mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-06-11 04:17:15 +02:00
formatted slsDetectorCalibration
This commit is contained in:
@ -3,346 +3,373 @@
|
||||
#ifndef SLSDETECTORDATA_H
|
||||
#define SLSDETECTORDATA_H
|
||||
|
||||
#include <fstream>
|
||||
#include <inttypes.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
template <class dataType> class slsDetectorData {
|
||||
|
||||
template <class dataType>
|
||||
class slsDetectorData {
|
||||
protected:
|
||||
const int nx; /**< Number of pixels in the x direction */
|
||||
const int ny; /**< Number of pixels in the y direction */
|
||||
int dataSize; /**<size of the data constituting one frame */
|
||||
int **dataMap; /**< Array of size nx*ny storing the pointers to the data in
|
||||
the dataset (as offset)*/
|
||||
dataType **dataMask; /**< Array of size nx*ny storing the polarity of the
|
||||
data in the dataset (should be 0 if no inversion is
|
||||
required, 0xffffffff is inversion is required) */
|
||||
int **dataROIMask; /**< Array of size nx*ny 1 if channel is good (or in the
|
||||
ROI), 0 if bad channel (or out of ROI) */
|
||||
int *xmap;
|
||||
int *ymap;
|
||||
dataType **orderedData;
|
||||
int isOrdered;
|
||||
|
||||
protected:
|
||||
const int nx; /**< Number of pixels in the x direction */
|
||||
const int ny; /**< Number of pixels in the y direction */
|
||||
int dataSize; /**<size of the data constituting one frame */
|
||||
int **dataMap; /**< Array of size nx*ny storing the pointers to the data in the dataset (as offset)*/
|
||||
dataType **dataMask; /**< Array of size nx*ny storing the polarity of the data in the dataset (should be 0 if no inversion is required, 0xffffffff is inversion is required) */
|
||||
int **dataROIMask; /**< Array of size nx*ny 1 if channel is good (or in the ROI), 0 if bad channel (or out of ROI) */
|
||||
int *xmap;
|
||||
int *ymap;
|
||||
dataType **orderedData;
|
||||
int isOrdered;
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
|
||||
|
||||
General slsDetectors data structure. Works for data acquired using the slsDetectorReceiver. Can be generalized to other detectors (many virtual funcs).
|
||||
public:
|
||||
/**
|
||||
|
||||
Constructor (no error checking if datasize and offsets are compatible!)
|
||||
\param npx number of pixels in the x direction
|
||||
\param npy number of pixels in the y direction (1 for strips)
|
||||
\param dsize size of the data
|
||||
\param dMap array of size nx*ny storing the pointers to the data in the dataset (as offset)
|
||||
\param dMask Array of size nx*ny storing the polarity of the data in the dataset (should be 0 if no inversion is required, 0xffffffff is inversion is required)
|
||||
\param dROI Array of size nx*ny. The elements are 1s if the channel is good or in the ROI, 0 is bad or out of the ROI. NULL (default) means all 1s.
|
||||
|
||||
*/
|
||||
slsDetectorData(int npx, int npy, int dsize, int **dMap=NULL, dataType **dMask=NULL, int **dROI=NULL): nx(npx), ny(npy), dataSize(dsize), orderedData(NULL), isOrdered(0) {
|
||||
|
||||
int el=dsize/sizeof(dataType);
|
||||
xmap=new int[el];
|
||||
ymap=new int[el];
|
||||
|
||||
|
||||
|
||||
orderedData=new dataType*[ny];
|
||||
dataMap=new int*[ny];
|
||||
dataMask=new dataType*[ny];
|
||||
dataROIMask=new int*[ny];
|
||||
for(int i = 0; i < ny; i++) {
|
||||
dataMap[i] = new int[nx];
|
||||
orderedData[i]=new dataType[nx];
|
||||
dataMask[i] = new dataType[nx];
|
||||
dataROIMask[i] = new int[nx];
|
||||
for (int j=0; j<nx; j++)
|
||||
dataROIMask[i][j]=1;
|
||||
|
||||
}
|
||||
|
||||
for (int ip=0; ip<el; ip++){
|
||||
xmap[ip]=-1;
|
||||
ymap[ip]=-1;
|
||||
}
|
||||
|
||||
setDataMap(dMap);
|
||||
setDataMask(dMask);
|
||||
setDataROIMask(dROI);
|
||||
|
||||
}
|
||||
|
||||
virtual ~slsDetectorData() {
|
||||
for(int i = 0; i < ny; i++) {
|
||||
delete [] dataMap[i];
|
||||
delete [] dataMask[i];
|
||||
delete [] dataROIMask[i];
|
||||
delete [] orderedData[i];
|
||||
General slsDetectors data structure. Works for data acquired using the
|
||||
slsDetectorReceiver. Can be generalized to other detectors (many virtual
|
||||
funcs).
