Hardcopy of pybind11 instead of using git submodules (#552)

* removed pybind as submodule
* added hardcopy of pybind11 2.10.0
* rename pybind11 folder to avoid conflicts when changing branch

Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
This commit is contained in:
Erik Fröjdh
2022-09-09 10:42:43 +02:00
committed by GitHub
parent 236f00c810
commit c0c8c8e21a
218 changed files with 57649 additions and 7 deletions

View File

@ -0,0 +1,742 @@
/*
pybind11/detail/class.h: Python C API implementation details for py::class_
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "../attr.h"
#include "../options.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
#if !defined(PYPY_VERSION)
# define PYBIND11_BUILTIN_QUALNAME
# define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj)
#else
// In PyPy, we still set __qualname__ so that we can produce reliable function type
// signatures; in CPython this macro expands to nothing:
# define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj) \
setattr((PyObject *) obj, "__qualname__", nameobj)
#endif
inline std::string get_fully_qualified_tp_name(PyTypeObject *type) {
#if !defined(PYPY_VERSION)
return type->tp_name;
#else
auto module_name = handle((PyObject *) type).attr("__module__").cast<std::string>();
if (module_name == PYBIND11_BUILTINS_MODULE)
return type->tp_name;
else
return std::move(module_name) + "." + type->tp_name;
#endif
}
inline PyTypeObject *type_incref(PyTypeObject *type) {
Py_INCREF(type);
return type;
}
#if !defined(PYPY_VERSION)
/// `pybind11_static_property.__get__()`: Always pass the class instead of the instance.
extern "C" inline PyObject *pybind11_static_get(PyObject *self, PyObject * /*ob*/, PyObject *cls) {
return PyProperty_Type.tp_descr_get(self, cls, cls);
}
/// `pybind11_static_property.__set__()`: Just like the above `__get__()`.
extern "C" inline int pybind11_static_set(PyObject *self, PyObject *obj, PyObject *value) {
PyObject *cls = PyType_Check(obj) ? obj : (PyObject *) Py_TYPE(obj);
return PyProperty_Type.tp_descr_set(self, cls, value);
}
/** A `static_property` is the same as a `property` but the `__get__()` and `__set__()`
methods are modified to always use the object type instead of a concrete instance.
Return value: New reference. */
inline PyTypeObject *make_static_property_type() {
constexpr auto *name = "pybind11_static_property";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto *heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
if (!heap_type) {
pybind11_fail("make_static_property_type(): error allocating type!");
}
heap_type->ht_name = name_obj.inc_ref().ptr();
# ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = name_obj.inc_ref().ptr();
# endif
auto *type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyProperty_Type);
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_descr_get = pybind11_static_get;
type->tp_descr_set = pybind11_static_set;
if (PyType_Ready(type) < 0) {
pybind11_fail("make_static_property_type(): failure in PyType_Ready()!");
}
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
return type;
}
#else // PYPY
/** PyPy has some issues with the above C API, so we evaluate Python code instead.
This function will only be called once so performance isn't really a concern.
Return value: New reference. */
inline PyTypeObject *make_static_property_type() {
auto d = dict();
PyObject *result = PyRun_String(R"(\
class pybind11_static_property(property):
def __get__(self, obj, cls):
return property.__get__(self, cls, cls)
def __set__(self, obj, value):
cls = obj if isinstance(obj, type) else type(obj)
property.__set__(self, cls, value)
)",
Py_file_input,
d.ptr(),
d.ptr());
if (result == nullptr)
throw error_already_set();
Py_DECREF(result);
return (PyTypeObject *) d["pybind11_static_property"].cast<object>().release().ptr();
}
#endif // PYPY
/** Types with static properties need to handle `Type.static_prop = x` in a specific way.
By default, Python replaces the `static_property` itself, but for wrapped C++ types
we need to call `static_property.__set__()` in order to propagate the new value to
the underlying C++ data structure. */
extern "C" inline int pybind11_meta_setattro(PyObject *obj, PyObject *name, PyObject *value) {
// Use `_PyType_Lookup()` instead of `PyObject_GetAttr()` in order to get the raw
// descriptor (`property`) instead of calling `tp_descr_get` (`property.__get__()`).
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
// The following assignment combinations are possible:
// 1. `Type.static_prop = value` --> descr_set: `Type.static_prop.__set__(value)`
// 2. `Type.static_prop = other_static_prop` --> setattro: replace existing `static_prop`
// 3. `Type.regular_attribute = value` --> setattro: regular attribute assignment
auto *const static_prop = (PyObject *) get_internals().static_property_type;
const auto call_descr_set = (descr != nullptr) && (value != nullptr)
&& (PyObject_IsInstance(descr, static_prop) != 0)
&& (PyObject_IsInstance(value, static_prop) == 0);
if (call_descr_set) {
// Call `static_property.__set__()` instead of replacing the `static_property`.
#if !defined(PYPY_VERSION)
return Py_TYPE(descr)->tp_descr_set(descr, obj, value);
#else
if (PyObject *result = PyObject_CallMethod(descr, "__set__", "OO", obj, value)) {
Py_DECREF(result);
return 0;
} else {
return -1;
}
#endif
} else {
// Replace existing attribute.
return PyType_Type.tp_setattro(obj, name, value);
}
}
/**
* Python 3's PyInstanceMethod_Type hides itself via its tp_descr_get, which prevents aliasing
* methods via cls.attr("m2") = cls.attr("m1"): instead the tp_descr_get returns a plain function,
* when called on a class, or a PyMethod, when called on an instance. Override that behaviour here
* to do a special case bypass for PyInstanceMethod_Types.
*/
extern "C" inline PyObject *pybind11_meta_getattro(PyObject *obj, PyObject *name) {
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
if (descr && PyInstanceMethod_Check(descr)) {
Py_INCREF(descr);
return descr;
}
return PyType_Type.tp_getattro(obj, name);
}
/// metaclass `__call__` function that is used to create all pybind11 objects.
extern "C" inline PyObject *pybind11_meta_call(PyObject *type, PyObject *args, PyObject *kwargs) {
// use the default metaclass call to create/initialize the object
PyObject *self = PyType_Type.tp_call(type, args, kwargs);
if (self == nullptr) {
return nullptr;
}
// This must be a pybind11 instance
auto *instance = reinterpret_cast<detail::instance *>(self);
// Ensure that the base __init__ function(s) were called
for (const auto &vh : values_and_holders(instance)) {
if (!vh.holder_constructed()) {
PyErr_Format(PyExc_TypeError,
"%.200s.__init__() must be called when overriding __init__",
get_fully_qualified_tp_name(vh.type->type).c_str());
Py_DECREF(self);
return nullptr;
}
}
return self;
}
/// Cleanup the type-info for a pybind11-registered type.
extern "C" inline void pybind11_meta_dealloc(PyObject *obj) {
auto *type = (PyTypeObject *) obj;
auto &internals = get_internals();
// A pybind11-registered type will:
// 1) be found in internals.registered_types_py
// 2) have exactly one associated `detail::type_info`
auto found_type = internals.registered_types_py.find(type);
if (found_type != internals.registered_types_py.end() && found_type->second.size() == 1
&& found_type->second[0]->type == type) {
auto *tinfo = found_type->second[0];
auto tindex = std::type_index(*tinfo->cpptype);
internals.direct_conversions.erase(tindex);
if (tinfo->module_local) {
get_local_internals().registered_types_cpp.erase(tindex);
} else {
internals.registered_types_cpp.erase(tindex);
}
internals.registered_types_py.erase(tinfo->type);
// Actually just `std::erase_if`, but that's only available in C++20
auto &cache = internals.inactive_override_cache;
for (auto it = cache.begin(), last = cache.end(); it != last;) {
if (it->first == (PyObject *) tinfo->type) {
it = cache.erase(it);
} else {
++it;
}
}
delete tinfo;
}
PyType_Type.tp_dealloc(obj);
}
/** This metaclass is assigned by default to all pybind11 types and is required in order
for static properties to function correctly. Users may override this using `py::metaclass`.
