mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-06-12 12:57:13 +02:00
Hardcopy of pybind11 instead of using git submodules (#552)
* removed pybind as submodule * added hardcopy of pybind11 2.10.0 * rename pybind11 folder to avoid conflicts when changing branch Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
This commit is contained in:
81
libs/pybind/docs/advanced/cast/chrono.rst
Normal file
81
libs/pybind/docs/advanced/cast/chrono.rst
Normal file
@ -0,0 +1,81 @@
|
||||
Chrono
|
||||
======
|
||||
|
||||
When including the additional header file :file:`pybind11/chrono.h` conversions
|
||||
from C++11 chrono datatypes to python datetime objects are automatically enabled.
|
||||
This header also enables conversions of python floats (often from sources such
|
||||
as ``time.monotonic()``, ``time.perf_counter()`` and ``time.process_time()``)
|
||||
into durations.
|
||||
|
||||
An overview of clocks in C++11
|
||||
------------------------------
|
||||
|
||||
A point of confusion when using these conversions is the differences between
|
||||
clocks provided in C++11. There are three clock types defined by the C++11
|
||||
standard and users can define their own if needed. Each of these clocks have
|
||||
different properties and when converting to and from python will give different
|
||||
results.
|
||||
|
||||
The first clock defined by the standard is ``std::chrono::system_clock``. This
|
||||
clock measures the current date and time. However, this clock changes with to
|
||||
updates to the operating system time. For example, if your time is synchronised
|
||||
with a time server this clock will change. This makes this clock a poor choice
|
||||
for timing purposes but good for measuring the wall time.
|
||||
|
||||
The second clock defined in the standard is ``std::chrono::steady_clock``.
|
||||
This clock ticks at a steady rate and is never adjusted. This makes it excellent
|
||||
for timing purposes, however the value in this clock does not correspond to the
|
||||
current date and time. Often this clock will be the amount of time your system
|
||||
has been on, although it does not have to be. This clock will never be the same
|
||||
clock as the system clock as the system clock can change but steady clocks
|
||||
cannot.
|
||||
|
||||
The third clock defined in the standard is ``std::chrono::high_resolution_clock``.
|
||||
This clock is the clock that has the highest resolution out of the clocks in the
|
||||
system. It is normally a typedef to either the system clock or the steady clock
|
||||
but can be its own independent clock. This is important as when using these
|
||||
conversions as the types you get in python for this clock might be different
|
||||
depending on the system.
|
||||
If it is a typedef of the system clock, python will get datetime objects, but if
|
||||
it is a different clock they will be timedelta objects.
|
||||
|
||||
Provided conversions
|
||||
--------------------
|
||||
|
||||
.. rubric:: C++ to Python
|
||||
|
||||
- ``std::chrono::system_clock::time_point`` → ``datetime.datetime``
|
||||
System clock times are converted to python datetime instances. They are
|
||||
in the local timezone, but do not have any timezone information attached
|
||||
to them (they are naive datetime objects).
|
||||
|
||||
- ``std::chrono::duration`` → ``datetime.timedelta``
|
||||
Durations are converted to timedeltas, any precision in the duration
|
||||
greater than microseconds is lost by rounding towards zero.
|
||||
|
||||
- ``std::chrono::[other_clocks]::time_point`` → ``datetime.timedelta``
|
||||
Any clock time that is not the system clock is converted to a time delta.
|
||||
This timedelta measures the time from the clocks epoch to now.
|
||||
|
||||
.. rubric:: Python to C++
|
||||
|
||||
- ``datetime.datetime`` or ``datetime.date`` or ``datetime.time`` → ``std::chrono::system_clock::time_point``
|
||||
Date/time objects are converted into system clock timepoints. Any
|
||||
timezone information is ignored and the type is treated as a naive
|
||||
object.
|
||||
|
||||
- ``datetime.timedelta`` → ``std::chrono::duration``
|
||||
Time delta are converted into durations with microsecond precision.
|
||||
|
||||
- ``datetime.timedelta`` → ``std::chrono::[other_clocks]::time_point``
|
||||
Time deltas that are converted into clock timepoints are treated as
|
||||
the amount of time from the start of the clocks epoch.
|
||||
|
||||
- ``float`` → ``std::chrono::duration``
|
||||
Floats that are passed to C++ as durations be interpreted as a number of
|
||||
seconds. These will be converted to the duration using ``duration_cast``
|
||||
from the float.
|
||||
|
||||
- ``float`` → ``std::chrono::[other_clocks]::time_point``
|
||||
Floats that are passed to C++ as time points will be interpreted as the
|
||||
number of seconds from the start of the clocks epoch.
|
93
libs/pybind/docs/advanced/cast/custom.rst
Normal file
93
libs/pybind/docs/advanced/cast/custom.rst
Normal file
@ -0,0 +1,93 @@
|
||||
Custom type casters
|
||||
===================
|
||||
|
||||
In very rare cases, applications may require custom type casters that cannot be
|
||||
expressed using the abstractions provided by pybind11, thus requiring raw
|
||||
Python C API calls. This is fairly advanced usage and should only be pursued by
|
||||
experts who are familiar with the intricacies of Python reference counting.
|
||||
|
||||
The following snippets demonstrate how this works for a very simple ``inty``
|
||||
type that that should be convertible from Python types that provide a
|
||||
``__int__(self)`` method.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct inty { long long_value; };
|
||||
|
||||
void print(inty s) {
|
||||
std::cout << s.long_value << std::endl;
|
||||
}
|
||||
|
||||
The following Python snippet demonstrates the intended usage from the Python side:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class A:
|
||||
def __int__(self):
|
||||
return 123
|
||||
|
||||
|
||||
from example import print
|
||||
|
||||
print(A())
|
||||
|
||||
To register the necessary conversion routines, it is necessary to add an
|
||||
instantiation of the ``pybind11::detail::type_caster<T>`` template.
|
||||
Although this is an implementation detail, adding an instantiation of this
|
||||
type is explicitly allowed.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
namespace pybind11 { namespace detail {
|
||||
template <> struct type_caster<inty> {
|
||||
public:
|
||||
/**
|
||||
* This macro establishes the name 'inty' in
|
||||
* function signatures and declares a local variable
|
||||
* 'value' of type inty
|
||||
*/
|
||||
PYBIND11_TYPE_CASTER(inty, const_name("inty"));
|
||||
|
||||
/**
|
||||
* Conversion part 1 (Python->C++): convert a PyObject into a inty
|
||||
* instance or return false upon failure. The second argument
|
||||
* indicates whether implicit conversions should be applied.
|
||||
*/
|
||||
bool load(handle src, bool) {
|
||||
/* Extract PyObject from handle */
|
||||
PyObject *source = src.ptr();
|
||||
/* Try converting into a Python integer value */
|
||||
PyObject *tmp = PyNumber_Long(source);
|
||||
if (!tmp)
|
||||
return false;
|
||||
/* Now try to convert into a C++ int */
|
||||
value.long_value = PyLong_AsLong(tmp);
|
||||
Py_DECREF(tmp);
|
||||
/* Ensure return code was OK (to avoid out-of-range errors etc) */
|
||||
return !(value.long_value == -1 && !PyErr_Occurred());
|
||||
}
|
||||
|
||||
/**
|
||||
* Conversion part 2 (C++ -> Python): convert an inty instance into
|
||||
* a Python object. The second and third arguments are used to
|
||||
* indicate the return value policy and parent object (for
|
||||
* ``return_value_policy::reference_internal``) and are generally
|
||||
* ignored by implicit casters.
|
||||
*/
|
||||
static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) {
|
||||
return PyLong_FromLong(src.long_value);
|
||||
}
|
||||
};
|
||||
}} // namespace pybind11::detail
|
||||
|
||||
.. note::
|
||||
|
||||
A ``type_caster<T>`` defined with ``PYBIND11_TYPE_CASTER(T, ...)`` requires
|
||||
that ``T`` is default-constructible (``value`` is first default constructed
|
||||
and then ``load()`` assigns to it).
|
||||
|
||||
.. warning::
|
||||
|
||||
When using custom type casters, it's important to declare them consistently
|
||||
in every compilation unit of the Python extension module. Otherwise,
|
||||
undefined behavior can ensue.
|
310
libs/pybind/docs/advanced/cast/eigen.rst
Normal file
310
libs/pybind/docs/advanced/cast/eigen.rst
Normal file
@ -0,0 +1,310 @@
|
||||
Eigen
|
||||
#####
|
||||
|
||||
`Eigen <http://eigen.tuxfamily.org>`_ is C++ header-based library for dense and
|
||||
sparse linear algebra. Due to its popularity and widespread adoption, pybind11
|
||||
provides transparent conversion and limited mapping support between Eigen and
|
||||
Scientific Python linear algebra data types.
|
||||
|
||||
To enable the built-in Eigen support you must include the optional header file
|
||||
:file:`pybind11/eigen.h`.
|
||||
|
||||
Pass-by-value
|
||||
=============
|
||||
|
||||
When binding a function with ordinary Eigen dense object arguments (for
|
||||
example, ``Eigen::MatrixXd``), pybind11 will accept any input value that is
|
||||
already (or convertible to) a ``numpy.ndarray`` with dimensions compatible with
|
||||
the Eigen type, copy its values into a temporary Eigen variable of the
|
||||
appropriate type, then call the function with this temporary variable.
|
||||
|
||||
Sparse matrices are similarly copied to or from
|
||||
``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` objects.
|
||||
|
||||
Pass-by-reference
|
||||
=================
|
||||
|
||||
One major limitation of the above is that every data conversion implicitly
|
||||
involves a copy, which can be both expensive (for large matrices) and disallows
|
||||
binding functions that change their (Matrix) arguments. Pybind11 allows you to
|
||||
work around this by using Eigen's ``Eigen::Ref<MatrixType>`` class much as you
|
||||
would when writing a function taking a generic type in Eigen itself (subject to
|
||||
some limitations discussed below).
|
||||
|
||||
When calling a bound function accepting a ``Eigen::Ref<const MatrixType>``
|
||||
type, pybind11 will attempt to avoid copying by using an ``Eigen::Map`` object
|
||||
that maps into the source ``numpy.ndarray`` data: this requires both that the
|
||||
data types are the same (e.g. ``dtype='float64'`` and ``MatrixType::Scalar`` is
|
||||
``double``); and that the storage is layout compatible. The latter limitation
|
||||
is discussed in detail in the section below, and requires careful
|
||||
consideration: by default, numpy matrices and Eigen matrices are *not* storage
|
||||
compatible.
|
||||
|
||||
If the numpy matrix cannot be used as is (either because its types differ, e.g.
|
||||
passing an array of integers to an Eigen parameter requiring doubles, or
|
||||
because the storage is incompatible), pybind11 makes a temporary copy and
|
||||
passes the copy instead.
|
||||
|
||||
When a bound function parameter is instead ``Eigen::Ref<MatrixType>`` (note the
|
||||
lack of ``const``), pybind11 will only allow the function to be called if it
|
||||
can be mapped *and* if the numpy array is writeable (that is
|
||||
``a.flags.writeable`` is true). Any access (including modification) made to
|
||||
the passed variable will be transparently carried out directly on the
|
||||
``numpy.ndarray``.
|
||||
|
||||
This means you can write code such as the following and have it work as
|
||||
expected:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void scale_by_2(Eigen::Ref<Eigen::VectorXd> v) {
|
||||
v *= 2;
|
||||
}
|
||||
|
||||
Note, however, that you will likely run into limitations due to numpy and
|
||||
Eigen's difference default storage order for data; see the below section on
|
||||
:ref:`storage_orders` for details on how to bind code that won't run into such
|
||||
limitations.
|
||||
|
||||
.. note::
|
||||
|
||||
Passing by reference is not supported for sparse types.
|
||||
|
||||
Returning values to Python
|
||||
==========================
|
||||
|
||||
When returning an ordinary dense Eigen matrix type to numpy (e.g.
|
||||
``Eigen::MatrixXd`` or ``Eigen::RowVectorXf``) pybind11 keeps the matrix and
|
||||
returns a numpy array that directly references the Eigen matrix: no copy of the
|
||||
data is performed. The numpy array will have ``array.flags.owndata`` set to
|
||||
``False`` to indicate that it does not own the data, and the lifetime of the
|
||||
stored Eigen matrix will be tied to the returned ``array``.
|
||||
|
||||
If you bind a function with a non-reference, ``const`` return type (e.g.
|
||||
``const Eigen::MatrixXd``), the same thing happens except that pybind11 also
|
||||
sets the numpy array's ``writeable`` flag to false.
|
||||
|
||||
If you return an lvalue reference or pointer, the usual pybind11 rules apply,
|
||||
as dictated by the binding function's return value policy (see the
|
||||
documentation on :ref:`return_value_policies` for full details). That means,
|
||||
without an explicit return value policy, lvalue references will be copied and
|
||||
pointers will be managed by pybind11. In order to avoid copying, you should
|
||||
explicitly specify an appropriate return value policy, as in the following
|
||||
example:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class MyClass {
|
||||
Eigen::MatrixXd big_mat = Eigen::MatrixXd::Zero(10000, 10000);
|
||||
public:
|
||||
Eigen::MatrixXd &getMatrix() { return big_mat; }
|
||||
const Eigen::MatrixXd &viewMatrix() { return big_mat; }
|
||||
};
|
||||
|
||||
// Later, in binding code:
|
||||
py::class_<MyClass>(m, "MyClass")
|
||||
.def(py::init<>())
|
||||
.def("copy_matrix", &MyClass::getMatrix) // Makes a copy!
|
||||
.def("get_matrix", &MyClass::getMatrix, py::return_value_policy::reference_internal)
|
||||
.def("view_matrix", &MyClass::viewMatrix, py::return_value_policy::reference_internal)
|
||||
;
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
a = MyClass()
|
||||
m = a.get_matrix() # flags.writeable = True, flags.owndata = False
|
||||
v = a.view_matrix() # flags.writeable = False, flags.owndata = False
|
||||
c = a.copy_matrix() # flags.writeable = True, flags.owndata = True
|
||||
# m[5,6] and v[5,6] refer to the same element, c[5,6] does not.
|
||||
|
||||
Note in this example that ``py::return_value_policy::reference_internal`` is
|
||||
used to tie the life of the MyClass object to the life of the returned arrays.
|
||||
|
||||
You may also return an ``Eigen::Ref``, ``Eigen::Map`` or other map-like Eigen
|
||||
object (for example, the return value of ``matrix.block()`` and related
|
||||
methods) that map into a dense Eigen type. When doing so, the default
|
||||
behaviour of pybind11 is to simply reference the returned data: you must take
|
||||
care to ensure that this data remains valid! You may ask pybind11 to
|
||||
explicitly *copy* such a return value by using the
|
||||
``py::return_value_policy::copy`` policy when binding the function. You may
|
||||
also use ``py::return_value_policy::reference_internal`` or a
|
||||
``py::keep_alive`` to ensure the data stays valid as long as the returned numpy
|
||||
array does.
|
||||
|
||||
When returning such a reference of map, pybind11 additionally respects the
|
||||
readonly-status of the returned value, marking the numpy array as non-writeable
|
||||
if the reference or map was itself read-only.
|
||||
|
||||
.. note::
|
||||
|
||||
Sparse types are always copied when returned.
|
||||
|
||||
.. _storage_orders:
|
||||
|
||||
Storage orders
|
||||
==============
|
||||
|
||||
Passing arguments via ``Eigen::Ref`` has some limitations that you must be
|
||||
aware of in order to effectively pass matrices by reference. First and
|
||||
foremost is that the default ``Eigen::Ref<MatrixType>`` class requires
|
||||
contiguous storage along columns (for column-major types, the default in Eigen)
|
||||
or rows if ``MatrixType`` is specifically an ``Eigen::RowMajor`` storage type.
|
||||
The former, Eigen's default, is incompatible with ``numpy``'s default row-major
|
||||
storage, and so you will not be able to pass numpy arrays to Eigen by reference
|
||||
without making one of two changes.
|
||||
|
||||
(Note that this does not apply to vectors (or column or row matrices): for such
|
||||
types the "row-major" and "column-major" distinction is meaningless).
|
||||
|
||||
The first approach is to change the use of ``Eigen::Ref<MatrixType>`` to the
|
||||
more general ``Eigen::Ref<MatrixType, 0, Eigen::Stride<Eigen::Dynamic,
|
||||
Eigen::Dynamic>>`` (or similar type with a fully dynamic stride type in the
|
||||
third template argument). Since this is a rather cumbersome type, pybind11
|
||||
provides a ``py::EigenDRef<MatrixType>`` type alias for your convenience (along
|
||||
with EigenDMap for the equivalent Map, and EigenDStride for just the stride
|
||||
type).
|
||||
|
||||
This type allows Eigen to map into any arbitrary storage order. This is not
|
||||
the default in Eigen for performance reasons: contiguous storage allows
|
||||
vectorization that cannot be done when storage is not known to be contiguous at
|
||||
compile time. The default ``Eigen::Ref`` stride type allows non-contiguous
|
||||
storage along the outer dimension (that is, the rows of a column-major matrix
|
||||
or columns of a row-major matrix), but not along the inner dimension.
|
||||
|
||||
This type, however, has the added benefit of also being able to map numpy array
|
||||
slices. For example, the following (contrived) example uses Eigen with a numpy
|
||||
slice to multiply by 2 all coefficients that are both on even rows (0, 2, 4,
|
||||
...) and in columns 2, 5, or 8:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("scale", [](py::EigenDRef<Eigen::MatrixXd> m, double c) { m *= c; });
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# a = np.array(...)
|
||||
scale_by_2(myarray[0::2, 2:9:3])
|
||||
|
||||
The second approach to avoid copying is more intrusive: rearranging the
|
||||
underlying data types to not run into the non-contiguous storage problem in the
|
||||
first place. In particular, that means using matrices with ``Eigen::RowMajor``
|
||||
storage, where appropriate, such as:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
using RowMatrixXd = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
|
||||
// Use RowMatrixXd instead of MatrixXd
|
||||
|
||||
Now bound functions accepting ``Eigen::Ref<RowMatrixXd>`` arguments will be
|
||||
callable with numpy's (default) arrays without involving a copying.
|
||||
|
||||
You can, alternatively, change the storage order that numpy arrays use by
|
||||
adding the ``order='F'`` option when creating an array:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
myarray = np.array(source, order="F")
|
||||
|
||||
Such an object will be passable to a bound function accepting an
|
||||
``Eigen::Ref<MatrixXd>`` (or similar column-major Eigen type).
|
||||
|
||||
One major caveat with this approach, however, is that it is not entirely as
|
||||
easy as simply flipping all Eigen or numpy usage from one to the other: some
|
||||
operations may alter the storage order of a numpy array. For example, ``a2 =
|
||||
array.transpose()`` results in ``a2`` being a view of ``array`` that references
|
||||
the same data, but in the opposite storage order!
|
||||
|
||||
While this approach allows fully optimized vectorized calculations in Eigen, it
|
||||
cannot be used with array slices, unlike the first approach.
|
||||
|
||||
When *returning* a matrix to Python (either a regular matrix, a reference via
|
||||
``Eigen::Ref<>``, or a map/block into a matrix), no special storage
|
||||
consideration is required: the created numpy array will have the required
|
||||
stride that allows numpy to properly interpret the array, whatever its storage
|
||||
order.
|
||||
|
||||
Failing rather than copying
|
||||
===========================
|
||||
|
||||
The default behaviour when binding ``Eigen::Ref<const MatrixType>`` Eigen
|
||||
references is to copy matrix values when passed a numpy array that does not
|
||||
conform to the element type of ``MatrixType`` or does not have a compatible
|
||||
stride layout. If you want to explicitly avoid copying in such a case, you
|
||||
should bind arguments using the ``py::arg().noconvert()`` annotation (as
|
||||
described in the :ref:`nonconverting_arguments` documentation).