|
||||
|
||||
Constructor (no error checking if datasize and offsets are compatible!)
|
||||
\param npx number of pixels in the x direction
|
||||
\param npy number of pixels in the y direction (1 for strips)
|
||||
\param dsize size of the data
|
||||
\param dMap array of size nx*ny storing the pointers to the data in the
|
||||
dataset (as offset) \param dMask Array of size nx*ny storing the polarity of
|
||||
the data in the dataset (should be 0 if no inversion is required, 0xffffffff
|
||||
is inversion is required) \param dROI Array of size nx*ny. The elements are
|
||||
1s if the channel is good or in the ROI, 0 is bad or out of the ROI. NULL
|
||||
(default) means all 1s.
|
||||
|
||||
*/
|
||||
slsDetectorData(int npx, int npy, int dsize, int **dMap = NULL,
|
||||
dataType **dMask = NULL, int **dROI = NULL)
|
||||
: nx(npx), ny(npy), dataSize(dsize), orderedData(NULL), isOrdered(0) {
|
||||
|
||||
int el = dsize / sizeof(dataType);
|
||||
xmap = new int[el];
|
||||
ymap = new int[el];
|
||||
|
||||
orderedData = new dataType *[ny];
|
||||
dataMap = new int *[ny];
|
||||
dataMask = new dataType *[ny];
|
||||
dataROIMask = new int *[ny];
|
||||
for (int i = 0; i < ny; i++) {
|
||||
dataMap[i] = new int[nx];
|
||||
orderedData[i] = new dataType[nx];
|
||||
dataMask[i] = new dataType[nx];
|
||||
dataROIMask[i] = new int[nx];
|
||||
for (int j = 0; j < nx; j++)
|
||||
dataROIMask[i][j] = 1;
|
||||
}
|
||||
|
||||
for (int ip = 0; ip < el; ip++) {
|
||||
xmap[ip] = -1;
|
||||
ymap[ip] = -1;
|
||||
}
|
||||
|
||||
setDataMap(dMap);
|
||||
setDataMask(dMask);
|
||||
setDataROIMask(dROI);
|
||||
}
|
||||
delete [] dataMap;
|
||||
delete [] dataMask;
|
||||
delete [] dataROIMask;
|
||||
delete [] orderedData;
|
||||
delete [] xmap;
|
||||
delete [] ymap;
|
||||
};
|
||||
|
||||
virtual int getPointer(int ix,int iy) {return dataMap[iy][ix];};
|
||||
/**
|
||||
defines the data map (as offset) - no error checking if datasize and offsets are compatible!
