchip = 6;
}
int multiplicator = getMultiplicator(group); int multiplicator = getMultiplicator(group);
setMappingShifts(group); setMappingShifts(group);
std::cout << "group: " << group << ", m: " << multiplicator << ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0 << ", y1: " << y1 << std::endl; std::cout << "group: " << group << ", m: " << multiplicator
<< ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0
<< ", y1: " << y1 << std::endl;
//get ROI raw image number of columns // get ROI raw image number of columns
int nc_roi = xmax - xmin + 1; int nc_roi = xmax - xmin + 1;
std::cout << "nc_roi = " << nc_roi << std::endl; std::cout << "nc_roi = " << nc_roi << std::endl;
//make sure loop bounds are correct // make sure loop bounds are correct
if (y0<ymin) std::cout << "Error ymin" << std::endl; if (y0 < ymin)
if (y1>ymax) std::cout << "Error ymax - normal for G3 since ROI only 64 row" << std::endl; std::cout << "Error ymin" << std::endl;
if (x0<xmin) std::cout << "Error xmin" << std::endl; if (y1 > ymax)
if (x1>xmax) std::cout << "Error xmax" << std::endl; std::cout << "Error ymax - normal for G3 since ROI only 64 row"
<< std::endl;
if (x0 < xmin)
std::cout << "Error xmin" << std::endl;
if (x1 > xmax)
std::cout << "Error xmax" << std::endl;
//remapping loop // remapping loop
int ix, iy=0; int ix, iy = 0;
for ( int ipy=y0; ipy<=y1; ++ipy) { for (int ipy = y0; ipy <= y1; ++ipy) {
for ( int ipx=x0; ipx<=x1; ++ipx ) { for (int ipx = x0; ipx <= x1; ++ipx) {
ix = int ((ipx-x0/*-xmin*/)/multiplicator); ix = int((ipx - x0 /*-xmin*/) / multiplicator);
for ( int m=0; m<multiplicator;m++ ) { for (int m = 0; m < multiplicator; m++) {
if ( (ipx-x0/*-xmin*/)%multiplicator==m ) iy=(ipy-y0/*-ymin*/)*multiplicator +m + shifty; if ((ipx - x0 /*-xmin*/) % multiplicator == m)
iy = (ipy - y0 /*-ymin*/) * multiplicator + m + shifty;
} }
// if (iy< 40) cout << iy << " " << ix <<endl; // if (iy< 40) cout << iy << " " << ix <<endl;
dataMap[iy][ix] = sizeof(header) + (nc_roi * (ipy-ymin) + (ipx-xmin)) * 2; dataMap[iy][ix] =
groupmap[iy][ix]=group-1; sizeof(header) + (nc_roi * (ipy - ymin) + (ipx - xmin)) * 2;
groupmap[iy][ix] = group - 1;
} }
} }
} }
public: public:
int groupmap[512 * 5][1024 / 3];
int groupmap[512*5][1024/3];
using header = sls::defs::sls_receiver_header; using header = sls::defs::sls_receiver_header;
jungfrauLGADStrixelsData(uint16_t xmin = 0, uint16_t xmax = 0,
uint16_t ymin = 0, uint16_t ymax = 0)
: slsDetectorData<uint16_t>(
/*nc_strixel*/ g1_ncols,
/*nr_strixel*/ 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows,
g1_ncols * (2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows) * 2 +
sizeof(header)) {
std::cout << "Jungfrau strixels 2X single chip with full module data "
<< std::endl;
jungfrauLGADStrixelsData( uint16_t xmin=0, uint16_t xmax=0, uint16_t ymin=0, uint16_t ymax=0 ) // Fill all strixels with dummy values
: slsDetectorData<uint16_t>( /*nc_strixel*/g1_ncols, /*nr_strixel*/ 2*g1_nrows+2*g2_nrows+2*g3_nrows,
g1_ncols* (2*g1_nrows+2*g2_nrows+2*g3_nrows) * 2 + sizeof(header) ) {
std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl;
//Fill all strixels with dummy values
for (int ix = 0; ix != g1_ncols; ++ix) { for (int ix = 0; ix != g1_ncols; ++ix) {
for (int iy = 0; iy != 2*g1_nrows+2*g2_nrows+2*g3_nrows; ++iy) { for (int iy = 0; iy != 2 * g1_nrows + 2 * g2_nrows + 2 * g3_nrows;
++iy) {
dataMap[iy][ix] = sizeof(header); dataMap[iy][ix] = sizeof(header);