Return value: New reference. */
inline PyTypeObject *make_default_metaclass() {
constexpr auto *name = "pybind11_type";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto *heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
if (!heap_type) {
pybind11_fail("make_default_metaclass(): error allocating metaclass!");
}
heap_type->ht_name = name_obj.inc_ref().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto *type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyType_Type);
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_call = pybind11_meta_call;
type->tp_setattro = pybind11_meta_setattro;
type->tp_getattro = pybind11_meta_getattro;
type->tp_dealloc = pybind11_meta_dealloc;
if (PyType_Ready(type) < 0) {
pybind11_fail("make_default_metaclass(): failure in PyType_Ready()!");
}
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
return type;
}
/// For multiple inheritance types we need to recursively register/deregister base pointers for any
/// base classes with pointers that are difference from the instance value pointer so that we can
/// correctly recognize an offset base class pointer. This calls a function with any offset base
/// ptrs.
inline void traverse_offset_bases(void *valueptr,
const detail::type_info *tinfo,
instance *self,
bool (*f)(void * /*parentptr*/, instance * /*self*/)) {
for (handle h : reinterpret_borrow<tuple>(tinfo->type->tp_bases)) {
if (auto *parent_tinfo = get_type_info((PyTypeObject *) h.ptr())) {
for (auto &c : parent_tinfo->implicit_casts) {
if (c.first == tinfo->cpptype) {
auto *parentptr = c.second(valueptr);
if (parentptr != valueptr) {
f(parentptr, self);
}
traverse_offset_bases(parentptr, parent_tinfo, self, f);
break;
}
}
}
}
}
inline bool register_instance_impl(void *ptr, instance *self) {
get_internals().registered_instances.emplace(ptr, self);
return true; // unused, but gives the same signature as the deregister func
}
inline bool deregister_instance_impl(void *ptr, instance *self) {
auto &registered_instances = get_internals().registered_instances;
auto range = registered_instances.equal_range(ptr);
for (auto it = range.first; it != range.second; ++it) {
if (self == it->second) {
registered_instances.erase(it);
return true;
}
}
return false;
}
inline void register_instance(instance *self, void *valptr, const type_info *tinfo) {
register_instance_impl(valptr, self);
if (!tinfo->simple_ancestors) {
traverse_offset_bases(valptr, tinfo, self, register_instance_impl);
}
}
inline bool deregister_instance(instance *self, void *valptr, const type_info *tinfo) {
bool ret = deregister_instance_impl(valptr, self);
if (!tinfo->simple_ancestors) {
traverse_offset_bases(valptr, tinfo, self, deregister_instance_impl);
}
return ret;
}
/// Instance creation function for all pybind11 types. It allocates the internal instance layout
/// for holding C++ objects and holders. Allocation is done lazily (the first time the instance is
/// cast to a reference or pointer), and initialization is done by an `__init__` function.
inline PyObject *make_new_instance(PyTypeObject *type) {
#if defined(PYPY_VERSION)
// PyPy gets tp_basicsize wrong (issue 2482) under multiple inheritance when the first
// inherited object is a plain Python type (i.e. not derived from an extension type). Fix it.
ssize_t instance_size = static_cast<ssize_t>(sizeof(instance));
if (type->tp_basicsize < instance_size) {
type->tp_basicsize = instance_size;
}
#endif
PyObject *self = type->tp_alloc(type, 0);
auto *inst = reinterpret_cast<instance *>(self);
// Allocate the value/holder internals:
inst->allocate_layout();
return self;
}
/// Instance creation function for all pybind11 types. It only allocates space for the
/// C++ object, but doesn't call the constructor -- an `__init__` function must do that.
extern "C" inline PyObject *pybind11_object_new(PyTypeObject *type, PyObject *, PyObject *) {
return make_new_instance(type);
}
/// An `__init__` function constructs the C++ object. Users should provide at least one
/// of these using `py::init` or directly with `.def(__init__, ...)`. Otherwise, the
/// following default function will be used which simply throws an exception.
extern "C" inline int pybind11_object_init(PyObject *self, PyObject *, PyObject *) {
PyTypeObject *type = Py_TYPE(self);
std::string msg = get_fully_qualified_tp_name(type) + ": No constructor defined!";
PyErr_SetString(PyExc_TypeError, msg.c_str());
return -1;
}
inline void add_patient(PyObject *nurse, PyObject *patient) {
auto &internals = get_internals();
auto *instance = reinterpret_cast<detail::instance *>(nurse);
instance->has_patients = true;
Py_INCREF(patient);
internals.patients[nurse].push_back(patient);
}
inline void clear_patients(PyObject *self) {
auto *instance = reinterpret_cast<detail::instance *>(self);
auto &internals = get_internals();
auto pos = internals.patients.find(self);
assert(pos != internals.patients.end());
// Clearing the patients can cause more Python code to run, which
// can invalidate the iterator. Extract the vector of patients
// from the unordered_map first.
auto patients = std::move(pos->second);
internals.patients.erase(pos);
instance->has_patients = false;
for (PyObject *&patient : patients) {
Py_CLEAR(patient);
}
}
/// Clears all internal data from the instance and removes it from registered instances in
/// preparation for deallocation.
inline void clear_instance(PyObject *self) {
auto *instance = reinterpret_cast<detail::instance *>(self);
// Deallocate any values/holders, if present:
for (auto &v_h : values_and_holders(instance)) {
if (v_h) {
// We have to deregister before we call dealloc because, for virtual MI types, we still
// need to be able to get the parent pointers.
if (v_h.instance_registered()
&& !deregister_instance(instance, v_h.value_ptr(), v_h.type)) {
pybind11_fail(
"pybind11_object_dealloc(): Tried to deallocate unregistered instance!");
}
if (instance->owned || v_h.holder_constructed()) {
v_h.type->dealloc(v_h);
}
}
}
// Deallocate the value/holder layout internals:
instance->deallocate_layout();
if (instance->weakrefs) {
PyObject_ClearWeakRefs(self);
}
PyObject **dict_ptr = _PyObject_GetDictPtr(self);
if (dict_ptr) {
Py_CLEAR(*dict_ptr);
}
if (instance->has_patients) {
clear_patients(self);
}
}
/// Instance destructor function for all pybind11 types. It calls `type_info.dealloc`
/// to destroy the C++ object itself, while the rest is Python bookkeeping.
extern "C" inline void pybind11_object_dealloc(PyObject *self) {
clear_instance(self);
auto *type = Py_TYPE(self);
type->tp_free(self);
#if PY_VERSION_HEX < 0x03080000
// `type->tp_dealloc != pybind11_object_dealloc` means that we're being called
// as part of a derived type's dealloc, in which case we're not allowed to decref
// the type here. For cross-module compatibility, we shouldn't compare directly
// with `pybind11_object_dealloc`, but with the common one stashed in internals.
auto pybind11_object_type = (PyTypeObject *) get_internals().instance_base;
if (type->tp_dealloc == pybind11_object_type->tp_dealloc)
Py_DECREF(type);
#else
// This was not needed before Python 3.8 (Python issue 35810)
// https://github.com/pybind/pybind11/issues/1946
Py_DECREF(type);
#endif
}
std::string error_string();
/** Create the type which can be used as a common base for all classes. This is
needed in order to satisfy Python's requirements for multiple inheritance.
Return value: New reference. */
inline PyObject *make_object_base_type(PyTypeObject *metaclass) {
constexpr auto *name = "pybind11_object";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto *heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
if (!heap_type) {
pybind11_fail("make_object_base_type(): error allocating type!");
}
heap_type->ht_name = name_obj.inc_ref().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto *type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyBaseObject_Type);
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_new = pybind11_object_new;
type->tp_init = pybind11_object_init;
type->tp_dealloc = pybind11_object_dealloc;
/* Support weak references (needed for the keep_alive feature) */
type->tp_weaklistoffset = offsetof(instance, weakrefs);
if (PyType_Ready(type) < 0) {
pybind11_fail("PyType_Ready failed in make_object_base_type(): " + error_string());
}
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
assert(!PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
return (PyObject *) heap_type;
}
/// dynamic_attr: Support for `d = instance.__dict__`.
extern "C" inline PyObject *pybind11_get_dict(PyObject *self, void *) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
if (!dict) {
dict = PyDict_New();
}
Py_XINCREF(dict);
return dict;
}
/// dynamic_attr: Support for `instance.__dict__ = dict()`.
extern "C" inline int pybind11_set_dict(PyObject *self, PyObject *new_dict, void *) {
if (!PyDict_Check(new_dict)) {
PyErr_Format(PyExc_TypeError,
"__dict__ must be set to a dictionary, not a '%.200s'",
get_fully_qualified_tp_name(Py_TYPE(new_dict)).c_str());
return -1;
}
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_INCREF(new_dict);
Py_CLEAR(dict);
dict = new_dict;
return 0;
}
/// dynamic_attr: Allow the garbage collector to traverse the internal instance `__dict__`.