|
||||
\param dMap array of size nx*ny storing the pointers to the data in the dataset (as offset). If NULL (default),the data are arranged as if read out row by row (dataMap[iy][ix]=(iy*nx+ix)*sizeof(dataType);)
|
||||
*/
|
||||
void setDataMap(int **dMap=NULL) {
|
||||
|
||||
int ip=0;
|
||||
int ix, iy;
|
||||
if (dMap==NULL) {
|
||||
for (iy=0; iy<ny; iy++) {
|
||||
for (ix=0; ix<nx; ix++) {
|
||||
dataMap[iy][ix]=(iy*nx+ix)*sizeof(dataType);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
//cout << "set dmap "<< dataMap << " " << dMap << endl;
|
||||
for (iy=0; iy<ny; iy++){
|
||||
// cout << iy << endl;
|
||||
for (ix=0; ix<nx; ix++) {
|
||||
dataMap[iy][ix]=dMap[iy][ix];
|
||||
// cout << ix << " " << iy << endl;
|
||||
/*ip=dataMap[ix][iy]/sizeof(dataType);
|
||||
xmap[ip]=ix;
|
||||
ymap[ip]=iy;Annaa*/
|
||||
}
|
||||
}
|
||||
|
||||
virtual ~slsDetectorData() {
|
||||
for (int i = 0; i < ny; i++) {
|
||||
delete[] dataMap[i];
|
||||
delete[] dataMask[i];
|
||||
delete[] dataROIMask[i];
|
||||
delete[] orderedData[i];
|
||||
}
|
||||
delete[] dataMap;
|
||||
delete[] dataMask;
|
||||
delete[] dataROIMask;
|
||||
delete[] orderedData;
|
||||
delete[] xmap;
|
||||
delete[] ymap;
|
||||
};
|
||||
|
||||
virtual int getPointer(int ix, int iy) { return dataMap[iy][ix]; };
|
||||
/**
|
||||
defines the data map (as offset) - no error checking if datasize and
|
||||
offsets are compatible! \param dMap array of size nx*ny storing the
|
||||
pointers to the data in the dataset (as offset). If NULL (default),the
|
||||
data are arranged as if read out row by row
|
||||
(dataMap[iy][ix]=(iy*nx+ix)*sizeof(dataType);)
|
||||
*/
|
||||
void setDataMap(int **dMap = NULL) {
|
||||
|
||||
int ip = 0;
|
||||
int ix, iy;
|
||||
if (dMap == NULL) {
|
||||
for (iy = 0; iy < ny; iy++) {
|
||||
for (ix = 0; ix < nx; ix++) {
|
||||
dataMap[iy][ix] = (iy * nx + ix) * sizeof(dataType);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// cout << "set dmap "<< dataMap << " " << dMap << endl;
|
||||
for (iy = 0; iy < ny; iy++) {
|
||||
// cout << iy << endl;
|
||||
for (ix = 0; ix < nx; ix++) {
|
||||
dataMap[iy][ix] = dMap[iy][ix];
|
||||
// cout << ix << " " << iy << endl;
|
||||
/*ip=dataMap[ix][iy]/sizeof(dataType);
|
||||
xmap[ip]=ix;
|
||||
ymap[ip]=iy;Annaa*/
|
||||
}
|
||||
}
|
||||
}
|
||||
for (iy = 0; iy < ny; iy++) {
|
||||
for (ix = 0; ix < nx; ix++) {
|
||||
ip = dataMap[iy][ix] / sizeof(dataType);
|
||||
xmap[ip] = ix;
|
||||
ymap[ip] = iy;
|
||||
}
|
||||
}
|
||||
|
||||
// cout << "nx:" <<nx << " ny:" << ny << endl;
|
||||
};
|
||||
|
||||
/**
|
||||
defines the data mask i.e. the polarity of the data
|
||||
\param dMask Array of size nx*ny storing the polarity of the data in the
|
||||
dataset (should be 0 if no inversion is required, 0xffffffff is inversion
|
||||
is required)
|
||||
|
||||
*/
|
||||
void setDataMask(dataType **dMask = NULL) {
|
||||
|
||||
if (dMask != NULL) {
|
||||
|
||||
for (int iy = 0; iy < ny; iy++)
|
||||
for (int ix = 0; ix < nx; ix++)
|
||||
dataMask[iy][ix] = dMask[iy][ix];
|
||||
} else {
|
||||
for (int iy = 0; iy < ny; iy++)
|
||||
for (int ix = 0; ix < nx; ix++)
|
||||
dataMask[iy][ix] = 0;
|
||||
}
|
||||
};
|
||||
/**
|
||||
defines the region of interest and/or the bad channels mask
|
||||
\param dROI Array of size nx*ny. The lements are 1s if the channel is
|
||||
good or in the ROI, 0 is bad or out of the ROI. NULL (default) means all
|
||||
1s.