} }
} }
std::cout << "sizeofheader = "<<sizeof(header)<<std::endl; std::cout << "sizeofheader = " << sizeof(header) << std::endl;
std::cout << "Jungfrau strixels 2X single chip with full module data " << std::endl; std::cout << "Jungfrau strixels 2X single chip with full module data "
<< std::endl;
if (xmin<xmax && ymin<ymax) { if (xmin < xmax && ymin < ymax) {
dataSize=(xmax-xmin+1)*(ymax-ymin+1)*2 + sizeof(header); dataSize =
(xmax - xmin + 1) * (ymax - ymin + 1) * 2 + sizeof(header);
std::cout << "datasize " << dataSize << std::endl; std::cout << "datasize " << dataSize << std::endl;
remapROI( xmin, xmax, ymin, ymax ); remapROI(xmin, xmax, ymin, ymax);
} else { } else {
@@ -323,13 +351,12 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
*/ */
int getFrameNumber(char *buff) { int getFrameNumber(char *buff) {
#ifdef ALDO //VH #ifdef ALDO // VH
return ((header *)buff)->bunchNumber; //VH return ((header *)buff)->bunchNumber; // VH
#else //VH #else // VH
return ((header *)buff)->detHeader.frameNumber; return ((header *)buff)->detHeader.frameNumber;
#endif //VH #endif // VH
}; };
/** /**
@@ -342,17 +369,16 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
*/ */
int getPacketNumber(char *buff) { int getPacketNumber(char *buff) {
#ifdef ALDO //VH #ifdef ALDO // VH
//uint32_t fakePacketNumber = 1000; // uint32_t fakePacketNumber = 1000;
//return fakePacketNumber; //VH //TODO: Keep in mind in case of bugs! //This is definitely bad! // return fakePacketNumber; //VH //TODO: Keep in mind in case of bugs!
// //This is definitely bad!
return 1000; return 1000;
#else //VH #else // VH
return ((header *)buff)->detHeader.packetNumber; return ((header *)buff)->detHeader.packetNumber;
#endif //VH #endif // VH
}; };
char *readNextFrame(std::ifstream &filebin) { char *readNextFrame(std::ifstream &filebin) {
int ff = -1, np = -1; int ff = -1, np = -1;
return readNextFrame(filebin, ff, np); return readNextFrame(filebin, ff, np);
@@ -373,14 +399,14 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
return data; return data;
}; };
char *readNextFrame(std::ifstream &filebin, int &ff, int &np,char *data) { char *readNextFrame(std::ifstream &filebin, int &ff, int &np, char *data) {
char *retval = 0; char *retval = 0;
int nd; int nd;
int fnum = -1; int fnum = -1;
np = 0; np = 0;
int pn; int pn;
//std::cout << dataSize << std::endl; // std::cout << dataSize << std::endl;
if (ff >= 0) if (ff >= 0)
fnum = ff; fnum = ff;
@@ -396,12 +422,18 @@ class jungfrauLGADStrixelsData : public slsDetectorData<uint16_t> {
}; };
/* Loops over a memory slot until a complete frame is found (i.e. all */ /* Loops over a memory slot until a complete frame is found (i.e. all */
/* packets 0 to nPackets, same frame number). purely virtual func \param */ /* packets 0 to nPackets, same frame number). purely virtual func \param
/* data pointer to the memory to be analyzed \param ndata reference to the */ */
/* amount of data found for the frame, in case the frame is incomplete at */ /* data pointer to the memory to be analyzed \param ndata reference to
/* the end of the memory slot \param dsize size of the memory slot to be */ * the */
/* analyzed \returns pointer to the beginning of the last good frame (might */ /* amount of data found for the frame, in case the frame is incomplete at
/* be incomplete if ndata smaller than dataSize), or NULL if no frame is */ */
