mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-06-13 13:27:14 +02:00
Hardcopy of pybind11 instead of using git submodules (#552)
* removed pybind as submodule * added hardcopy of pybind11 2.10.0 * rename pybind11 folder to avoid conflicts when changing branch Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
This commit is contained in:
107
libs/pybind/tests/test_numpy_vectorize.cpp
Normal file
107
libs/pybind/tests/test_numpy_vectorize.cpp
Normal file
@ -0,0 +1,107 @@
|
||||
/*
|
||||
tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
|
||||
arguments
|
||||
|
||||
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
||||
|
||||
All rights reserved. Use of this source code is governed by a
|
||||
BSD-style license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#include <pybind11/numpy.h>
|
||||
|
||||
#include "pybind11_tests.h"
|
||||
|
||||
#include <utility>
|
||||
|
||||
double my_func(int x, float y, double z) {
|
||||
py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
|
||||
return (float) x * y * z;
|
||||
}
|
||||
|
||||
TEST_SUBMODULE(numpy_vectorize, m) {
|
||||
try {
|
||||
py::module_::import("numpy");
|
||||
} catch (const py::error_already_set &) {
|
||||
return;
|
||||
}
|
||||
|
||||
// test_vectorize, test_docs, test_array_collapse
|
||||
// Vectorize all arguments of a function (though non-vector arguments are also allowed)
|
||||
m.def("vectorized_func", py::vectorize(my_func));
|
||||
|
||||
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the
|
||||
// vectorization)
|
||||
m.def("vectorized_func2", [](py::array_t<int> x, py::array_t<float> y, float z) {
|
||||
return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(std::move(x),
|
||||
std::move(y));
|
||||
});
|
||||
|
||||
// Vectorize a complex-valued function
|
||||
m.def("vectorized_func3",
|
||||
py::vectorize([](std::complex<double> c) { return c * std::complex<double>(2.f); }));
|
||||
|
||||
// test_type_selection
|
||||
// NumPy function which only accepts specific data types
|
||||
// A lot of these no lints could be replaced with const refs, and probably should at some
|
||||
// point.
|
||||
m.def("selective_func",
|
||||
[](const py::array_t<int, py::array::c_style> &) { return "Int branch taken."; });
|
||||
m.def("selective_func",
|
||||
[](const py::array_t<float, py::array::c_style> &) { return "Float branch taken."; });
|
||||
m.def("selective_func", [](const py::array_t<std::complex<float>, py::array::c_style> &) {
|
||||
return "Complex float branch taken.";
|
||||
});
|
||||
|
||||
// test_passthrough_arguments
|
||||
// Passthrough test: references and non-pod types should be automatically passed through (in
|
||||
// the function definition below, only `b`, `d`, and `g` are vectorized):
|
||||
struct NonPODClass {
|
||||
explicit NonPODClass(int v) : value{v} {}
|
||||
int value;
|
||||
};
|
||||
py::class_<NonPODClass>(m, "NonPODClass")
|
||||
.def(py::init<int>())
|
||||
.def_readwrite("value", &NonPODClass::value);
|
||||
m.def("vec_passthrough",
|
||||
py::vectorize([](const double *a,
|
||||
double b,
|
||||
// Changing this broke things
|
||||
// NOLINTNEXTLINE(performance-unnecessary-value-param)
|
||||
py::array_t<double> c,
|
||||
const int &d,
|
||||
int &e,
|
||||
NonPODClass f,
|
||||
const double g) { return *a + b + c.at(0) + d + e + f.value + g; }));
|
||||
|
||||
// test_method_vectorization
|
||||
struct VectorizeTestClass {
|
||||
explicit VectorizeTestClass(int v) : value{v} {};
|
||||
float method(int x, float y) const { return y + (float) (x + value); }
|
||||
int value = 0;
|
||||
};
|
||||
py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass");
|
||||
vtc.def(py::init<int>()).def_readwrite("value", &VectorizeTestClass::value);
|
||||
|
||||
// Automatic vectorizing of methods
|
||||
vtc.def("method", py::vectorize(&VectorizeTestClass::method));
|
||||
|
||||
// test_trivial_broadcasting
|
||||
// Internal optimization test for whether the input is trivially broadcastable:
|
||||
py::enum_<py::detail::broadcast_trivial>(m, "trivial")
|
||||
.value("f_trivial", py::detail::broadcast_trivial::f_trivial)
|
||||
.value("c_trivial", py::detail::broadcast_trivial::c_trivial)
|
||||
.value("non_trivial", py::detail::broadcast_trivial::non_trivial);
|
||||
m.def("vectorized_is_trivial",
|
||||
[](const py::array_t<int, py::array::forcecast> &arg1,
|
||||
const py::array_t<float, py::array::forcecast> &arg2,
|
||||
const py::array_t<double, py::array::forcecast> &arg3) {
|
||||
py::ssize_t ndim = 0;
|
||||
std::vector<py::ssize_t> shape;
|
||||
std::array<py::buffer_info, 3> buffers{
|
||||
{arg1.request(), arg2.request(), arg3.request()}};
|
||||
return py::detail::broadcast(buffers, ndim, shape);
|
||||
});
|
||||
|
||||
m.def("add_to", py::vectorize([](NonPODClass &x, int a) { x.value += a; }));
|
||||
}
|
Reference in New Issue
Block a user