extern "C" inline int pybind11_traverse(PyObject *self, visitproc visit, void *arg) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_VISIT(dict);
// https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_traverse
#if PY_VERSION_HEX >= 0x03090000
Py_VISIT(Py_TYPE(self));
#endif
return 0;
}
/// dynamic_attr: Allow the GC to clear the dictionary.
extern "C" inline int pybind11_clear(PyObject *self) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_CLEAR(dict);
return 0;
}
/// Give instances of this type a `__dict__` and opt into garbage collection.
inline void enable_dynamic_attributes(PyHeapTypeObject *heap_type) {
auto *type = &heap_type->ht_type;
type->tp_flags |= Py_TPFLAGS_HAVE_GC;
#if PY_VERSION_HEX < 0x030B0000
type->tp_dictoffset = type->tp_basicsize; // place dict at the end
type->tp_basicsize += (ssize_t) sizeof(PyObject *); // and allocate enough space for it
#else
type->tp_flags |= Py_TPFLAGS_MANAGED_DICT;
#endif
type->tp_traverse = pybind11_traverse;
type->tp_clear = pybind11_clear;
static PyGetSetDef getset[] = {
{const_cast<char *>("__dict__"), pybind11_get_dict, pybind11_set_dict, nullptr, nullptr},
{nullptr, nullptr, nullptr, nullptr, nullptr}};
type->tp_getset = getset;
}
/// buffer_protocol: Fill in the view as specified by flags.
extern "C" inline int pybind11_getbuffer(PyObject *obj, Py_buffer *view, int flags) {
// Look for a `get_buffer` implementation in this type's info or any bases (following MRO).
type_info *tinfo = nullptr;
for (auto type : reinterpret_borrow<tuple>(Py_TYPE(obj)->tp_mro)) {
tinfo = get_type_info((PyTypeObject *) type.ptr());
if (tinfo && tinfo->get_buffer) {
break;
}
}
if (view == nullptr || !tinfo || !tinfo->get_buffer) {
if (view) {
view->obj = nullptr;
}
PyErr_SetString(PyExc_BufferError, "pybind11_getbuffer(): Internal error");
return -1;
}
std::memset(view, 0, sizeof(Py_buffer));
buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data);
if ((flags & PyBUF_WRITABLE) == PyBUF_WRITABLE && info->readonly) {
delete info;
// view->obj = nullptr; // Was just memset to 0, so not necessary
PyErr_SetString(PyExc_BufferError, "Writable buffer requested for readonly storage");
return -1;
}
view->obj = obj;
view->ndim = 1;
view->internal = info;
view->buf = info->ptr;
view->itemsize = info->itemsize;
view->len = view->itemsize;
for (auto s : info->shape) {
view->len *= s;
}
view->readonly = static_cast<int>(info->readonly);
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) {
view->format = const_cast<char *>(info->format.c_str());
}
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) {
view->ndim = (int) info->ndim;
view->strides = info->strides.data();
view->shape = info->shape.data();
}
Py_INCREF(view->obj);
return 0;
}
/// buffer_protocol: Release the resources of the buffer.
extern "C" inline void pybind11_releasebuffer(PyObject *, Py_buffer *view) {
delete (buffer_info *) view->internal;
}
/// Give this type a buffer interface.
inline void enable_buffer_protocol(PyHeapTypeObject *heap_type) {
heap_type->ht_type.tp_as_buffer = &heap_type->as_buffer;
heap_type->as_buffer.bf_getbuffer = pybind11_getbuffer;
heap_type->as_buffer.bf_releasebuffer = pybind11_releasebuffer;
}
/** Create a brand new Python type according to the `type_record` specification.
Return value: New reference. */
inline PyObject *make_new_python_type(const type_record &rec) {
auto name = reinterpret_steal<object>(PYBIND11_FROM_STRING(rec.name));
auto qualname = name;
if (rec.scope && !PyModule_Check(rec.scope.ptr()) && hasattr(rec.scope, "__qualname__")) {
qualname = reinterpret_steal<object>(
PyUnicode_FromFormat("%U.%U", rec.scope.attr("__qualname__").ptr(), name.ptr()));
}
object module_;
if (rec.scope) {
if (hasattr(rec.scope, "__module__")) {
module_ = rec.scope.attr("__module__");
} else if (hasattr(rec.scope, "__name__")) {
module_ = rec.scope.attr("__name__");
}
}
const auto *full_name = c_str(
#if !defined(PYPY_VERSION)
module_ ? str(module_).cast<std::string>() + "." + rec.name :
#endif
rec.name);
char *tp_doc = nullptr;
if (rec.doc && options::show_user_defined_docstrings()) {
/* Allocate memory for docstring (using PyObject_MALLOC, since
Python will free this later on) */
size_t size = std::strlen(rec.doc) + 1;
tp_doc = (char *) PyObject_MALLOC(size);
std::memcpy((void *) tp_doc, rec.doc, size);
}
auto &internals = get_internals();
auto bases = tuple(rec.bases);
auto *base = (bases.empty()) ? internals.instance_base : bases[0].ptr();
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto *metaclass
= rec.metaclass.ptr() ? (PyTypeObject *) rec.metaclass.ptr() : internals.default_metaclass;
auto *heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
if (!heap_type) {
pybind11_fail(std::string(rec.name) + ": Unable to create type object!");
}
heap_type->ht_name = name.release().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = qualname.inc_ref().ptr();
#endif
auto *type = &heap_type->ht_type;
type->tp_name = full_name;
type->tp_doc = tp_doc;
type->tp_base = type_incref((PyTypeObject *) base);
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
if (!bases.empty()) {
type->tp_bases = bases.release().ptr();
}
/* Don't inherit base __init__ */
type->tp_init = pybind11_object_init;
/* Supported protocols */
type->tp_as_number = &heap_type->as_number;
type->tp_as_sequence = &heap_type->as_sequence;
type->tp_as_mapping = &heap_type->as_mapping;
type->tp_as_async = &heap_type->as_async;
/* Flags */
type->tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE;
if (!rec.is_final) {
type->tp_flags |= Py_TPFLAGS_BASETYPE;
}
if (rec.dynamic_attr) {
enable_dynamic_attributes(heap_type);
}
if (rec.buffer_protocol) {
enable_buffer_protocol(heap_type);
}
if (rec.custom_type_setup_callback) {
rec.custom_type_setup_callback(heap_type);
}
if (PyType_Ready(type) < 0) {
pybind11_fail(std::string(rec.name) + ": PyType_Ready failed: " + error_string());
}
assert(!rec.dynamic_attr || PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
/* Register type with the parent scope */
if (rec.scope) {
setattr(rec.scope, rec.name, (PyObject *) type);
} else {
Py_INCREF(type); // Keep it alive forever (reference leak)
}
if (module_) { // Needed by pydoc
setattr((PyObject *) type, "__module__", module_);
}
PYBIND11_SET_OLDPY_QUALNAME(type, qualname);
return (PyObject *) type;
}
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,158 @@
/*
pybind11/detail/descr.h: Helper type for concatenating type signatures at compile time
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "common.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
#if !defined(_MSC_VER)
# define PYBIND11_DESCR_CONSTEXPR static constexpr
#else
# define PYBIND11_DESCR_CONSTEXPR const
#endif
/* Concatenate type signatures at compile time */
template <size_t N, typename... Ts>
struct descr {
char text[N + 1]{'\0'};
constexpr descr() = default;
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr descr(char const (&s)[N + 1]) : descr(s, make_index_sequence<N>()) {}
template <size_t... Is>
constexpr descr(char const (&s)[N + 1], index_sequence<Is...>) : text{s[Is]..., '\0'} {}
template <typename... Chars>
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr descr(char c, Chars... cs) : text{c, static_cast<char>(cs)..., '\0'} {}
static constexpr std::array<const std::type_info *, sizeof...(Ts) + 1> types() {
return {{&typeid(Ts)..., nullptr}};
}
};
template <size_t N1, size_t N2, typename... Ts1, typename... Ts2, size_t... Is1, size_t... Is2>
constexpr descr<N1 + N2, Ts1..., Ts2...> plus_impl(const descr<N1, Ts1...> &a,
const descr<N2, Ts2...> &b,
index_sequence<Is1...>,
index_sequence<Is2...>) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(b);
return {a.text[Is1]..., b.text[Is2]...};
}
template <size_t N1, size_t N2, typename... Ts1, typename... Ts2>
constexpr descr<N1 + N2, Ts1..., Ts2...> operator+(const descr<N1, Ts1...> &a,
const descr<N2, Ts2...> &b) {
return plus_impl(a, b, make_index_sequence<N1>(), make_index_sequence<N2>());
}
template <size_t N>
constexpr descr<N - 1> const_name(char const (&text)[N]) {
return descr<N - 1>(text);
}
constexpr descr<0> const_name(char const (&)[1]) { return {}; }
template <size_t Rem, size_t... Digits>
struct int_to_str : int_to_str<Rem / 10, Rem % 10, Digits...> {};
template <size_t... Digits>
struct int_to_str<0, Digits...> {
// WARNING: This only works with C++17 or higher.
