mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-06-12 04:47:14 +02:00
Hardcopy of pybind11 instead of using git submodules (#552)
* removed pybind as submodule * added hardcopy of pybind11 2.10.0 * rename pybind11 folder to avoid conflicts when changing branch Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
This commit is contained in:
262
libs/pybind/docs/advanced/embedding.rst
Normal file
262
libs/pybind/docs/advanced/embedding.rst
Normal file
@ -0,0 +1,262 @@
|
||||
.. _embedding:
|
||||
|
||||
Embedding the interpreter
|
||||
#########################
|
||||
|
||||
While pybind11 is mainly focused on extending Python using C++, it's also
|
||||
possible to do the reverse: embed the Python interpreter into a C++ program.
|
||||
All of the other documentation pages still apply here, so refer to them for
|
||||
general pybind11 usage. This section will cover a few extra things required
|
||||
for embedding.
|
||||
|
||||
Getting started
|
||||
===============
|
||||
|
||||
A basic executable with an embedded interpreter can be created with just a few
|
||||
lines of CMake and the ``pybind11::embed`` target, as shown below. For more
|
||||
information, see :doc:`/compiling`.
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
cmake_minimum_required(VERSION 3.4)
|
||||
project(example)
|
||||
|
||||
find_package(pybind11 REQUIRED) # or `add_subdirectory(pybind11)`
|
||||
|
||||
add_executable(example main.cpp)
|
||||
target_link_libraries(example PRIVATE pybind11::embed)
|
||||
|
||||
The essential structure of the ``main.cpp`` file looks like this:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h> // everything needed for embedding
|
||||
namespace py = pybind11;
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{}; // start the interpreter and keep it alive
|
||||
|
||||
py::print("Hello, World!"); // use the Python API
|
||||
}
|
||||
|
||||
The interpreter must be initialized before using any Python API, which includes
|
||||
all the functions and classes in pybind11. The RAII guard class ``scoped_interpreter``
|
||||
takes care of the interpreter lifetime. After the guard is destroyed, the interpreter
|
||||
shuts down and clears its memory. No Python functions can be called after this.
|
||||
|
||||
Executing Python code
|
||||
=====================
|
||||
|
||||
There are a few different ways to run Python code. One option is to use ``eval``,
|
||||
``exec`` or ``eval_file``, as explained in :ref:`eval`. Here is a quick example in
|
||||
the context of an executable with an embedded interpreter:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
namespace py = pybind11;
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
py::exec(R"(
|
||||
kwargs = dict(name="World", number=42)
|
||||
message = "Hello, {name}! The answer is {number}".format(**kwargs)
|
||||
print(message)
|
||||
)");
|
||||
}
|
||||
|
||||
Alternatively, similar results can be achieved using pybind11's API (see
|
||||
:doc:`/advanced/pycpp/index` for more details).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
namespace py = pybind11;
|
||||
using namespace py::literals;
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
auto kwargs = py::dict("name"_a="World", "number"_a=42);
|
||||
auto message = "Hello, {name}! The answer is {number}"_s.format(**kwargs);
|
||||
py::print(message);
|
||||
}
|
||||
|
||||
The two approaches can also be combined:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace py::literals;
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
auto locals = py::dict("name"_a="World", "number"_a=42);
|
||||
py::exec(R"(
|
||||
message = "Hello, {name}! The answer is {number}".format(**locals())
|
||||
)", py::globals(), locals);
|
||||
|
||||
auto message = locals["message"].cast<std::string>();
|
||||
std::cout << message;
|
||||
}
|
||||
|
||||
Importing modules
|
||||
=================
|
||||
|
||||
Python modules can be imported using ``module_::import()``:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::module_ sys = py::module_::import("sys");
|
||||
py::print(sys.attr("path"));
|
||||
|
||||
For convenience, the current working directory is included in ``sys.path`` when
|
||||
embedding the interpreter. This makes it easy to import local Python files:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
"""calc.py located in the working directory"""
|
||||
|
||||
|
||||
def add(i, j):
|
||||
return i + j
|
||||
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::module_ calc = py::module_::import("calc");
|
||||
py::object result = calc.attr("add")(1, 2);
|
||||
int n = result.cast<int>();
|
||||
assert(n == 3);
|
||||
|
||||
Modules can be reloaded using ``module_::reload()`` if the source is modified e.g.
|
||||
by an external process. This can be useful in scenarios where the application
|
||||
imports a user defined data processing script which needs to be updated after
|
||||
changes by the user. Note that this function does not reload modules recursively.
