client: removed slsDetectorutils and postprocessing. yet to compile, yet to add detpos index for every multi sls detector command and call from command interface, removed multiple threading, yet to interface with eriks single template for multiple threading

This commit is contained in:
2018-10-03 11:15:39 +02:00
parent dafbc970e3
commit 70ea4b48c3
279 changed files with 578 additions and 10937 deletions

View File

@ -0,0 +1,141 @@
#ifndef AD9257_H
#define AD9257_H
#include "ansi.h"
#include "commonServerFunctions.h"
#include <stdio.h>
/* AD9257 ADC DEFINES */
#define AD9257_ADC_NUMBITS (24)
#define AD9257_DEV_IND_2_REG (0x04)
#define AD9257_CHAN_H_OFST (0)
#define AD9257_CHAN_H_MSK (0x00000001 << AD9257_CHAN_H_OFST)
#define AD9257_CHAN_G_OFST (1)
#define AD9257_CHAN_G_MSK (0x00000001 << AD9257_CHAN_G_OFST)
#define AD9257_CHAN_F_OFST (2)
#define AD9257_CHAN_F_MSK (0x00000001 << AD9257_CHAN_F_OFST)
#define AD9257_CHAN_E_OFST (3)
#define AD9257_CHAN_E_MSK (0x00000001 << AD9257_CHAN_E_OFST)
#define AD9257_DEV_IND_1_REG (0x05)
#define AD9257_CHAN_D_OFST (0)
#define AD9257_CHAN_D_MSK (0x00000001 << AD9257_CHAN_D_OFST)
#define AD9257_CHAN_C_OFST (1)
#define AD9257_CHAN_C_MSK (0x00000001 << AD9257_CHAN_C_OFST)
#define AD9257_CHAN_B_OFST (2)
#define AD9257_CHAN_B_MSK (0x00000001 << AD9257_CHAN_B_OFST)
#define AD9257_CHAN_A_OFST (3)
#define AD9257_CHAN_A_MSK (0x00000001 << AD9257_CHAN_A_OFST)
#define AD9257_CLK_CH_DCO_OFST (4)
#define AD9257_CLK_CH_DCO_MSK (0x00000001 << AD9257_CLK_CH_DCO_OFST)
#define AD9257_CLK_CH_IFCO_OFST (5)
#define AD9257_CLK_CH_IFCO_MSK (0x00000001 << AD9257_CLK_CH_IFCO_OFST)
#define AD9257_POWER_MODE_REG (0x08)
#define AD9257_POWER_INTERNAL_OFST (0)
#define AD9257_POWER_INTERNAL_MSK (0x00000003 << AD9257_POWER_INTERNAL_OFST)
#define AD9257_INT_RESET_VAL (0x3)
#define AD9257_INT_CHIP_RUN_VAL (0x0)
#define AD9257_POWER_EXTERNAL_OFST (5)
#define AD9257_POWER_EXTERNAL_MSK (0x00000001 << AD9257_POWER_EXTERNAL_OFST)
#define AD9257_EXT_FULL_POWER_VAL (0x0)
#define AD9257_EXT_STANDBY_VAL (0x1)
#define AD9257_OUT_MODE_REG (0x14)
#define AD9257_OUT_FORMAT_OFST (0)
#define AD9257_OUT_FORMAT_MSK (0x00000001 << AD9257_OUT_FORMAT_OFST)
#define AD9257_OUT_BINARY_OFST_VAL (0)
#define AD9257_OUT_TWOS_COMPL_VAL (1)
#define AD9257_OUT_LVDS_OPT_OFST (6)
#define AD9257_OUT_LVDS_OPT_MSK (0x00000001 << AD9257_OUT_LVDS_OPT_OFST)
#define AD9257_OUT_LVDS_ANSI_VAL (0)
#define AD9257_OUT_LVDS_IEEE_VAL (1)
#define AD9257_OUT_PHASE_REG (0x16)
#define AD9257_OUT_CLK_OFST (0)
#define AD9257_OUT_CLK_MSK (0x0000000F << AD9257_OUT_CLK_OFST)
#define AD9257_OUT_CLK_60_VAL (0x1)
#define AD9257_IN_CLK_OFST (4)
#define AD9257_IN_CLK_MSK (0x00000007 << AD9257_IN_CLK_OFST)