static constexpr auto digits = descr<sizeof...(Digits)>(('0' + Digits)...);
};
// Ternary description (like std::conditional)
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<B, descr<N1 - 1>> const_name(char const (&text1)[N1], char const (&)[N2]) {
return const_name(text1);
}
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<!B, descr<N2 - 1>> const_name(char const (&)[N1], char const (&text2)[N2]) {
return const_name(text2);
}
template <bool B, typename T1, typename T2>
constexpr enable_if_t<B, T1> const_name(const T1 &d, const T2 &) {
return d;
}
template <bool B, typename T1, typename T2>
constexpr enable_if_t<!B, T2> const_name(const T1 &, const T2 &d) {
return d;
}
template <size_t Size>
auto constexpr const_name() -> remove_cv_t<decltype(int_to_str<Size / 10, Size % 10>::digits)> {
return int_to_str<Size / 10, Size % 10>::digits;
}
template <typename Type>
constexpr descr<1, Type> const_name() {
return {'%'};
}
// If "_" is defined as a macro, py::detail::_ cannot be provided.
// It is therefore best to use py::detail::const_name universally.
// This block is for backward compatibility only.
// (The const_name code is repeated to avoid introducing a "_" #define ourselves.)
#ifndef _
# define PYBIND11_DETAIL_UNDERSCORE_BACKWARD_COMPATIBILITY
template <size_t N>
constexpr descr<N - 1> _(char const (&text)[N]) {
return const_name<N>(text);
}
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<B, descr<N1 - 1>> _(char const (&text1)[N1], char const (&text2)[N2]) {
return const_name<B, N1, N2>(text1, text2);
}
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<!B, descr<N2 - 1>> _(char const (&text1)[N1], char const (&text2)[N2]) {
return const_name<B, N1, N2>(text1, text2);
}
template <bool B, typename T1, typename T2>
constexpr enable_if_t<B, T1> _(const T1 &d1, const T2 &d2) {
return const_name<B, T1, T2>(d1, d2);
}
template <bool B, typename T1, typename T2>
constexpr enable_if_t<!B, T2> _(const T1 &d1, const T2 &d2) {
return const_name<B, T1, T2>(d1, d2);
}
template <size_t Size>
auto constexpr _() -> remove_cv_t<decltype(int_to_str<Size / 10, Size % 10>::digits)> {
return const_name<Size>();
}
template <typename Type>
constexpr descr<1, Type> _() {
return const_name<Type>();
}
#endif // #ifndef _
constexpr descr<0> concat() { return {}; }
template <size_t N, typename... Ts>
constexpr descr<N, Ts...> concat(const descr<N, Ts...> &descr) {
return descr;
}
template <size_t N, typename... Ts, typename... Args>
constexpr auto concat(const descr<N, Ts...> &d, const Args &...args)
-> decltype(std::declval<descr<N + 2, Ts...>>() + concat(args...)) {
return d + const_name(", ") + concat(args...);
}
template <size_t N, typename... Ts>
constexpr descr<N + 2, Ts...> type_descr(const descr<N, Ts...> &descr) {
return const_name("{") + descr + const_name("}");
}
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,428 @@
/*
pybind11/detail/init.h: init factory function implementation and support code.
Copyright (c) 2017 Jason Rhinelander <jason@imaginary.ca>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "class.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
template <>
class type_caster<value_and_holder> {
public:
bool load(handle h, bool) {
value = reinterpret_cast<value_and_holder *>(h.ptr());
return true;
}
template <typename>
using cast_op_type = value_and_holder &;
explicit operator value_and_holder &() { return *value; }
static constexpr auto name = const_name<value_and_holder>();
private:
value_and_holder *value = nullptr;
};
PYBIND11_NAMESPACE_BEGIN(initimpl)
inline void no_nullptr(void *ptr) {
if (!ptr) {
throw type_error("pybind11::init(): factory function returned nullptr");
}
}
// Implementing functions for all forms of py::init<...> and py::init(...)
template <typename Class>
using Cpp = typename Class::type;
template <typename Class>
using Alias = typename Class::type_alias;
template <typename Class>
using Holder = typename Class::holder_type;
template <typename Class>
using is_alias_constructible = std::is_constructible<Alias<Class>, Cpp<Class> &&>;
// Takes a Cpp pointer and returns true if it actually is a polymorphic Alias instance.
template <typename Class, enable_if_t<Class::has_alias, int> = 0>
bool is_alias(Cpp<Class> *ptr) {
return dynamic_cast<Alias<Class> *>(ptr) != nullptr;
}
// Failing fallback version of the above for a no-alias class (always returns false)
template <typename /*Class*/>
constexpr bool is_alias(void *) {
return false;
}
// Constructs and returns a new object; if the given arguments don't map to a constructor, we fall
// back to brace aggregate initiailization so that for aggregate initialization can be used with
// py::init, e.g. `py::init<int, int>` to initialize a `struct T { int a; int b; }`. For
// non-aggregate types, we need to use an ordinary T(...) constructor (invoking as `T{...}` usually
// works, but will not do the expected thing when `T` has an `initializer_list<T>` constructor).
template <typename Class,
typename... Args,
detail::enable_if_t<std::is_constructible<Class, Args...>::value, int> = 0>
inline Class *construct_or_initialize(Args &&...args) {
return new Class(std::forward<Args>(args)...);
}
template <typename Class,
typename... Args,
detail::enable_if_t<!std::is_constructible<Class, Args...>::value, int> = 0>
inline Class *construct_or_initialize(Args &&...args) {
return new Class{std::forward<Args>(args)...};
}
// Attempts to constructs an alias using a `Alias(Cpp &&)` constructor. This allows types with
// an alias to provide only a single Cpp factory function as long as the Alias can be
// constructed from an rvalue reference of the base Cpp type. This means that Alias classes
// can, when appropriate, simply define a `Alias(Cpp &&)` constructor rather than needing to
// inherit all the base class constructors.
template <typename Class>
void construct_alias_from_cpp(std::true_type /*is_alias_constructible*/,
value_and_holder &v_h,
Cpp<Class> &&base) {
v_h.value_ptr() = new Alias<Class>(std::move(base));
}
template <typename Class>
[[noreturn]] void construct_alias_from_cpp(std::false_type /*!is_alias_constructible*/,
value_and_holder &,
Cpp<Class> &&) {
throw type_error("pybind11::init(): unable to convert returned instance to required "
"alias class: no `Alias<Class>(Class &&)` constructor available");
}
// Error-generating fallback for factories that don't match one of the below construction
// mechanisms.
template <typename Class>
void construct(...) {
static_assert(!std::is_same<Class, Class>::value /* always false */,
"pybind11::init(): init function must return a compatible pointer, "
"holder, or value");
}
// Pointer return v1: the factory function returns a class pointer for a registered class.