/* the end of the memory slot \param dsize size of the memory slot to be
*/
/* analyzed \returns pointer to the beginning of the last good frame
* (might */
/* be incomplete if ndata smaller than dataSize), or NULL if no frame is
*/
/* found */ /* found */
/* *\/ */ /* *\/ */

View File

@@ -1,6 +1,6 @@
// SPDX-License-Identifier: LGPL-3.0-or-other // SPDX-License-Identifier: LGPL-3.0-or-other
// Copyright (C) 2021 Contributors to the SLS Detector Package // Copyright (C) 2021 Contributors to the SLS Detector Package
//#include "sls/ansi.h" // #include "sls/ansi.h"
#include <iostream> #include <iostream>
#undef CORR #undef CORR
@@ -10,7 +10,8 @@
#define RAWDATA #define RAWDATA
#if !defined JFSTRX && !defined JFSTRXOLD && !defined JFSTRXCHIP1 && !defined JFSTRXCHIP6 #if !defined JFSTRX && !defined JFSTRXOLD && !defined JFSTRXCHIP1 && \
!defined JFSTRXCHIP6
#ifndef MODULE #ifndef MODULE
#include "jungfrauHighZSingleChipData.h" #include "jungfrauHighZSingleChipData.h"
#endif #endif
@@ -38,19 +39,23 @@
#include <sys/stat.h> #include <sys/stat.h>
#include <ctime> #include <ctime>
//using namespace std; // using namespace std;
int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
if (argc < 5) { if (argc < 5) {
std::cout << "Usage is " << argv[0] std::cout
<< "indir outdir fname(with formatting, no extension) fextension [runmin] [runmax] [pedfile (raw or tiff)] [threshold] " << "Usage is " << argv[0]
<< "indir outdir fname(with formatting, no extension) fextension "
"[runmin] [runmax] [pedfile (raw or tiff)] [threshold] "
"[nframes] [xmin xmax ymin ymax] [gainmap]" "[nframes] [xmin xmax ymin ymax] [gainmap]"
<< std::endl; << std::endl;
std::cout << "threshold <0 means analog; threshold=0 means cluster finder; " std::cout
<< "threshold <0 means analog; threshold=0 means cluster finder; "
"threshold>0 means photon counting" "threshold>0 means photon counting"
<< std::endl; << std::endl;
std::cout << "nframes <0 means sum everything; nframes=0 means one file per " std::cout
<< "nframes <0 means sum everything; nframes=0 means one file per "
"run; nframes>0 means one file every nframes" "run; nframes>0 means one file every nframes"
<< std::endl; << std::endl;
return 1; return 1;
@@ -58,14 +63,14 @@ int main(int argc, char *argv[]) {
int fifosize = 1000; int fifosize = 1000;
int nthreads = 10; int nthreads = 10;
int csize = 3; //3 int csize = 3; // 3
int nsigma = 5; int nsigma = 5;
int nped = 10000; int nped = 10000;
int cf = 0; int cf = 0;
double *gainmap = NULL; double *gainmap = NULL;
//float *gm; // float *gm;
int ff, np; int ff, np;
// cout << " data size is " << dsize; // cout << " data size is " << dsize;
@@ -110,9 +115,9 @@ int main(int argc, char *argv[]) {
char imgfname[10000]; char imgfname[10000];
char cfname[10000]; char cfname[10000];
// Define decoders...
//Define decoders... #if !defined JFSTRX && !defined JFSTRXOLD && !defined JFSTRXCHIP1 && \
#if !defined JFSTRX && !defined JFSTRXOLD && !defined JFSTRXCHIP1 && !defined JFSTRXCHIP6 !defined JFSTRXCHIP6
#ifndef MODULE #ifndef MODULE
jungfrauHighZSingleChipData *decoder = new jungfrauHighZSingleChipData(); jungfrauHighZSingleChipData *decoder = new jungfrauHighZSingleChipData();
int nx = 256, ny = 256; int nx = 256, ny = 256;
@@ -125,15 +130,15 @@ int main(int argc, char *argv[]) {
#ifdef JFSTRX #ifdef JFSTRX
cout << "Jungfrau strixel full module readout" << endl; cout << "Jungfrau strixel full module readout" << endl;