#define AD9257_IN_CLK_0_VAL (0x0)
#define AD9257_VREF_REG (0x18)
#define AD9257_VREF_OFST (0)
#define AD9257_VREF_MSK (0x00000003 << AD9257_VREF_OFST)
#define AD9257_VREF_1_33_VAL (0x2)
#define AD9257_TEST_MODE_REG (0x0D)
#define AD9257_OUT_TEST_OFST (0)
#define AD9257_OUT_TEST_MSK (0x0000000F << AD9257_OUT_TEST_OFST)
#define AD9257_NONE_VAL (0x0)
#define AD9257_MIXED_BIT_FREQ_VAL (0xC)
#define AD9257_TEST_RESET_SHORT_GEN (4)
#define AD9257_TEST_RESET_LONG_GEN (5)
#define AD9257_USER_IN_MODE_OFST (6)
#define AD9257_USER_IN_MODE_MSK (0x00000003 << AD9257_USER_IN_MODE_OFST)
void setAdc(int addr, int val) {
u_int32_t codata;
codata = val + (addr << 8);
printf(" Setting ADC SPI Register. Wrote 0x%04x at 0x%04x\n", val, addr);
serializeToSPI(ADC_SPI_REG, codata, ADC_SERIAL_CS_OUT_MSK, AD9257_ADC_NUMBITS,
ADC_SERIAL_CLK_OUT_MSK, ADC_SERIAL_DATA_OUT_MSK, ADC_SERIAL_DATA_OUT_OFST);
}
void prepareADC(){
printf("\n\nPreparing ADC ... \n");
//power mode reset
printf("power mode reset:\n");
setAdc(AD9257_POWER_MODE_REG,
(AD9257_INT_RESET_VAL << AD9257_POWER_INTERNAL_OFST) & AD9257_POWER_INTERNAL_MSK);
//power mode chip run
printf("power mode chip run:\n");
setAdc(AD9257_POWER_MODE_REG,
(AD9257_INT_CHIP_RUN_VAL << AD9257_POWER_INTERNAL_OFST) & AD9257_POWER_INTERNAL_MSK);
//output clock phase
printf("output clock phase:\n");
setAdc(AD9257_OUT_PHASE_REG,
(AD9257_OUT_CLK_60_VAL << AD9257_OUT_CLK_OFST) & AD9257_OUT_CLK_MSK);
// lvds-iee reduced , binary offset
printf("lvds-iee reduced, binary offset:\n");
setAdc(AD9257_OUT_MODE_REG,
(AD9257_OUT_LVDS_IEEE_VAL << AD9257_OUT_LVDS_OPT_OFST) & AD9257_OUT_LVDS_OPT_MSK);
// all devices on chip to receive next command
printf("all devices on chip to receive next command:\n");
setAdc(AD9257_DEV_IND_2_REG,
AD9257_CHAN_H_MSK | AD9257_CHAN_G_MSK | AD9257_CHAN_F_MSK | AD9257_CHAN_E_MSK);
setAdc(AD9257_DEV_IND_1_REG,
AD9257_CHAN_D_MSK | AD9257_CHAN_C_MSK | AD9257_CHAN_B_MSK | AD9257_CHAN_A_MSK |
AD9257_CLK_CH_DCO_MSK | AD9257_CLK_CH_IFCO_MSK);
// vref 1.33
printf("vref 1.33:\n");
setAdc(AD9257_VREF_REG,
(AD9257_VREF_1_33_VAL << AD9257_VREF_OFST) & AD9257_VREF_MSK);
// no test mode
printf("no test mode:\n");
setAdc(AD9257_TEST_MODE_REG,
(AD9257_NONE_VAL << AD9257_OUT_TEST_OFST) & AD9257_OUT_TEST_MSK);
#ifdef TESTADC
printf("***************************************** *******\n");
printf("******* PUTTING ADC IN TEST MODE!!!!!!!!! *******\n");
printf("***************************************** *******\n");
// mixed bit frequency test mode
printf("mixed bit frequency test mode:\n");
setAdc(AD9257_TEST_MODE_REG,
(AD9257_MIXED_BIT_FREQ_VAL << AD9257_OUT_TEST_OFST) & AD9257_OUT_TEST_MSK);
#endif
}
#endif //AD9257_H