|
||||
|
||||
The following example shows an example of arguments that don't allow data
|
||||
copying to take place:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// The method and function to be bound:
|
||||
class MyClass {
|
||||
// ...
|
||||
double some_method(const Eigen::Ref<const MatrixXd> &matrix) { /* ... */ }
|
||||
};
|
||||
float some_function(const Eigen::Ref<const MatrixXf> &big,
|
||||
const Eigen::Ref<const MatrixXf> &small) {
|
||||
// ...
|
||||
}
|
||||
|
||||
// The associated binding code:
|
||||
using namespace pybind11::literals; // for "arg"_a
|
||||
py::class_<MyClass>(m, "MyClass")
|
||||
// ... other class definitions
|
||||
.def("some_method", &MyClass::some_method, py::arg().noconvert());
|
||||
|
||||
m.def("some_function", &some_function,
|
||||
"big"_a.noconvert(), // <- Don't allow copying for this arg
|
||||
"small"_a // <- This one can be copied if needed
|
||||
);
|
||||
|
||||
With the above binding code, attempting to call the the ``some_method(m)``
|
||||
method on a ``MyClass`` object, or attempting to call ``some_function(m, m2)``
|
||||
will raise a ``RuntimeError`` rather than making a temporary copy of the array.
|
||||
It will, however, allow the ``m2`` argument to be copied into a temporary if
|
||||
necessary.
|
||||
|
||||
Note that explicitly specifying ``.noconvert()`` is not required for *mutable*
|
||||
Eigen references (e.g. ``Eigen::Ref<MatrixXd>`` without ``const`` on the
|
||||
``MatrixXd``): mutable references will never be called with a temporary copy.
|
||||
|
||||
Vectors versus column/row matrices
|
||||
==================================
|
||||
|
||||
Eigen and numpy have fundamentally different notions of a vector. In Eigen, a
|
||||
vector is simply a matrix with the number of columns or rows set to 1 at
|
||||
compile time (for a column vector or row vector, respectively). NumPy, in
|
||||
contrast, has comparable 2-dimensional 1xN and Nx1 arrays, but *also* has
|
||||
1-dimensional arrays of size N.
|
||||
|
||||
When passing a 2-dimensional 1xN or Nx1 array to Eigen, the Eigen type must
|
||||
have matching dimensions: That is, you cannot pass a 2-dimensional Nx1 numpy
|
||||
array to an Eigen value expecting a row vector, or a 1xN numpy array as a
|
||||
column vector argument.
|
||||
|
||||
On the other hand, pybind11 allows you to pass 1-dimensional arrays of length N
|
||||
as Eigen parameters. If the Eigen type can hold a column vector of length N it
|
||||
will be passed as such a column vector. If not, but the Eigen type constraints
|
||||
will accept a row vector, it will be passed as a row vector. (The column
|
||||
vector takes precedence when both are supported, for example, when passing a
|
||||
1D numpy array to a MatrixXd argument). Note that the type need not be
|
||||
explicitly a vector: it is permitted to pass a 1D numpy array of size 5 to an
|
||||
Eigen ``Matrix<double, Dynamic, 5>``: you would end up with a 1x5 Eigen matrix.
|
||||
Passing the same to an ``Eigen::MatrixXd`` would result in a 5x1 Eigen matrix.
|
||||
|
||||
When returning an Eigen vector to numpy, the conversion is ambiguous: a row
|
||||
vector of length 4 could be returned as either a 1D array of length 4, or as a
|
||||
2D array of size 1x4. When encountering such a situation, pybind11 compromises
|
||||
by considering the returned Eigen type: if it is a compile-time vector--that
|
||||
is, the type has either the number of rows or columns set to 1 at compile
|
||||
time--pybind11 converts to a 1D numpy array when returning the value. For
|
||||
instances that are a vector only at run-time (e.g. ``MatrixXd``,
|
||||
``Matrix<float, Dynamic, 4>``), pybind11 returns the vector as a 2D array to
|
||||
numpy. If this isn't want you want, you can use ``array.reshape(...)`` to get
|
||||
a view of the same data in the desired dimensions.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_eigen.cpp` contains a complete example that
|
||||
shows how to pass Eigen sparse and dense data types in more detail.
|
109
libs/pybind/docs/advanced/cast/functional.rst
Normal file
109
libs/pybind/docs/advanced/cast/functional.rst
Normal file
@ -0,0 +1,109 @@
|
||||
Functional
|
||||
##########
|
||||
|
||||
The following features must be enabled by including :file:`pybind11/functional.h`.
|
||||
|
||||
|
||||
Callbacks and passing anonymous functions
|
||||
=========================================
|
||||
|
||||
The C++11 standard brought lambda functions and the generic polymorphic
|
||||
function wrapper ``std::function<>`` to the C++ programming language, which
|
||||
enable powerful new ways of working with functions. Lambda functions come in
|
||||
two flavors: stateless lambda function resemble classic function pointers that
|
||||
link to an anonymous piece of code, while stateful lambda functions
|
||||
additionally depend on captured variables that are stored in an anonymous
|
||||
*lambda closure object*.
|
||||
|
||||
Here is a simple example of a C++ function that takes an arbitrary function
|
||||
(stateful or stateless) with signature ``int -> int`` as an argument and runs
|
||||
it with the value 10.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
int func_arg(const std::function<int(int)> &f) {
|
||||
return f(10);
|
||||
}
|
||||
|
||||
The example below is more involved: it takes a function of signature ``int -> int``
|
||||
and returns another function of the same kind. The return value is a stateful
|
||||
lambda function, which stores the value ``f`` in the capture object and adds 1 to
|
||||
its return value upon execution.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
std::function<int(int)> func_ret(const std::function<int(int)> &f) {
|
||||
return [f](int i) {
|
||||
return f(i) + 1;
|
||||
};
|
||||
}
|
||||
|
||||
This example demonstrates using python named parameters in C++ callbacks which
|
||||
requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
|
||||
methods of classes:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::cpp_function func_cpp() {
|
||||
return py::cpp_function([](int i) { return i+1; },
|
||||
py::arg("number"));
|
||||
}
|
||||
|
||||
After including the extra header file :file:`pybind11/functional.h`, it is almost
|
||||
trivial to generate binding code for all of these functions.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/functional.h>
|
||||
|
||||
PYBIND11_MODULE(example, m) {
|
||||
m.def("func_arg", &func_arg);
|
||||
m.def("func_ret", &func_ret);
|
||||
m.def("func_cpp", &func_cpp);
|
||||
}
|
||||
|
||||
The following interactive session shows how to call them from Python.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
$ python
|
||||
>>> import example
|
||||
>>> def square(i):
|
||||
... return i * i
|
||||
...
|
||||
>>> example.func_arg(square)
|
||||
100L
|
||||
>>> square_plus_1 = example.func_ret(square)
|
||||
>>> square_plus_1(4)
|
||||
17L
|
||||
>>> plus_1 = func_cpp()
|
||||
>>> plus_1(number=43)
|
||||
44L
|
||||
|
||||
.. warning::
|
||||
|
||||
Keep in mind that passing a function from C++ to Python (or vice versa)
|
||||
will instantiate a piece of wrapper code that translates function
|
||||
invocations between the two languages. Naturally, this translation
|
||||
increases the computational cost of each function call somewhat. A
|
||||
problematic situation can arise when a function is copied back and forth
|
||||
between Python and C++ many times in a row, in which case the underlying
|
||||
wrappers will accumulate correspondingly. The resulting long sequence of
|
||||
C++ -> Python -> C++ -> ... roundtrips can significantly decrease
|
||||
performance.
|
||||
|
||||
There is one exception: pybind11 detects case where a stateless function
|
||||
(i.e. a function pointer or a lambda function without captured variables)
|
||||
is passed as an argument to another C++ function exposed in Python. In this
|
||||
case, there is no overhead. Pybind11 will extract the underlying C++
|
||||
function pointer from the wrapped function to sidestep a potential C++ ->
|
||||
Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
|
||||
|
||||
.. note::
|
||||
|
||||
This functionality is very useful when generating bindings for callbacks in
|
||||
C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
|
||||
|
||||
The file :file:`tests/test_callbacks.cpp` contains a complete example
|
||||
that demonstrates how to work with callbacks and anonymous functions in
|
||||
more detail.
|
43
libs/pybind/docs/advanced/cast/index.rst
Normal file
43
libs/pybind/docs/advanced/cast/index.rst
Normal file
@ -0,0 +1,43 @@
|
||||
.. _type-conversions:
|
||||
|
||||
Type conversions
|
||||
################
|
||||
|
||||
Apart from enabling cross-language function calls, a fundamental problem
|
||||
that a binding tool like pybind11 must address is to provide access to
|
||||
native Python types in C++ and vice versa. There are three fundamentally
|
||||
different ways to do this—which approach is preferable for a particular type
|
||||
depends on the situation at hand.
|
||||
|
||||
1. Use a native C++ type everywhere. In this case, the type must be wrapped
|
||||
using pybind11-generated bindings so that Python can interact with it.
|
||||
|
||||
2. Use a native Python type everywhere. It will need to be wrapped so that
|
||||
C++ functions can interact with it.
|
||||
|
||||
3. Use a native C++ type on the C++ side and a native Python type on the
|
||||
Python side. pybind11 refers to this as a *type conversion*.
|
||||
|
||||
Type conversions are the most "natural" option in the sense that native
|
||||
(non-wrapped) types are used everywhere. The main downside is that a copy
|
||||
of the data must be made on every Python ↔ C++ transition: this is
|
||||
needed since the C++ and Python versions of the same type generally won't
|
||||
have the same memory layout.
|
||||
|
||||
pybind11 can perform many kinds of conversions automatically. An overview
|
||||
is provided in the table ":ref:`conversion_table`".
|
||||
|
||||
The following subsections discuss the differences between these options in more
|
||||
detail. The main focus in this section is on type conversions, which represent
|
||||
the last case of the above list.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
overview
|
||||
strings
|
||||
stl
|
||||
functional
|
||||
chrono
|
||||
eigen
|
||||
custom
|
170
libs/pybind/docs/advanced/cast/overview.rst
Normal file
170
libs/pybind/docs/advanced/cast/overview.rst
Normal file
@ -0,0 +1,170 @@
|
||||
Overview
|
||||
########
|
||||
|
||||
.. rubric:: 1. Native type in C++, wrapper in Python
|
||||
|
||||
Exposing a custom C++ type using :class:`py::class_` was covered in detail
|
||||
in the :doc:`/classes` section. There, the underlying data structure is
|
||||
always the original C++ class while the :class:`py::class_` wrapper provides
|
||||
a Python interface. Internally, when an object like this is sent from C++ to
|
||||
Python, pybind11 will just add the outer wrapper layer over the native C++
|
||||
object. Getting it back from Python is just a matter of peeling off the
|
||||
wrapper.
|
||||
|
||||
.. rubric:: 2. Wrapper in C++, native type in Python
|
||||
|
||||
This is the exact opposite situation. Now, we have a type which is native to
|
||||
Python, like a ``tuple`` or a ``list``. One way to get this data into C++ is
|
||||
with the :class:`py::object` family of wrappers. These are explained in more
|
||||
detail in the :doc:`/advanced/pycpp/object` section. We'll just give a quick
|
||||
example here:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void print_list(py::list my_list) {
|
||||
for (auto item : my_list)
|
||||
std::cout << item << " ";
|
||||
}
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> print_list([1, 2, 3])
|
||||
1 2 3
|
||||
|
||||
The Python ``list`` is not converted in any way -- it's just wrapped in a C++
|
||||
:class:`py::list` class. At its core it's still a Python object. Copying a
|
||||
:class:`py::list` will do the usual reference-counting like in Python.
|
||||
Returning the object to Python will just remove the thin wrapper.
|
||||
|
||||
.. rubric:: 3. Converting between native C++ and Python types
|
||||
|
||||
In the previous two cases we had a native type in one language and a wrapper in
|
||||
the other. Now, we have native types on both sides and we convert between them.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void print_vector(const std::vector<int> &v) {
|
||||
for (auto item : v)
|
||||
std::cout << item << "\n";
|
||||
}
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> print_vector([1, 2, 3])
|
||||
1 2 3
|
||||
|
||||
In this case, pybind11 will construct a new ``std::vector<int>`` and copy each
|
||||
element from the Python ``list``. The newly constructed object will be passed
|
||||
to ``print_vector``. The same thing happens in the other direction: a new
|
||||
``list`` is made to match the value returned from C++.
|
||||
|
||||
Lots of these conversions are supported out of the box, as shown in the table
|
||||
below. They are very convenient, but keep in mind that these conversions are
|
||||
fundamentally based on copying data. This is perfectly fine for small immutable
|
||||
types but it may become quite expensive for large data structures. This can be
|
||||
avoided by overriding the automatic conversion with a custom wrapper (i.e. the
|
||||
above-mentioned approach 1). This requires some manual effort and more details
|
||||
are available in the :ref:`opaque` section.
|
||||
|
||||
.. _conversion_table:
|
||||
|
||||
List of all builtin conversions
|
||||
-------------------------------
|
||||
|
||||
The following basic data types are supported out of the box (some may require
|
||||
an additional extension header to be included). To pass other data structures
|
||||
as arguments and return values, refer to the section on binding :ref:`classes`.
|
||||
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| Data type | Description | Header file |
|
||||
+====================================+===========================+===================================+
|
||||
| ``int8_t``, ``uint8_t`` | 8-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``int16_t``, ``uint16_t`` | 16-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``int32_t``, ``uint32_t`` | 32-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``int64_t``, ``uint64_t`` | 64-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``ssize_t``, ``size_t`` | Platform-dependent size | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``float``, ``double`` | Floating point types | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``bool`` | Two-state Boolean type | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``char`` | Character literal | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``char16_t`` | UTF-16 character literal | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``char32_t`` | UTF-32 character literal | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``wchar_t`` | Wide character literal | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``const char *`` | UTF-8 string literal | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``const char16_t *`` | UTF-16 string literal | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``const char32_t *`` | UTF-32 string literal | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``const wchar_t *`` | Wide string literal | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::string`` | STL dynamic UTF-8 string | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::u16string`` | STL dynamic UTF-16 string | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::u32string`` | STL dynamic UTF-32 string | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::wstring`` | STL dynamic wide string | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::string_view``, | STL C++17 string views | :file:`pybind11/pybind11.h` |
|
||||
| ``std::u16string_view``, etc. | | |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::pair<T1, T2>`` | Pair of two custom types | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::tuple<...>`` | Arbitrary tuple of types | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::reference_wrapper<...>`` | Reference type wrapper | :file:`pybind11/pybind11.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::complex<T>`` | Complex numbers | :file:`pybind11/complex.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::array<T, Size>`` | STL static array | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::vector<T>`` | STL dynamic array | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::deque<T>`` | STL double-ended queue | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::valarray<T>`` | STL value array | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::list<T>`` | STL linked list | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::map<T1, T2>`` | STL ordered map | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::unordered_map<T1, T2>`` | STL unordered map | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::set<T>`` | STL ordered set | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::unordered_set<T>`` | STL unordered set | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::optional<T>`` | STL optional type (C++17) | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::experimental::optional<T>`` | STL optional type (exp.) | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::variant<...>`` | Type-safe union (C++17) | :file:`pybind11/stl.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::filesystem::path<T>`` | STL path (C++17) [#]_ | :file:`pybind11/stl/filesystem.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::function<...>`` | STL polymorphic function | :file:`pybind11/functional.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::chrono::duration<...>`` | STL time duration | :file:`pybind11/chrono.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``std::chrono::time_point<...>`` | STL date/time | :file:`pybind11/chrono.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``Eigen::Matrix<...>`` | Eigen: dense matrix | :file:`pybind11/eigen.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``Eigen::Map<...>`` | Eigen: mapped memory | :file:`pybind11/eigen.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
| ``Eigen::SparseMatrix<...>`` | Eigen: sparse matrix | :file:`pybind11/eigen.h` |
|
||||
+------------------------------------+---------------------------+-----------------------------------+
|
||||
|
||||
.. [#] ``std::filesystem::path`` is converted to ``pathlib.Path`` and
|
||||
``os.PathLike`` is converted to ``std::filesystem::path``.
|
249
libs/pybind/docs/advanced/cast/stl.rst
Normal file
249
libs/pybind/docs/advanced/cast/stl.rst
Normal file
@ -0,0 +1,249 @@
|
||||
STL containers
|
||||
##############
|
||||
|
||||
Automatic conversion
|
||||
====================
|
||||
|
||||
When including the additional header file :file:`pybind11/stl.h`, conversions
|
||||
between ``std::vector<>``/``std::deque<>``/``std::list<>``/``std::array<>``/``std::valarray<>``,
|
||||
``std::set<>``/``std::unordered_set<>``, and
|
||||
``std::map<>``/``std::unordered_map<>`` and the Python ``list``, ``set`` and
|
||||
``dict`` data structures are automatically enabled. The types ``std::pair<>``
|
||||
and ``std::tuple<>`` are already supported out of the box with just the core
|
||||
:file:`pybind11/pybind11.h` header.
|
||||
|
||||
The major downside of these implicit conversions is that containers must be
|
||||
converted (i.e. copied) on every Python->C++ and C++->Python transition, which
|
||||
can have implications on the program semantics and performance. Please read the
|
||||
next sections for more details and alternative approaches that avoid this.
|
||||
|
||||
.. note::
|
||||
|
||||
Arbitrary nesting of any of these types is possible.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_stl.cpp` contains a complete
|
||||
example that demonstrates how to pass STL data types in more detail.
|
||||
|
||||
.. _cpp17_container_casters:
|
||||
|
||||
C++17 library containers
|
||||
========================
|
||||
|
||||
The :file:`pybind11/stl.h` header also includes support for ``std::optional<>``
|
||||
and ``std::variant<>``. These require a C++17 compiler and standard library.
|
||||
In C++14 mode, ``std::experimental::optional<>`` is supported if available.
|
||||
|
||||
Various versions of these containers also exist for C++11 (e.g. in Boost).
|
||||
pybind11 provides an easy way to specialize the ``type_caster`` for such
|
||||
types:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// `boost::optional` as an example -- can be any `std::optional`-like container
|
||||
namespace pybind11 { namespace detail {
|
||||
template <typename T>
|
||||
struct type_caster<boost::optional<T>> : optional_caster<boost::optional<T>> {};
|
||||
}}
|
||||
|
||||
The above should be placed in a header file and included in all translation units
|
||||
where automatic conversion is needed. Similarly, a specialization can be provided
|
||||
for custom variant types:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// `boost::variant` as an example -- can be any `std::variant`-like container
|
||||
namespace pybind11 { namespace detail {
|
||||
template <typename... Ts>
|
||||
struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};
|
||||
|
||||
// Specifies the function used to visit the variant -- `apply_visitor` instead of `visit`
|
||||
template <>
|
||||
struct visit_helper<boost::variant> {
|
||||
template <typename... Args>
|
||||
static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) {
|
||||
return boost::apply_visitor(args...);
|
||||
}
|
||||
};
|
||||
}} // namespace pybind11::detail
|
||||
|
||||
The ``visit_helper`` specialization is not required if your ``name::variant`` provides
|
||||
a ``name::visit()`` function. For any other function name, the specialization must be
|
||||
included to tell pybind11 how to visit the variant.