//ROI // ROI
uint16_t xxmin=0; uint16_t xxmin = 0;
uint16_t xxmax=0; uint16_t xxmax = 0;
uint16_t yymin=0; uint16_t yymin = 0;
uint16_t yymax=0; uint16_t yymax = 0;
#ifndef ALDO #ifndef ALDO
using header = sls::defs::sls_receiver_header; using header = sls::defs::sls_receiver_header;
//check if there is a roi in the header // check if there is a roi in the header
typedef struct { typedef struct {
uint16_t xmin; uint16_t xmin;
uint16_t xmax; uint16_t xmax;
@@ -142,15 +147,17 @@ int main(int argc, char *argv[]) {
} receiverRoi_compact; } receiverRoi_compact;
receiverRoi_compact croi; receiverRoi_compact croi;
sprintf(ffname, "%s/%s.%s", indir, fformat, fext); sprintf(ffname, "%s/%s.%s", indir, fformat, fext);
sprintf(fname, (const char*)ffname, runmin); sprintf(fname, (const char *)ffname, runmin);
std::cout << "Reading header of file " << fname << " to check for ROI " << std::endl; std::cout << "Reading header of file " << fname << " to check for ROI "
<< std::endl;
filebin.open((const char *)(fname), ios::in | ios::binary); filebin.open((const char *)(fname), ios::in | ios::binary);
if (filebin.is_open()) { if (filebin.is_open()) {
header hbuffer; header hbuffer;
std::cout << "sizeof(header) = " << sizeof(header) << std::endl; std::cout << "sizeof(header) = " << sizeof(header) << std::endl;
if ( filebin.read( (char *)&hbuffer, sizeof(header) ) ) { if (filebin.read((char *)&hbuffer, sizeof(header))) {
memcpy(&croi, &hbuffer.detHeader.detSpec1, 8); memcpy(&croi, &hbuffer.detHeader.detSpec1, 8);
std::cout << "Read ROI [" << croi.xmin << ", " << croi.xmax << ", " << croi.ymin << ", " << croi.ymax << "]" << std::endl; std::cout << "Read ROI [" << croi.xmin << ", " << croi.xmax << ", "
<< croi.ymin << ", " << croi.ymax << "]" << std::endl;
xxmin = croi.xmin; xxmin = croi.xmin;
xxmax = croi.xmax; xxmax = croi.xmax;
yymin = croi.ymin; yymin = croi.ymin;
@@ -162,30 +169,32 @@ int main(int argc, char *argv[]) {
std::cout << "Could not open " << fname << " for reading " << std::endl; std::cout << "Could not open " << fname << " for reading " << std::endl;
#endif #endif
jungfrauLGADStrixelsData *decoder = new jungfrauLGADStrixelsData( xxmin, xxmax, yymin, yymax ); jungfrauLGADStrixelsData *decoder =
int nx = 1024/3, ny = 512*5; new jungfrauLGADStrixelsData(xxmin, xxmax, yymin, yymax);
int nx = 1024 / 3, ny = 512 * 5;
#endif #endif
#ifdef JFSTRXCHIP1 #ifdef JFSTRXCHIP1
std::cout << "Jungfrau strixel LGAD single chip 1" << std::endl; std::cout << "Jungfrau strixel LGAD single chip 1" << std::endl;
jungfrauLGADStrixelsDataSingleChip *decoder = new jungfrauLGADStrixelsDataSingleChip(1); jungfrauLGADStrixelsDataSingleChip *decoder =
int nx = 256/3, ny = 256*5; new jungfrauLGADStrixelsDataSingleChip(1);
int nx = 256 / 3, ny = 256 * 5;
#endif #endif
#ifdef JFSTRXCHIP6 #ifdef JFSTRXCHIP6
std::cout << "Jungfrau strixel LGAD single chip 6" << std::endl; std::cout << "Jungfrau strixel LGAD single chip 6" << std::endl;
jungfrauLGADStrixelsDataSingleChip *decoder = new jungfrauLGADStrixelsDataSingleChip(6); jungfrauLGADStrixelsDataSingleChip *decoder =
int nx = 256/3, ny = 256*5; new jungfrauLGADStrixelsDataSingleChip(6);
int nx = 256 / 3, ny = 256 * 5;
#endif #endif
#ifdef JFSTRXOLD #ifdef JFSTRXOLD
std::cout << "Jungfrau strixels old design" << std::endl; std::cout << "Jungfrau strixels old design" << std::endl;