View File

@ -0,0 +1,26 @@
CC = gcc
CLAGS += -Wall -DVIRTUAL -DDACS_INT -DGENERICD # -DSLS_DETECTOR_FUNCTION_LIST
LDLIBS += -lm
PROGS = genericDetectorServer
DESTDIR ?= bin
INSTMODE = 0777
SRC_CLNT = slsDetectorServer.c slsDetectorServer_funcs.c communication_funcs.c slsDetectorFunctionList.c
OBJS = $(SRC_CLNT:.cpp=.o)
all: clean $(PROGS)
boot: $(OBJS)
$(PROGS):
echo $(OBJS)
mkdir -p $(DESTDIR)
$(CC) $(SRC_CLNT) $(CLAGS) $(LDLIBS) -o $@
mv $(PROGS) $(DESTDIR)
clean:
rm -rf $(DESTDIR)/$(PROGS) *.o

View File

@ -0,0 +1,162 @@
#ifndef BLACKFIN_H
#define BLACKFIN_H
#include "ansi.h"
#include <stdio.h>
#include <fcntl.h> // open
#include <sys/mman.h> // mmap
/* global variables */
u_int64_t CSP0BASE = 0;
#define CSP0 0x20200000
#define MEM_SIZE 0x100000
#define MEM_MAP_SHIFT 1
/**
* Write into a 16 bit register
* @param offset address offset
* @param data 16 bit data
*/
void bus_w16(u_int32_t offset, u_int16_t data) {
volatile u_int16_t *ptr1;
ptr1=(u_int16_t*)(CSP0BASE+offset*2);
*ptr1=data;
}
/**
* Read from a 16 bit register
* @param offset address offset
* @retuns 16 bit data read
*/
u_int16_t bus_r16(u_int32_t offset){
volatile u_int16_t *ptr1;
ptr1=(u_int16_t*)(CSP0BASE+offset*2);
return *ptr1;
}
/**
* Write into a 32 bit register
* @param offset address offset
* @param data 32 bit data
*/
void bus_w(u_int32_t offset, u_int32_t data) {
volatile u_int32_t *ptr1;
ptr1=(u_int32_t*)(CSP0BASE+offset*2);
*ptr1=data;
}
/**
* Read from a 32 bit register
* @param offset address offset
* @retuns 32 bit data read
*/
u_int32_t bus_r(u_int32_t offset) {
volatile u_int32_t *ptr1;
ptr1=(u_int32_t*)(CSP0BASE+offset*2);
return *ptr1;
}
/**
* Read from a 64 bit register
* @param aLSB LSB offset address
* @param aMSB MSB offset address
* @returns 64 bit data read
*/
int64_t get64BitReg(int aLSB, int aMSB){
int64_t v64;
u_int32_t vLSB,vMSB;
vLSB=bus_r(aLSB);
vMSB=bus_r(aMSB);
v64=vMSB;
v64=(v64<<32) | vLSB;
printf(" reg64(%x,%x) %x %x %llx\n", aLSB, aMSB, vLSB, vMSB, (long long unsigned int)v64);
return v64;
}
/**
* Write into a 64 bit register
* @param value 64 bit data
* @param aLSB LSB offset address
* @param aMSB MSB offset address
* @returns 64 bit data read
*/
int64_t set64BitReg(int64_t value, int aLSB, int aMSB){
int64_t v64;
u_int32_t vLSB,vMSB;
if (value!=-1) {
vLSB=value&(0xffffffff);
bus_w(aLSB,vLSB);
v64=value>> 32;
vMSB=v64&(0xffffffff);
bus_w(aMSB,vMSB);
}
return get64BitReg(aLSB, aMSB);
}
/**
* Read from a 32 bit register (literal register value provided by client)
* @param offset address offset
* @retuns 32 bit data read
*/
u_int32_t readRegister(u_int32_t offset) {
return bus_r(offset << MEM_MAP_SHIFT);
}
/**
* Write into a 32 bit register (literal register value provided by client)
* @param offset address offset
* @param data 32 bit data
*/
u_int32_t writeRegister(u_int32_t offset, u_int32_t data) {
bus_w(offset << MEM_MAP_SHIFT, data);
return readRegister(offset);
}
/**
* Map FPGA
*/
int mapCSP0(void) {
// if not mapped
if (CSP0BASE == 0) {
printf("Mapping memory\n");
#ifdef VIRTUAL
CSP0BASE = malloc(MEM_SIZE);
if (CSP0BASE == NULL) {
cprintf(BG_RED, "Error: Could not allocate virtual memory.\n");
return FAIL;
}
printf("memory allocated\n");
#else
int fd;
fd = open("/dev/mem", O_RDWR | O_SYNC, 0);
if (fd == -1) {
cprintf(BG_RED, "Error: Can't find /dev/mem\n");
return FAIL;
}
#ifdef VERBOSE
printf("/dev/mem opened\n");
#endif
CSP0BASE = mmap(0, MEM_SIZE, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, fd, CSP0);
if (CSP0BASE == MAP_FAILED) {
cprintf(BG_RED, "Error: Can't map memmory area\n");
return FAIL;
}
#endif
printf("CSPOBASE mapped from 0x%llx to 0x%llx\n",
(long long unsigned int)CSP0BASE,
(long long unsigned int)(CSP0BASE+MEM_SIZE));
printf("Status Register: %08x\n",bus_r(STATUS_REG));
}else
printf("Memory already mapped before\n");
return OK;
}
#endif //BLACKFIN_H

View File

@ -0,0 +1,73 @@
#ifndef COMMON_SERVER_FUNCTIONS_H
#define COMMON_SERVER_FUNCTIONS_H
#ifndef GOTTHARDD //gotthard already had bus_w etc defined in its firmware_funcs.c (not yet made with common files)
#include "blackfin.h"
#endif
/* global variables */
void SPIChipSelect (u_int32_t* valw, u_int32_t addr, u_int32_t csmask) {
// start point
(*valw) = 0xffffffff; // old board compatibility (not using specific bits)
bus_w (addr, (*valw));
// chip sel bar down
(*valw) &= ~csmask; /* todo with test: done a bit different, not with previous value */
bus_w (addr, (*valw));
}
void SPIChipDeselect (u_int32_t* valw, u_int32_t addr, u_int32_t csmask, u_int32_t clkmask) {
// chip sel bar up
(*valw) |= csmask; /* todo with test: not done for spi */
bus_w (addr, (*valw));
//clk down
(*valw) &= ~clkmask;
bus_w (addr, (*valw));
// stop point = start point of course
(*valw) = 0xffffffff; // old board compatibility (not using specific bits)
bus_w (addr, (*valw));
}
void sendDataToSPI (u_int32_t* valw, u_int32_t addr, u_int32_t val, int numbitstosend, u_int32_t clkmask, u_int32_t digoutmask, int digofset) {
int i = 0;
for (i = 0; i < numbitstosend; ++i) {
// clk down
(*valw) &= ~clkmask;
bus_w (addr, (*valw));
// write data (i)
(*valw) = (((*valw) & ~digoutmask) + // unset bit
(((val >> (numbitstosend - 1 - i)) & 0x1) << digofset)); // each bit from val starting from msb
bus_w (addr, (*valw));
// clk up
(*valw) |= clkmask ;
bus_w (addr, (*valw));
}
}
void serializeToSPI(u_int32_t addr, u_int32_t val, u_int32_t csmask, int numbitstosend, u_int32_t clkmask, u_int32_t digoutmask, int digofset) {
#ifdef VERBOSE
if (numbitstosend == 16)
printf("Writing to SPI Register: 0x%04x\n",val);
else
printf("Writing to SPI Register: 0x%08x\n", val);
#endif
u_int32_t valw;
SPIChipSelect (&valw, addr, csmask);
sendDataToSPI(&valw, addr, val, numbitstosend, clkmask, digoutmask, digofset);
SPIChipDeselect(&valw, addr, csmask, clkmask);
}
#endif //COMMON_SERVER_FUNCTIONS_H