|
||||
|
||||
*/
|
||||
void setDataROIMask(int **dROI = NULL) {
|
||||
|
||||
if (dROI != NULL) {
|
||||
|
||||
for (int iy = 0; iy < ny; iy++)
|
||||
for (int ix = 0; ix < nx; ix++)
|
||||
dataROIMask[iy][ix] = dROI[iy][ix];
|
||||
} else {
|
||||
|
||||
for (int iy = 0; iy < ny; iy++)
|
||||
for (int ix = 0; ix < nx; ix++)
|
||||
dataROIMask[iy][ix] = 1;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
Define bad channel or roi mask for a single channel
|
||||
\param ix channel x coordinate
|
||||
\param iy channel y coordinate (1 for strips)
|
||||
\param i 1 if pixel is good (or in the roi), 0 if bad
|
||||
\returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
|
||||
*/
|
||||
int setGood(int ix, int iy, int i = 1) {
|
||||
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny)
|
||||
dataROIMask[iy][ix] = i;
|
||||
return isGood(ix, iy);
|
||||
};
|
||||
/**
|
||||
Define bad channel or roi mask for a single channel
|
||||
\param ix channel x coordinate
|
||||
\param iy channel y coordinate (1 for strips)
|
||||
\returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
|
||||
*/
|
||||
int isGood(int ix, int iy) {
|
||||
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny)
|
||||
return dataROIMask[iy][ix];
|
||||
else
|
||||
return -1;
|
||||
};
|
||||
|
||||
/**
|
||||
Returns detector size in x,y
|
||||
\param npx reference to number of channels in x
|
||||
\param npy reference to number of channels in y (will be 1 for strips)
|
||||
\returns total number of channels
|
||||
*/
|
||||
int getDetectorSize(int &npx, int &npy) {
|
||||
npx = nx;
|
||||
npy = ny;
|
||||
return nx * ny;
|
||||
};
|
||||
|
||||
/** Returns the size of the data frame */
|
||||
int getDataSize() { return dataSize; };
|
||||
|
||||
/** changes the size of the data frame */
|
||||
int setDataSize(int d) {
|
||||
dataSize = d;
|
||||
return dataSize;
|
||||
};
|
||||
|
||||
virtual void getPixel(int ip, int &x, int &y) {
|
||||
x = xmap[ip];
|
||||
y = ymap[ip];
|
||||
};
|
||||
|
||||
virtual dataType **getData(char *ptr, int dsize = -1) {
|
||||
int el = dsize / sizeof(dataType);
|
||||
// dataType **data;
|
||||
int ix, iy;
|
||||
// data=new dataType*[ny];
|
||||
// for(int i = 0; i < ny; i++) {
|
||||
// data[i]=new dataType[nx];
|
||||
// }
|
||||
isOrdered = 0;
|
||||
if (dsize <= 0 || dsize > dataSize)
|
||||
dsize = dataSize;
|
||||
|
||||
for (int ip = 0; ip < (el); ip++) {
|
||||
getPixel(ip, ix, iy);
|
||||
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny) {
|
||||
// data[iy][ix]=getChannel(ptr,ix,iy);
|
||||
orderedData[iy][ix] = *(ptr + ip); // getChannel(ptr,ix,iy);
|
||||
}
|
||||
}
|
||||
isOrdered = 1;
|
||||
return orderedData;
|
||||
}
|
||||
for (iy=0; iy<ny; iy++){
|
||||
for (ix=0; ix<nx; ix++) {
|
||||
ip=dataMap[iy][ix]/sizeof(dataType);
|
||||
xmap[ip]=ix;
|
||||
ymap[ip]=iy;
|
||||
}
|
||||
}
|
||||
|
||||
// cout << "nx:" <<nx << " ny:" << ny << endl;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
defines the data mask i.e. the polarity of the data
|
||||
\param dMask Array of size nx*ny storing the polarity of the data in the dataset (should be 0 if no inversion is required, 0xffffffff is inversion is required)
|
||||
void newFrame() { isOrdered = 0; };
|
||||
|
||||
*/
|
||||
void setDataMask(dataType **dMask=NULL){
|
||||
|
||||
if (dMask!=NULL) {
|
||||
|
||||
for (int iy=0; iy<ny; iy++)
|
||||
for (int ix=0; ix<nx; ix++)
|
||||
dataMask[iy][ix]=dMask[iy][ix];
|
||||
} else {
|
||||
for (int iy=0; iy<ny; iy++)
|
||||
for (int ix=0; ix<nx; ix++)
|
||||
dataMask[iy][ix]=0;
|
||||
}
|
||||
};
|
||||
/**
|
||||
defines the region of interest and/or the bad channels mask
|
||||
\param dROI Array of size nx*ny. The lements are 1s if the channel is good or in the ROI, 0 is bad or out of the ROI. NULL (default) means all 1s.