jungfrauStrixelsHalfModuleOldDesign *decoder = new jungfrauStrixelsHalfModuleOldDesign(); jungfrauStrixelsHalfModuleOldDesign *decoder =
int nx = 1024*3, ny = 512/3; new jungfrauStrixelsHalfModuleOldDesign();
int nx = 1024 * 3, ny = 512 / 3;
#endif #endif
decoder->getDetectorSize(nx, ny); decoder->getDetectorSize(nx, ny);
std::cout << "Detector size is " << nx << " " << ny << std::endl; std::cout << "Detector size is " << nx << " " << ny << std::endl;
int xmin = 0, xmax = nx, ymin = 0, ymax = ny; int xmin = 0, xmax = nx, ymin = 0, ymax = ny;
if (argc >= 14) { if (argc >= 14) {
xmin = atoi(argv[10]); xmin = atoi(argv[10]);
@@ -193,7 +202,8 @@ int main(int argc, char *argv[]) {
ymin = atoi(argv[12]); ymin = atoi(argv[12]);
ymax = atoi(argv[13]); ymax = atoi(argv[13]);
} }
std::cout << xmin << " " << xmax << " " << ymin << " " << ymax << " " << std::endl; std::cout << xmin << " " << xmax << " " << ymin << " " << ymax << " "
<< std::endl;
char *gainfname = NULL; char *gainfname = NULL;
if (argc > 14) { if (argc > 14) {
@@ -215,11 +225,9 @@ int main(int argc, char *argv[]) {
std::cout << "threshold is " << thr << std::endl; std::cout << "threshold is " << thr << std::endl;
std::cout << "Nframes is " << nframes << std::endl; std::cout << "Nframes is " << nframes << std::endl;
//std::cout << "HHHEEEEEEEEEEEEEEEEEEEEEEERE!!!!!" << std::endl; // std::cout << "HHHEEEEEEEEEEEEEEEEEEEEEEERE!!!!!" << std::endl;
uint32_t nnx, nny; uint32_t nnx, nny;
singlePhotonDetector *filter = new singlePhotonDetector( singlePhotonDetector *filter = new singlePhotonDetector(
decoder, 3, nsigma, 1, NULL, nped, 200, -1, -1, gainmap, NULL); decoder, 3, nsigma, 1, NULL, nped, 200, -1, -1, gainmap, NULL);
@@ -232,7 +240,7 @@ int main(int argc, char *argv[]) {
} else } else
thr = 0.15 * thr; thr = 0.15 * thr;
filter->newDataSet(); filter->newDataSet();
//int dsize = decoder->getDataSize(); // int dsize = decoder->getDataSize();
if (thr > 0) { if (thr > 0) {
std::cout << "threshold is " << thr << std::endl; std::cout << "threshold is " << thr << std::endl;
@@ -252,7 +260,7 @@ int main(int argc, char *argv[]) {
// multiThreadedAnalogDetector(filter,nthreads,fifosize); // multiThreadedAnalogDetector(filter,nthreads,fifosize);
multiThreadedCountingDetector *mt = multiThreadedCountingDetector *mt =
new multiThreadedCountingDetector(filter, nthreads, fifosize); new multiThreadedCountingDetector(filter, nthreads, fifosize);
mt->setClusterSize(csize,csize); mt->setClusterSize(csize, csize);
#ifndef ANALOG #ifndef ANALOG
mt->setDetectorMode(ePhotonCounting); mt->setDetectorMode(ePhotonCounting);
@@ -278,17 +286,17 @@ int main(int argc, char *argv[]) {
int ifr = 0; int ifr = 0;
char froot[1000]; char froot[1000];
double *ped=new double[nx * ny];//, *ped1; double *ped = new double[nx * ny]; //, *ped1;
int pos,pos1; int pos, pos1;
if (pedfile) { if (pedfile) {
if (string(pedfile).find(".dat") != std::string::npos) { if (string(pedfile).find(".dat") != std::string::npos) {
pos1=string(pedfile).rfind("/"); pos1 = string(pedfile).rfind("/");
strcpy(froot,pedfile+pos1); strcpy(froot, pedfile + pos1);
pos=string(froot).find(".dat"); pos = string(froot).find(".dat");
froot[pos]='\0'; froot[pos] = '\0';
} }
std::cout << "PEDESTAL " << std::endl; std::cout << "PEDESTAL " << std::endl;
@@ -310,18 +318,21 @@ int main(int argc, char *argv[]) {
ff = -1; ff = -1;
while (decoder->readNextFrame(filebin, ff, np, buff)) { while (decoder->readNextFrame(filebin, ff, np, buff)) {