View File

@ -0,0 +1 @@
../commonFiles/communication_funcs.c

View File

@ -0,0 +1 @@
../commonFiles/communication_funcs.h

View File

@ -0,0 +1,190 @@
#ifndef PROGRAM_FPGA_H
#define PROGRAM_FPGA_H
#include "ansi.h"
#include <stdio.h>
#include <unistd.h> // usleep
#include <string.h>
/* global variables */
#define CTRL_SRVR_INIT_TIME_US (300 * 1000)
int gpioDefined=0;
#define MTDSIZE 10
char mtdvalue[MTDSIZE];
/**
* Define GPIO pins if not defined
*/
void defineGPIOpins(){
if (!gpioDefined) {
//define the gpio pins
system("echo 7 > /sys/class/gpio/export");
system("echo 9 > /sys/class/gpio/export");
//define their direction
system("echo in > /sys/class/gpio/gpio7/direction");
system("echo out > /sys/class/gpio/gpio9/direction");
printf("gpio pins defined\n");
gpioDefined = 1;
}else printf("gpio pins already defined earlier\n");
}
/**
* Notify FPGA to not touch flash
*/
void FPGAdontTouchFlash(){
//tell FPGA to not touch flash
system("echo 0 > /sys/class/gpio/gpio9/value");
//usleep(100*1000);
}
/**
* Notify FPGA to program from flash
*/
void FPGATouchFlash(){
//tell FPGA to touch flash to program itself
system("echo 1 > /sys/class/gpio/gpio9/value");
}
/**
* Reset FPGA
*/
void resetFPGA(){
cprintf(BLUE,"\n*** Reseting FPGA ***\n");
FPGAdontTouchFlash();
FPGATouchFlash();
usleep(CTRL_SRVR_INIT_TIME_US);
}
/**
* Erasing flash
*/
void eraseFlash(){
#ifdef VERY_VERBOSE
printf("\nErasing Flash\n");
#endif
char command[255];
memset(command, 0, 255);
sprintf(command,"flash_eraseall %s",mtdvalue);
system(command);
printf("Flash erased\n");
}
/**
* Open the drive to copy program and
* notify FPGA not to touch the program
* @param filefp pointer to flash
* @return 0 for success, 1 for fail (cannot open file for writing program)
*/
int startWritingFPGAprogram(FILE** filefp){
#ifdef VERY_VERBOSE
printf("\nStart Writing of FPGA program\n");
#endif
//getting the drive
char output[255];
memset(output, 0, 255);
FILE* fp = popen("awk \'$4== \"\\\"bitfile(spi)\\\"\" {print $1}\' /proc/mtd", "r");
if (fp == NULL) {
cprintf(RED,"popen returned NULL. Need that to get mtd drive.\n");
return 1;
}
if (fgets(output, sizeof(output), fp) == NULL) {
cprintf(RED,"fgets returned NULL. Need that to get mtd drive.\n");
return 1;
}
pclose(fp);
//cprintf(RED,"output: %s\n", output);
memset(mtdvalue, 0, MTDSIZE);
strcpy(mtdvalue,"/dev/");
char* pch = strtok(output,":");
if(pch == NULL){
cprintf(RED,"Could not get mtd value\n");
return 1;
}
strcat(mtdvalue,pch);
printf ("\nFlash drive found: %s\n",mtdvalue);
FPGAdontTouchFlash();
//writing the program to flash
*filefp = fopen(mtdvalue, "w");
if(*filefp == NULL){
cprintf(RED,"Unable to open %s in write mode\n",mtdvalue);
return 1;
}
printf("Flash ready for writing\n");
return 0;
}
/**
* When done writing the program, close file pointer and
* notify FPGA to pick up the program from flash
* @param filefp pointer to flash
*/
void stopWritingFPGAprogram(FILE* filefp){
#ifdef VERY_VERBOSE
printf("\nStopping of writing FPGA program\n");
#endif
int wait = 0;
if(filefp!= NULL){
fclose(filefp);
wait = 1;
}
//touch and program
FPGATouchFlash();
if(wait){
#ifdef VERY_VERBOSE
printf("Waiting for FPGA to program from flash\n");
#endif
//waiting for success or done
char output[255];
int res=0;
while(res == 0){
FILE* sysFile = popen("cat /sys/class/gpio/gpio7/value", "r");
fgets(output, sizeof(output), sysFile);
pclose(sysFile);
sscanf(output,"%d",&res);
#ifdef VERY_VERBOSE
printf("gpi07 returned %d\n",res);
#endif
}
}
printf("FPGA has picked up the program from flash\n\n");
}
/**
* Write FPGA Program to flash
* @param fpgasrc source program
* @param fsize size of program
* @param filefp pointer to flash
* @return 0 for success, 1 for fail (cannot write)
*/
int writeFPGAProgram(char* fpgasrc, size_t fsize, FILE* filefp){
#ifdef VERY_VERBOSE
printf("\nWriting of FPGA Program\n");
cprintf(BLUE,"address of fpgasrc:%p\n",(void *)fpgasrc);
cprintf(BLUE,"fsize:%lu\n",fsize);
cprintf(BLUE,"pointer:%p\n",(void*)filefp);
#endif
if(fwrite((void*)fpgasrc , sizeof(char) , fsize , filefp )!= fsize){
cprintf(RED,"Could not write FPGA source to flash (size:%lu)\n", fsize);
return 1;
}
#ifdef VERY_VERBOSE
cprintf(BLUE, "program written to flash\n");
#endif
return 0;
}
#endif //PROGRAM_FPGA_H