// If we don't need an alias (because this class doesn't have one, or because the final type is
// inherited on the Python side) we can simply take over ownership. Otherwise we need to try to
// construct an Alias from the returned base instance.
template <typename Class>
void construct(value_and_holder &v_h, Cpp<Class> *ptr, bool need_alias) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(need_alias);
no_nullptr(ptr);
if (PYBIND11_SILENCE_MSVC_C4127(Class::has_alias) && need_alias && !is_alias<Class>(ptr)) {
// We're going to try to construct an alias by moving the cpp type. Whether or not
// that succeeds, we still need to destroy the original cpp pointer (either the
// moved away leftover, if the alias construction works, or the value itself if we
// throw an error), but we can't just call `delete ptr`: it might have a special
// deleter, or might be shared_from_this. So we construct a holder around it as if
// it was a normal instance, then steal the holder away into a local variable; thus
// the holder and destruction happens when we leave the C++ scope, and the holder
// class gets to handle the destruction however it likes.
v_h.value_ptr() = ptr;
v_h.set_instance_registered(true); // To prevent init_instance from registering it
v_h.type->init_instance(v_h.inst, nullptr); // Set up the holder
Holder<Class> temp_holder(std::move(v_h.holder<Holder<Class>>())); // Steal the holder
v_h.type->dealloc(v_h); // Destroys the moved-out holder remains, resets value ptr to null
v_h.set_instance_registered(false);
construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(*ptr));
} else {
// Otherwise the type isn't inherited, so we don't need an Alias
v_h.value_ptr() = ptr;
}
}
// Pointer return v2: a factory that always returns an alias instance ptr. We simply take over
// ownership of the pointer.
template <typename Class, enable_if_t<Class::has_alias, int> = 0>
void construct(value_and_holder &v_h, Alias<Class> *alias_ptr, bool) {
no_nullptr(alias_ptr);
v_h.value_ptr() = static_cast<Cpp<Class> *>(alias_ptr);
}
// Holder return: copy its pointer, and move or copy the returned holder into the new instance's
// holder. This also handles types like std::shared_ptr<T> and std::unique_ptr<T> where T is a
// derived type (through those holder's implicit conversion from derived class holder
// constructors).
template <typename Class>
void construct(value_and_holder &v_h, Holder<Class> holder, bool need_alias) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(need_alias);
auto *ptr = holder_helper<Holder<Class>>::get(holder);
no_nullptr(ptr);
// If we need an alias, check that the held pointer is actually an alias instance
if (PYBIND11_SILENCE_MSVC_C4127(Class::has_alias) && need_alias && !is_alias<Class>(ptr)) {
throw type_error("pybind11::init(): construction failed: returned holder-wrapped instance "
"is not an alias instance");
}
v_h.value_ptr() = ptr;
v_h.type->init_instance(v_h.inst, &holder);
}
// return-by-value version 1: returning a cpp class by value. If the class has an alias and an
// alias is required the alias must have an `Alias(Cpp &&)` constructor so that we can construct
// the alias from the base when needed (i.e. because of Python-side inheritance). When we don't
// need it, we simply move-construct the cpp value into a new instance.
template <typename Class>
void construct(value_and_holder &v_h, Cpp<Class> &&result, bool need_alias) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(need_alias);
static_assert(std::is_move_constructible<Cpp<Class>>::value,
"pybind11::init() return-by-value factory function requires a movable class");
if (PYBIND11_SILENCE_MSVC_C4127(Class::has_alias) && need_alias) {
construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(result));
} else {
v_h.value_ptr() = new Cpp<Class>(std::move(result));
}
}
// return-by-value version 2: returning a value of the alias type itself. We move-construct an
// Alias instance (even if no the python-side inheritance is involved). The is intended for
// cases where Alias initialization is always desired.
template <typename Class>
void construct(value_and_holder &v_h, Alias<Class> &&result, bool) {
static_assert(
std::is_move_constructible<Alias<Class>>::value,
"pybind11::init() return-by-alias-value factory function requires a movable alias class");
v_h.value_ptr() = new Alias<Class>(std::move(result));
}
// Implementing class for py::init<...>()
template <typename... Args>
struct constructor {
template <typename Class, typename... Extra, enable_if_t<!Class::has_alias, int> = 0>
static void execute(Class &cl, const Extra &...extra) {
cl.def(
"__init__",
[](value_and_holder &v_h, Args... args) {
v_h.value_ptr() = construct_or_initialize<Cpp<Class>>(std::forward<Args>(args)...);
},
is_new_style_constructor(),
extra...);
}
template <typename Class,
typename... Extra,
enable_if_t<Class::has_alias && std::is_constructible<Cpp<Class>, Args...>::value,
int> = 0>
static void execute(Class &cl, const Extra &...extra) {
cl.def(
"__init__",
[](value_and_holder &v_h, Args... args) {
if (Py_TYPE(v_h.inst) == v_h.type->type) {
v_h.value_ptr()
= construct_or_initialize<Cpp<Class>>(std::forward<Args>(args)...);
} else {
v_h.value_ptr()
= construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
}
},
is_new_style_constructor(),
extra...);
}
template <typename Class,
typename... Extra,
enable_if_t<Class::has_alias && !std::is_constructible<Cpp<Class>, Args...>::value,
int> = 0>
static void execute(Class &cl, const Extra &...extra) {
cl.def(
"__init__",
[](value_and_holder &v_h, Args... args) {
v_h.value_ptr()
= construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
},
is_new_style_constructor(),
extra...);
}
};
// Implementing class for py::init_alias<...>()
template <typename... Args>
struct alias_constructor {
template <typename Class,
typename... Extra,
enable_if_t<Class::has_alias && std::is_constructible<Alias<Class>, Args...>::value,
int> = 0>
static void execute(Class &cl, const Extra &...extra) {
cl.def(
"__init__",
[](value_and_holder &v_h, Args... args) {
v_h.value_ptr()
= construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
},
is_new_style_constructor(),
extra...);
}
};
// Implementation class for py::init(Func) and py::init(Func, AliasFunc)
template <typename CFunc,
typename AFunc = void_type (*)(),
typename = function_signature_t<CFunc>,
typename = function_signature_t<AFunc>>
struct factory;
// Specialization for py::init(Func)
template <typename Func, typename Return, typename... Args>
struct factory<Func, void_type (*)(), Return(Args...)> {
remove_reference_t<Func> class_factory;
// NOLINTNEXTLINE(google-explicit-constructor)
factory(Func &&f) : class_factory(std::forward<Func>(f)) {}
// The given class either has no alias or has no separate alias factory;
// this always constructs the class itself. If the class is registered with an alias
// type and an alias instance is needed (i.e. because the final type is a Python class
// inheriting from the C++ type) the returned value needs to either already be an alias
// instance, or the alias needs to be constructible from a `Class &&` argument.
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra &...extra) && {
#if defined(PYBIND11_CPP14)
cl.def(
"__init__",
[func = std::move(class_factory)]
#else
auto &func = class_factory;
cl.def(
"__init__",
[func]
#endif
(value_and_holder &v_h, Args... args) {
construct<Class>(
v_h, func(std::forward<Args>(args)...), Py_TYPE(v_h.inst) != v_h.type->type);
},
is_new_style_constructor(),
extra...);
}
};
// Specialization for py::init(Func, AliasFunc)
template <typename CFunc,
typename AFunc,
typename CReturn,
typename... CArgs,
typename AReturn,
typename... AArgs>
struct factory<CFunc, AFunc, CReturn(CArgs...), AReturn(AArgs...)> {
static_assert(sizeof...(CArgs) == sizeof...(AArgs),
"pybind11::init(class_factory, alias_factory): class and alias factories "
"must have identical argument signatures");
static_assert(all_of<std::is_same<CArgs, AArgs>...>::value,
"pybind11::init(class_factory, alias_factory): class and alias factories "
"must have identical argument signatures");
remove_reference_t<CFunc> class_factory;
remove_reference_t<AFunc> alias_factory;
factory(CFunc &&c, AFunc &&a)
: class_factory(std::forward<CFunc>(c)), alias_factory(std::forward<AFunc>(a)) {}
// The class factory is called when the `self` type passed to `__init__` is the direct
// class (i.e. not inherited), the alias factory when `self` is a Python-side subtype.
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra &...extra) && {
static_assert(Class::has_alias,
"The two-argument version of `py::init()` can "
"only be used if the class has an alias");
#if defined(PYBIND11_CPP14)
cl.def(
"__init__",
[class_func = std::move(class_factory), alias_func = std::move(alias_factory)]
#else
auto &class_func = class_factory;
auto &alias_func = alias_factory;
cl.def(
"__init__",
[class_func, alias_func]
#endif
(value_and_holder &v_h, CArgs... args) {
if (Py_TYPE(v_h.inst) == v_h.type->type) {
// If the instance type equals the registered type we don't have inheritance,
// so don't need the alias and can construct using the class function:
construct<Class>(v_h, class_func(std::forward<CArgs>(args)...), false);
} else {
construct<Class>(v_h, alias_func(std::forward<CArgs>(args)...), true);
}
},
is_new_style_constructor(),
extra...);
}
};
/// Set just the C++ state. Same as `__init__`.
template <typename Class, typename T>
void setstate(value_and_holder &v_h, T &&result, bool need_alias) {
construct<Class>(v_h, std::forward<T>(result), need_alias);
}
/// Set both the C++ and Python states
template <typename Class,
typename T,
typename O,
enable_if_t<std::is_convertible<O, handle>::value, int> = 0>
void setstate(value_and_holder &v_h, std::pair<T, O> &&result, bool need_alias) {
construct<Class>(v_h, std::move(result.first), need_alias);
auto d = handle(result.second);
if (PyDict_Check(d.ptr()) && PyDict_Size(d.ptr()) == 0) {
// Skipping setattr below, to not force use of py::dynamic_attr() for Class unnecessarily.