// if (np == 40) { // if (np == 40) {
if ((ifr+1) % 100 == 0) { if ((ifr + 1) % 100 == 0) {
std::cout << " ****" << decoder->getValue(buff,20,20);// << endl; std::cout
<< " ****"
<< decoder->getValue(buff, 20, 20); // << endl;
} }
mt->pushData(buff); mt->pushData(buff);
mt->nextThread(); mt->nextThread();
mt->popFree(buff); mt->popFree(buff);
ifr++; ifr++;
if (ifr % 100 == 0) { if (ifr % 100 == 0) {
std::cout << " ****" << ifr << " " << ff << " " << np << std::endl; std::cout << " ****" << ifr << " " << ff << " " << np
} //else << std::endl;
//cout << ifr << " " << ff << " " << np << endl; } // else
if (ifr>=1000) // cout << ifr << " " << ff << " " << np << endl;
if (ifr >= 1000)
break; break;
ff = -1; ff = -1;
} }
@@ -346,7 +357,8 @@ int main(int argc, char *argv[]) {
} }
delete[] pp; delete[] pp;
mt->setPedestal(ped); mt->setPedestal(ped);
std::cout << "Pedestal set from tiff file " << pedfile << std::endl; std::cout << "Pedestal set from tiff file " << pedfile
<< std::endl;
} else { } else {
std::cout << "Could not open pedestal tiff file " << pedfile std::cout << "Could not open pedestal tiff file " << pedfile
<< " for reading " << std::endl; << " for reading " << std::endl;
@@ -365,11 +377,11 @@ int main(int argc, char *argv[]) {
std::cout << "DATA "; std::cout << "DATA ";
// sprintf(fn,fformat,irun); // sprintf(fn,fformat,irun);
sprintf(ffname, "%s/%s.%s", indir, fformat, fext); sprintf(ffname, "%s/%s.%s", indir, fformat, fext);
sprintf(fname, (const char*)ffname, irun); sprintf(fname, (const char *)ffname, irun);
sprintf(ffname, "%s/%s.tiff", outdir, fformat); sprintf(ffname, "%s/%s.tiff", outdir, fformat);
sprintf(imgfname, (const char*)ffname, irun); sprintf(imgfname, (const char *)ffname, irun);
sprintf(ffname, "%s/%s.clust", outdir, fformat); sprintf(ffname, "%s/%s.clust", outdir, fformat);
sprintf(cfname, (const char*)ffname, irun); sprintf(cfname, (const char *)ffname, irun);
std::cout << fname << " "; std::cout << fname << " ";
std::cout << imgfname << std::endl; std::cout << imgfname << std::endl;
std::time(&end_time); std::time(&end_time);
@@ -386,8 +398,8 @@ int main(int argc, char *argv[]) {
mt->setFilePointer(of); mt->setFilePointer(of);
std::cout << "file pointer set " << std::endl; std::cout << "file pointer set " << std::endl;
} else { } else {
std::cout << "Could not open " << cfname << " for writing " std::cout << "Could not open " << cfname
<< std::endl; << " for writing " << std::endl;
mt->setFilePointer(NULL); mt->setFilePointer(NULL);
return 1; return 1;
} }
@@ -400,8 +412,9 @@ int main(int argc, char *argv[]) {
// if (np == 40) { // if (np == 40) {
// //push // //push
if ((ifr+1) % 100 == 0) { if ((ifr + 1) % 100 == 0) {
std::cout << " ****" << decoder->getValue(buff,20,20);// << endl; std::cout << " ****"
<< decoder->getValue(buff, 20, 20); // << endl;
} }
mt->pushData(buff); mt->pushData(buff);
// // //pop // // //pop
@@ -415,7 +428,7 @@ int main(int argc, char *argv[]) {
if (ifr % nframes == 0) { if (ifr % nframes == 0) {
sprintf(ffname, "%s/%s_f%05d.tiff", outdir, fformat, sprintf(ffname, "%s/%s_f%05d.tiff", outdir, fformat,
ifile); ifile);
sprintf(imgfname, (const char*)ffname, irun); sprintf(imgfname, (const char *)ffname, irun);
mt->writeImage(imgfname, thr1); mt->writeImage(imgfname, thr1);
mt->clearImage(); mt->clearImage();
ifile++; ifile++;
@@ -433,12 +446,13 @@ int main(int argc, char *argv[]) {