|
||||
|
||||
*/
|
||||
void setDataROIMask(int **dROI=NULL){
|
||||
|
||||
if (dROI!=NULL) {
|
||||
|
||||
for (int iy=0; iy<ny; iy++)
|
||||
for (int ix=0; ix<nx; ix++)
|
||||
dataROIMask[iy][ix]=dROI[iy][ix];
|
||||
} else {
|
||||
|
||||
for (int iy=0; iy<ny; iy++)
|
||||
for (int ix=0; ix<nx; ix++)
|
||||
dataROIMask[iy][ix]=1;
|
||||
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
Define bad channel or roi mask for a single channel
|
||||
\param ix channel x coordinate
|
||||
\param iy channel y coordinate (1 for strips)
|
||||
\param i 1 if pixel is good (or in the roi), 0 if bad
|
||||
\returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
|
||||
*/
|
||||
int setGood(int ix, int iy, int i=1) { if (ix>=0 && ix<nx && iy>=0 && iy<ny) dataROIMask[iy][ix]=i; return isGood(ix,iy);};
|
||||
/**
|
||||
Define bad channel or roi mask for a single channel
|
||||
\param ix channel x coordinate
|
||||
\param iy channel y coordinate (1 for strips)
|
||||
\returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
|
||||
*/
|
||||
int isGood(int ix, int iy) { if (ix>=0 && ix<nx && iy>=0 && iy<ny) return dataROIMask[iy][ix]; else return -1;};
|
||||
|
||||
/**
|
||||
Returns detector size in x,y
|
||||
\param npx reference to number of channels in x
|
||||
\param npy reference to number of channels in y (will be 1 for strips)
|
||||
\returns total number of channels
|
||||
*/
|
||||
int getDetectorSize(int &npx, int &npy){npx=nx; npy=ny; return nx*ny;};
|
||||
|
||||
/** Returns the size of the data frame */
|
||||
int getDataSize() {return dataSize;};
|
||||
|
||||
/** changes the size of the data frame */
|
||||
int setDataSize(int d) {dataSize=d; return dataSize;};
|
||||
virtual double **getImage(char *ptr, int dsize = -1) {
|
||||
|
||||
|
||||
virtual void getPixel(int ip, int &x, int &y) {x=xmap[ip]; y=ymap[ip];};
|
||||
|
||||
virtual dataType **getData(char *ptr, int dsize=-1) {
|
||||
int el=dsize/sizeof(dataType);
|
||||
//dataType **data;
|
||||
int ix,iy;
|
||||
//data=new dataType*[ny];
|
||||
//for(int i = 0; i < ny; i++) {
|
||||
// data[i]=new dataType[nx];
|
||||
//}
|
||||
isOrdered=0;
|
||||
if (dsize<=0 || dsize>dataSize) dsize=dataSize;
|
||||
double **data;
|
||||
int ix, iy;
|
||||
data = new double *[ny];
|
||||
for (int i = 0; i < ny; i++) {
|
||||
data[i] = new double[nx];
|
||||
}
|
||||
int el = dsize / sizeof(dataType);
|
||||
if (dsize <= 0 || dsize > dataSize)
|
||||
dsize = dataSize;
|
||||
for (int ip = 0; ip < el; ip++) {
|
||||
getPixel(ip, ix, iy);
|
||||
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny) {
|
||||
data[iy][ix] = getValue(ptr, ix, iy);
|
||||
}
|
||||
}
|
||||
return data;
|
||||
};
|
||||
|
||||
for (int ip=0; ip<(el); ip++) {
|
||||
getPixel(ip,ix,iy);
|
||||
if (ix>=0 && ix<nx && iy>=0 && iy<ny) {
|
||||
//data[iy][ix]=getChannel(ptr,ix,iy);
|
||||
orderedData[iy][ix]=*(ptr+ip);//getChannel(ptr,ix,iy);
|
||||
}
|
||||
}
|
||||
isOrdered=1;
|
||||
return orderedData;
|
||||
}
|
||||
/**
|
||||