|
||||
|
||||
.. warning::
|
||||
|
||||
When converting a ``variant`` type, pybind11 follows the same rules as when
|
||||
determining which function overload to call (:ref:`overload_resolution`), and
|
||||
so the same caveats hold. In particular, the order in which the ``variant``'s
|
||||
alternatives are listed is important, since pybind11 will try conversions in
|
||||
this order. This means that, for example, when converting ``variant<int, bool>``,
|
||||
the ``bool`` variant will never be selected, as any Python ``bool`` is already
|
||||
an ``int`` and is convertible to a C++ ``int``. Changing the order of alternatives
|
||||
(and using ``variant<bool, int>``, in this example) provides a solution.
|
||||
|
||||
.. note::
|
||||
|
||||
pybind11 only supports the modern implementation of ``boost::variant``
|
||||
which makes use of variadic templates. This requires Boost 1.56 or newer.
|
||||
|
||||
.. _opaque:
|
||||
|
||||
Making opaque types
|
||||
===================
|
||||
|
||||
pybind11 heavily relies on a template matching mechanism to convert parameters
|
||||
and return values that are constructed from STL data types such as vectors,
|
||||
linked lists, hash tables, etc. This even works in a recursive manner, for
|
||||
instance to deal with lists of hash maps of pairs of elementary and custom
|
||||
types, etc.
|
||||
|
||||
However, a fundamental limitation of this approach is that internal conversions
|
||||
between Python and C++ types involve a copy operation that prevents
|
||||
pass-by-reference semantics. What does this mean?
|
||||
|
||||
Suppose we bind the following function
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void append_1(std::vector<int> &v) {
|
||||
v.push_back(1);
|
||||
}
|
||||
|
||||
and call it from Python, the following happens:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> v = [5, 6]
|
||||
>>> append_1(v)
|
||||
>>> print(v)
|
||||
[5, 6]
|
||||
|
||||
As you can see, when passing STL data structures by reference, modifications
|
||||
are not propagated back the Python side. A similar situation arises when
|
||||
exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
|
||||
functions:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* ... definition ... */
|
||||
|
||||
class MyClass {
|
||||
std::vector<int> contents;
|
||||
};
|
||||
|
||||
/* ... binding code ... */
|
||||
|
||||
py::class_<MyClass>(m, "MyClass")
|
||||
.def(py::init<>())
|
||||
.def_readwrite("contents", &MyClass::contents);
|
||||
|
||||
In this case, properties can be read and written in their entirety. However, an
|
||||
``append`` operation involving such a list type has no effect:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> m = MyClass()
|
||||
>>> m.contents = [5, 6]
|
||||
>>> print(m.contents)
|
||||
[5, 6]
|
||||
>>> m.contents.append(7)
|
||||
>>> print(m.contents)
|
||||
[5, 6]
|
||||
|
||||
Finally, the involved copy operations can be costly when dealing with very
|
||||
large lists. To deal with all of the above situations, pybind11 provides a
|
||||
macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
|
||||
conversion machinery of types, thus rendering them *opaque*. The contents of
|
||||
opaque objects are never inspected or extracted, hence they *can* be passed by
|
||||
reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
|
||||
the declaration
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_MAKE_OPAQUE(std::vector<int>);
|
||||
|
||||
before any binding code (e.g. invocations to ``class_::def()``, etc.). This
|
||||
macro must be specified at the top level (and outside of any namespaces), since
|
||||
it adds a template instantiation of ``type_caster``. If your binding code consists of
|
||||
multiple compilation units, it must be present in every file (typically via a
|
||||
common header) preceding any usage of ``std::vector<int>``. Opaque types must
|
||||
also have a corresponding ``class_`` declaration to associate them with a name
|
||||
in Python, and to define a set of available operations, e.g.:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<std::vector<int>>(m, "IntVector")
|
||||
.def(py::init<>())
|
||||
.def("clear", &std::vector<int>::clear)
|
||||
.def("pop_back", &std::vector<int>::pop_back)
|
||||
.def("__len__", [](const std::vector<int> &v) { return v.size(); })
|
||||
.def("__iter__", [](std::vector<int> &v) {
|
||||
return py::make_iterator(v.begin(), v.end());
|
||||
}, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
|
||||
// ....
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_opaque_types.cpp` contains a complete
|
||||
example that demonstrates how to create and expose opaque types using
|
||||
pybind11 in more detail.
|
||||
|
||||
.. _stl_bind:
|
||||
|
||||
Binding STL containers
|
||||
======================
|
||||
|
||||
The ability to expose STL containers as native Python objects is a fairly
|
||||
common request, hence pybind11 also provides an optional header file named
|
||||
:file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
|
||||
to match the behavior of their native Python counterparts as much as possible.
|
||||
|
||||
The following example showcases usage of :file:`pybind11/stl_bind.h`:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Don't forget this
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
PYBIND11_MAKE_OPAQUE(std::vector<int>);
|
||||
PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);
|
||||
|
||||
// ...
|
||||
|
||||
// later in binding code:
|
||||
py::bind_vector<std::vector<int>>(m, "VectorInt");
|
||||
py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
|
||||
|
||||
When binding STL containers pybind11 considers the types of the container's
|
||||
elements to decide whether the container should be confined to the local module
|
||||
(via the :ref:`module_local` feature). If the container element types are
|
||||
anything other than already-bound custom types bound without
|
||||
``py::module_local()`` the container binding will have ``py::module_local()``
|
||||
applied. This includes converting types such as numeric types, strings, Eigen
|
||||
types; and types that have not yet been bound at the time of the stl container
|
||||
binding. This module-local binding is designed to avoid potential conflicts
|
||||
between module bindings (for example, from two separate modules each attempting
|
||||
to bind ``std::vector<int>`` as a python type).
|
||||
|
||||
It is possible to override this behavior to force a definition to be either
|
||||
module-local or global. To do so, you can pass the attributes
|
||||
``py::module_local()`` (to make the binding module-local) or
|
||||
``py::module_local(false)`` (to make the binding global) into the
|
||||
``py::bind_vector`` or ``py::bind_map`` arguments:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::bind_vector<std::vector<int>>(m, "VectorInt", py::module_local(false));
|
||||
|
||||
Note, however, that such a global binding would make it impossible to load this
|
||||
module at the same time as any other pybind module that also attempts to bind
|
||||
the same container type (``std::vector<int>`` in the above example).
|
||||
|
||||
See :ref:`module_local` for more details on module-local bindings.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_stl_binders.cpp` shows how to use the
|
||||
convenience STL container wrappers.
|
292
libs/pybind/docs/advanced/cast/strings.rst
Normal file
292
libs/pybind/docs/advanced/cast/strings.rst
Normal file
@ -0,0 +1,292 @@
|
||||
Strings, bytes and Unicode conversions
|
||||
######################################
|
||||
|
||||
Passing Python strings to C++
|
||||
=============================
|
||||
|
||||
When a Python ``str`` is passed from Python to a C++ function that accepts
|
||||
``std::string`` or ``char *`` as arguments, pybind11 will encode the Python
|
||||
string to UTF-8. All Python ``str`` can be encoded in UTF-8, so this operation
|
||||
does not fail.
|
||||
|
||||
The C++ language is encoding agnostic. It is the responsibility of the
|
||||
programmer to track encodings. It's often easiest to simply `use UTF-8
|
||||
everywhere <http://utf8everywhere.org/>`_.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
m.def("utf8_test",
|
||||
[](const std::string &s) {
|
||||
cout << "utf-8 is icing on the cake.\n";
|
||||
cout << s;
|
||||
}
|
||||
);
|
||||
m.def("utf8_charptr",
|
||||
[](const char *s) {
|
||||
cout << "My favorite food is\n";
|
||||
cout << s;
|
||||
}
|
||||
);
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> utf8_test("🎂")
|
||||
utf-8 is icing on the cake.
|
||||
🎂
|
||||
|
||||
>>> utf8_charptr("🍕")
|
||||
My favorite food is
|
||||
🍕
|
||||
|
||||
.. note::
|
||||
|
||||
Some terminal emulators do not support UTF-8 or emoji fonts and may not
|
||||
display the example above correctly.
|
||||
|
||||
The results are the same whether the C++ function accepts arguments by value or
|
||||
reference, and whether or not ``const`` is used.
|
||||
|
||||
Passing bytes to C++
|
||||
--------------------
|
||||
|
||||
A Python ``bytes`` object will be passed to C++ functions that accept
|
||||
``std::string`` or ``char*`` *without* conversion. In order to make a function
|
||||
*only* accept ``bytes`` (and not ``str``), declare it as taking a ``py::bytes``
|
||||
argument.
|
||||
|
||||
|
||||
Returning C++ strings to Python
|
||||
===============================
|
||||
|
||||
When a C++ function returns a ``std::string`` or ``char*`` to a Python caller,
|
||||
**pybind11 will assume that the string is valid UTF-8** and will decode it to a
|
||||
native Python ``str``, using the same API as Python uses to perform
|
||||
``bytes.decode('utf-8')``. If this implicit conversion fails, pybind11 will
|
||||
raise a ``UnicodeDecodeError``.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
m.def("std_string_return",
|
||||
[]() {
|
||||
return std::string("This string needs to be UTF-8 encoded");
|
||||
}
|
||||
);
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> isinstance(example.std_string_return(), str)
|
||||
True
|
||||
|
||||
|
||||
Because UTF-8 is inclusive of pure ASCII, there is never any issue with
|
||||
returning a pure ASCII string to Python. If there is any possibility that the
|
||||
string is not pure ASCII, it is necessary to ensure the encoding is valid
|
||||
UTF-8.
|
||||
|
||||
.. warning::
|
||||
|
||||
Implicit conversion assumes that a returned ``char *`` is null-terminated.
|
||||
If there is no null terminator a buffer overrun will occur.
|
||||
|
||||
Explicit conversions
|
||||
--------------------
|
||||
|
||||
If some C++ code constructs a ``std::string`` that is not a UTF-8 string, one
|
||||
can perform a explicit conversion and return a ``py::str`` object. Explicit
|
||||
conversion has the same overhead as implicit conversion.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
// This uses the Python C API to convert Latin-1 to Unicode
|
||||
m.def("str_output",
|
||||
[]() {
|
||||
std::string s = "Send your r\xe9sum\xe9 to Alice in HR"; // Latin-1
|
||||
py::str py_s = PyUnicode_DecodeLatin1(s.data(), s.length());
|
||||
return py_s;
|
||||
}
|
||||
);
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> str_output()
|
||||
'Send your résumé to Alice in HR'
|
||||
|
||||
The `Python C API
|
||||
<https://docs.python.org/3/c-api/unicode.html#built-in-codecs>`_ provides
|
||||
several built-in codecs.
|
||||
|
||||
|
||||
One could also use a third party encoding library such as libiconv to transcode
|
||||
to UTF-8.
|
||||
|
||||
Return C++ strings without conversion
|
||||
-------------------------------------
|
||||
|
||||
If the data in a C++ ``std::string`` does not represent text and should be
|
||||
returned to Python as ``bytes``, then one can return the data as a
|
||||
``py::bytes`` object.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
m.def("return_bytes",
|
||||
[]() {
|
||||
std::string s("\xba\xd0\xba\xd0"); // Not valid UTF-8
|
||||
return py::bytes(s); // Return the data without transcoding
|
||||
}
|
||||
);
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> example.return_bytes()
|
||||
b'\xba\xd0\xba\xd0'
|
||||
|
||||
|
||||
Note the asymmetry: pybind11 will convert ``bytes`` to ``std::string`` without
|
||||
encoding, but cannot convert ``std::string`` back to ``bytes`` implicitly.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
m.def("asymmetry",
|
||||
[](std::string s) { // Accepts str or bytes from Python
|
||||
return s; // Looks harmless, but implicitly converts to str
|
||||
}
|
||||
);
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> isinstance(example.asymmetry(b"have some bytes"), str)
|
||||
True
|
||||
|
||||
>>> example.asymmetry(b"\xba\xd0\xba\xd0") # invalid utf-8 as bytes
|
||||
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xba in position 0: invalid start byte
|
||||
|
||||
|
||||
Wide character strings
|
||||
======================
|
||||
|
||||
When a Python ``str`` is passed to a C++ function expecting ``std::wstring``,
|
||||
``wchar_t*``, ``std::u16string`` or ``std::u32string``, the ``str`` will be
|
||||
encoded to UTF-16 or UTF-32 depending on how the C++ compiler implements each
|
||||
type, in the platform's native endianness. When strings of these types are
|
||||
returned, they are assumed to contain valid UTF-16 or UTF-32, and will be
|
||||
decoded to Python ``str``.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
#define UNICODE
|
||||
#include <windows.h>
|
||||
|
||||
m.def("set_window_text",
|
||||
[](HWND hwnd, std::wstring s) {
|
||||
// Call SetWindowText with null-terminated UTF-16 string
|
||||
::SetWindowText(hwnd, s.c_str());
|
||||
}
|
||||
);
|
||||
m.def("get_window_text",
|
||||
[](HWND hwnd) {
|
||||
const int buffer_size = ::GetWindowTextLength(hwnd) + 1;
|
||||
auto buffer = std::make_unique< wchar_t[] >(buffer_size);
|
||||
|
||||
::GetWindowText(hwnd, buffer.data(), buffer_size);
|
||||
|
||||
std::wstring text(buffer.get());
|
||||
|
||||
// wstring will be converted to Python str
|
||||
return text;
|
||||
}
|
||||
);
|
||||
|
||||
Strings in multibyte encodings such as Shift-JIS must transcoded to a
|
||||
UTF-8/16/32 before being returned to Python.
|
||||
|
||||
|
||||
Character literals
|
||||
==================
|
||||
|
||||
C++ functions that accept character literals as input will receive the first
|
||||
character of a Python ``str`` as their input. If the string is longer than one
|
||||
Unicode character, trailing characters will be ignored.
|
||||
|
||||
When a character literal is returned from C++ (such as a ``char`` or a
|
||||
``wchar_t``), it will be converted to a ``str`` that represents the single
|
||||
character.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
m.def("pass_char", [](char c) { return c; });
|
||||
m.def("pass_wchar", [](wchar_t w) { return w; });
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> example.pass_char("A")
|
||||
'A'
|
||||
|
||||
While C++ will cast integers to character types (``char c = 0x65;``), pybind11
|
||||
does not convert Python integers to characters implicitly. The Python function
|
||||
``chr()`` can be used to convert integers to characters.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> example.pass_char(0x65)
|
||||
TypeError
|
||||
|
||||
>>> example.pass_char(chr(0x65))
|
||||
'A'
|
||||
|
||||
If the desire is to work with an 8-bit integer, use ``int8_t`` or ``uint8_t``
|
||||
as the argument type.
|
||||
|
||||
Grapheme clusters
|
||||
-----------------
|
||||
|
||||
A single grapheme may be represented by two or more Unicode characters. For
|
||||
example 'é' is usually represented as U+00E9 but can also be expressed as the
|
||||
combining character sequence U+0065 U+0301 (that is, the letter 'e' followed by
|
||||
a combining acute accent). The combining character will be lost if the
|
||||
two-character sequence is passed as an argument, even though it renders as a
|
||||
single grapheme.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> example.pass_wchar("é")
|
||||
'é'
|
||||
|
||||
>>> combining_e_acute = "e" + "\u0301"
|
||||
|
||||
>>> combining_e_acute
|
||||
'é'
|
||||
|
||||
>>> combining_e_acute == "é"
|
||||
False
|
||||
|
||||
>>> example.pass_wchar(combining_e_acute)
|
||||
'e'
|
||||
|
||||
Normalizing combining characters before passing the character literal to C++
|
||||
may resolve *some* of these issues:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> example.pass_wchar(unicodedata.normalize("NFC", combining_e_acute))
|
||||
'é'
|
||||
|
||||
In some languages (Thai for example), there are `graphemes that cannot be
|
||||
expressed as a single Unicode code point
|
||||
<http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries>`_, so there is
|
||||
no way to capture them in a C++ character type.
|
||||
|
||||
|
||||
C++17 string views
|
||||
==================
|
||||
|
||||
C++17 string views are automatically supported when compiling in C++17 mode.
|
||||
They follow the same rules for encoding and decoding as the corresponding STL
|
||||
string type (for example, a ``std::u16string_view`` argument will be passed
|
||||
UTF-16-encoded data, and a returned ``std::string_view`` will be decoded as
|
||||
UTF-8).
|
||||
|
||||
References
|
||||
==========
|
||||
|
||||
* `The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!) <https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/>`_
|
||||
* `C++ - Using STL Strings at Win32 API Boundaries <https://msdn.microsoft.com/en-ca/magazine/mt238407.aspx>`_
|
1335
libs/pybind/docs/advanced/classes.rst
Normal file
1335
libs/pybind/docs/advanced/classes.rst
Normal file
File diff suppressed because it is too large
Load Diff
262
libs/pybind/docs/advanced/embedding.rst
Normal file
262
libs/pybind/docs/advanced/embedding.rst
Normal file
@ -0,0 +1,262 @@
|
||||
.. _embedding:
|
||||
|
||||
Embedding the interpreter
|
||||
#########################
|
||||
|
||||
While pybind11 is mainly focused on extending Python using C++, it's also
|
||||
possible to do the reverse: embed the Python interpreter into a C++ program.
|
||||
All of the other documentation pages still apply here, so refer to them for
|
||||
general pybind11 usage. This section will cover a few extra things required
|
||||
for embedding.
|
||||
|
||||
Getting started
|
||||
===============
|
||||
|
||||
A basic executable with an embedded interpreter can be created with just a few
|
||||
lines of CMake and the ``pybind11::embed`` target, as shown below. For more
|
||||
information, see :doc:`/compiling`.