// See PR #2972 for details.
return;
}
setattr((PyObject *) v_h.inst, "__dict__", d);
}
/// Implementation for py::pickle(GetState, SetState)
template <typename Get,
typename Set,
typename = function_signature_t<Get>,
typename = function_signature_t<Set>>
struct pickle_factory;
template <typename Get,
typename Set,
typename RetState,
typename Self,
typename NewInstance,
typename ArgState>
struct pickle_factory<Get, Set, RetState(Self), NewInstance(ArgState)> {
static_assert(std::is_same<intrinsic_t<RetState>, intrinsic_t<ArgState>>::value,
"The type returned by `__getstate__` must be the same "
"as the argument accepted by `__setstate__`");
remove_reference_t<Get> get;
remove_reference_t<Set> set;
pickle_factory(Get get, Set set) : get(std::forward<Get>(get)), set(std::forward<Set>(set)) {}
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra &...extra) && {
cl.def("__getstate__", std::move(get));
#if defined(PYBIND11_CPP14)
cl.def(
"__setstate__",
[func = std::move(set)]
#else
auto &func = set;
cl.def(
"__setstate__",
[func]
#endif
(value_and_holder &v_h, ArgState state) {
setstate<Class>(
v_h, func(std::forward<ArgState>(state)), Py_TYPE(v_h.inst) != v_h.type->type);
},
is_new_style_constructor(),
extra...);
}
};
PYBIND11_NAMESPACE_END(initimpl)
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,562 @@
/*
pybind11/detail/internals.h: Internal data structure and related functions
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "../pytypes.h"
#include <exception>
/// Tracks the `internals` and `type_info` ABI version independent of the main library version.
///
/// Some portions of the code use an ABI that is conditional depending on this
/// version number. That allows ABI-breaking changes to be "pre-implemented".
/// Once the default version number is incremented, the conditional logic that
/// no longer applies can be removed. Additionally, users that need not
/// maintain ABI compatibility can increase the version number in order to take
/// advantage of any functionality/efficiency improvements that depend on the
/// newer ABI.
///
/// WARNING: If you choose to manually increase the ABI version, note that
/// pybind11 may not be tested as thoroughly with a non-default ABI version, and
/// further ABI-incompatible changes may be made before the ABI is officially
/// changed to the new version.
#ifndef PYBIND11_INTERNALS_VERSION
# define PYBIND11_INTERNALS_VERSION 4
#endif
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
using ExceptionTranslator = void (*)(std::exception_ptr);
PYBIND11_NAMESPACE_BEGIN(detail)
// Forward declarations
inline PyTypeObject *make_static_property_type();
inline PyTypeObject *make_default_metaclass();
inline PyObject *make_object_base_type(PyTypeObject *metaclass);
// The old Python Thread Local Storage (TLS) API is deprecated in Python 3.7 in favor of the new
// Thread Specific Storage (TSS) API.
#if PY_VERSION_HEX >= 0x03070000
// Avoid unnecessary allocation of `Py_tss_t`, since we cannot use
// `Py_LIMITED_API` anyway.
# if PYBIND11_INTERNALS_VERSION > 4
# define PYBIND11_TLS_KEY_REF Py_tss_t &
# ifdef __GNUC__
// Clang on macOS warns due to `Py_tss_NEEDS_INIT` not specifying an initializer
// for every field.
# define PYBIND11_TLS_KEY_INIT(var) \
_Pragma("GCC diagnostic push") /**/ \
_Pragma("GCC diagnostic ignored \"-Wmissing-field-initializers\"") /**/ \
Py_tss_t var \
= Py_tss_NEEDS_INIT; \
_Pragma("GCC diagnostic pop")
# else
# define PYBIND11_TLS_KEY_INIT(var) Py_tss_t var = Py_tss_NEEDS_INIT;
# endif
# define PYBIND11_TLS_KEY_CREATE(var) (PyThread_tss_create(&(var)) == 0)
# define PYBIND11_TLS_GET_VALUE(key) PyThread_tss_get(&(key))
# define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_tss_set(&(key), (value))
# define PYBIND11_TLS_DELETE_VALUE(key) PyThread_tss_set(&(key), nullptr)
# define PYBIND11_TLS_FREE(key) PyThread_tss_delete(&(key))
# else
# define PYBIND11_TLS_KEY_REF Py_tss_t *
# define PYBIND11_TLS_KEY_INIT(var) Py_tss_t *var = nullptr;
# define PYBIND11_TLS_KEY_CREATE(var) \
(((var) = PyThread_tss_alloc()) != nullptr && (PyThread_tss_create((var)) == 0))
# define PYBIND11_TLS_GET_VALUE(key) PyThread_tss_get((key))
# define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_tss_set((key), (value))
# define PYBIND11_TLS_DELETE_VALUE(key) PyThread_tss_set((key), nullptr)
# define PYBIND11_TLS_FREE(key) PyThread_tss_free(key)
# endif
#else
// Usually an int but a long on Cygwin64 with Python 3.x
# define PYBIND11_TLS_KEY_REF decltype(PyThread_create_key())
# define PYBIND11_TLS_KEY_INIT(var) PYBIND11_TLS_KEY_REF var = 0;
# define PYBIND11_TLS_KEY_CREATE(var) (((var) = PyThread_create_key()) != -1)
# define PYBIND11_TLS_GET_VALUE(key) PyThread_get_key_value((key))
# if defined(PYPY_VERSION)
// On CPython < 3.4 and on PyPy, `PyThread_set_key_value` strangely does not set
// the value if it has already been set. Instead, it must first be deleted and
// then set again.
inline void tls_replace_value(PYBIND11_TLS_KEY_REF key, void *value) {
PyThread_delete_key_value(key);
PyThread_set_key_value(key, value);
}
# define PYBIND11_TLS_DELETE_VALUE(key) PyThread_delete_key_value(key)
# define PYBIND11_TLS_REPLACE_VALUE(key, value) \
::pybind11::detail::tls_replace_value((key), (value))
# else
# define PYBIND11_TLS_DELETE_VALUE(key) PyThread_set_key_value((key), nullptr)
# define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_set_key_value((key), (value))
# endif
# define PYBIND11_TLS_FREE(key) (void) key
#endif
// Python loads modules by default with dlopen with the RTLD_LOCAL flag; under libc++ and possibly
// other STLs, this means `typeid(A)` from one module won't equal `typeid(A)` from another module
// even when `A` is the same, non-hidden-visibility type (e.g. from a common include). Under
// libstdc++, this doesn't happen: equality and the type_index hash are based on the type name,
// which works. If not under a known-good stl, provide our own name-based hash and equality
// functions that use the type name.
#if defined(__GLIBCXX__)
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) { return lhs == rhs; }
using type_hash = std::hash<std::type_index>;
using type_equal_to = std::equal_to<std::type_index>;
#else
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) {
return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
}
struct type_hash {
size_t operator()(const std::type_index &t) const {
size_t hash = 5381;
const char *ptr = t.name();
while (auto c = static_cast<unsigned char>(*ptr++)) {
hash = (hash * 33) ^ c;
}
return hash;
}
};
struct type_equal_to {
bool operator()(const std::type_index &lhs, const std::type_index &rhs) const {
return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
}
};
#endif
template <typename value_type>
using type_map = std::unordered_map<std::type_index, value_type, type_hash, type_equal_to>;
struct override_hash {
inline size_t operator()(const std::pair<const PyObject *, const char *> &v) const {
size_t value = std::hash<const void *>()(v.first);
value ^= std::hash<const void *>()(v.second) + 0x9e3779b9 + (value << 6) + (value >> 2);
return value;
}
};
/// Internal data structure used to track registered instances and types.