Returns the value of the selected channel for the given dataset. Virtual
|
||||
function, can be overloaded. \param data pointer to the dataset
|
||||
(including headers etc) \param ix pixel number in the x direction \param
|
||||
iy pixel number in the y direction \returns data for the selected
|
||||
channel, with inversion if required
|
||||
|
||||
void newFrame(){isOrdered=0;};
|
||||
*/
|
||||
virtual dataType getChannel(char *data, int ix, int iy = 0) {
|
||||
dataType m = 0, d = 0;
|
||||
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny && dataMap[iy][ix] >= 0 &&
|
||||
dataMap[iy][ix] < dataSize) {
|
||||
// cout << ix << " " << iy << " " ;
|
||||
// cout << dataMap[ix][iy] << " " << (void*)data << " " <<
|
||||
// dataSize<< endl;
|
||||
m = dataMask[iy][ix];
|
||||
if (isOrdered == 0)
|
||||
d = *((dataType *)(data + getPointer(ix, iy)));
|
||||
else
|
||||
d = orderedData[iy][ix];
|
||||
}
|
||||
return d ^ m;
|
||||
};
|
||||
|
||||
virtual double **getImage(char *ptr, int dsize=-1) {
|
||||
|
||||
double **data;
|
||||
int ix,iy;
|
||||
data=new double*[ny];
|
||||
for(int i = 0; i < ny; i++) {
|
||||
data[i]=new double[nx];
|
||||
}
|
||||
int el=dsize/sizeof(dataType);
|
||||
if (dsize<=0 || dsize>dataSize) dsize=dataSize;
|
||||
for (int ip=0; ip<el; ip++) {
|
||||
getPixel(ip,ix,iy);
|
||||
if (ix>=0 && ix<nx && iy>=0 && iy<ny) {
|
||||
data[iy][ix]=getValue(ptr,ix,iy);
|
||||
}
|
||||
}
|
||||
return data;
|
||||
};
|
||||
|
||||
/**
|
||||
Returns the value of the selected channel for the given dataset. Virtual function, can be overloaded.
|
||||
\param data pointer to the dataset (including headers etc)
|
||||
\param ix pixel number in the x direction
|
||||
\param iy pixel number in the y direction
|
||||
\returns data for the selected channel, with inversion if required
|
||||
virtual int getGain(char *data, int ix, int iy = 0) { return 0; };
|
||||
|
||||
*/
|
||||
virtual dataType getChannel(char *data, int ix, int iy=0) {
|
||||
dataType m=0, d=0;
|
||||
if (ix>=0 && ix<nx && iy>=0 && iy<ny && dataMap[iy][ix]>=0 && dataMap[iy][ix]<dataSize) {
|
||||
// cout << ix << " " << iy << " " ;
|
||||
//cout << dataMap[ix][iy] << " " << (void*)data << " " << dataSize<< endl;
|
||||
m=dataMask[iy][ix];
|
||||
if (isOrdered==0)
|
||||
d=*((dataType*)(data+getPointer(ix,iy)));
|
||||
else
|
||||
d=orderedData[iy][ix];
|
||||
}
|
||||
return d^m;
|
||||
};
|
||||
/**
|
||||
|
||||
virtual int getGain(char *data, int ix, int iy=0){return 0;};
|
||||
Returns the value of the selected channel for the given dataset. Virtual
|
||||
function, can be overloaded. \param data pointer to the dataset
|
||||
(including headers etc) \param ix pixel number in the x direction \param
|
||||
iy pixel number in the y direction \returns data for the selected
|
||||
channel, with inversion if required or -1 if its a missing packet
|
||||
|
||||
/**
|
||||
*/
|
||||
|
||||
Returns the value of the selected channel for the given dataset. Virtual function, can be overloaded.