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
cmake_minimum_required(VERSION 3.4)
|
||||
project(example)
|
||||
|
||||
find_package(pybind11 REQUIRED) # or `add_subdirectory(pybind11)`
|
||||
|
||||
add_executable(example main.cpp)
|
||||
target_link_libraries(example PRIVATE pybind11::embed)
|
||||
|
||||
The essential structure of the ``main.cpp`` file looks like this:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h> // everything needed for embedding
|
||||
namespace py = pybind11;
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{}; // start the interpreter and keep it alive
|
||||
|
||||
py::print("Hello, World!"); // use the Python API
|
||||
}
|
||||
|
||||
The interpreter must be initialized before using any Python API, which includes
|
||||
all the functions and classes in pybind11. The RAII guard class ``scoped_interpreter``
|
||||
takes care of the interpreter lifetime. After the guard is destroyed, the interpreter
|
||||
shuts down and clears its memory. No Python functions can be called after this.
|
||||
|
||||
Executing Python code
|
||||
=====================
|
||||
|
||||
There are a few different ways to run Python code. One option is to use ``eval``,
|
||||
``exec`` or ``eval_file``, as explained in :ref:`eval`. Here is a quick example in
|
||||
the context of an executable with an embedded interpreter:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
namespace py = pybind11;
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
py::exec(R"(
|
||||
kwargs = dict(name="World", number=42)
|
||||
message = "Hello, {name}! The answer is {number}".format(**kwargs)
|
||||
print(message)
|
||||
)");
|
||||
}
|
||||
|
||||
Alternatively, similar results can be achieved using pybind11's API (see
|
||||
:doc:`/advanced/pycpp/index` for more details).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
namespace py = pybind11;
|
||||
using namespace py::literals;
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
auto kwargs = py::dict("name"_a="World", "number"_a=42);
|
||||
auto message = "Hello, {name}! The answer is {number}"_s.format(**kwargs);
|
||||
py::print(message);
|
||||
}
|
||||
|
||||
The two approaches can also be combined:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace py::literals;
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
auto locals = py::dict("name"_a="World", "number"_a=42);
|
||||
py::exec(R"(
|
||||
message = "Hello, {name}! The answer is {number}".format(**locals())
|
||||
)", py::globals(), locals);
|
||||
|
||||
auto message = locals["message"].cast<std::string>();
|
||||
std::cout << message;
|
||||
}
|
||||
|
||||
Importing modules
|
||||
=================
|
||||
|
||||
Python modules can be imported using ``module_::import()``:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::module_ sys = py::module_::import("sys");
|
||||
py::print(sys.attr("path"));
|
||||
|
||||
For convenience, the current working directory is included in ``sys.path`` when
|
||||
embedding the interpreter. This makes it easy to import local Python files:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
"""calc.py located in the working directory"""
|
||||
|
||||
|
||||
def add(i, j):
|
||||
return i + j
|
||||
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::module_ calc = py::module_::import("calc");
|
||||
py::object result = calc.attr("add")(1, 2);
|
||||
int n = result.cast<int>();
|
||||
assert(n == 3);
|
||||
|
||||
Modules can be reloaded using ``module_::reload()`` if the source is modified e.g.
|
||||
by an external process. This can be useful in scenarios where the application
|
||||
imports a user defined data processing script which needs to be updated after
|
||||
changes by the user. Note that this function does not reload modules recursively.
|
||||
|
||||
.. _embedding_modules:
|
||||
|
||||
Adding embedded modules
|
||||
=======================
|
||||
|
||||
Embedded binary modules can be added using the ``PYBIND11_EMBEDDED_MODULE`` macro.
|
||||
Note that the definition must be placed at global scope. They can be imported
|
||||
like any other module.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
namespace py = pybind11;
|
||||
|
||||
PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
|
||||
// `m` is a `py::module_` which is used to bind functions and classes
|
||||
m.def("add", [](int i, int j) {
|
||||
return i + j;
|
||||
});
|
||||
}
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
auto fast_calc = py::module_::import("fast_calc");
|
||||
auto result = fast_calc.attr("add")(1, 2).cast<int>();
|
||||
assert(result == 3);
|
||||
}
|
||||
|
||||
Unlike extension modules where only a single binary module can be created, on
|
||||
the embedded side an unlimited number of modules can be added using multiple
|
||||
``PYBIND11_EMBEDDED_MODULE`` definitions (as long as they have unique names).
|
||||
|
||||
These modules are added to Python's list of builtins, so they can also be
|
||||
imported in pure Python files loaded by the interpreter. Everything interacts
|
||||
naturally:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
"""py_module.py located in the working directory"""
|
||||
import cpp_module
|
||||
|
||||
a = cpp_module.a
|
||||
b = a + 1
|
||||
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/embed.h>
|
||||
namespace py = pybind11;
|
||||
|
||||
PYBIND11_EMBEDDED_MODULE(cpp_module, m) {
|
||||
m.attr("a") = 1;
|
||||
}
|
||||
|
||||
int main() {
|
||||
py::scoped_interpreter guard{};
|
||||
|
||||
auto py_module = py::module_::import("py_module");
|
||||
|
||||
auto locals = py::dict("fmt"_a="{} + {} = {}", **py_module.attr("__dict__"));
|
||||
assert(locals["a"].cast<int>() == 1);
|
||||
assert(locals["b"].cast<int>() == 2);
|
||||
|
||||
py::exec(R"(
|
||||
c = a + b
|
||||
message = fmt.format(a, b, c)
|
||||
)", py::globals(), locals);
|
||||
|
||||
assert(locals["c"].cast<int>() == 3);
|
||||
assert(locals["message"].cast<std::string>() == "1 + 2 = 3");
|
||||
}
|
||||
|
||||
|
||||
Interpreter lifetime
|
||||
====================
|
||||
|
||||
The Python interpreter shuts down when ``scoped_interpreter`` is destroyed. After
|
||||
this, creating a new instance will restart the interpreter. Alternatively, the
|
||||
``initialize_interpreter`` / ``finalize_interpreter`` pair of functions can be used
|
||||
to directly set the state at any time.
|
||||
|
||||
Modules created with pybind11 can be safely re-initialized after the interpreter
|
||||
has been restarted. However, this may not apply to third-party extension modules.
|
||||
The issue is that Python itself cannot completely unload extension modules and
|
||||
there are several caveats with regard to interpreter restarting. In short, not
|
||||
all memory may be freed, either due to Python reference cycles or user-created
|
||||
global data. All the details can be found in the CPython documentation.
|
||||
|
||||
.. warning::
|
||||
|
||||
Creating two concurrent ``scoped_interpreter`` guards is a fatal error. So is
|
||||
calling ``initialize_interpreter`` for a second time after the interpreter
|
||||
has already been initialized.
|
||||
|
||||
Do not use the raw CPython API functions ``Py_Initialize`` and
|
||||
``Py_Finalize`` as these do not properly handle the lifetime of
|
||||
pybind11's internal data.
|
||||
|
||||
|
||||
Sub-interpreter support
|
||||
=======================
|
||||
|
||||
Creating multiple copies of ``scoped_interpreter`` is not possible because it
|
||||
represents the main Python interpreter. Sub-interpreters are something different
|
||||
and they do permit the existence of multiple interpreters. This is an advanced
|
||||
feature of the CPython API and should be handled with care. pybind11 does not
|
||||
currently offer a C++ interface for sub-interpreters, so refer to the CPython
|
||||
documentation for all the details regarding this feature.
|
||||
|
||||
We'll just mention a couple of caveats the sub-interpreters support in pybind11:
|
||||
|
||||
1. Sub-interpreters will not receive independent copies of embedded modules.
|
||||
Instead, these are shared and modifications in one interpreter may be
|
||||
reflected in another.
|
||||
|
||||
2. Managing multiple threads, multiple interpreters and the GIL can be
|
||||
challenging and there are several caveats here, even within the pure
|
||||
CPython API (please refer to the Python docs for details). As for
|
||||
pybind11, keep in mind that ``gil_scoped_release`` and ``gil_scoped_acquire``
|
||||
do not take sub-interpreters into account.
|
398
libs/pybind/docs/advanced/exceptions.rst
Normal file
398
libs/pybind/docs/advanced/exceptions.rst
Normal file
@ -0,0 +1,398 @@
|
||||
Exceptions
|
||||
##########
|
||||
|
||||
Built-in C++ to Python exception translation
|
||||
============================================
|
||||
|
||||
When Python calls C++ code through pybind11, pybind11 provides a C++ exception handler
|
||||
that will trap C++ exceptions, translate them to the corresponding Python exception,
|
||||
and raise them so that Python code can handle them.
|
||||
|
||||
pybind11 defines translations for ``std::exception`` and its standard
|
||||
subclasses, and several special exception classes that translate to specific
|
||||
Python exceptions. Note that these are not actually Python exceptions, so they
|
||||
cannot be examined using the Python C API. Instead, they are pure C++ objects
|
||||
that pybind11 will translate the corresponding Python exception when they arrive
|
||||
at its exception handler.
|
||||
|
||||
.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
|
||||
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| Exception thrown by C++ | Translated to Python exception type |
|
||||
+======================================+======================================+
|
||||
| :class:`std::exception` | ``RuntimeError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`std::bad_alloc` | ``MemoryError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`std::domain_error` | ``ValueError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`std::invalid_argument` | ``ValueError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`std::length_error` | ``ValueError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`std::out_of_range` | ``IndexError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`std::range_error` | ``ValueError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`std::overflow_error` | ``OverflowError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to implement |
|
||||
| | custom iterators) |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`pybind11::index_error` | ``IndexError`` (used to indicate out |
|
||||
| | of bounds access in ``__getitem__``, |
|
||||
| | ``__setitem__``, etc.) |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`pybind11::key_error` | ``KeyError`` (used to indicate out |
|
||||
| | of bounds access in ``__getitem__``, |
|
||||
| | ``__setitem__`` in dict-like |
|
||||
| | objects, etc.) |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`pybind11::value_error` | ``ValueError`` (used to indicate |
|
||||
| | wrong value passed in |
|
||||
| | ``container.remove(...)``) |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`pybind11::type_error` | ``TypeError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`pybind11::buffer_error` | ``BufferError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`pybind11::import_error` | ``ImportError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| :class:`pybind11::attribute_error` | ``AttributeError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| Any other exception | ``RuntimeError`` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
|
||||
Exception translation is not bidirectional. That is, *catching* the C++
|
||||
exceptions defined above will not trap exceptions that originate from
|
||||
Python. For that, catch :class:`pybind11::error_already_set`. See :ref:`below
|
||||
<handling_python_exceptions_cpp>` for further details.
|
||||
|
||||
There is also a special exception :class:`cast_error` that is thrown by
|
||||
:func:`handle::call` when the input arguments cannot be converted to Python
|
||||
objects.
|
||||
|
||||
Registering custom translators
|
||||
==============================
|
||||
|
||||
If the default exception conversion policy described above is insufficient,
|
||||
pybind11 also provides support for registering custom exception translators.
|
||||
Similar to pybind11 classes, exception translators can be local to the module
|
||||
they are defined in or global to the entire python session. To register a simple
|
||||
exception conversion that translates a C++ exception into a new Python exception
|
||||
using the C++ exception's ``what()`` method, a helper function is available:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::register_exception<CppExp>(module, "PyExp");
|
||||
|
||||
This call creates a Python exception class with the name ``PyExp`` in the given
|
||||
module and automatically converts any encountered exceptions of type ``CppExp``
|
||||
into Python exceptions of type ``PyExp``.
|
||||
|
||||
A matching function is available for registering a local exception translator:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::register_local_exception<CppExp>(module, "PyExp");
|
||||
|
||||
|
||||
It is possible to specify base class for the exception using the third
|
||||
parameter, a ``handle``:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::register_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
|
||||
py::register_local_exception<CppExp>(module, "PyExp", PyExc_RuntimeError);
|
||||
|
||||
Then ``PyExp`` can be caught both as ``PyExp`` and ``RuntimeError``.
|
||||
|
||||
The class objects of the built-in Python exceptions are listed in the Python
|
||||
documentation on `Standard Exceptions <https://docs.python.org/3/c-api/exceptions.html#standard-exceptions>`_.
|
||||
The default base class is ``PyExc_Exception``.
|
||||
|
||||
When more advanced exception translation is needed, the functions
|
||||
``py::register_exception_translator(translator)`` and
|
||||
``py::register_local_exception_translator(translator)`` can be used to register
|
||||
functions that can translate arbitrary exception types (and which may include
|
||||
additional logic to do so). The functions takes a stateless callable (e.g. a
|
||||
function pointer or a lambda function without captured variables) with the call
|
||||
signature ``void(std::exception_ptr)``.
|
||||
|
||||
When a C++ exception is thrown, the registered exception translators are tried
|
||||
in reverse order of registration (i.e. the last registered translator gets the
|
||||
first shot at handling the exception). All local translators will be tried
|
||||
before a global translator is tried.
|
||||
|
||||
Inside the translator, ``std::rethrow_exception`` should be used within
|
||||
a try block to re-throw the exception. One or more catch clauses to catch
|
||||
the appropriate exceptions should then be used with each clause using
|
||||
``PyErr_SetString`` to set a Python exception or ``ex(string)`` to set
|
||||
the python exception to a custom exception type (see below).
|
||||
|
||||
To declare a custom Python exception type, declare a ``py::exception`` variable
|
||||
and use this in the associated exception translator (note: it is often useful
|
||||
to make this a static declaration when using it inside a lambda expression
|
||||
without requiring capturing).
|
||||
|
||||
The following example demonstrates this for a hypothetical exception classes
|
||||
``MyCustomException`` and ``OtherException``: the first is translated to a
|
||||
custom python exception ``MyCustomError``, while the second is translated to a
|
||||
standard python RuntimeError:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
static py::exception<MyCustomException> exc(m, "MyCustomError");
|
||||
py::register_exception_translator([](std::exception_ptr p) {
|
||||
try {
|
||||
if (p) std::rethrow_exception(p);
|
||||
} catch (const MyCustomException &e) {
|
||||
exc(e.what());
|
||||
} catch (const OtherException &e) {
|
||||
PyErr_SetString(PyExc_RuntimeError, e.what());
|
||||
}
|
||||
});
|
||||
|
||||
Multiple exceptions can be handled by a single translator, as shown in the
|
||||
example above. If the exception is not caught by the current translator, the
|
||||
previously registered one gets a chance.
|
||||
|
||||
If none of the registered exception translators is able to handle the
|
||||
exception, it is handled by the default converter as described in the previous
|
||||
section.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_exceptions.cpp` contains examples
|
||||
of various custom exception translators and custom exception types.
|
||||
|
||||
.. note::
|
||||
|
||||
Call either ``PyErr_SetString`` or a custom exception's call
|
||||
operator (``exc(string)``) for every exception caught in a custom exception
|
||||
translator. Failure to do so will cause Python to crash with ``SystemError:
|
||||
error return without exception set``.
|
||||
|
||||
Exceptions that you do not plan to handle should simply not be caught, or
|
||||
may be explicitly (re-)thrown to delegate it to the other,
|
||||
previously-declared existing exception translators.
|
||||
|
||||
Note that ``libc++`` and ``libstdc++`` `behave differently <https://stackoverflow.com/questions/19496643/using-clang-fvisibility-hidden-and-typeinfo-and-type-erasure/28827430>`_
|
||||
with ``-fvisibility=hidden``. Therefore exceptions that are used across ABI boundaries need to be explicitly exported, as exercised in ``tests/test_exceptions.h``.
|
||||
See also: "Problems with C++ exceptions" under `GCC Wiki <https://gcc.gnu.org/wiki/Visibility>`_.
|
||||
|
||||
|
||||
Local vs Global Exception Translators
|
||||
=====================================
|
||||
|
||||
When a global exception translator is registered, it will be applied across all
|
||||
modules in the reverse order of registration. This can create behavior where the
|
||||
order of module import influences how exceptions are translated.
|
||||
|
||||
If module1 has the following translator:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::register_exception_translator([](std::exception_ptr p) {
|
||||
try {
|
||||
if (p) std::rethrow_exception(p);
|
||||
} catch (const std::invalid_argument &e) {
|
||||
PyErr_SetString("module1 handled this")
|
||||
}
|
||||
}
|
||||
|
||||
and module2 has the following similar translator:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::register_exception_translator([](std::exception_ptr p) {
|
||||
try {
|
||||
if (p) std::rethrow_exception(p);
|
||||
} catch (const std::invalid_argument &e) {
|
||||
PyErr_SetString("module2 handled this")
|
||||
}
|
||||
}
|
||||
|
||||
then which translator handles the invalid_argument will be determined by the
|
||||
order that module1 and module2 are imported. Since exception translators are
|
||||
applied in the reverse order of registration, which ever module was imported
|
||||
last will "win" and that translator will be applied.
|
||||
|
||||
If there are multiple pybind11 modules that share exception types (either
|
||||
standard built-in or custom) loaded into a single python instance and
|
||||
consistent error handling behavior is needed, then local translators should be
|
||||
used.
|
||||
|
||||
Changing the previous example to use ``register_local_exception_translator``
|
||||
would mean that when invalid_argument is thrown in the module2 code, the
|
||||
module2 translator will always handle it, while in module1, the module1
|
||||
translator will do the same.
|
||||
|
||||
.. _handling_python_exceptions_cpp:
|
||||
|
||||
Handling exceptions from Python in C++
|
||||
======================================
|
||||
|
||||
When C++ calls Python functions, such as in a callback function or when
|
||||
manipulating Python objects, and Python raises an ``Exception``, pybind11
|
||||
converts the Python exception into a C++ exception of type
|
||||
:class:`pybind11::error_already_set` whose payload contains a C++ string textual
|
||||
summary and the actual Python exception. ``error_already_set`` is used to
|
||||
propagate Python exception back to Python (or possibly, handle them in C++).
|
||||
|
||||
.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
|
||||
|
||||
+--------------------------------------+--------------------------------------+
|
||||
| Exception raised in Python | Thrown as C++ exception type |
|
||||
+======================================+======================================+
|
||||
| Any Python ``Exception`` | :class:`pybind11::error_already_set` |
|
||||
+--------------------------------------+--------------------------------------+
|
||||
|
||||
For example:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
try {
|
||||
// open("missing.txt", "r")
|
||||
auto file = py::module_::import("io").attr("open")("missing.txt", "r");
|
||||
auto text = file.attr("read")();
|
||||
file.attr("close")();
|
||||
} catch (py::error_already_set &e) {
|
||||
if (e.matches(PyExc_FileNotFoundError)) {
|
||||
py::print("missing.txt not found");
|
||||
} else if (e.matches(PyExc_PermissionError)) {
|
||||
py::print("missing.txt found but not accessible");
|
||||
} else {
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
Note that C++ to Python exception translation does not apply here, since that is
|
||||
a method for translating C++ exceptions to Python, not vice versa. The error raised
|
||||
from Python is always ``error_already_set``.
|
||||
|
||||
This example illustrates this behavior:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
try {
|
||||
py::eval("raise ValueError('The Ring')");
|
||||
} catch (py::value_error &boromir) {
|
||||
// Boromir never gets the ring
|
||||
assert(false);
|
||||
} catch (py::error_already_set &frodo) {
|
||||
// Frodo gets the ring
|
||||
py::print("I will take the ring");
|
||||
}
|
||||
|
||||
try {
|
||||
// py::value_error is a request for pybind11 to raise a Python exception
|
||||
throw py::value_error("The ball");
|
||||
} catch (py::error_already_set &cat) {
|
||||
// cat won't catch the ball since
|
||||
// py::value_error is not a Python exception
|
||||
assert(false);
|
||||
} catch (py::value_error &dog) {
|
||||
// dog will catch the ball
|
||||
py::print("Run Spot run");
|
||||
throw; // Throw it again (pybind11 will raise ValueError)
|
||||
}
|
||||
|
||||
Handling errors from the Python C API
|
||||
=====================================
|
||||
|
||||
Where possible, use :ref:`pybind11 wrappers <wrappers>` instead of calling
|
||||
the Python C API directly. When calling the Python C API directly, in
|
||||
addition to manually managing reference counts, one must follow the pybind11
|
||||
error protocol, which is outlined here.
|
||||
|
||||
After calling the Python C API, if Python returns an error,
|
||||
``throw py::error_already_set();``, which allows pybind11 to deal with the
|
||||
exception and pass it back to the Python interpreter. This includes calls to
|
||||
the error setting functions such as ``PyErr_SetString``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PyErr_SetString(PyExc_TypeError, "C API type error demo");
|
||||
throw py::error_already_set();
|
||||
|
||||
// But it would be easier to simply...
|
||||
throw py::type_error("pybind11 wrapper type error");
|
||||
|
||||
Alternately, to ignore the error, call `PyErr_Clear
|
||||
<https://docs.python.org/3/c-api/exceptions.html#c.PyErr_Clear>`_.
|
||||
|
||||
Any Python error must be thrown or cleared, or Python/pybind11 will be left in
|
||||
an invalid state.
|
||||
|
||||
Chaining exceptions ('raise from')
|
||||
==================================
|
||||
|
||||
Python has a mechanism for indicating that exceptions were caused by other
|
||||
exceptions:
|
||||
|
||||
.. code-block:: py
|
||||
|
||||
try:
|
||||
print(1 / 0)
|
||||
except Exception as exc:
|
||||
raise RuntimeError("could not divide by zero") from exc
|
||||
|
||||
To do a similar thing in pybind11, you can use the ``py::raise_from`` function. It
|
||||
sets the current python error indicator, so to continue propagating the exception
|
||||
you should ``throw py::error_already_set()``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
try {
|
||||
py::eval("print(1 / 0"));
|
||||
} catch (py::error_already_set &e) {
|
||||
py::raise_from(e, PyExc_RuntimeError, "could not divide by zero");
|
||||
throw py::error_already_set();
|
||||
}
|
||||
|
||||
.. versionadded:: 2.8
|
||||
|
||||
.. _unraisable_exceptions:
|
||||
|
||||
Handling unraisable exceptions
|
||||
==============================
|
||||
|
||||
If a Python function invoked from a C++ destructor or any function marked
|
||||
``noexcept(true)`` (collectively, "noexcept functions") throws an exception, there
|
||||
is no way to propagate the exception, as such functions may not throw.