/// Whenever binary incompatible changes are made to this structure,
/// `PYBIND11_INTERNALS_VERSION` must be incremented.
struct internals {
// std::type_index -> pybind11's type information
type_map<type_info *> registered_types_cpp;
// PyTypeObject* -> base type_info(s)
std::unordered_map<PyTypeObject *, std::vector<type_info *>> registered_types_py;
std::unordered_multimap<const void *, instance *> registered_instances; // void * -> instance*
std::unordered_set<std::pair<const PyObject *, const char *>, override_hash>
inactive_override_cache;
type_map<std::vector<bool (*)(PyObject *, void *&)>> direct_conversions;
std::unordered_map<const PyObject *, std::vector<PyObject *>> patients;
std::forward_list<ExceptionTranslator> registered_exception_translators;
std::unordered_map<std::string, void *> shared_data; // Custom data to be shared across
// extensions
#if PYBIND11_INTERNALS_VERSION == 4
std::vector<PyObject *> unused_loader_patient_stack_remove_at_v5;
#endif
std::forward_list<std::string> static_strings; // Stores the std::strings backing
// detail::c_str()
PyTypeObject *static_property_type;
PyTypeObject *default_metaclass;
PyObject *instance_base;
#if defined(WITH_THREAD)
PYBIND11_TLS_KEY_INIT(tstate)
# if PYBIND11_INTERNALS_VERSION > 4
PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key)
# endif // PYBIND11_INTERNALS_VERSION > 4
PyInterpreterState *istate = nullptr;
~internals() {
# if PYBIND11_INTERNALS_VERSION > 4
PYBIND11_TLS_FREE(loader_life_support_tls_key);
# endif // PYBIND11_INTERNALS_VERSION > 4
// This destructor is called *after* Py_Finalize() in finalize_interpreter().
// That *SHOULD BE* fine. The following details what happens when PyThread_tss_free is
// called. PYBIND11_TLS_FREE is PyThread_tss_free on python 3.7+. On older python, it does
// nothing. PyThread_tss_free calls PyThread_tss_delete and PyMem_RawFree.
// PyThread_tss_delete just calls TlsFree (on Windows) or pthread_key_delete (on *NIX).
// Neither of those have anything to do with CPython internals. PyMem_RawFree *requires*
// that the `tstate` be allocated with the CPython allocator.
PYBIND11_TLS_FREE(tstate);
}
#endif
};
/// Additional type information which does not fit into the PyTypeObject.
/// Changes to this struct also require bumping `PYBIND11_INTERNALS_VERSION`.
struct type_info {
PyTypeObject *type;
const std::type_info *cpptype;
size_t type_size, type_align, holder_size_in_ptrs;
void *(*operator_new)(size_t);
void (*init_instance)(instance *, const void *);
void (*dealloc)(value_and_holder &v_h);
std::vector<PyObject *(*) (PyObject *, PyTypeObject *)> implicit_conversions;
std::vector<std::pair<const std::type_info *, void *(*) (void *)>> implicit_casts;
std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
void *get_buffer_data = nullptr;
void *(*module_local_load)(PyObject *, const type_info *) = nullptr;
/* A simple type never occurs as a (direct or indirect) parent
* of a class that makes use of multiple inheritance.
* A type can be simple even if it has non-simple ancestors as long as it has no descendants.
*/
bool simple_type : 1;
/* True if there is no multiple inheritance in this type's inheritance tree */
bool simple_ancestors : 1;
/* for base vs derived holder_type checks */
bool default_holder : 1;
/* true if this is a type registered with py::module_local */
bool module_local : 1;
};
/// On MSVC, debug and release builds are not ABI-compatible!
#if defined(_MSC_VER) && defined(_DEBUG)
# define PYBIND11_BUILD_TYPE "_debug"
#else
# define PYBIND11_BUILD_TYPE ""
#endif
/// Let's assume that different compilers are ABI-incompatible.
/// A user can manually set this string if they know their
/// compiler is compatible.
#ifndef PYBIND11_COMPILER_TYPE
# if defined(_MSC_VER)
# define PYBIND11_COMPILER_TYPE "_msvc"
# elif defined(__INTEL_COMPILER)
# define PYBIND11_COMPILER_TYPE "_icc"
# elif defined(__clang__)
# define PYBIND11_COMPILER_TYPE "_clang"
# elif defined(__PGI)
# define PYBIND11_COMPILER_TYPE "_pgi"
# elif defined(__MINGW32__)
# define PYBIND11_COMPILER_TYPE "_mingw"
# elif defined(__CYGWIN__)
# define PYBIND11_COMPILER_TYPE "_gcc_cygwin"
# elif defined(__GNUC__)
# define PYBIND11_COMPILER_TYPE "_gcc"
# else
# define PYBIND11_COMPILER_TYPE "_unknown"
# endif
#endif
/// Also standard libs
#ifndef PYBIND11_STDLIB
# if defined(_LIBCPP_VERSION)
# define PYBIND11_STDLIB "_libcpp"
# elif defined(__GLIBCXX__) || defined(__GLIBCPP__)
# define PYBIND11_STDLIB "_libstdcpp"
# else
# define PYBIND11_STDLIB ""
# endif
#endif
/// On Linux/OSX, changes in __GXX_ABI_VERSION__ indicate ABI incompatibility.
#ifndef PYBIND11_BUILD_ABI
# if defined(__GXX_ABI_VERSION)
# define PYBIND11_BUILD_ABI "_cxxabi" PYBIND11_TOSTRING(__GXX_ABI_VERSION)
# else
# define PYBIND11_BUILD_ABI ""
# endif
#endif
#ifndef PYBIND11_INTERNALS_KIND
# if defined(WITH_THREAD)
# define PYBIND11_INTERNALS_KIND ""
# else
# define PYBIND11_INTERNALS_KIND "_without_thread"
# endif
#endif
#define PYBIND11_INTERNALS_ID \
"__pybind11_internals_v" PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) \
PYBIND11_INTERNALS_KIND PYBIND11_COMPILER_TYPE PYBIND11_STDLIB PYBIND11_BUILD_ABI \
PYBIND11_BUILD_TYPE "__"
#define PYBIND11_MODULE_LOCAL_ID \
"__pybind11_module_local_v" PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) \
PYBIND11_INTERNALS_KIND PYBIND11_COMPILER_TYPE PYBIND11_STDLIB PYBIND11_BUILD_ABI \
PYBIND11_BUILD_TYPE "__"
/// Each module locally stores a pointer to the `internals` data. The data
/// itself is shared among modules with the same `PYBIND11_INTERNALS_ID`.
inline internals **&get_internals_pp() {
static internals **internals_pp = nullptr;
return internals_pp;
}
// forward decl
inline void translate_exception(std::exception_ptr);
template <class T,
enable_if_t<std::is_same<std::nested_exception, remove_cvref_t<T>>::value, int> = 0>
bool handle_nested_exception(const T &exc, const std::exception_ptr &p) {
std::exception_ptr nested = exc.nested_ptr();
if (nested != nullptr && nested != p) {
translate_exception(nested);
return true;
}
return false;
}
template <class T,
enable_if_t<!std::is_same<std::nested_exception, remove_cvref_t<T>>::value, int> = 0>
bool handle_nested_exception(const T &exc, const std::exception_ptr &p) {
if (const auto *nep = dynamic_cast<const std::nested_exception *>(std::addressof(exc))) {
return handle_nested_exception(*nep, p);
}
return false;
}
inline bool raise_err(PyObject *exc_type, const char *msg) {
if (PyErr_Occurred()) {
raise_from(exc_type, msg);
return true;
}
PyErr_SetString(exc_type, msg);
return false;
}
inline void translate_exception(std::exception_ptr p) {
if (!p) {
return;
}
try {
std::rethrow_exception(p);
} catch (error_already_set &e) {
handle_nested_exception(e, p);
e.restore();
return;
} catch (const builtin_exception &e) {
// Could not use template since it's an abstract class.
if (const auto *nep = dynamic_cast<const std::nested_exception *>(std::addressof(e))) {
handle_nested_exception(*nep, p);
}
e.set_error();
return;
} catch (const std::bad_alloc &e) {
handle_nested_exception(e, p);
raise_err(PyExc_MemoryError, e.what());
return;
} catch (const std::domain_error &e) {
handle_nested_exception(e, p);
raise_err(PyExc_ValueError, e.what());
return;
} catch (const std::invalid_argument &e) {
handle_nested_exception(e, p);
raise_err(PyExc_ValueError, e.what());
return;
} catch (const std::length_error &e) {
handle_nested_exception(e, p);
raise_err(PyExc_ValueError, e.what());
return;
} catch (const std::out_of_range &e) {
handle_nested_exception(e, p);
raise_err(PyExc_IndexError, e.what());
return;
} catch (const std::range_error &e) {
handle_nested_exception(e, p);
raise_err(PyExc_ValueError, e.what());
return;
} catch (const std::overflow_error &e) {
handle_nested_exception(e, p);
raise_err(PyExc_OverflowError, e.what());
return;
} catch (const std::exception &e) {
handle_nested_exception(e, p);
raise_err(PyExc_RuntimeError, e.what());
return;
} catch (const std::nested_exception &e) {
handle_nested_exception(e, p);
raise_err(PyExc_RuntimeError, "Caught an unknown nested exception!");
return;
} catch (...) {
raise_err(PyExc_RuntimeError, "Caught an unknown exception!");
return;
}
}
#if !defined(__GLIBCXX__)
inline void translate_local_exception(std::exception_ptr p) {
try {
if (p) {
std::rethrow_exception(p);
}
} catch (error_already_set &e) {
e.restore();
return;
} catch (const builtin_exception &e) {
e.set_error();
return;
}
}
#endif
/// Return a reference to the current `internals` data
PYBIND11_NOINLINE internals &get_internals() {
auto **&internals_pp = get_internals_pp();
if (internals_pp && *internals_pp) {
return **internals_pp;
}
// Ensure that the GIL is held since we will need to make Python calls.