View File

@ -0,0 +1,838 @@
#ifdef SLS_DETECTOR_FUNCTION_LIST
#include "slsDetectorFunctionList.h"
#include "slsDetectorServer_defs.h"
#include <stdio.h>
#include <string.h>
const int nChans=NCHAN;
const int nChips=NCHIP;
const int nDacs=NDAC;
const int nAdcs=NADC;
const int allSelected=-2;
const int noneSelected=-1;
sls_detector_module *detectorModules=NULL;
int *detectorChips=NULL;
int *detectorChans=NULL;
dacs_t *detectorDacs=NULL;
dacs_t *detectorAdcs=NULL;
int nModY = NMAXMOD;
int nModX = NMAXMOD;
int dynamicRange= DYNAMIC_RANGE;
int dataBytes = NMAXMOD*NCHIP*NCHAN*2;
int masterMode = NO_MASTER;
int syncMode = NO_SYNCHRONIZATION;
int timingMode = AUTO_TIMING;
enum detectorSettings thisSettings;
int sChan, sChip, sMod, sDac, sAdc;
int nModBoard;
extern int dataBytes;
int initializeDetectorStructure(){
int imod;
int n=getNModBoard(X)*getNModBoard(Y);
#ifdef VERBOSE
printf("Board is for %d modules\n",n);
#endif
detectorModules=malloc(n*sizeof(sls_detector_module));
detectorChips=malloc(n*NCHIP*sizeof(int));
detectorChans=malloc(n*NCHIP*NCHAN*sizeof(int));
detectorDacs=malloc(n*NDAC*sizeof(int));
detectorAdcs=malloc(n*NADC*sizeof(int));
#ifdef VERBOSE
printf("modules from 0x%x to 0x%x\n",(unsigned int)(detectorModules), (unsigned int)(detectorModules+n));
printf("chips from 0x%x to 0x%x\n",(unsigned int)(detectorChips), (unsigned int)(detectorChips+n*NCHIP));
printf("chans from 0x%x to 0x%x\n",(unsigned int)(detectorChans), (unsigned int)(detectorChans+n*NCHIP*NCHAN));
printf("dacs from 0x%x to 0x%x\n",(unsigned int)(detectorDacs), (unsigned int)(detectorDacs+n*NDAC));
printf("adcs from 0x%x to 0x%x\n",(unsigned int)(detectorAdcs), (unsigned int)(detectorAdcs+n*NADC));
#endif
for (imod=0; imod<n; imod++) {
(detectorModules+imod)->dacs=detectorDacs+imod*NDAC;
(detectorModules+imod)->adcs=detectorAdcs+imod*NADC;
(detectorModules+imod)->chipregs=detectorChips+imod*NCHIP;
(detectorModules+imod)->chanregs=detectorChans+imod*NCHIP*NCHAN;
(detectorModules+imod)->ndac=NDAC;
(detectorModules+imod)->nadc=NADC;
(detectorModules+imod)->nchip=NCHIP;
(detectorModules+imod)->nchan=NCHIP*NCHAN;
(detectorModules+imod)->module=imod;
(detectorModules+imod)->gain=0;
(detectorModules+imod)->offset=0;
(detectorModules+imod)->reg=0;
/* initialize registers, dacs, retrieve sn, adc values etc */
}
thisSettings=UNINITIALIZED;
sChan=noneSelected;
sChip=noneSelected;
sMod=noneSelected;
sDac=noneSelected;
sAdc=noneSelected;
return OK;
}
int setupDetector(){
//testFpga();
//testRAM();
//setSettings(GET_SETTINGS,-1);
//setFrames(1);
//setTrains(1);
//setExposureTime(1e6);
//setPeriod(1e9);
//setDelay(0);
//setGates(0);
//setTiming(GET_EXTERNAL_COMMUNICATION_MODE);
//setMaster(GET_MASTER);
//setSynchronization(GET_SYNCHRONIZATION_MODE);
return OK;
}
int setNMod(int nm, enum dimension dim){
return 1;
}
int getNModBoard(enum dimension arg){
return 1;
}
int64_t getModuleId(enum idMode arg, int imod){
//DETECTOR_SERIAL_NUMBER
//DETECTOR_FIRMWARE_VERSION
return 0;
}
int64_t getDetectorId(enum idMode arg){
//DETECTOR_SOFTWARE_VERSION defined in slsDetector_defs.h?
return 0;
}
int moduleTest( enum digitalTestMode arg, int imod){
//template testShiftIn from mcb_funcs.c
//CHIP_TEST
//testShiftIn
//testShiftOut
//testShiftStSel
//testDataInOutMux
//testExtPulseMux
//testOutMux
//testFpgaMux
return OK;
}
int detectorTest( enum digitalTestMode arg){
//templates from firmware_funcs.c
//DETECTOR_FIRMWARE_TEST:testFpga()
//DETECTOR_MEMORY_TEST:testRAM()
//DETECTOR_BUS_TEST:testBus()
//DETECTOR_SOFTWARE_TEST:testFpga()
return OK;
}
double setDAC(enum dacIndex ind, double val, int imod){
//template initDACbyIndexDACU from mcb_funcs.c
//check that slsDetectorServer_funcs.c set_dac() has all the specific dac enums
//set dac and write to a register in fpga to remember dac value when server restarts
return 0;
}
double getADC(enum dacIndex ind, int imod){
//get adc value
return 0;
}
int setChannel(sls_detector_channel myChan){
//template initChannelByNumber() from mcb_funcs.c
return myChan.reg;
}
int getChannel(sls_detector_channel *myChan){