|
||||
Should they throw or fail to catch any exceptions in their call graph,
|
||||
the C++ runtime calls ``std::terminate()`` to abort immediately.
|
||||
|
||||
Similarly, Python exceptions raised in a class's ``__del__`` method do not
|
||||
propagate, but are logged by Python as an unraisable error. In Python 3.8+, a
|
||||
`system hook is triggered
|
||||
<https://docs.python.org/3/library/sys.html#sys.unraisablehook>`_
|
||||
and an auditing event is logged.
|
||||
|
||||
Any noexcept function should have a try-catch block that traps
|
||||
class:`error_already_set` (or any other exception that can occur). Note that
|
||||
pybind11 wrappers around Python exceptions such as
|
||||
:class:`pybind11::value_error` are *not* Python exceptions; they are C++
|
||||
exceptions that pybind11 catches and converts to Python exceptions. Noexcept
|
||||
functions cannot propagate these exceptions either. A useful approach is to
|
||||
convert them to Python exceptions and then ``discard_as_unraisable`` as shown
|
||||
below.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void nonthrowing_func() noexcept(true) {
|
||||
try {
|
||||
// ...
|
||||
} catch (py::error_already_set &eas) {
|
||||
// Discard the Python error using Python APIs, using the C++ magic
|
||||
// variable __func__. Python already knows the type and value and of the
|
||||
// exception object.
|
||||
eas.discard_as_unraisable(__func__);
|
||||
} catch (const std::exception &e) {
|
||||
// Log and discard C++ exceptions.
|
||||
third_party::log(e);
|
||||
}
|
||||
}
|
||||
|
||||
.. versionadded:: 2.6
|
614
libs/pybind/docs/advanced/functions.rst
Normal file
614
libs/pybind/docs/advanced/functions.rst
Normal file
@ -0,0 +1,614 @@
|
||||
Functions
|
||||
#########
|
||||
|
||||
Before proceeding with this section, make sure that you are already familiar
|
||||
with the basics of binding functions and classes, as explained in :doc:`/basics`
|
||||
and :doc:`/classes`. The following guide is applicable to both free and member
|
||||
functions, i.e. *methods* in Python.
|
||||
|
||||
.. _return_value_policies:
|
||||
|
||||
Return value policies
|
||||
=====================
|
||||
|
||||
Python and C++ use fundamentally different ways of managing the memory and
|
||||
lifetime of objects managed by them. This can lead to issues when creating
|
||||
bindings for functions that return a non-trivial type. Just by looking at the
|
||||
type information, it is not clear whether Python should take charge of the
|
||||
returned value and eventually free its resources, or if this is handled on the
|
||||
C++ side. For this reason, pybind11 provides a several *return value policy*
|
||||
annotations that can be passed to the :func:`module_::def` and
|
||||
:func:`class_::def` functions. The default policy is
|
||||
:enum:`return_value_policy::automatic`.
|
||||
|
||||
Return value policies are tricky, and it's very important to get them right.
|
||||
Just to illustrate what can go wrong, consider the following simple example:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* Function declaration */
|
||||
Data *get_data() { return _data; /* (pointer to a static data structure) */ }
|
||||
...
|
||||
|
||||
/* Binding code */
|
||||
m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python
|
||||
|
||||
What's going on here? When ``get_data()`` is called from Python, the return
|
||||
value (a native C++ type) must be wrapped to turn it into a usable Python type.
|
||||
In this case, the default return value policy (:enum:`return_value_policy::automatic`)
|
||||
causes pybind11 to assume ownership of the static ``_data`` instance.
|
||||
|
||||
When Python's garbage collector eventually deletes the Python
|
||||
wrapper, pybind11 will also attempt to delete the C++ instance (via ``operator
|
||||
delete()``) due to the implied ownership. At this point, the entire application
|
||||
will come crashing down, though errors could also be more subtle and involve
|
||||
silent data corruption.
|
||||
|
||||
In the above example, the policy :enum:`return_value_policy::reference` should have
|
||||
been specified so that the global data instance is only *referenced* without any
|
||||
implied transfer of ownership, i.e.:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("get_data", &get_data, py::return_value_policy::reference);
|
||||
|
||||
On the other hand, this is not the right policy for many other situations,
|
||||
where ignoring ownership could lead to resource leaks.
|
||||
As a developer using pybind11, it's important to be familiar with the different
|
||||
return value policies, including which situation calls for which one of them.
|
||||
The following table provides an overview of available policies:
|
||||
|
||||
.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
|
||||
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| Return value policy | Description |
|
||||
+==================================================+============================================================================+
|
||||
| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
|
||||
| | ownership. Python will call the destructor and delete operator when the |
|
||||
| | object's reference count reaches zero. Undefined behavior ensues when the |
|
||||
| | C++ side does the same, or when the data was not dynamically allocated. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
|
||||
| | This policy is comparably safe because the lifetimes of the two instances |
|
||||
| | are decoupled. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
|
||||
| | that will be owned by Python. This policy is comparably safe because the |
|
||||
| | lifetimes of the two instances (move source and destination) are decoupled.|
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
|
||||
| | responsible for managing the object's lifetime and deallocating it when |
|
||||
| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
|
||||
| | side deletes an object that is still referenced and used by Python. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
|
||||
| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
|
||||
| | the called method or property. Internally, this policy works just like |
|
||||
| | :enum:`return_value_policy::reference` but additionally applies a |
|
||||
| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
|
||||
| | prevents the parent object from being garbage collected as long as the |
|
||||
| | return value is referenced by Python. This is the default policy for |
|
||||
| | property getters created via ``def_property``, ``def_readwrite``, etc. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::automatic` | This policy falls back to the policy |
|
||||
| | :enum:`return_value_policy::take_ownership` when the return value is a |
|
||||
| | pointer. Otherwise, it uses :enum:`return_value_policy::move` or |
|
||||
| | :enum:`return_value_policy::copy` for rvalue and lvalue references, |
|
||||
| | respectively. See above for a description of what all of these different |
|
||||
| | policies do. This is the default policy for ``py::class_``-wrapped types. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
|
||||
| | return value is a pointer. This is the default conversion policy for |
|
||||
| | function arguments when calling Python functions manually from C++ code |
|
||||
| | (i.e. via ``handle::operator()``) and the casters in ``pybind11/stl.h``. |
|
||||
| | You probably won't need to use this explicitly. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
|
||||
Return value policies can also be applied to properties:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class_<MyClass>(m, "MyClass")
|
||||
.def_property("data", &MyClass::getData, &MyClass::setData,
|
||||
py::return_value_policy::copy);
|
||||
|
||||
Technically, the code above applies the policy to both the getter and the
|
||||
setter function, however, the setter doesn't really care about *return*
|
||||
value policies which makes this a convenient terse syntax. Alternatively,
|
||||
targeted arguments can be passed through the :class:`cpp_function` constructor:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class_<MyClass>(m, "MyClass")
|
||||
.def_property("data",
|
||||
py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
|
||||
py::cpp_function(&MyClass::setData)
|
||||
);
|
||||
|
||||
.. warning::
|
||||
|
||||
Code with invalid return value policies might access uninitialized memory or
|
||||
free data structures multiple times, which can lead to hard-to-debug
|
||||
non-determinism and segmentation faults, hence it is worth spending the
|
||||
time to understand all the different options in the table above.
|
||||
|
||||
.. note::
|
||||
|
||||
One important aspect of the above policies is that they only apply to
|
||||
instances which pybind11 has *not* seen before, in which case the policy
|
||||
clarifies essential questions about the return value's lifetime and
|
||||
ownership. When pybind11 knows the instance already (as identified by its
|
||||
type and address in memory), it will return the existing Python object
|
||||
wrapper rather than creating a new copy.
|
||||
|
||||
.. note::
|
||||
|
||||
The next section on :ref:`call_policies` discusses *call policies* that can be
|
||||
specified *in addition* to a return value policy from the list above. Call
|
||||
policies indicate reference relationships that can involve both return values
|
||||
and parameters of functions.
|
||||
|
||||
.. note::
|
||||
|
||||
As an alternative to elaborate call policies and lifetime management logic,
|
||||
consider using smart pointers (see the section on :ref:`smart_pointers` for
|
||||
details). Smart pointers can tell whether an object is still referenced from
|
||||
C++ or Python, which generally eliminates the kinds of inconsistencies that
|
||||
can lead to crashes or undefined behavior. For functions returning smart
|
||||
pointers, it is not necessary to specify a return value policy.
|
||||
|
||||
.. _call_policies:
|
||||
|
||||
Additional call policies
|
||||
========================
|
||||
|
||||
In addition to the above return value policies, further *call policies* can be
|
||||
specified to indicate dependencies between parameters or ensure a certain state
|
||||
for the function call.
|
||||
|
||||
Keep alive
|
||||
----------
|
||||
|
||||
In general, this policy is required when the C++ object is any kind of container
|
||||
and another object is being added to the container. ``keep_alive<Nurse, Patient>``
|
||||
indicates that the argument with index ``Patient`` should be kept alive at least
|
||||
until the argument with index ``Nurse`` is freed by the garbage collector. Argument
|
||||
indices start at one, while zero refers to the return value. For methods, index
|
||||
``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
|
||||
index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
|
||||
with value ``None`` is detected at runtime, the call policy does nothing.
|
||||
|
||||
When the nurse is not a pybind11-registered type, the implementation internally
|
||||
relies on the ability to create a *weak reference* to the nurse object. When
|
||||
the nurse object is not a pybind11-registered type and does not support weak
|
||||
references, an exception will be thrown.
|
||||
|
||||
If you use an incorrect argument index, you will get a ``RuntimeError`` saying
|
||||
``Could not activate keep_alive!``. You should review the indices you're using.
|
||||
|
||||
Consider the following example: here, the binding code for a list append
|
||||
operation ties the lifetime of the newly added element to the underlying
|
||||
container:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<List>(m, "List")
|
||||
.def("append", &List::append, py::keep_alive<1, 2>());
|
||||
|
||||
For consistency, the argument indexing is identical for constructors. Index
|
||||
``1`` still refers to the implicit ``this`` pointer, i.e. the object which is
|
||||
being constructed. Index ``0`` refers to the return type which is presumed to
|
||||
be ``void`` when a constructor is viewed like a function. The following example
|
||||
ties the lifetime of the constructor element to the constructed object:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Nurse>(m, "Nurse")
|
||||
.def(py::init<Patient &>(), py::keep_alive<1, 2>());
|
||||
|
||||
.. note::
|
||||
|
||||
``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
|
||||
Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
|
||||
0) policies from Boost.Python.
|
||||
|
||||
Call guard
|
||||
----------
|
||||
|
||||
The ``call_guard<T>`` policy allows any scope guard type ``T`` to be placed
|
||||
around the function call. For example, this definition:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("foo", foo, py::call_guard<T>());
|
||||
|
||||
is equivalent to the following pseudocode:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("foo", [](args...) {
|
||||
T scope_guard;
|
||||
return foo(args...); // forwarded arguments
|
||||
});
|
||||
|
||||
The only requirement is that ``T`` is default-constructible, but otherwise any
|
||||
scope guard will work. This is very useful in combination with ``gil_scoped_release``.
|
||||
See :ref:`gil`.
|
||||
|
||||
Multiple guards can also be specified as ``py::call_guard<T1, T2, T3...>``. The
|
||||
constructor order is left to right and destruction happens in reverse.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_call_policies.cpp` contains a complete example
|
||||
that demonstrates using `keep_alive` and `call_guard` in more detail.
|
||||
|
||||
.. _python_objects_as_args:
|
||||
|
||||
Python objects as arguments
|
||||
===========================
|
||||
|
||||
pybind11 exposes all major Python types using thin C++ wrapper classes. These
|
||||
wrapper classes can also be used as parameters of functions in bindings, which
|
||||
makes it possible to directly work with native Python types on the C++ side.
|
||||
For instance, the following statement iterates over a Python ``dict``:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void print_dict(const py::dict& dict) {
|
||||
/* Easily interact with Python types */
|
||||
for (auto item : dict)
|
||||
std::cout << "key=" << std::string(py::str(item.first)) << ", "
|
||||
<< "value=" << std::string(py::str(item.second)) << std::endl;
|
||||
}
|
||||
|
||||
It can be exported:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("print_dict", &print_dict);
|
||||
|
||||
And used in Python as usual:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> print_dict({"foo": 123, "bar": "hello"})
|
||||
key=foo, value=123
|
||||
key=bar, value=hello
|
||||
|
||||
For more information on using Python objects in C++, see :doc:`/advanced/pycpp/index`.
|
||||
|
||||
Accepting \*args and \*\*kwargs
|
||||
===============================
|
||||
|
||||
Python provides a useful mechanism to define functions that accept arbitrary
|
||||
numbers of arguments and keyword arguments:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def generic(*args, **kwargs):
|
||||
... # do something with args and kwargs
|
||||
|
||||
Such functions can also be created using pybind11:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void generic(py::args args, const py::kwargs& kwargs) {
|
||||
/// .. do something with args
|
||||
if (kwargs)
|
||||
/// .. do something with kwargs
|
||||
}
|
||||
|
||||
/// Binding code
|
||||
m.def("generic", &generic);
|
||||
|
||||
The class ``py::args`` derives from ``py::tuple`` and ``py::kwargs`` derives
|
||||
from ``py::dict``.
|
||||
|
||||
You may also use just one or the other, and may combine these with other
|
||||
arguments. Note, however, that ``py::kwargs`` must always be the last argument
|
||||
of the function, and ``py::args`` implies that any further arguments are
|
||||
keyword-only (see :ref:`keyword_only_arguments`).
|
||||
|
||||
Please refer to the other examples for details on how to iterate over these,
|
||||
and on how to cast their entries into C++ objects. A demonstration is also
|
||||
available in ``tests/test_kwargs_and_defaults.cpp``.
|
||||
|
||||
.. note::
|
||||
|
||||
When combining \*args or \*\*kwargs with :ref:`keyword_args` you should
|
||||
*not* include ``py::arg`` tags for the ``py::args`` and ``py::kwargs``
|
||||
arguments.
|
||||
|
||||
Default arguments revisited
|
||||
===========================
|
||||
|
||||
The section on :ref:`default_args` previously discussed basic usage of default
|
||||
arguments using pybind11. One noteworthy aspect of their implementation is that
|
||||
default arguments are converted to Python objects right at declaration time.
|
||||
Consider the following example:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<MyClass>("MyClass")
|
||||
.def("myFunction", py::arg("arg") = SomeType(123));
|
||||
|
||||
In this case, pybind11 must already be set up to deal with values of the type
|
||||
``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
|
||||
exception will be thrown.
|
||||
|
||||
Another aspect worth highlighting is that the "preview" of the default argument
|
||||
in the function signature is generated using the object's ``__repr__`` method.
|
||||
If not available, the signature may not be very helpful, e.g.:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
FUNCTIONS
|
||||
...
|
||||
| myFunction(...)
|
||||
| Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
|
||||
...
|
||||
|
||||
The first way of addressing this is by defining ``SomeType.__repr__``.
|
||||
Alternatively, it is possible to specify the human-readable preview of the
|
||||
default argument manually using the ``arg_v`` notation:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<MyClass>("MyClass")
|
||||
.def("myFunction", py::arg_v("arg", SomeType(123), "SomeType(123)"));
|
||||
|
||||
Sometimes it may be necessary to pass a null pointer value as a default
|
||||
argument. In this case, remember to cast it to the underlying type in question,
|
||||
like so:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<MyClass>("MyClass")
|
||||
.def("myFunction", py::arg("arg") = static_cast<SomeType *>(nullptr));
|
||||
|
||||
.. _keyword_only_arguments:
|
||||
|
||||
Keyword-only arguments
|
||||
======================
|
||||
|
||||
Python implements keyword-only arguments by specifying an unnamed ``*``
|
||||
argument in a function definition:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def f(a, *, b): # a can be positional or via keyword; b must be via keyword
|
||||
pass
|
||||
|
||||
|
||||
f(a=1, b=2) # good
|
||||
f(b=2, a=1) # good
|
||||
f(1, b=2) # good
|
||||
f(1, 2) # TypeError: f() takes 1 positional argument but 2 were given
|
||||
|
||||
Pybind11 provides a ``py::kw_only`` object that allows you to implement
|
||||
the same behaviour by specifying the object between positional and keyword-only
|
||||
argument annotations when registering the function:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("f", [](int a, int b) { /* ... */ },
|
||||
py::arg("a"), py::kw_only(), py::arg("b"));
|
||||
|
||||
.. versionadded:: 2.6
|
||||
|
||||
A ``py::args`` argument implies that any following arguments are keyword-only,
|
||||
as if ``py::kw_only()`` had been specified in the same relative location of the
|
||||
argument list as the ``py::args`` argument. The ``py::kw_only()`` may be
|
||||
included to be explicit about this, but is not required.
|
||||
|
||||
.. versionchanged:: 2.9
|
||||
This can now be combined with ``py::args``. Before, ``py::args`` could only
|
||||
occur at the end of the argument list, or immediately before a ``py::kwargs``
|
||||
argument at the end.
|
||||
|
||||
|
||||
Positional-only arguments
|
||||
=========================
|
||||
|
||||
Python 3.8 introduced a new positional-only argument syntax, using ``/`` in the
|
||||
function definition (note that this has been a convention for CPython
|
||||
positional arguments, such as in ``pow()``, since Python 2). You can
|
||||
do the same thing in any version of Python using ``py::pos_only()``:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("f", [](int a, int b) { /* ... */ },
|
||||
py::arg("a"), py::pos_only(), py::arg("b"));
|
||||
|
||||
You now cannot give argument ``a`` by keyword. This can be combined with
|
||||
keyword-only arguments, as well.
|
||||
|
||||
.. versionadded:: 2.6
|
||||
|
||||
.. _nonconverting_arguments:
|
||||
|
||||
Non-converting arguments
|
||||
========================
|
||||
|
||||
Certain argument types may support conversion from one type to another. Some
|
||||
examples of conversions are:
|
||||
|
||||
* :ref:`implicit_conversions` declared using ``py::implicitly_convertible<A,B>()``
|
||||
* Calling a method accepting a double with an integer argument
|
||||
* Calling a ``std::complex<float>`` argument with a non-complex python type
|
||||
(for example, with a float). (Requires the optional ``pybind11/complex.h``
|
||||
header).
|
||||
* Calling a function taking an Eigen matrix reference with a numpy array of the
|
||||
wrong type or of an incompatible data layout. (Requires the optional
|
||||
``pybind11/eigen.h`` header).
|
||||
|
||||
This behaviour is sometimes undesirable: the binding code may prefer to raise
|
||||
an error rather than convert the argument. This behaviour can be obtained
|
||||
through ``py::arg`` by calling the ``.noconvert()`` method of the ``py::arg``
|
||||
object, such as:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("floats_only", [](double f) { return 0.5 * f; }, py::arg("f").noconvert());
|
||||
m.def("floats_preferred", [](double f) { return 0.5 * f; }, py::arg("f"));
|
||||
|
||||
Attempting the call the second function (the one without ``.noconvert()``) with
|
||||
an integer will succeed, but attempting to call the ``.noconvert()`` version
|
||||
will fail with a ``TypeError``:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> floats_preferred(4)
|
||||
2.0
|
||||
>>> floats_only(4)
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
TypeError: floats_only(): incompatible function arguments. The following argument types are supported:
|
||||
1. (f: float) -> float
|
||||
|
||||
Invoked with: 4
|
||||
|
||||
You may, of course, combine this with the :var:`_a` shorthand notation (see
|
||||
:ref:`keyword_args`) and/or :ref:`default_args`. It is also permitted to omit
|
||||
the argument name by using the ``py::arg()`` constructor without an argument
|
||||
name, i.e. by specifying ``py::arg().noconvert()``.