|
||||
|
||||
.. _embedding_modules:
|
||||
|
||||
Adding embedded modules
|
||||
=======================
|
||||
|
||||
Embedded binary modules can be added using the ``PYBIND11_EMBEDDED_MODULE`` macro.
|
||||
Note that the definition must be placed at global scope. They can be imported
|
||||
like any other module.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
namespace py = pybind11;
|
||||
|
||||
PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
|
||||
// `m` is a `py::module_` which is used to bind functions and classes
|
||||
m.def("add", [](int i, int j) {
|
||||
return i + j;
|
||||
});
|
||||
}
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
auto fast_calc = py::module_::import("fast_calc");
|
||||
auto result = fast_calc.attr("add")(1, 2).cast<int>();
|
||||
assert(result == 3);
|
||||
}
|
||||
|
||||
Unlike extension modules where only a single binary module can be created, on
|
||||
the embedded side an unlimited number of modules can be added using multiple
|
||||
``PYBIND11_EMBEDDED_MODULE`` definitions (as long as they have unique names).
|
||||
|
||||
These modules are added to Python's list of builtins, so they can also be
|
||||
imported in pure Python files loaded by the interpreter. Everything interacts
|
||||
naturally:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
"""py_module.py located in the working directory"""
|
||||
import cpp_module
|
||||
|
||||
a = cpp_module.a
|
||||
b = a + 1
|
||||
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
namespace py = pybind11;
|
||||
|
||||
PYBIND11_EMBEDDED_MODULE(cpp_module, m) {
|
||||
m.attr("a") = 1;
|
||||
}
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
auto py_module = py::module_::import("py_module");
|
||||
|
||||
auto locals = py::dict("fmt"_a="{} + {} = {}", **py_module.attr("__dict__"));
|
||||
assert(locals["a"].cast<int>() == 1);
|
||||
assert(locals["b"].cast<int>() == 2);
|
||||
|
||||
py::exec(R"(
|
||||
c = a + b
|
||||
message = fmt.format(a, b, c)
|
||||
)", py::globals(), locals);
|
||||
|
||||
assert(locals["c"].cast<int>() == 3);
|
||||
assert(locals["message"].cast<std::string>() == "1 + 2 = 3");
|
||||
}
|
||||
|
||||
|
||||
Interpreter lifetime
|
||||
====================
|
||||
|
||||
The Python interpreter shuts down when ``scoped_interpreter`` is destroyed. After
|
||||
this, creating a new instance will restart the interpreter. Alternatively, the
|
||||
``initialize_interpreter`` / ``finalize_interpreter`` pair of functions can be used
|
||||
to directly set the state at any time.
|
||||
|
||||
Modules created with pybind11 can be safely re-initialized after the interpreter
|
||||
has been restarted. However, this may not apply to third-party extension modules.
|
||||
The issue is that Python itself cannot completely unload extension modules and
|
||||
there are several caveats with regard to interpreter restarting. In short, not
|
||||
all memory may be freed, either due to Python reference cycles or user-created
|
||||
global data. All the details can be found in the CPython documentation.
|
||||
|
||||
.. warning::
|
||||
|
||||
Creating two concurrent ``scoped_interpreter`` guards is a fatal error. So is
|
||||
calling ``initialize_interpreter`` for a second time after the interpreter
|
||||
has already been initialized.
|
||||
|
||||
Do not use the raw CPython API functions ``Py_Initialize`` and
|
||||
``Py_Finalize`` as these do not properly handle the lifetime of
|
||||
pybind11's internal data.
|
||||
|
||||
|
||||
Sub-interpreter support
|
||||
=======================
|
||||
|
||||
Creating multiple copies of ``scoped_interpreter`` is not possible because it
|
||||
represents the main Python interpreter. Sub-interpreters are something different
|
||||
and they do permit the existence of multiple interpreters. This is an advanced
|
||||
feature of the CPython API and should be handled with care. pybind11 does not
|
||||
currently offer a C++ interface for sub-interpreters, so refer to the CPython
|
||||
documentation for all the details regarding this feature.
|
||||
|
||||
We'll just mention a couple of caveats the sub-interpreters support in pybind11:
|
||||
|
||||
1. Sub-interpreters will not receive independent copies of embedded modules.
|
||||
Instead, these are shared and modifications in one interpreter may be
|
||||
reflected in another.
|
||||
|
||||
2. Managing multiple threads, multiple interpreters and the GIL can be
|
||||
challenging and there are several caveats here, even within the pure
|
||||
CPython API (please refer to the Python docs for details). As for
|
||||
pybind11, keep in mind that ``gil_scoped_release`` and ``gil_scoped_acquire``
|
||||
do not take sub-interpreters into account.
|
Reference in New Issue
Block a user