//template getChannelbyNumber() from mcb_funcs.c
return FAIL;
}
int setChip(sls_detector_chip myChip){
//template initChipbyNumber() from mcb_funcs.c
return myChip.reg;
}
int getChip(sls_detector_chip *myChip){
//template getChipbyNumber() from mcb_funcs.c
return FAIL;
}
int setModule(sls_detector_module myChan){
//template initModulebyNumber() from mcb_funcs.c
return OK;
}
int getModule(sls_detector_module *myChan){
//template getModulebyNumber() from mcb_funcs.c
return FAIL;
}
int getThresholdEnergy(int imod){
//template getThresholdEnergy() from mcb_funcs.c
//depending on settings
return FAIL;
}
int setThresholdEnergy(int thr, int imod){
//template getThresholdEnergy() from mcb_funcs.c
//depending on settings
return FAIL;
}
enum detectorSettings setSettings(enum detectorSettings sett, int imod){
//template setSettings() from mcb_funcs.c
//reads the dac registers from fpga to confirm which settings, if weird, undefined
return OK;
}
int startStateMachine(){
//template startStateMachine() from firmware_funcs.c
/*
fifoReset();
now_ptr=(char*)ram_values;
//send start acquisition to fpga
*/
return FAIL;
}
int stopStateMachine(){
//template stopStateMachine() from firmware_funcs.c
// send stop to fpga
//if status = busy after 500us, return FAIL
return FAIL;
}
int startReadOut(){
//template startReadOut() from firmware_funcs.c
//send fpga start readout
return FAIL;
}
enum runStatus getRunStatus(){
//template runState() from firmware_funcs.c
//get status from fpga
return ERROR;
}
char *readFrame(int *ret, char *mess){
//template fifo_read_event() from firmware_funcs.c
//checks if state machine running and if fifo has data(look_at_me_reg) and accordingly reads frame
// memcpy(now_ptr, values, dataBytes);
//returns ptr to values
return NULL;
}
int64_t setTimer(enum timerIndex ind, int64_t val){
//template setDelay() from firmware_funcs.c
//writes to reg
//FRAME_NUMBER
//ACQUISITION_TIME
//FRAME_PERIOD
//DELAY_AFTER_TRIGGER
//GATES_NUMBER
//PROBES_NUMBER
//CYCLES_NUMBER
return 0;
}
int64_t getTimeLeft(enum timerIndex ind){
//template getDelay() from firmware_funcs.c
//reads from reg
//FRAME_NUMBER
//ACQUISITION_TIME
//FRAME_PERIOD
//DELAY_AFTER_TRIGGER
//GATES_NUMBER
//PROBES_NUMBER
//CYCLES_NUMBER
return -1;
}
int setDynamicRange(int dr){
//template setDynamicRange() from firmware_funcs.c
return 0;
}
enum readOutFlags setReadOutFlags(enum readOutFlags val){
//template setStoreInRAM from firmware_funcs.c
return -1;
}
int setROI(int n, ROI arg[], int *retvalsize, int *ret){
return FAIL;
}
int setSpeed(enum speedVariable arg, int val){
//template setClockDivider() from firmware_funcs.c
//CLOCK_DIVIDER
//WAIT_STATES
//SET_SIGNAL_LENGTH
//TOT_CLOCK_DIVIDER
//TOT_DUTY_CYCLE
//returns eg getClockDivider from firmware_funcs.c
return 0;
}
int executeTrimming(enum trimMode mode, int par1, int par2, int imod){
// template trim_with_noise from trimming_funcs.c
return FAIL;
}
int configureMAC(int ipad, long long int imacadd, long long int iservermacadd, int dtb){
//detector specific.
return FAIL;
}
int loadImage(enum imageType index, char *imageVals){
//detector specific.
return FAIL;
}
int readCounterBlock(int startACQ, char *counterVals){
//detector specific.
return FAIL;
}
int resetCounterBlock(int startACQ){
//detector specific.
return FAIL;
}
int startReceiver(int d){
return 0;
}
int calibratePedestal(int frames){
return 0;
}
int calculateDataBytes(){
return 0;
}
int getTotalNumberOfChannels(){return 0;}
int getTotalNumberOfChips(){return 0;}
int getTotalNumberOfModules(){return 0;}
int getNumberOfChannelsPerChip(){return 0;}
int getNumberOfChannelsPerModule(){return 0;}
int getNumberOfChipsPerModule(){return 0;}
int getNumberOfDACsPerModule(){return 0;}
int getNumberOfADCsPerModule(){return 0;}
enum externalSignalFlag getExtSignal(int signalindex){
//template getExtSignal from firmware_funcs.c
//return signals[signalindex];
return -1;
}
enum externalSignalFlag setExtSignal(int signalindex, enum externalSignalFlag flag){
//template setExtSignal from firmware_funcs.c
//in short..sets signals array, checks if agrees with timing mode, writes to fpga reg, calls synchronization and then settiming