|
||||
|
||||
.. note::
|
||||
|
||||
When specifying ``py::arg`` options it is necessary to provide the same
|
||||
number of options as the bound function has arguments. Thus if you want to
|
||||
enable no-convert behaviour for just one of several arguments, you will
|
||||
need to specify a ``py::arg()`` annotation for each argument with the
|
||||
no-convert argument modified to ``py::arg().noconvert()``.
|
||||
|
||||
.. _none_arguments:
|
||||
|
||||
Allow/Prohibiting None arguments
|
||||
================================
|
||||
|
||||
When a C++ type registered with :class:`py::class_` is passed as an argument to
|
||||
a function taking the instance as pointer or shared holder (e.g. ``shared_ptr``
|
||||
or a custom, copyable holder as described in :ref:`smart_pointers`), pybind
|
||||
allows ``None`` to be passed from Python which results in calling the C++
|
||||
function with ``nullptr`` (or an empty holder) for the argument.
|
||||
|
||||
To explicitly enable or disable this behaviour, using the
|
||||
``.none`` method of the :class:`py::arg` object:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Dog>(m, "Dog").def(py::init<>());
|
||||
py::class_<Cat>(m, "Cat").def(py::init<>());
|
||||
m.def("bark", [](Dog *dog) -> std::string {
|
||||
if (dog) return "woof!"; /* Called with a Dog instance */
|
||||
else return "(no dog)"; /* Called with None, dog == nullptr */
|
||||
}, py::arg("dog").none(true));
|
||||
m.def("meow", [](Cat *cat) -> std::string {
|
||||
// Can't be called with None argument
|
||||
return "meow";
|
||||
}, py::arg("cat").none(false));
|
||||
|
||||
With the above, the Python call ``bark(None)`` will return the string ``"(no
|
||||
dog)"``, while attempting to call ``meow(None)`` will raise a ``TypeError``:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> from animals import Dog, Cat, bark, meow
|
||||
>>> bark(Dog())
|
||||
'woof!'
|
||||
>>> meow(Cat())
|
||||
'meow'
|
||||
>>> bark(None)
|
||||
'(no dog)'
|
||||
>>> meow(None)
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
TypeError: meow(): incompatible function arguments. The following argument types are supported:
|
||||
1. (cat: animals.Cat) -> str
|
||||
|
||||
Invoked with: None
|
||||
|
||||
The default behaviour when the tag is unspecified is to allow ``None``.
|
||||
|
||||
.. note::
|
||||
|
||||
Even when ``.none(true)`` is specified for an argument, ``None`` will be converted to a
|
||||
``nullptr`` *only* for custom and :ref:`opaque <opaque>` types. Pointers to built-in types
|
||||
(``double *``, ``int *``, ...) and STL types (``std::vector<T> *``, ...; if ``pybind11/stl.h``
|
||||
is included) are copied when converted to C++ (see :doc:`/advanced/cast/overview`) and will
|
||||
not allow ``None`` as argument. To pass optional argument of these copied types consider
|
||||
using ``std::optional<T>``
|
||||
|
||||
.. _overload_resolution:
|
||||
|
||||
Overload resolution order
|
||||
=========================
|
||||
|
||||
When a function or method with multiple overloads is called from Python,
|
||||
pybind11 determines which overload to call in two passes. The first pass
|
||||
attempts to call each overload without allowing argument conversion (as if
|
||||
every argument had been specified as ``py::arg().noconvert()`` as described
|
||||
above).
|
||||
|
||||
If no overload succeeds in the no-conversion first pass, a second pass is
|
||||
attempted in which argument conversion is allowed (except where prohibited via
|
||||
an explicit ``py::arg().noconvert()`` attribute in the function definition).
|
||||
|
||||
If the second pass also fails a ``TypeError`` is raised.
|
||||
|
||||
Within each pass, overloads are tried in the order they were registered with
|
||||
pybind11. If the ``py::prepend()`` tag is added to the definition, a function
|
||||
can be placed at the beginning of the overload sequence instead, allowing user
|
||||
overloads to proceed built in functions.
|
||||
|
||||
What this means in practice is that pybind11 will prefer any overload that does
|
||||
not require conversion of arguments to an overload that does, but otherwise
|
||||
prefers earlier-defined overloads to later-defined ones.
|
||||
|
||||
.. note::
|
||||
|
||||
pybind11 does *not* further prioritize based on the number/pattern of
|
||||
overloaded arguments. That is, pybind11 does not prioritize a function
|
||||
requiring one conversion over one requiring three, but only prioritizes
|
||||
overloads requiring no conversion at all to overloads that require
|
||||
conversion of at least one argument.
|
||||
|
||||
.. versionadded:: 2.6
|
||||
|
||||
The ``py::prepend()`` tag.
|
||||
|
||||
Binding functions with template parameters
|
||||
==========================================
|
||||
|
||||
You can bind functions that have template parameters. Here's a function:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
template <typename T>
|
||||
void set(T t);
|
||||
|
||||
C++ templates cannot be instantiated at runtime, so you cannot bind the
|
||||
non-instantiated function:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// BROKEN (this will not compile)
|
||||
m.def("set", &set);
|
||||
|
||||
You must bind each instantiated function template separately. You may bind
|
||||
each instantiation with the same name, which will be treated the same as
|
||||
an overloaded function:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("set", &set<int>);
|
||||
m.def("set", &set<std::string>);
|
||||
|
||||
Sometimes it's more clear to bind them with separate names, which is also
|
||||
an option:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("setInt", &set<int>);
|
||||
m.def("setString", &set<std::string>);
|
337
libs/pybind/docs/advanced/misc.rst
Normal file
337
libs/pybind/docs/advanced/misc.rst
Normal file
@ -0,0 +1,337 @@
|
||||
Miscellaneous
|
||||
#############
|
||||
|
||||
.. _macro_notes:
|
||||
|
||||
General notes regarding convenience macros
|
||||
==========================================
|
||||
|
||||
pybind11 provides a few convenience macros such as
|
||||
:func:`PYBIND11_DECLARE_HOLDER_TYPE` and ``PYBIND11_OVERRIDE_*``. Since these
|
||||
are "just" macros that are evaluated in the preprocessor (which has no concept
|
||||
of types), they *will* get confused by commas in a template argument; for
|
||||
example, consider:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_OVERRIDE(MyReturnType<T1, T2>, Class<T3, T4>, func)
|
||||
|
||||
The limitation of the C preprocessor interprets this as five arguments (with new
|
||||
arguments beginning after each comma) rather than three. To get around this,
|
||||
there are two alternatives: you can use a type alias, or you can wrap the type
|
||||
using the ``PYBIND11_TYPE`` macro:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Version 1: using a type alias
|
||||
using ReturnType = MyReturnType<T1, T2>;
|
||||
using ClassType = Class<T3, T4>;
|
||||
PYBIND11_OVERRIDE(ReturnType, ClassType, func);
|
||||
|
||||
// Version 2: using the PYBIND11_TYPE macro:
|
||||
PYBIND11_OVERRIDE(PYBIND11_TYPE(MyReturnType<T1, T2>),
|
||||
PYBIND11_TYPE(Class<T3, T4>), func)
|
||||
|
||||
The ``PYBIND11_MAKE_OPAQUE`` macro does *not* require the above workarounds.
|
||||
|
||||
.. _gil:
|
||||
|
||||
Global Interpreter Lock (GIL)
|
||||
=============================
|
||||
|
||||
When calling a C++ function from Python, the GIL is always held.
|
||||
The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
|
||||
used to acquire and release the global interpreter lock in the body of a C++
|
||||
function call. In this way, long-running C++ code can be parallelized using
|
||||
multiple Python threads. Taking :ref:`overriding_virtuals` as an example, this
|
||||
could be realized as follows (important changes highlighted):
|
||||
|
||||
.. code-block:: cpp
|
||||
:emphasize-lines: 8,9,31,32
|
||||
|
||||
class PyAnimal : public Animal {
|
||||
public:
|
||||
/* Inherit the constructors */
|
||||
using Animal::Animal;
|
||||
|
||||
/* Trampoline (need one for each virtual function) */
|
||||
std::string go(int n_times) {
|
||||
/* Acquire GIL before calling Python code */
|
||||
py::gil_scoped_acquire acquire;
|
||||
|
||||
PYBIND11_OVERRIDE_PURE(
|
||||
std::string, /* Return type */
|
||||
Animal, /* Parent class */
|
||||
go, /* Name of function */
|
||||
n_times /* Argument(s) */
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
PYBIND11_MODULE(example, m) {
|
||||
py::class_<Animal, PyAnimal> animal(m, "Animal");
|
||||
animal
|
||||
.def(py::init<>())
|
||||
.def("go", &Animal::go);
|
||||
|
||||
py::class_<Dog>(m, "Dog", animal)
|
||||
.def(py::init<>());
|
||||
|
||||
m.def("call_go", [](Animal *animal) -> std::string {
|
||||
/* Release GIL before calling into (potentially long-running) C++ code */
|
||||
py::gil_scoped_release release;
|
||||
return call_go(animal);
|
||||
});
|
||||
}
|
||||
|
||||
The ``call_go`` wrapper can also be simplified using the ``call_guard`` policy
|
||||
(see :ref:`call_policies`) which yields the same result:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("call_go", &call_go, py::call_guard<py::gil_scoped_release>());
|
||||
|
||||
|
||||
Binding sequence data types, iterators, the slicing protocol, etc.
|
||||
==================================================================
|
||||
|
||||
Please refer to the supplemental example for details.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_sequences_and_iterators.cpp` contains a
|
||||
complete example that shows how to bind a sequence data type, including
|
||||
length queries (``__len__``), iterators (``__iter__``), the slicing
|
||||
protocol and other kinds of useful operations.
|
||||
|
||||
|
||||
Partitioning code over multiple extension modules
|
||||
=================================================
|
||||
|
||||
It's straightforward to split binding code over multiple extension modules,
|
||||
while referencing types that are declared elsewhere. Everything "just" works
|
||||
without any special precautions. One exception to this rule occurs when
|
||||
extending a type declared in another extension module. Recall the basic example
|
||||
from Section :ref:`inheritance`.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Pet> pet(m, "Pet");
|
||||
pet.def(py::init<const std::string &>())
|
||||
.def_readwrite("name", &Pet::name);
|
||||
|
||||
py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
|
||||
.def(py::init<const std::string &>())
|
||||
.def("bark", &Dog::bark);
|
||||
|
||||
Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
|
||||
whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
|
||||
course that the variable ``pet`` is not available anymore though it is needed
|
||||
to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
|
||||
However, it can be acquired as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::object pet = (py::object) py::module_::import("basic").attr("Pet");
|
||||
|
||||
py::class_<Dog>(m, "Dog", pet)
|
||||
.def(py::init<const std::string &>())
|
||||
.def("bark", &Dog::bark);
|
||||
|
||||
Alternatively, you can specify the base class as a template parameter option to
|
||||
``class_``, which performs an automated lookup of the corresponding Python
|
||||
type. Like the above code, however, this also requires invoking the ``import``
|
||||
function once to ensure that the pybind11 binding code of the module ``basic``
|
||||
has been executed:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::module_::import("basic");
|
||||
|
||||
py::class_<Dog, Pet>(m, "Dog")
|
||||
.def(py::init<const std::string &>())
|
||||
.def("bark", &Dog::bark);
|
||||
|
||||
Naturally, both methods will fail when there are cyclic dependencies.
|
||||
|
||||
Note that pybind11 code compiled with hidden-by-default symbol visibility (e.g.
|
||||
via the command line flag ``-fvisibility=hidden`` on GCC/Clang), which is
|
||||
required for proper pybind11 functionality, can interfere with the ability to
|
||||
access types defined in another extension module. Working around this requires
|
||||
manually exporting types that are accessed by multiple extension modules;
|
||||
pybind11 provides a macro to do just this:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class PYBIND11_EXPORT Dog : public Animal {
|
||||
...
|
||||
};
|
||||
|
||||
Note also that it is possible (although would rarely be required) to share arbitrary
|
||||
C++ objects between extension modules at runtime. Internal library data is shared
|
||||
between modules using capsule machinery [#f6]_ which can be also utilized for
|
||||
storing, modifying and accessing user-defined data. Note that an extension module
|
||||
will "see" other extensions' data if and only if they were built with the same
|
||||
pybind11 version. Consider the following example:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
auto data = reinterpret_cast<MyData *>(py::get_shared_data("mydata"));
|
||||
if (!data)
|
||||
data = static_cast<MyData *>(py::set_shared_data("mydata", new MyData(42)));
|
||||
|
||||
If the above snippet was used in several separately compiled extension modules,
|
||||
the first one to be imported would create a ``MyData`` instance and associate
|
||||
a ``"mydata"`` key with a pointer to it. Extensions that are imported later
|
||||
would be then able to access the data behind the same pointer.
|
||||
|
||||
.. [#f6] https://docs.python.org/3/extending/extending.html#using-capsules
|
||||
|
||||
Module Destructors
|
||||
==================
|
||||
|
||||
pybind11 does not provide an explicit mechanism to invoke cleanup code at
|
||||
module destruction time. In rare cases where such functionality is required, it
|
||||
is possible to emulate it using Python capsules or weak references with a
|
||||
destruction callback.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
auto cleanup_callback = []() {
|
||||
// perform cleanup here -- this function is called with the GIL held
|
||||
};
|
||||
|
||||
m.add_object("_cleanup", py::capsule(cleanup_callback));
|
||||
|
||||
This approach has the potential downside that instances of classes exposed
|
||||
within the module may still be alive when the cleanup callback is invoked
|
||||
(whether this is acceptable will generally depend on the application).
|
||||
|
||||
Alternatively, the capsule may also be stashed within a type object, which
|
||||
ensures that it not called before all instances of that type have been
|
||||
collected:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
auto cleanup_callback = []() { /* ... */ };
|
||||
m.attr("BaseClass").attr("_cleanup") = py::capsule(cleanup_callback);
|
||||
|
||||
Both approaches also expose a potentially dangerous ``_cleanup`` attribute in
|
||||
Python, which may be undesirable from an API standpoint (a premature explicit
|
||||
call from Python might lead to undefined behavior). Yet another approach that
|
||||
avoids this issue involves weak reference with a cleanup callback:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Register a callback function that is invoked when the BaseClass object is collected
|
||||
py::cpp_function cleanup_callback(
|
||||
[](py::handle weakref) {
|
||||
// perform cleanup here -- this function is called with the GIL held
|
||||
|
||||
weakref.dec_ref(); // release weak reference
|
||||
}
|
||||
);
|
||||
|
||||
// Create a weak reference with a cleanup callback and initially leak it
|
||||
(void) py::weakref(m.attr("BaseClass"), cleanup_callback).release();
|
||||
|
||||
.. note::
|
||||
|
||||
PyPy does not garbage collect objects when the interpreter exits. An alternative
|
||||
approach (which also works on CPython) is to use the :py:mod:`atexit` module [#f7]_,
|
||||
for example:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
auto atexit = py::module_::import("atexit");
|
||||
atexit.attr("register")(py::cpp_function([]() {
|
||||
// perform cleanup here -- this function is called with the GIL held
|
||||
}));
|
||||
|
||||
.. [#f7] https://docs.python.org/3/library/atexit.html
|
||||
|
||||
|
||||
Generating documentation using Sphinx
|
||||
=====================================
|
||||
|
||||
Sphinx [#f4]_ has the ability to inspect the signatures and documentation
|
||||
strings in pybind11-based extension modules to automatically generate beautiful
|
||||
documentation in a variety formats. The python_example repository [#f5]_ contains a
|
||||
simple example repository which uses this approach.
|
||||
|
||||
There are two potential gotchas when using this approach: first, make sure that
|
||||
the resulting strings do not contain any :kbd:`TAB` characters, which break the
|
||||
docstring parsing routines. You may want to use C++11 raw string literals,
|
||||
which are convenient for multi-line comments. Conveniently, any excess
|
||||
indentation will be automatically be removed by Sphinx. However, for this to
|
||||
work, it is important that all lines are indented consistently, i.e.:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// ok
|
||||
m.def("foo", &foo, R"mydelimiter(
|
||||
The foo function
|
||||
|
||||
Parameters
|
||||
----------
|
||||
)mydelimiter");
|
||||
|
||||
// *not ok*
|
||||
m.def("foo", &foo, R"mydelimiter(The foo function
|
||||
|
||||
Parameters
|
||||
----------
|
||||
)mydelimiter");
|
||||
|
||||
By default, pybind11 automatically generates and prepends a signature to the docstring of a function
|
||||
registered with ``module_::def()`` and ``class_::def()``. Sometimes this
|
||||
behavior is not desirable, because you want to provide your own signature or remove
|
||||
the docstring completely to exclude the function from the Sphinx documentation.
|
||||
The class ``options`` allows you to selectively suppress auto-generated signatures:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_MODULE(example, m) {
|
||||
py::options options;
|
||||
options.disable_function_signatures();
|
||||
|
||||
m.def("add", [](int a, int b) { return a + b; }, "A function which adds two numbers");
|
||||
}
|
||||
|
||||
Note that changes to the settings affect only function bindings created during the
|
||||
lifetime of the ``options`` instance. When it goes out of scope at the end of the module's init function,
|
||||
the default settings are restored to prevent unwanted side effects.
|
||||
|
||||
.. [#f4] http://www.sphinx-doc.org
|
||||
.. [#f5] http://github.com/pybind/python_example
|
||||
|
||||
.. _avoiding-cpp-types-in-docstrings:
|
||||
|
||||
Avoiding C++ types in docstrings
|
||||
================================
|
||||
|
||||
Docstrings are generated at the time of the declaration, e.g. when ``.def(...)`` is called.
|
||||
At this point parameter and return types should be known to pybind11.
|
||||
If a custom type is not exposed yet through a ``py::class_`` constructor or a custom type caster,
|
||||
its C++ type name will be used instead to generate the signature in the docstring:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
| __init__(...)
