mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-06-23 18:17:59 +02:00
updated manual directory
git-svn-id: file:///afs/psi.ch/project/sls_det_software/svn/slsDetectorsPackage@47 08cae9ef-cb74-4d14-b03a-d7ea46f178d7
This commit is contained in:
37
manual/manual-main/AngConv_fml.tex
Normal file
37
manual/manual-main/AngConv_fml.tex
Normal file
@ -0,0 +1,37 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
%\begin{figure}[!h]
|
||||
%\centering
|
||||
%\includegraphics[width=0.98\textwidth]{AngConv}
|
||||
%\caption{Schematics of the scattering geometry in the diffraction plane. A Mythen II module is shown. $R_m$ is the distance from the module sensor plane (orthogonal to the diffraction plane) to the sample position $S$; $D_m$ the distance from the center of pixel $j=0$ to point $Q$, counted positively as the arrow on the module plane goes (\emph{i.e.}, oppositely to the direction of increasing $j$); $\Phi_m$ is the angle of the module plane normal with the beam direction, positive counterclockwise. $\alpha_{jm}$ is the angular position of the $j$-th pixel center with respect to the beam direction, positive counterclockwise.}
|
||||
%\label{acon}
|
||||
%\end{figure}
|
||||
|
||||
Mythen II modules are composed by 1280 pixels, each having width p=0.05~mm, and numbered with j=0,..,1279.
|
||||
Angles are counted counterclockwise from the beam direction. For the m-th module, the angle $\alpha_{jm}$ of its j-th pixel center
|
||||
can be determined using the three geometric parameters $R_m$~[mm], $\Phi_m$~[deg], $D_m$~[mm], as in \fref{acon}.
|
||||
The detector group uses instead the 3 parameters center $c_m$~[\ ], offset $o_m$~[deg], conversion $k_m$~[\ ].
|
||||
The law with the 3 geometric parameter is
|
||||
\begin{equation}
|
||||
\alpha_{jm}=\Phi_m-\lrb{\DSF{180}{\pi}}\arctan\lrb{\DSF{D_m-pj}{R_m}}
|
||||
\end{equation}
|
||||
The corresponding law using DG's parameters is
|
||||
\begin{equation}
|
||||
\alpha_{jm}=o_m+\lrb{\DSF{180}{\pi}}c_mk_m+\lrb{\DSF{180}{\pi}}\arctan\lrs{\lrb{j-c_m}k_m}
|
||||
\end{equation}
|
||||
One can convert the two forms by equating separately the term out of the arctan and the argument of arctan for two different values of j.
|
||||
It results
|
||||
\begin{eqnarray}
|
||||
c_m&=&\DSF{D_m}{p};\\
|
||||
k_m&=&\DSF{p}{R_m};\\
|
||||
o_m&=&\Phi_m-\DSF{180}{\pi}\DSF{D_m}{R_m}.
|
||||
\end{eqnarray}
|
||||
Conversely,
|
||||
\begin{eqnarray}
|
||||
\Phi_m&=&o_m+\DSF{180}{\pi}c_mk_m;\\
|
||||
R_m&=&\DSF{p}{k_m};\\
|
||||
D_m&=&c_m p.
|
||||
\end{eqnarray}
|
Reference in New Issue
Block a user