/*
if (signalindex>=0 && signalindex<4) {
signals[signalindex]=flag;
#ifdef VERBOSE
printf("settings signal variable number %d to value %04x\n", signalindex, signals[signalindex]);
#endif
// if output signal, set it!
switch (flag) {
case GATE_IN_ACTIVE_HIGH:
case GATE_IN_ACTIVE_LOW:
if (timingMode==GATE_FIX_NUMBER || timingMode==GATE_WITH_START_TRIGGER)//timingMode = AUTO_TIMING by default and is set in setTiming()
setFPGASignal(signalindex,flag); //not implemented here, checks if flag within limits and writes to fpga reg
else
setFPGASignal(signalindex,SIGNAL_OFF);
break;
case TRIGGER_IN_RISING_EDGE:
case TRIGGER_IN_FALLING_EDGE:
if (timingMode==TRIGGER_EXPOSURE || timingMode==GATE_WITH_START_TRIGGER)
setFPGASignal(signalindex,flag);
else
setFPGASignal(signalindex,SIGNAL_OFF);
break;
case RO_TRIGGER_IN_RISING_EDGE:
case RO_TRIGGER_IN_FALLING_EDGE:
if (timingMode==BURST_TRIGGER)
setFPGASignal(signalindex,flag);
else
setFPGASignal(signalindex,SIGNAL_OFF);
break;
case MASTER_SLAVE_SYNCHRONIZATION:
setSynchronization(syncMode);//syncmode = NO_SYNCHRONIZATION by default and set with this function
break;
default:
setFPGASignal(signalindex,mode);
}
setTiming(GET_EXTERNAL_COMMUNICATION_MODE);
}
*/
return getExtSignal(signalindex);
}
enum externalCommunicationMode setTiming( enum externalCommunicationMode arg){
//template setTiming from firmware_funcs.c
//template getFPGASignal from firmware_funcs.c
//getFPGASignal(signalindex) used later on in this fucntion
//gets flag from fpga reg, checks if flag within limits,
//if( flag=SIGNAL_OFF and signals[signalindex]==MASTER_SLAVE_SYNCHRONIZATION), return -1, (ensures masterslaveflag !=off now)
//else return flag
int ret=GET_EXTERNAL_COMMUNICATION_MODE;
//sets timingmode variable
//ensures that the signals are in acceptance with timing mode and according sets the timing mode
/*
int g=-1, t=-1, rot=-1;
int i;
switch (ti) {
case AUTO_TIMING:
timingMode=ti;
// disable all gates/triggers in except if used for master/slave synchronization
for (i=0; i<4; i++) {
if (getFPGASignal(i)>0 && getFPGASignal(i)<GATE_OUT_ACTIVE_HIGH && signals[i]!=MASTER_SLAVE_SYNCHRONIZATION)
setFPGASignal(i,SIGNAL_OFF);
}
break;
case TRIGGER_EXPOSURE:
timingMode=ti;
// if one of the signals is configured to be trigger, set it and unset possible gates
for (i=0; i<4; i++) {
if (signals[i]==TRIGGER_IN_RISING_EDGE || signals[i]==TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,signals[i]);
else if (signals[i]==GATE_IN_ACTIVE_HIGH || signals[i]==GATE_IN_ACTIVE_LOW)
setFPGASignal(i,SIGNAL_OFF);
else if (signals[i]==RO_TRIGGER_IN_RISING_EDGE || signals[i]==RO_TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
}
break;
case TRIGGER_READOUT:
timingMode=ti;
// if one of the signals is configured to be trigger, set it and unset possible gates
for (i=0; i<4; i++) {
if (signals[i]==RO_TRIGGER_IN_RISING_EDGE || signals[i]==RO_TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,signals[i]);
else if (signals[i]==GATE_IN_ACTIVE_HIGH || signals[i]==GATE_IN_ACTIVE_LOW)
setFPGASignal(i,SIGNAL_OFF);
else if (signals[i]==TRIGGER_IN_RISING_EDGE || signals[i]==TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
}
break;
case GATE_FIX_NUMBER:
timingMode=ti;
// if one of the signals is configured to be trigger, set it and unset possible gates
for (i=0; i<4; i++) {
if (signals[i]==RO_TRIGGER_IN_RISING_EDGE || signals[i]==RO_TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
else if (signals[i]==GATE_IN_ACTIVE_HIGH || signals[i]==GATE_IN_ACTIVE_LOW)
setFPGASignal(i,signals[i]);
else if (signals[i]==TRIGGER_IN_RISING_EDGE || signals[i]==TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
}
break;
case GATE_WITH_START_TRIGGER:
timingMode=ti;
for (i=0; i<4; i++) {
if (signals[i]==RO_TRIGGER_IN_RISING_EDGE || signals[i]==RO_TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,SIGNAL_OFF);
else if (signals[i]==GATE_IN_ACTIVE_HIGH || signals[i]==GATE_IN_ACTIVE_LOW)
setFPGASignal(i,signals[i]);
else if (signals[i]==TRIGGER_IN_RISING_EDGE || signals[i]==TRIGGER_IN_FALLING_EDGE)