|
||||
| __init__(self: example.Foo, arg0: ns::Bar) -> None
|
||||
^^^^^^^
|
||||
|
||||
|
||||
This limitation can be circumvented by ensuring that C++ classes are registered with pybind11
|
||||
before they are used as a parameter or return type of a function:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_MODULE(example, m) {
|
||||
|
||||
auto pyFoo = py::class_<ns::Foo>(m, "Foo");
|
||||
auto pyBar = py::class_<ns::Bar>(m, "Bar");
|
||||
|
||||
pyFoo.def(py::init<const ns::Bar&>());
|
||||
pyBar.def(py::init<const ns::Foo&>());
|
||||
}
|
13
libs/pybind/docs/advanced/pycpp/index.rst
Normal file
13
libs/pybind/docs/advanced/pycpp/index.rst
Normal file
@ -0,0 +1,13 @@
|
||||
Python C++ interface
|
||||
####################
|
||||
|
||||
pybind11 exposes Python types and functions using thin C++ wrappers, which
|
||||
makes it possible to conveniently call Python code from C++ without resorting
|
||||
to Python's C API.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
object
|
||||
numpy
|
||||
utilities
|
455
libs/pybind/docs/advanced/pycpp/numpy.rst
Normal file
455
libs/pybind/docs/advanced/pycpp/numpy.rst
Normal file
@ -0,0 +1,455 @@
|
||||
.. _numpy:
|
||||
|
||||
NumPy
|
||||
#####
|
||||
|
||||
Buffer protocol
|
||||
===============
|
||||
|
||||
Python supports an extremely general and convenient approach for exchanging
|
||||
data between plugin libraries. Types can expose a buffer view [#f2]_, which
|
||||
provides fast direct access to the raw internal data representation. Suppose we
|
||||
want to bind the following simplistic Matrix class:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Matrix {
|
||||
public:
|
||||
Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
|
||||
m_data = new float[rows*cols];
|
||||
}
|
||||
float *data() { return m_data; }
|
||||
size_t rows() const { return m_rows; }
|
||||
size_t cols() const { return m_cols; }
|
||||
private:
|
||||
size_t m_rows, m_cols;
|
||||
float *m_data;
|
||||
};
|
||||
|
||||
The following binding code exposes the ``Matrix`` contents as a buffer object,
|
||||
making it possible to cast Matrices into NumPy arrays. It is even possible to
|
||||
completely avoid copy operations with Python expressions like
|
||||
``np.array(matrix_instance, copy = False)``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
|
||||
.def_buffer([](Matrix &m) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
m.data(), /* Pointer to buffer */
|
||||
sizeof(float), /* Size of one scalar */
|
||||
py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
|
||||
2, /* Number of dimensions */
|
||||
{ m.rows(), m.cols() }, /* Buffer dimensions */
|
||||
{ sizeof(float) * m.cols(), /* Strides (in bytes) for each index */
|
||||
sizeof(float) }
|
||||
);
|
||||
});
|
||||
|
||||
Supporting the buffer protocol in a new type involves specifying the special
|
||||
``py::buffer_protocol()`` tag in the ``py::class_`` constructor and calling the
|
||||
``def_buffer()`` method with a lambda function that creates a
|
||||
``py::buffer_info`` description record on demand describing a given matrix
|
||||
instance. The contents of ``py::buffer_info`` mirror the Python buffer protocol
|
||||
specification.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct buffer_info {
|
||||
void *ptr;
|
||||
py::ssize_t itemsize;
|
||||
std::string format;
|
||||
py::ssize_t ndim;
|
||||
std::vector<py::ssize_t> shape;
|
||||
std::vector<py::ssize_t> strides;
|
||||
};
|
||||
|
||||
To create a C++ function that can take a Python buffer object as an argument,
|
||||
simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
|
||||
in a great variety of configurations, hence some safety checks are usually
|
||||
necessary in the function body. Below, you can see a basic example on how to
|
||||
define a custom constructor for the Eigen double precision matrix
|
||||
(``Eigen::MatrixXd``) type, which supports initialization from compatible
|
||||
buffer objects (e.g. a NumPy matrix).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* Bind MatrixXd (or some other Eigen type) to Python */
|
||||
typedef Eigen::MatrixXd Matrix;
|
||||
|
||||
typedef Matrix::Scalar Scalar;
|
||||
constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
|
||||
|
||||
py::class_<Matrix>(m, "Matrix", py::buffer_protocol())
|
||||
.def(py::init([](py::buffer b) {
|
||||
typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
|
||||
|
||||
/* Request a buffer descriptor from Python */
|
||||
py::buffer_info info = b.request();
|
||||
|
||||
/* Some basic validation checks ... */
|
||||
if (info.format != py::format_descriptor<Scalar>::format())
|
||||
throw std::runtime_error("Incompatible format: expected a double array!");
|
||||
|
||||
if (info.ndim != 2)
|
||||
throw std::runtime_error("Incompatible buffer dimension!");
|
||||
|
||||
auto strides = Strides(
|
||||
info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar),
|
||||
info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar));
|
||||
|
||||
auto map = Eigen::Map<Matrix, 0, Strides>(
|
||||
static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
|
||||
|
||||
return Matrix(map);
|
||||
}));
|
||||
|
||||
For reference, the ``def_buffer()`` call for this Eigen data type should look
|
||||
as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
.def_buffer([](Matrix &m) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
m.data(), /* Pointer to buffer */
|
||||
sizeof(Scalar), /* Size of one scalar */
|
||||
py::format_descriptor<Scalar>::format(), /* Python struct-style format descriptor */
|
||||
2, /* Number of dimensions */
|
||||
{ m.rows(), m.cols() }, /* Buffer dimensions */
|
||||
{ sizeof(Scalar) * (rowMajor ? m.cols() : 1),
|
||||
sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
|
||||
/* Strides (in bytes) for each index */
|
||||
);
|
||||
})
|
||||
|
||||
For a much easier approach of binding Eigen types (although with some
|
||||
limitations), refer to the section on :doc:`/advanced/cast/eigen`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_buffers.cpp` contains a complete example
|
||||
that demonstrates using the buffer protocol with pybind11 in more detail.
|
||||
|
||||
.. [#f2] http://docs.python.org/3/c-api/buffer.html
|
||||
|
||||
Arrays
|
||||
======
|
||||
|
||||
By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
|
||||
restrict the function so that it only accepts NumPy arrays (rather than any
|
||||
type of Python object satisfying the buffer protocol).
|
||||
|
||||
In many situations, we want to define a function which only accepts a NumPy
|
||||
array of a certain data type. This is possible via the ``py::array_t<T>``
|
||||
template. For instance, the following function requires the argument to be a
|
||||
NumPy array containing double precision values.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double> array);
|
||||
|
||||
When it is invoked with a different type (e.g. an integer or a list of
|
||||
integers), the binding code will attempt to cast the input into a NumPy array
|
||||
of the requested type. This feature requires the :file:`pybind11/numpy.h`
|
||||
header to be included. Note that :file:`pybind11/numpy.h` does not depend on
|
||||
the NumPy headers, and thus can be used without declaring a build-time
|
||||
dependency on NumPy; NumPy>=1.7.0 is a runtime dependency.
|
||||
|
||||
Data in NumPy arrays is not guaranteed to packed in a dense manner;
|
||||
furthermore, entries can be separated by arbitrary column and row strides.
|
||||
Sometimes, it can be useful to require a function to only accept dense arrays
|
||||
using either the C (row-major) or Fortran (column-major) ordering. This can be
|
||||
accomplished via a second template argument with values ``py::array::c_style``
|
||||
or ``py::array::f_style``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
|
||||
|
||||
The ``py::array::forcecast`` argument is the default value of the second
|
||||
template parameter, and it ensures that non-conforming arguments are converted
|
||||
into an array satisfying the specified requirements instead of trying the next
|
||||
function overload.
|
||||
|
||||
There are several methods on arrays; the methods listed below under references
|
||||
work, as well as the following functions based on the NumPy API:
|
||||
|
||||
- ``.dtype()`` returns the type of the contained values.
|
||||
|
||||
- ``.strides()`` returns a pointer to the strides of the array (optionally pass
|
||||
an integer axis to get a number).
|
||||
|
||||
- ``.flags()`` returns the flag settings. ``.writable()`` and ``.owndata()``
|
||||
are directly available.
|
||||
|
||||
- ``.offset_at()`` returns the offset (optionally pass indices).
|
||||
|
||||
- ``.squeeze()`` returns a view with length-1 axes removed.
|
||||
|
||||
- ``.view(dtype)`` returns a view of the array with a different dtype.
|
||||
|
||||
- ``.reshape({i, j, ...})`` returns a view of the array with a different shape.
|
||||
``.resize({...})`` is also available.
|
||||
|
||||
- ``.index_at(i, j, ...)`` gets the count from the beginning to a given index.
|
||||
|
||||
|
||||
There are also several methods for getting references (described below).
|
||||
|
||||
Structured types
|
||||
================
|
||||
|
||||
In order for ``py::array_t`` to work with structured (record) types, we first
|
||||
need to register the memory layout of the type. This can be done via
|
||||
``PYBIND11_NUMPY_DTYPE`` macro, called in the plugin definition code, which
|
||||
expects the type followed by field names:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct A {
|
||||
int x;
|
||||
double y;
|
||||
};
|
||||
|
||||
struct B {
|
||||
int z;
|
||||
A a;
|
||||
};
|
||||
|
||||
// ...
|
||||
PYBIND11_MODULE(test, m) {
|
||||
// ...
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(A, x, y);
|
||||
PYBIND11_NUMPY_DTYPE(B, z, a);
|
||||
/* now both A and B can be used as template arguments to py::array_t */
|
||||
}
|
||||
|
||||
The structure should consist of fundamental arithmetic types, ``std::complex``,
|
||||
previously registered substructures, and arrays of any of the above. Both C++
|
||||
arrays and ``std::array`` are supported. While there is a static assertion to
|
||||
prevent many types of unsupported structures, it is still the user's
|
||||
responsibility to use only "plain" structures that can be safely manipulated as
|
||||
raw memory without violating invariants.
|
||||
|
||||
Vectorizing functions
|
||||
=====================
|
||||
|
||||
Suppose we want to bind a function with the following signature to Python so
|
||||
that it can process arbitrary NumPy array arguments (vectors, matrices, general
|
||||
N-D arrays) in addition to its normal arguments:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
double my_func(int x, float y, double z);
|
||||
|
||||
After including the ``pybind11/numpy.h`` header, this is extremely simple:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("vectorized_func", py::vectorize(my_func));
|
||||
|
||||
Invoking the function like below causes 4 calls to be made to ``my_func`` with
|
||||
each of the array elements. The significant advantage of this compared to
|
||||
solutions like ``numpy.vectorize()`` is that the loop over the elements runs
|
||||
entirely on the C++ side and can be crunched down into a tight, optimized loop
|
||||
by the compiler. The result is returned as a NumPy array of type
|
||||
``numpy.dtype.float64``.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> x = np.array([[1, 3], [5, 7]])
|
||||
>>> y = np.array([[2, 4], [6, 8]])
|
||||
>>> z = 3
|
||||
>>> result = vectorized_func(x, y, z)
|
||||
|
||||
The scalar argument ``z`` is transparently replicated 4 times. The input
|
||||
arrays ``x`` and ``y`` are automatically converted into the right types (they
|
||||
are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
|
||||
``numpy.dtype.float32``, respectively).
|
||||
|
||||
.. note::
|
||||
|
||||
Only arithmetic, complex, and POD types passed by value or by ``const &``
|
||||
reference are vectorized; all other arguments are passed through as-is.
|
||||
Functions taking rvalue reference arguments cannot be vectorized.
|
||||
|
||||
In cases where the computation is too complicated to be reduced to
|
||||
``vectorize``, it will be necessary to create and access the buffer contents
|
||||
manually. The following snippet contains a complete example that shows how this
|
||||
works (the code is somewhat contrived, since it could have been done more
|
||||
simply using ``vectorize``).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/numpy.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
|
||||
py::buffer_info buf1 = input1.request(), buf2 = input2.request();
|
||||
|
||||
if (buf1.ndim != 1 || buf2.ndim != 1)
|
||||
throw std::runtime_error("Number of dimensions must be one");
|
||||
|
||||
if (buf1.size != buf2.size)
|
||||
throw std::runtime_error("Input shapes must match");
|
||||
|
||||
/* No pointer is passed, so NumPy will allocate the buffer */
|
||||
auto result = py::array_t<double>(buf1.size);
|
||||
|
||||
py::buffer_info buf3 = result.request();
|
||||
|
||||
double *ptr1 = static_cast<double *>(buf1.ptr);
|
||||
double *ptr2 = static_cast<double *>(buf2.ptr);
|
||||
double *ptr3 = static_cast<double *>(buf3.ptr);
|
||||
|
||||
for (size_t idx = 0; idx < buf1.shape[0]; idx++)
|
||||
ptr3[idx] = ptr1[idx] + ptr2[idx];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(test, m) {
|
||||
m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
|
||||
}
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
|
||||
example that demonstrates using :func:`vectorize` in more detail.
|
||||
|
||||
Direct access
|
||||
=============
|
||||
|
||||
For performance reasons, particularly when dealing with very large arrays, it
|
||||
is often desirable to directly access array elements without internal checking
|
||||
of dimensions and bounds on every access when indices are known to be already
|
||||
valid. To avoid such checks, the ``array`` class and ``array_t<T>`` template
|
||||
class offer an unchecked proxy object that can be used for this unchecked
|
||||
access through the ``unchecked<N>`` and ``mutable_unchecked<N>`` methods,
|
||||
where ``N`` gives the required dimensionality of the array:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("sum_3d", [](py::array_t<double> x) {
|
||||
auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable
|
||||
double sum = 0;
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
for (py::ssize_t k = 0; k < r.shape(2); k++)
|
||||
sum += r(i, j, k);
|
||||
return sum;
|
||||
});
|
||||
m.def("increment_3d", [](py::array_t<double> x) {
|
||||
auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is false
|
||||
for (py::ssize_t i = 0; i < r.shape(0); i++)
|
||||
for (py::ssize_t j = 0; j < r.shape(1); j++)
|
||||
for (py::ssize_t k = 0; k < r.shape(2); k++)
|
||||
r(i, j, k) += 1.0;
|
||||
}, py::arg().noconvert());
|
||||
|
||||
To obtain the proxy from an ``array`` object, you must specify both the data
|
||||
type and number of dimensions as template arguments, such as ``auto r =
|
||||
myarray.mutable_unchecked<float, 2>()``.
|
||||
|
||||
If the number of dimensions is not known at compile time, you can omit the
|
||||
dimensions template parameter (i.e. calling ``arr_t.unchecked()`` or
|
||||
``arr.unchecked<T>()``. This will give you a proxy object that works in the
|
||||
same way, but results in less optimizable code and thus a small efficiency
|
||||
loss in tight loops.
|
||||
|
||||
Note that the returned proxy object directly references the array's data, and
|
||||
only reads its shape, strides, and writeable flag when constructed. You must
|
||||
take care to ensure that the referenced array is not destroyed or reshaped for
|
||||
the duration of the returned object, typically by limiting the scope of the
|
||||
returned instance.
|
||||
|
||||
The returned proxy object supports some of the same methods as ``py::array`` so
|
||||
that it can be used as a drop-in replacement for some existing, index-checked
|
||||
uses of ``py::array``:
|
||||
|
||||
- ``.ndim()`` returns the number of dimensions
|
||||
|
||||
- ``.data(1, 2, ...)`` and ``r.mutable_data(1, 2, ...)``` returns a pointer to
|
||||
the ``const T`` or ``T`` data, respectively, at the given indices. The
|
||||
latter is only available to proxies obtained via ``a.mutable_unchecked()``.
|
||||
|
||||
- ``.itemsize()`` returns the size of an item in bytes, i.e. ``sizeof(T)``.
|
||||
|
||||
- ``.ndim()`` returns the number of dimensions.
|
||||
|
||||
- ``.shape(n)`` returns the size of dimension ``n``
|
||||
|
||||
- ``.size()`` returns the total number of elements (i.e. the product of the shapes).
|
||||
|
||||
- ``.nbytes()`` returns the number of bytes used by the referenced elements
|
||||
(i.e. ``itemsize()`` times ``size()``).
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_numpy_array.cpp` contains additional examples
|
||||
demonstrating the use of this feature.
|
||||
|
||||
Ellipsis
|
||||
========
|
||||
|
||||
Python provides a convenient ``...`` ellipsis notation that is often used to
|
||||
slice multidimensional arrays. For instance, the following snippet extracts the
|
||||
middle dimensions of a tensor with the first and last index set to zero.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
a = ... # a NumPy array
|
||||
b = a[0, ..., 0]
|
||||
|
||||
The function ``py::ellipsis()`` function can be used to perform the same
|
||||
operation on the C++ side:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::array a = /* A NumPy array */;
|
||||
py::array b = a[py::make_tuple(0, py::ellipsis(), 0)];
|
||||
|
||||
|
||||
Memory view
|
||||
===========
|
||||
|
||||
For a case when we simply want to provide a direct accessor to C/C++ buffer
|
||||
without a concrete class object, we can return a ``memoryview`` object. Suppose
|
||||
we wish to expose a ``memoryview`` for 2x4 uint8_t array, we can do the
|
||||
following:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
const uint8_t buffer[] = {
|
||||
0, 1, 2, 3,
|
||||
4, 5, 6, 7
|
||||
};
|
||||
m.def("get_memoryview2d", []() {
|
||||
return py::memoryview::from_buffer(
|
||||
buffer, // buffer pointer
|
||||
{ 2, 4 }, // shape (rows, cols)
|
||||
{ sizeof(uint8_t) * 4, sizeof(uint8_t) } // strides in bytes
|
||||
);
|
||||
})
|
||||
|
||||
This approach is meant for providing a ``memoryview`` for a C/C++ buffer not
|
||||
managed by Python. The user is responsible for managing the lifetime of the
|
||||
buffer. Using a ``memoryview`` created in this way after deleting the buffer in
|
||||
C++ side results in undefined behavior.
|
||||
|
||||
We can also use ``memoryview::from_memory`` for a simple 1D contiguous buffer:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("get_memoryview1d", []() {
|
||||
return py::memoryview::from_memory(
|
||||
buffer, // buffer pointer
|
||||
sizeof(uint8_t) * 8 // buffer size
|
||||
);
|
||||
})
|
||||
|
||||
.. versionchanged:: 2.6
|
||||
``memoryview::from_memory`` added.
|
286
libs/pybind/docs/advanced/pycpp/object.rst
Normal file
286
libs/pybind/docs/advanced/pycpp/object.rst
Normal file
@ -0,0 +1,286 @@
|
||||
Python types
|
||||
############
|
||||
|
||||
.. _wrappers:
|
||||
|
||||
Available wrappers
|
||||
==================
|
||||
|
||||
All major Python types are available as thin C++ wrapper classes. These
|
||||
can also be used as function parameters -- see :ref:`python_objects_as_args`.
|
||||
|
||||
Available types include :class:`handle`, :class:`object`, :class:`bool_`,
|
||||
:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
|
||||
:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
|
||||
:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
|
||||
:class:`array`, and :class:`array_t`.
|
||||
|
||||
.. warning::
|
||||
|
||||
Be sure to review the :ref:`pytypes_gotchas` before using this heavily in
|
||||
your C++ API.
|
||||
|
||||
.. _instantiating_compound_types:
|
||||
|
||||
Instantiating compound Python types from C++
|
||||
============================================
|
||||
|
||||
Dictionaries can be initialized in the :class:`dict` constructor:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
using namespace pybind11::literals; // to bring in the `_a` literal
|
||||
py::dict d("spam"_a=py::none(), "eggs"_a=42);
|
||||
|
||||
A tuple of python objects can be instantiated using :func:`py::make_tuple`:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::tuple tup = py::make_tuple(42, py::none(), "spam");
|
||||
|
||||
Each element is converted to a supported Python type.
|
||||
|
||||
A `simple namespace`_ can be instantiated using
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
using namespace pybind11::literals; // to bring in the `_a` literal
|
||||
py::object SimpleNamespace = py::module_::import("types").attr("SimpleNamespace");
|
||||
py::object ns = SimpleNamespace("spam"_a=py::none(), "eggs"_a=42);
|
||||
|
||||
Attributes on a namespace can be modified with the :func:`py::delattr`,
|
||||
:func:`py::getattr`, and :func:`py::setattr` functions. Simple namespaces can
|
||||
be useful as lightweight stand-ins for class instances.
|
||||
|
||||
.. _simple namespace: https://docs.python.org/3/library/types.html#types.SimpleNamespace
|
||||
|
||||
.. _casting_back_and_forth:
|
||||
|
||||
Casting back and forth
|
||||
======================
|
||||
|
||||
In this kind of mixed code, it is often necessary to convert arbitrary C++
|
||||
types to Python, which can be done using :func:`py::cast`:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
MyClass *cls = ...;
|
||||
py::object obj = py::cast(cls);
|
||||
|
||||
The reverse direction uses the following syntax:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::object obj = ...;
|
||||
MyClass *cls = obj.cast<MyClass *>();
|
||||
|
||||
When conversion fails, both directions throw the exception :class:`cast_error`.