if (nframes >= 0) { if (nframes >= 0) {
if (nframes > 0) { if (nframes > 0) {
sprintf(ffname, "%s/%s_f%05d.tiff", outdir, fformat, ifile); sprintf(ffname, "%s/%s_f%05d.tiff", outdir, fformat, ifile);
sprintf(imgfname, (const char*)ffname, irun); sprintf(imgfname, (const char *)ffname, irun);
} else { } else {
sprintf(ffname, "%s/%s.tiff", outdir, fformat); sprintf(ffname, "%s/%s.tiff", outdir, fformat);
sprintf(imgfname, (const char*)ffname, irun); sprintf(imgfname, (const char *)ffname, irun);
} }
std::cout << "Writing tiff to " << imgfname << " " << thr1 << std::endl; std::cout << "Writing tiff to " << imgfname << " " << thr1
<< std::endl;
mt->writeImage(imgfname, thr1); mt->writeImage(imgfname, thr1);
mt->clearImage(); mt->clearImage();
if (of) { if (of) {
@@ -450,7 +464,8 @@ int main(int argc, char *argv[]) {
std::time(&end_time); std::time(&end_time);
std::cout << std::ctime(&end_time) << std::endl; std::cout << std::ctime(&end_time) << std::endl;
} else } else
std::cout << "Could not open " << fname << " for reading " << std::endl; std::cout << "Could not open " << fname << " for reading "
<< std::endl;
} }
if (nframes < 0) { if (nframes < 0) {
sprintf(ffname, "%s/%s.tiff", outdir, fformat); sprintf(ffname, "%s/%s.tiff", outdir, fformat);

View File

@@ -622,11 +622,9 @@
#define PATTERN_WAIT_TIMER_5_LSB_REG (0x91 << MEM_MAP_SHIFT) #define PATTERN_WAIT_TIMER_5_LSB_REG (0x91 << MEM_MAP_SHIFT)
#define PATTERN_WAIT_TIMER_5_MSB_REG (0x92 << MEM_MAP_SHIFT) #define PATTERN_WAIT_TIMER_5_MSB_REG (0x92 << MEM_MAP_SHIFT)
/* Slow ADC SPI Value RO register */ /* Slow ADC SPI Value RO register */
#define ADC_SLOW_DATA_REG (0x93 << MEM_MAP_SHIFT) #define ADC_SLOW_DATA_REG (0x93 << MEM_MAP_SHIFT)
/* Slow ADC SPI Value Config register */ /* Slow ADC SPI Value Config register */
#define ADC_SLOW_CFG_REG (0x94 << MEM_MAP_SHIFT) #define ADC_SLOW_CFG_REG (0x94 << MEM_MAP_SHIFT)
/** Read back CFG Register */ /** Read back CFG Register */
@@ -675,7 +673,8 @@
#define ADC_SLOW_CFG_BW_MSK (0x00000001 << ADC_SLOW_CFG_REF_OFST) #define ADC_SLOW_CFG_BW_MSK (0x00000001 << ADC_SLOW_CFG_REF_OFST)
#define ADC_SLOW_CFG_BW_ONE_FOURTH_VAL \ #define ADC_SLOW_CFG_BW_ONE_FOURTH_VAL \
((0x0 << ADC_SLOW_CFG_BW_OFST) & ADC_SLOW_CFG_BW_MSK) ((0x0 << ADC_SLOW_CFG_BW_OFST) & ADC_SLOW_CFG_BW_MSK)
#define ADC_SLOW_CFG_BW_FULL_VAL ((0x1 << ADC_SLOW_CFG_BW_OFST) & ADC_SLOW_CFG_BW_MSK) #define ADC_SLOW_CFG_BW_FULL_VAL \
((0x1 << ADC_SLOW_CFG_BW_OFST) & ADC_SLOW_CFG_BW_MSK)
/** input channel selection IN0 - IN7 */ /** input channel selection IN0 - IN7 */
#define ADC_SLOW_CFG_IN_OFST (9) #define ADC_SLOW_CFG_IN_OFST (9)
@@ -705,7 +704,6 @@
#define ADC_SLOW_CFG_CFG_OVRWRTE_VAL \ #define ADC_SLOW_CFG_CFG_OVRWRTE_VAL \
((0x1 << ADC_SLOW_CFG_CFG_OFST) & ADC_SLOW_CFG_CFG_MSK) ((0x1 << ADC_SLOW_CFG_CFG_OFST) & ADC_SLOW_CFG_CFG_MSK)
/* Slow ADC SPI Value Control register */ /* Slow ADC SPI Value Control register */
#define ADC_SLOW_CTRL_REG (0x95 << MEM_MAP_SHIFT) #define ADC_SLOW_CTRL_REG (0x95 << MEM_MAP_SHIFT)

View File

@@ -1491,8 +1491,8 @@ int getSlowADC(int ichan) {
ADC_SLOW_CFG_RB_MSK | ADC_SLOW_CFG_RB_MSK |
// disable sequencer (different from config) // disable sequencer (different from config)
ADC_SLOW_CFG_SEQ_DSBLE_VAL | ADC_SLOW_CFG_SEQ_DSBLE_VAL |
// Internal reference. REF = 2.5V buffered output. Temperature sensor // Internal reference. REF = 2.5V buffered output. Temperature
// enabled. // sensor enabled.