// Cannot use py::gil_scoped_acquire here since that constructor calls get_internals.
struct gil_scoped_acquire_local {
gil_scoped_acquire_local() : state(PyGILState_Ensure()) {}
~gil_scoped_acquire_local() { PyGILState_Release(state); }
const PyGILState_STATE state;
} gil;
error_scope err_scope;
PYBIND11_STR_TYPE id(PYBIND11_INTERNALS_ID);
auto builtins = handle(PyEval_GetBuiltins());
if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
internals_pp = static_cast<internals **>(capsule(builtins[id]));
// We loaded builtins through python's builtins, which means that our `error_already_set`
// and `builtin_exception` may be different local classes than the ones set up in the
// initial exception translator, below, so add another for our local exception classes.
//
// libstdc++ doesn't require this (types there are identified only by name)
// libc++ with CPython doesn't require this (types are explicitly exported)
// libc++ with PyPy still need it, awaiting further investigation
#if !defined(__GLIBCXX__)
(*internals_pp)->registered_exception_translators.push_front(&translate_local_exception);
#endif
} else {
if (!internals_pp) {
internals_pp = new internals *();
}
auto *&internals_ptr = *internals_pp;
internals_ptr = new internals();
#if defined(WITH_THREAD)
# if PY_VERSION_HEX < 0x03090000
PyEval_InitThreads();
# endif
PyThreadState *tstate = PyThreadState_Get();
if (!PYBIND11_TLS_KEY_CREATE(internals_ptr->tstate)) {
pybind11_fail("get_internals: could not successfully initialize the tstate TSS key!");
}
PYBIND11_TLS_REPLACE_VALUE(internals_ptr->tstate, tstate);
# if PYBIND11_INTERNALS_VERSION > 4
if (!PYBIND11_TLS_KEY_CREATE(internals_ptr->loader_life_support_tls_key)) {
pybind11_fail("get_internals: could not successfully initialize the "
"loader_life_support TSS key!");
}
# endif
internals_ptr->istate = tstate->interp;
#endif
builtins[id] = capsule(internals_pp);
internals_ptr->registered_exception_translators.push_front(&translate_exception);
internals_ptr->static_property_type = make_static_property_type();
internals_ptr->default_metaclass = make_default_metaclass();
internals_ptr->instance_base = make_object_base_type(internals_ptr->default_metaclass);
}
return **internals_pp;
}
// the internals struct (above) is shared between all the modules. local_internals are only
// for a single module. Any changes made to internals may require an update to
// PYBIND11_INTERNALS_VERSION, breaking backwards compatibility. local_internals is, by design,
// restricted to a single module. Whether a module has local internals or not should not
// impact any other modules, because the only things accessing the local internals is the
// module that contains them.
struct local_internals {
type_map<type_info *> registered_types_cpp;
std::forward_list<ExceptionTranslator> registered_exception_translators;
#if defined(WITH_THREAD) && PYBIND11_INTERNALS_VERSION == 4
// For ABI compatibility, we can't store the loader_life_support TLS key in
// the `internals` struct directly. Instead, we store it in `shared_data` and
// cache a copy in `local_internals`. If we allocated a separate TLS key for
// each instance of `local_internals`, we could end up allocating hundreds of
// TLS keys if hundreds of different pybind11 modules are loaded (which is a
// plausible number).
PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key)
// Holds the shared TLS key for the loader_life_support stack.
struct shared_loader_life_support_data {
PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key)
shared_loader_life_support_data() {
if (!PYBIND11_TLS_KEY_CREATE(loader_life_support_tls_key)) {
pybind11_fail("local_internals: could not successfully initialize the "
"loader_life_support TLS key!");
}
}
// We can't help but leak the TLS key, because Python never unloads extension modules.
};
local_internals() {
auto &internals = get_internals();
// Get or create the `loader_life_support_stack_key`.
auto &ptr = internals.shared_data["_life_support"];
if (!ptr) {
ptr = new shared_loader_life_support_data;
}
loader_life_support_tls_key
= static_cast<shared_loader_life_support_data *>(ptr)->loader_life_support_tls_key;
}
#endif // defined(WITH_THREAD) && PYBIND11_INTERNALS_VERSION == 4
};
/// Works like `get_internals`, but for things which are locally registered.
inline local_internals &get_local_internals() {
static local_internals locals;
return locals;
}
/// Constructs a std::string with the given arguments, stores it in `internals`, and returns its
/// `c_str()`. Such strings objects have a long storage duration -- the internal strings are only
/// cleared when the program exits or after interpreter shutdown (when embedding), and so are
/// suitable for c-style strings needed by Python internals (such as PyTypeObject's tp_name).
template <typename... Args>
const char *c_str(Args &&...args) {
auto &strings = get_internals().static_strings;
strings.emplace_front(std::forward<Args>(args)...);
return strings.front().c_str();
}
PYBIND11_NAMESPACE_END(detail)
/// Returns a named pointer that is shared among all extension modules (using the same
/// pybind11 version) running in the current interpreter. Names starting with underscores
/// are reserved for internal usage. Returns `nullptr` if no matching entry was found.
PYBIND11_NOINLINE void *get_shared_data(const std::string &name) {
auto &internals = detail::get_internals();
auto it = internals.shared_data.find(name);
return it != internals.shared_data.end() ? it->second : nullptr;
}
/// Set the shared data that can be later recovered by `get_shared_data()`.
PYBIND11_NOINLINE void *set_shared_data(const std::string &name, void *data) {
detail::get_internals().shared_data[name] = data;
return data;
}
/// Returns a typed reference to a shared data entry (by using `get_shared_data()`) if
/// such entry exists. Otherwise, a new object of default-constructible type `T` is
/// added to the shared data under the given name and a reference to it is returned.
template <typename T>
T &get_or_create_shared_data(const std::string &name) {
auto &internals = detail::get_internals();
auto it = internals.shared_data.find(name);
T *ptr = (T *) (it != internals.shared_data.end() ? it->second : nullptr);
if (!ptr) {
ptr = new T();
internals.shared_data[name] = ptr;
}
return *ptr;
}
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,65 @@
/*
pybind11/detail/typeid.h: Compiler-independent access to type identifiers
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include <cstdio>
#include <cstdlib>
#if defined(__GNUG__)
# include <cxxabi.h>
#endif
#include "common.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
/// Erase all occurrences of a substring
inline void erase_all(std::string &string, const std::string &search) {
for (size_t pos = 0;;) {
pos = string.find(search, pos);
if (pos == std::string::npos) {
break;
}
string.erase(pos, search.length());
}
}
PYBIND11_NOINLINE void clean_type_id(std::string &name) {
#if defined(__GNUG__)
int status = 0;
std::unique_ptr<char, void (*)(void *)> res{
abi::__cxa_demangle(name.c_str(), nullptr, nullptr, &status), std::free};
if (status == 0) {
name = res.get();
}
#else
detail::erase_all(name, "class ");
detail::erase_all(name, "struct ");
detail::erase_all(name, "enum ");
#endif
detail::erase_all(name, "pybind11::");
}
inline std::string clean_type_id(const char *typeid_name) {
std::string name(typeid_name);
detail::clean_type_id(name);
return name;
}
PYBIND11_NAMESPACE_END(detail)
/// Return a string representation of a C++ type
template <typename T>
static std::string type_id() {
return detail::clean_type_id(typeid(T).name());
}
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)