|
||||
|
||||
.. _python_libs:
|
||||
|
||||
Accessing Python libraries from C++
|
||||
===================================
|
||||
|
||||
It is also possible to import objects defined in the Python standard
|
||||
library or available in the current Python environment (``sys.path``) and work
|
||||
with these in C++.
|
||||
|
||||
This example obtains a reference to the Python ``Decimal`` class.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Equivalent to "from decimal import Decimal"
|
||||
py::object Decimal = py::module_::import("decimal").attr("Decimal");
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Try to import scipy
|
||||
py::object scipy = py::module_::import("scipy");
|
||||
return scipy.attr("__version__");
|
||||
|
||||
|
||||
.. _calling_python_functions:
|
||||
|
||||
Calling Python functions
|
||||
========================
|
||||
|
||||
It is also possible to call Python classes, functions and methods
|
||||
via ``operator()``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Construct a Python object of class Decimal
|
||||
py::object pi = Decimal("3.14159");
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Use Python to make our directories
|
||||
py::object os = py::module_::import("os");
|
||||
py::object makedirs = os.attr("makedirs");
|
||||
makedirs("/tmp/path/to/somewhere");
|
||||
|
||||
One can convert the result obtained from Python to a pure C++ version
|
||||
if a ``py::class_`` or type conversion is defined.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::function f = <...>;
|
||||
py::object result_py = f(1234, "hello", some_instance);
|
||||
MyClass &result = result_py.cast<MyClass>();
|
||||
|
||||
.. _calling_python_methods:
|
||||
|
||||
Calling Python methods
|
||||
========================
|
||||
|
||||
To call an object's method, one can again use ``.attr`` to obtain access to the
|
||||
Python method.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Calculate e^π in decimal
|
||||
py::object exp_pi = pi.attr("exp")();
|
||||
py::print(py::str(exp_pi));
|
||||
|
||||
In the example above ``pi.attr("exp")`` is a *bound method*: it will always call
|
||||
the method for that same instance of the class. Alternately one can create an
|
||||
*unbound method* via the Python class (instead of instance) and pass the ``self``
|
||||
object explicitly, followed by other arguments.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::object decimal_exp = Decimal.attr("exp");
|
||||
|
||||
// Compute the e^n for n=0..4
|
||||
for (int n = 0; n < 5; n++) {
|
||||
py::print(decimal_exp(Decimal(n));
|
||||
}
|
||||
|
||||
Keyword arguments
|
||||
=================
|
||||
|
||||
Keyword arguments are also supported. In Python, there is the usual call syntax:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def f(number, say, to):
|
||||
... # function code
|
||||
|
||||
|
||||
f(1234, say="hello", to=some_instance) # keyword call in Python
|
||||
|
||||
In C++, the same call can be made using:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
using namespace pybind11::literals; // to bring in the `_a` literal
|
||||
f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
|
||||
|
||||
Unpacking arguments
|
||||
===================
|
||||
|
||||
Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
|
||||
other arguments:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// * unpacking
|
||||
py::tuple args = py::make_tuple(1234, "hello", some_instance);
|
||||
f(*args);
|
||||
|
||||
// ** unpacking
|
||||
py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
|
||||
f(**kwargs);
|
||||
|
||||
// mixed keywords, * and ** unpacking
|
||||
py::tuple args = py::make_tuple(1234);
|
||||
py::dict kwargs = py::dict("to"_a=some_instance);
|
||||
f(*args, "say"_a="hello", **kwargs);
|
||||
|
||||
Generalized unpacking according to PEP448_ is also supported:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::dict kwargs1 = py::dict("number"_a=1234);
|
||||
py::dict kwargs2 = py::dict("to"_a=some_instance);
|
||||
f(**kwargs1, "say"_a="hello", **kwargs2);
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_pytypes.cpp` contains a complete
|
||||
example that demonstrates passing native Python types in more detail. The
|
||||
file :file:`tests/test_callbacks.cpp` presents a few examples of calling
|
||||
Python functions from C++, including keywords arguments and unpacking.
|
||||
|
||||
.. _PEP448: https://www.python.org/dev/peps/pep-0448/
|
||||
|
||||
.. _implicit_casting:
|
||||
|
||||
Implicit casting
|
||||
================
|
||||
|
||||
When using the C++ interface for Python types, or calling Python functions,
|
||||
objects of type :class:`object` are returned. It is possible to invoke implicit
|
||||
conversions to subclasses like :class:`dict`. The same holds for the proxy objects
|
||||
returned by ``operator[]`` or ``obj.attr()``.
|
||||
Casting to subtypes improves code readability and allows values to be passed to
|
||||
C++ functions that require a specific subtype rather than a generic :class:`object`.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/numpy.h>
|
||||
using namespace pybind11::literals;
|
||||
|
||||
py::module_ os = py::module_::import("os");
|
||||
py::module_ path = py::module_::import("os.path"); // like 'import os.path as path'
|
||||
py::module_ np = py::module_::import("numpy"); // like 'import numpy as np'
|
||||
|
||||
py::str curdir_abs = path.attr("abspath")(path.attr("curdir"));
|
||||
py::print(py::str("Current directory: ") + curdir_abs);
|
||||
py::dict environ = os.attr("environ");
|
||||
py::print(environ["HOME"]);
|
||||
py::array_t<float> arr = np.attr("ones")(3, "dtype"_a="float32");
|
||||
py::print(py::repr(arr + py::int_(1)));
|
||||
|
||||
These implicit conversions are available for subclasses of :class:`object`; there
|
||||
is no need to call ``obj.cast()`` explicitly as for custom classes, see
|
||||
:ref:`casting_back_and_forth`.
|
||||
|
||||
.. note::
|
||||
If a trivial conversion via move constructor is not possible, both implicit and
|
||||
explicit casting (calling ``obj.cast()``) will attempt a "rich" conversion.
|
||||
For instance, ``py::list env = os.attr("environ");`` will succeed and is
|
||||
equivalent to the Python code ``env = list(os.environ)`` that produces a
|
||||
list of the dict keys.
|
||||
|
||||
.. TODO: Adapt text once PR #2349 has landed
|
||||
|
||||
Handling exceptions
|
||||
===================
|
||||
|
||||
Python exceptions from wrapper classes will be thrown as a ``py::error_already_set``.
|
||||
See :ref:`Handling exceptions from Python in C++
|
||||
<handling_python_exceptions_cpp>` for more information on handling exceptions
|
||||
raised when calling C++ wrapper classes.
|
||||
|
||||
.. _pytypes_gotchas:
|
||||
|
||||
Gotchas
|
||||
=======
|
||||
|
||||
Default-Constructed Wrappers
|
||||
----------------------------
|
||||
|
||||
When a wrapper type is default-constructed, it is **not** a valid Python object (i.e. it is not ``py::none()``). It is simply the same as
|
||||
``PyObject*`` null pointer. To check for this, use
|
||||
``static_cast<bool>(my_wrapper)``.
|
||||
|
||||
Assigning py::none() to wrappers
|
||||
--------------------------------
|
||||
|
||||
You may be tempted to use types like ``py::str`` and ``py::dict`` in C++
|
||||
signatures (either pure C++, or in bound signatures), and assign them default
|
||||
values of ``py::none()``. However, in a best case scenario, it will fail fast
|
||||
because ``None`` is not convertible to that type (e.g. ``py::dict``), or in a
|
||||
worse case scenario, it will silently work but corrupt the types you want to
|
||||
work with (e.g. ``py::str(py::none())`` will yield ``"None"`` in Python).
|
155
libs/pybind/docs/advanced/pycpp/utilities.rst
Normal file
155
libs/pybind/docs/advanced/pycpp/utilities.rst
Normal file
@ -0,0 +1,155 @@
|
||||
Utilities
|
||||
#########
|
||||
|
||||
Using Python's print function in C++
|
||||
====================================
|
||||
|
||||
The usual way to write output in C++ is using ``std::cout`` while in Python one
|
||||
would use ``print``. Since these methods use different buffers, mixing them can
|
||||
lead to output order issues. To resolve this, pybind11 modules can use the
|
||||
:func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
|
||||
|
||||
Python's ``print`` function is replicated in the C++ API including optional
|
||||
keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
|
||||
expected in Python:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::print(1, 2.0, "three"); // 1 2.0 three
|
||||
py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
|
||||
|
||||
auto args = py::make_tuple("unpacked", true);
|
||||
py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
|
||||
|
||||
.. _ostream_redirect:
|
||||
|
||||
Capturing standard output from ostream
|
||||
======================================
|
||||
|
||||
Often, a library will use the streams ``std::cout`` and ``std::cerr`` to print,
|
||||
but this does not play well with Python's standard ``sys.stdout`` and ``sys.stderr``
|
||||
redirection. Replacing a library's printing with ``py::print <print>`` may not
|
||||
be feasible. This can be fixed using a guard around the library function that
|
||||
redirects output to the corresponding Python streams:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/iostream.h>
|
||||
|
||||
...
|
||||
|
||||
// Add a scoped redirect for your noisy code
|
||||
m.def("noisy_func", []() {
|
||||
py::scoped_ostream_redirect stream(
|
||||
std::cout, // std::ostream&
|
||||
py::module_::import("sys").attr("stdout") // Python output
|
||||
);
|
||||
call_noisy_func();
|
||||
});
|
||||
|
||||
.. warning::
|
||||
|
||||
The implementation in ``pybind11/iostream.h`` is NOT thread safe. Multiple
|
||||
threads writing to a redirected ostream concurrently cause data races
|
||||
and potentially buffer overflows. Therefore it is currently a requirement
|
||||
that all (possibly) concurrent redirected ostream writes are protected by
|
||||
a mutex. #HelpAppreciated: Work on iostream.h thread safety. For more
|
||||
background see the discussions under
|
||||
`PR #2982 <https://github.com/pybind/pybind11/pull/2982>`_ and
|
||||
`PR #2995 <https://github.com/pybind/pybind11/pull/2995>`_.
|
||||
|
||||
This method respects flushes on the output streams and will flush if needed
|
||||
when the scoped guard is destroyed. This allows the output to be redirected in
|
||||
real time, such as to a Jupyter notebook. The two arguments, the C++ stream and
|
||||
the Python output, are optional, and default to standard output if not given. An
|
||||
extra type, ``py::scoped_estream_redirect <scoped_estream_redirect>``, is identical
|
||||
except for defaulting to ``std::cerr`` and ``sys.stderr``; this can be useful with
|
||||
``py::call_guard``, which allows multiple items, but uses the default constructor:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Alternative: Call single function using call guard
|
||||
m.def("noisy_func", &call_noisy_function,
|
||||
py::call_guard<py::scoped_ostream_redirect,
|
||||
py::scoped_estream_redirect>());
|
||||
|
||||
The redirection can also be done in Python with the addition of a context
|
||||
manager, using the ``py::add_ostream_redirect() <add_ostream_redirect>`` function:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::add_ostream_redirect(m, "ostream_redirect");
|
||||
|
||||
The name in Python defaults to ``ostream_redirect`` if no name is passed. This
|
||||
creates the following context manager in Python:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
with ostream_redirect(stdout=True, stderr=True):
|
||||
noisy_function()
|
||||
|
||||
It defaults to redirecting both streams, though you can use the keyword
|
||||
arguments to disable one of the streams if needed.
|
||||
|
||||
.. note::
|
||||
|
||||
The above methods will not redirect C-level output to file descriptors, such
|
||||
as ``fprintf``. For those cases, you'll need to redirect the file
|
||||
descriptors either directly in C or with Python's ``os.dup2`` function
|
||||
in an operating-system dependent way.
|
||||
|
||||
.. _eval:
|
||||
|
||||
Evaluating Python expressions from strings and files
|
||||
====================================================
|
||||
|
||||
pybind11 provides the ``eval``, ``exec`` and ``eval_file`` functions to evaluate
|
||||
Python expressions and statements. The following example illustrates how they
|
||||
can be used.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// At beginning of file
|
||||
#include <pybind11/eval.h>
|
||||
|
||||
...
|
||||
|
||||
// Evaluate in scope of main module
|
||||
py::object scope = py::module_::import("__main__").attr("__dict__");
|
||||
|
||||
// Evaluate an isolated expression
|
||||
int result = py::eval("my_variable + 10", scope).cast<int>();
|
||||
|
||||
// Evaluate a sequence of statements
|
||||
py::exec(
|
||||
"print('Hello')\n"
|
||||
"print('world!');",
|
||||
scope);
|
||||
|
||||
// Evaluate the statements in an separate Python file on disk
|
||||
py::eval_file("script.py", scope);
|
||||
|
||||
C++11 raw string literals are also supported and quite handy for this purpose.
|
||||
The only requirement is that the first statement must be on a new line following
|
||||
the raw string delimiter ``R"(``, ensuring all lines have common leading indent:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::exec(R"(
|
||||
x = get_answer()
|
||||
if x == 42:
|
||||
print('Hello World!')
|
||||
else:
|
||||
print('Bye!')
|
||||
)", scope
|
||||
);
|
||||
|
||||
.. note::
|
||||
|
||||
`eval` and `eval_file` accept a template parameter that describes how the
|
||||
string/file should be interpreted. Possible choices include ``eval_expr``
|
||||
(isolated expression), ``eval_single_statement`` (a single statement, return
|
||||
value is always ``none``), and ``eval_statements`` (sequence of statements,
|
||||
return value is always ``none``). `eval` defaults to ``eval_expr``,
|
||||
`eval_file` defaults to ``eval_statements`` and `exec` is just a shortcut
|
||||
for ``eval<eval_statements>``.
|
174
libs/pybind/docs/advanced/smart_ptrs.rst
Normal file
174
libs/pybind/docs/advanced/smart_ptrs.rst
Normal file
@ -0,0 +1,174 @@
|
||||
Smart pointers
|
||||
##############
|
||||
|
||||
std::unique_ptr
|
||||
===============
|
||||
|
||||
Given a class ``Example`` with Python bindings, it's possible to return
|
||||
instances wrapped in C++11 unique pointers, like so
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("create_example", &create_example);
|
||||
|
||||
In other words, there is nothing special that needs to be done. While returning
|
||||
unique pointers in this way is allowed, it is *illegal* to use them as function
|
||||
arguments. For instance, the following function signature cannot be processed
|
||||
by pybind11.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void do_something_with_example(std::unique_ptr<Example> ex) { ... }
|
||||
|
||||
The above signature would imply that Python needs to give up ownership of an
|
||||
object that is passed to this function, which is generally not possible (for
|
||||
instance, the object might be referenced elsewhere).
|
||||
|
||||
std::shared_ptr
|
||||
===============
|
||||
|
||||
The binding generator for classes, :class:`class_`, can be passed a template
|
||||
type that denotes a special *holder* type that is used to manage references to
|
||||
the object. If no such holder type template argument is given, the default for
|
||||
a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object
|
||||
is deallocated when Python's reference count goes to zero.
|
||||
|
||||
It is possible to switch to other types of reference counting wrappers or smart
|
||||
pointers, which is useful in codebases that rely on them. For instance, the
|
||||
following snippet causes ``std::shared_ptr`` to be used instead.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
|
||||
|
||||
Note that any particular class can only be associated with a single holder type.
|
||||
|
||||
One potential stumbling block when using holder types is that they need to be
|
||||
applied consistently. Can you guess what's broken about the following binding
|
||||
code?
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Child { };
|
||||
|
||||
class Parent {
|
||||
public:
|
||||
Parent() : child(std::make_shared<Child>()) { }
|
||||
Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
|
||||
private:
|
||||
std::shared_ptr<Child> child;
|
||||
};
|
||||
|
||||
PYBIND11_MODULE(example, m) {
|
||||
py::class_<Child, std::shared_ptr<Child>>(m, "Child");
|
||||
|
||||
py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
|
||||
.def(py::init<>())
|
||||
.def("get_child", &Parent::get_child);
|
||||
}
|
||||
|
||||
The following Python code will cause undefined behavior (and likely a
|
||||
segmentation fault).
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from example import Parent
|
||||
|
||||
print(Parent().get_child())
|
||||
|
||||
The problem is that ``Parent::get_child()`` returns a pointer to an instance of
|
||||
``Child``, but the fact that this instance is already managed by
|
||||
``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
|
||||
pybind11 will create a second independent ``std::shared_ptr<...>`` that also
|
||||
claims ownership of the pointer. In the end, the object will be freed **twice**
|
||||
since these shared pointers have no way of knowing about each other.
|
||||
|
||||
There are two ways to resolve this issue:
|
||||
|
||||
1. For types that are managed by a smart pointer class, never use raw pointers
|
||||
in function arguments or return values. In other words: always consistently
|
||||
wrap pointers into their designated holder types (such as
|
||||
``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
|
||||
should be modified as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
std::shared_ptr<Child> get_child() { return child; }
|
||||
|
||||
2. Adjust the definition of ``Child`` by specifying
|
||||
``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
|
||||
base class. This adds a small bit of information to ``Child`` that allows
|
||||
pybind11 to realize that there is already an existing
|
||||
``std::shared_ptr<...>`` and communicate with it. In this case, the
|
||||
declaration of ``Child`` should look as follows:
|
||||
|
||||
.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Child : public std::enable_shared_from_this<Child> { };
|
||||
|
||||
.. _smart_pointers:
|
||||
|
||||
Custom smart pointers
|
||||
=====================
|
||||
|
||||
pybind11 supports ``std::unique_ptr`` and ``std::shared_ptr`` right out of the
|
||||
box. For any other custom smart pointer, transparent conversions can be enabled
|
||||
using a macro invocation similar to the following. It must be declared at the
|
||||
top namespace level before any binding code:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);
|
||||
|
||||
The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
|
||||
placeholder name that is used as a template parameter of the second argument.
|
||||
Thus, feel free to use any identifier, but use it consistently on both sides;
|
||||
also, don't use the name of a type that already exists in your codebase.
|
||||
|
||||
The macro also accepts a third optional boolean parameter that is set to false
|
||||
by default. Specify
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>, true);
|
||||
|
||||
if ``SmartPtr<T>`` can always be initialized from a ``T*`` pointer without the
|
||||
risk of inconsistencies (such as multiple independent ``SmartPtr`` instances
|
||||
believing that they are the sole owner of the ``T*`` pointer). A common
|
||||
situation where ``true`` should be passed is when the ``T`` instances use
|
||||
*intrusive* reference counting.
|
||||
|
||||
Please take a look at the :ref:`macro_notes` before using this feature.
|
||||
|
||||
By default, pybind11 assumes that your custom smart pointer has a standard
|
||||
interface, i.e. provides a ``.get()`` member function to access the underlying
|
||||
raw pointer. If this is not the case, pybind11's ``holder_helper`` must be
|
||||
specialized:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Always needed for custom holder types
|
||||
PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr<T>);
|
||||
|
||||
// Only needed if the type's `.get()` goes by another name
|
||||
namespace pybind11 { namespace detail {
|
||||
template <typename T>
|
||||
struct holder_helper<SmartPtr<T>> { // <-- specialization
|
||||
static const T *get(const SmartPtr<T> &p) { return p.getPointer(); }
|
||||
};
|
||||
}}
|
||||
|
||||
The above specialization informs pybind11 that the custom ``SmartPtr`` class
|
||||
provides ``.get()`` functionality via ``.getPointer()``.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_smart_ptr.cpp` contains a complete example
|
||||
that demonstrates how to work with custom reference-counting holder types
|
||||
in more detail.
|
Reference in New Issue
Block a user