ADC_SLOW_CFG_REF_INT_2500MV_VAL | ADC_SLOW_CFG_REF_INT_2500MV_VAL |
// full bandwidth of low pass filter // full bandwidth of low pass filter
ADC_SLOW_CFG_BW_FULL_VAL | ADC_SLOW_CFG_BW_FULL_VAL |
@@ -1503,15 +1503,17 @@ int getSlowADC(int ichan) {
// overwrite configuration // overwrite configuration
ADC_SLOW_CFG_CFG_OVRWRTE_VAL); ADC_SLOW_CFG_CFG_OVRWRTE_VAL);
// start converting // start converting
bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) | ADC_SLOW_CTRL_STRT_MSK); bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) | ADC_SLOW_CTRL_STRT_MSK);
bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) & ~ADC_SLOW_CTRL_STRT_MSK); bus_w(ADC_SLOW_CTRL_REG,
bus_r(ADC_SLOW_CTRL_REG) & ~ADC_SLOW_CTRL_STRT_MSK);
// wait for it to be done // wait for it to be done
volatile int done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >> ADC_SLOW_CTRL_DONE_OFST); volatile int done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >>
ADC_SLOW_CTRL_DONE_OFST);
while (!done) { while (!done) {
done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >> ADC_SLOW_CTRL_DONE_OFST); done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >>
ADC_SLOW_CTRL_DONE_OFST);
} }
// readout // readout
@@ -1522,8 +1524,11 @@ int getSlowADC(int ichan) {
int regMinuv = 0; int regMinuv = 0;
int maxSteps = 0xFFFF + 1; int maxSteps = 0xFFFF + 1;
int retval = 0; int retval = 0;
if (ConvertToDifferentRange(0, maxSteps, regMinuv, refMaxuv, regval, &retval) == FAIL) { if (ConvertToDifferentRange(0, maxSteps, regMinuv, refMaxuv, regval,
LOG(logERROR, ("Could not convert slow adc channel (regval:0x%x) to uv\n", regval)); &retval) == FAIL) {
LOG(logERROR,
("Could not convert slow adc channel (regval:0x%x) to uv\n",
regval));
return -1; return -1;
} }
@@ -1531,7 +1536,6 @@ int getSlowADC(int ichan) {
("\tRead slow adc [%d]: %d uV (reg: 0x%x)\n", ichan, retval, regval)); ("\tRead slow adc [%d]: %d uV (reg: 0x%x)\n", ichan, retval, regval));
return retval; return retval;
} }
int getSlowADCTemperature() { int getSlowADCTemperature() {
@@ -1543,8 +1547,8 @@ int getSlowADCTemperature() {
ADC_SLOW_CFG_RB_MSK | ADC_SLOW_CFG_RB_MSK |
// disable sequencer (different from config) // disable sequencer (different from config)
ADC_SLOW_CFG_SEQ_DSBLE_VAL | ADC_SLOW_CFG_SEQ_DSBLE_VAL |
// Internal reference. REF = 2.5V buffered output. Temperature sensor // Internal reference. REF = 2.5V buffered output. Temperature
// enabled. // sensor enabled.
ADC_SLOW_CFG_REF_INT_2500MV_VAL | ADC_SLOW_CFG_REF_INT_2500MV_VAL |
// full bandwidth of low pass filter // full bandwidth of low pass filter
ADC_SLOW_CFG_BW_FULL_VAL | ADC_SLOW_CFG_BW_FULL_VAL |
@@ -1557,12 +1561,15 @@ int getSlowADCTemperature() {
// start converting // start converting
bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) | ADC_SLOW_CTRL_STRT_MSK); bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) | ADC_SLOW_CTRL_STRT_MSK);
bus_w(ADC_SLOW_CTRL_REG, bus_r(ADC_SLOW_CTRL_REG) & ~ADC_SLOW_CTRL_STRT_MSK); bus_w(ADC_SLOW_CTRL_REG,
bus_r(ADC_SLOW_CTRL_REG) & ~ADC_SLOW_CTRL_STRT_MSK);
// wait for it to be done // wait for it to be done
volatile int done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >> ADC_SLOW_CTRL_DONE_OFST); volatile int done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >>
ADC_SLOW_CTRL_DONE_OFST);
while (!done) { while (!done) {
done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >> ADC_SLOW_CTRL_DONE_OFST); done = ((bus_r(ADC_SLOW_CTRL_REG) & ADC_SLOW_CTRL_DONE_MSK) >>
ADC_SLOW_CTRL_DONE_OFST);
} }
// readout // readout
@@ -1574,9 +1581,10 @@ int getSlowADCTemperature() {
int maxSteps = 0xFFFF + 1; int maxSteps = 0xFFFF + 1;
int minmv = 0; int minmv = 0;
int maxmv = 2500; int maxmv = 2500;
if (ConvertToDifferentRange(0, maxSteps, minmv, if (ConvertToDifferentRange(0, maxSteps, minmv, maxmv, regval, &retval) ==
maxmv, regval, &retval) == FAIL) { FAIL) {
LOG(logERROR, ("Could not convert slow adc temp (regval:0x%x) to uv\n", regval)); LOG(logERROR,
("Could not convert slow adc temp (regval:0x%x) to uv\n", regval));
return -1; return -1;
} }
LOG(logDEBUG1, ("voltage read for temp: %d mV\n", retval)); LOG(logDEBUG1, ("voltage read for temp: %d mV\n", retval));