|
||||
\param data pointer to the dataset (including headers etc)
|
||||
\param ix pixel number in the x direction
|
||||
\param iy pixel number in the y direction
|
||||
\returns data for the selected channel, with inversion if required or -1 if its a missing packet
|
||||
virtual int getChannelwithMissingPackets(char *data, int ix, int iy) {
|
||||
return 0;
|
||||
};
|
||||
|
||||
*/
|
||||
|
||||
virtual int getChannelwithMissingPackets(char *data, int ix, int iy) {
|
||||
return 0;
|
||||
};
|
||||
|
||||
/**
|
||||
Returns the value of the selected channel for the given dataset as
|
||||
double. \param data pointer to the dataset (including headers etc) \param
|
||||
ix pixel number in the x direction \param iy pixel number in the y
|
||||
direction \returns data for the selected channel, with inversion if
|
||||
required as double
|
||||
|
||||
*/
|
||||
virtual double getValue(char *data, int ix, int iy = 0) {
|
||||
/* cout << " x "<< ix << " y"<< iy << " val " << getChannel(data, ix,
|
||||
* iy)<< endl;*/
|
||||
return (double)getChannel(data, ix, iy);
|
||||
};
|
||||
|
||||
/**
|
||||
Returns the frame number for the given dataset. Purely virtual func.
|
||||
\param buff pointer to the dataset
|
||||
\returns frame number
|
||||
|
||||
*/
|
||||
virtual int getFrameNumber(char *buff) = 0;
|
||||
|
||||
/**
|
||||
|
||||
Returns the packet number for the given dataset. purely virtual func
|
||||
\param buff pointer to the dataset
|
||||
\returns packet number number
|
||||
|
||||
|
||||
/**
|
||||
Returns the value of the selected channel for the given dataset as double.
|
||||
\param data pointer to the dataset (including headers etc)
|
||||
\param ix pixel number in the x direction
|
||||
\param iy pixel number in the y direction
|
||||
\returns data for the selected channel, with inversion if required as double
|
||||
virtual int getPacketNumber(char *buff)=0;
|
||||
|
||||
*/
|
||||
virtual double getValue(char *data, int ix, int iy=0) {
|
||||
/* cout << " x "<< ix << " y"<< iy << " val " << getChannel(data, ix, iy)<< endl;*/
|
||||
return (double)getChannel(data, ix, iy);
|
||||
};
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
Returns the frame number for the given dataset. Purely virtual func.
|
||||
\param buff pointer to the dataset
|
||||
\returns frame number
|
||||
|
||||
*/
|
||||
virtual int getFrameNumber(char *buff)=0;
|
||||
|
||||
/**
|
||||
|
||||
Returns the packet number for the given dataset. purely virtual func
|
||||
\param buff pointer to the dataset
|
||||
\returns packet number number
|
||||
/**
|
||||
|
||||
|
||||
virtual int getPacketNumber(char *buff)=0;
|
||||
|
||||
*/
|
||||
|
||||
/**
|
||||
Loops over a memory slot until a complete frame is found (i.e. all
|
||||
packets 0 to nPackets, same frame number). purely virtual func \param
|
||||
data pointer to the memory to be analyzed \param ndata reference to the
|
||||
amount of data found for the frame, in case the frame is incomplete at
|
||||
the end of the memory slot \param dsize size of the memory slot to be
|
||||
analyzed \returns pointer to the beginning of the last good frame (might
|
||||
be incomplete if ndata smaller than dataSize), or NULL if no frame is
|
||||
found
|
||||
|
||||
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
|
||||
\param data pointer to the memory to be analyzed
|
||||
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
|
||||
\param dsize size of the memory slot to be analyzed
|
||||
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
|
||||
|
||||
*/
|
||||
virtual char *findNextFrame(char *data, int &ndata, int dsize)=0;
|
||||
|
||||
|
||||
/**
|
||||
|
||||
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
|
||||
\param filebin input file stream (binary)
|
||||
\returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete
|
||||
*/
|
||||
virtual char *findNextFrame(char *data, int &ndata, int dsize) = 0;
|
||||
|
||||
*/
|
||||
virtual char *readNextFrame(ifstream &filebin)=0;
|
||||
|
||||
/**
|
||||
|
||||
Loops over a file stream until a complete frame is found (i.e. all packets
|
||||
0 to nPackets, same frame number). Can be overloaded for different kind of
|
||||
detectors! \param filebin input file stream (binary) \returns pointer to
|
||||
the begin of the last good frame, NULL if no frame is found or last frame
|
||||
is incomplete
|
||||
|
||||
*/
|
||||
virtual char *readNextFrame(ifstream &filebin) = 0;
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user