setFPGASignal(i,signals[i]);
}
break;
default:
;
}
for (i=0; i<4; i++) {
if (signals[i]!=MASTER_SLAVE_SYNCHRONIZATION) {
if (getFPGASignal(i)==RO_TRIGGER_IN_RISING_EDGE || getFPGASignal(i)==RO_TRIGGER_IN_FALLING_EDGE)
rot=i;
else if (getFPGASignal(i)==GATE_IN_ACTIVE_HIGH || getFPGASignal(i)==GATE_IN_ACTIVE_LOW)
g=i;
else if (getFPGASignal(i)==TRIGGER_IN_RISING_EDGE || getFPGASignal(i)==TRIGGER_IN_FALLING_EDGE)
t=i;
}
}
if (g>=0 && t>=0 && rot<0) {
ret=GATE_WITH_START_TRIGGER;
} else if (g<0 && t>=0 && rot<0) {
ret=TRIGGER_EXPOSURE;
} else if (g>=0 && t<0 && rot<0) {
ret=GATE_FIX_NUMBER;
} else if (g<0 && t<0 && rot>0) {
ret=TRIGGER_READOUT;
} else if (g<0 && t<0 && rot<0) {
ret=AUTO_TIMING;
}
*/
return ret;
}
enum masterFlags setMaster(enum masterFlags arg){
//template setMaster from firmware_funcs.c
/*
int i;
switch(f) {
case NO_MASTER:
// switch of gates or triggers
masterMode=NO_MASTER;
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
setFPGASignal(i,SIGNAL_OFF);
}
}
break;
case IS_MASTER:
// configure gate or trigger out
masterMode=IS_MASTER;
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
switch (syncMode) {
case NO_SYNCHRONIZATION:
setFPGASignal(i,SIGNAL_OFF);
break;
case MASTER_GATES:
setFPGASignal(i,GATE_OUT_ACTIVE_HIGH);
break;
case MASTER_TRIGGERS:
setFPGASignal(i,TRIGGER_OUT_RISING_EDGE);
break;
case SLAVE_STARTS_WHEN_MASTER_STOPS:
setFPGASignal(i,RO_TRIGGER_OUT_RISING_EDGE);
break;
default:
;
}
}
}
break;
case IS_SLAVE:
// configure gate or trigger in
masterMode=IS_SLAVE;
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
switch (syncMode) {
case NO_SYNCHRONIZATION:
setFPGASignal(i,SIGNAL_OFF);
break;
case MASTER_GATES:
setFPGASignal(i,GATE_IN_ACTIVE_HIGH);
break;
case MASTER_TRIGGERS:
setFPGASignal(i,TRIGGER_IN_RISING_EDGE);
break;
case SLAVE_STARTS_WHEN_MASTER_STOPS:
setFPGASignal(i,TRIGGER_IN_RISING_EDGE);
break;
default:
;
}
}
}
break;
default:
//do nothing
;
}
switch(masterMode) {
case NO_MASTER:
return NO_MASTER;
case IS_MASTER:
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
switch (syncMode) {
case NO_SYNCHRONIZATION:
return IS_MASTER;
case MASTER_GATES:
if (getFPGASignal(i)==GATE_OUT_ACTIVE_HIGH)
return IS_MASTER;
else
return NO_MASTER;
case MASTER_TRIGGERS:
if (getFPGASignal(i)==TRIGGER_OUT_RISING_EDGE)
return IS_MASTER;
else
return NO_MASTER;
case SLAVE_STARTS_WHEN_MASTER_STOPS:
if (getFPGASignal(i)==RO_TRIGGER_OUT_RISING_EDGE)
return IS_MASTER;
else
return NO_MASTER;
default:
return NO_MASTER;
}
}
}
case IS_SLAVE:
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
switch (syncMode) {
case NO_SYNCHRONIZATION:
return IS_SLAVE;
case MASTER_GATES:
if (getFPGASignal(i)==GATE_IN_ACTIVE_HIGH)
return IS_SLAVE;
else
return NO_MASTER;
case MASTER_TRIGGERS:
case SLAVE_STARTS_WHEN_MASTER_STOPS:
if (getFPGASignal(i)==TRIGGER_IN_RISING_EDGE)
return IS_SLAVE;
else
return NO_MASTER;
default:
return NO_MASTER;
}
}
}
}
*/
return NO_MASTER;
}
enum synchronizationMode setSynchronization(enum synchronizationMode arg){
/*
int i;
switch(s) {
case NO_SYNCHRONIZATION:
syncMode=NO_SYNCHRONIZATION;
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
setFPGASignal(i,SIGNAL_OFF);
}
}
break;
// disable external signals?
case MASTER_GATES:
// configure gate in or out
syncMode=MASTER_GATES;
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
if (masterMode==IS_MASTER)
setFPGASignal(i,GATE_OUT_ACTIVE_HIGH);
else if (masterMode==IS_SLAVE)
setFPGASignal(i,GATE_IN_ACTIVE_HIGH);
}
}
break;
case MASTER_TRIGGERS:
// configure trigger in or out
syncMode=MASTER_TRIGGERS;
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
if (masterMode==IS_MASTER)
setFPGASignal(i,TRIGGER_OUT_RISING_EDGE);
else if (masterMode==IS_SLAVE)
setFPGASignal(i,TRIGGER_IN_RISING_EDGE);
}
}
break;
case SLAVE_STARTS_WHEN_MASTER_STOPS:
// configure trigger in or out
syncMode=SLAVE_STARTS_WHEN_MASTER_STOPS;
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
if (masterMode==IS_MASTER)
setFPGASignal(i,RO_TRIGGER_OUT_RISING_EDGE);
else if (masterMode==IS_SLAVE)
setFPGASignal(i,TRIGGER_IN_RISING_EDGE);
}
}
break;
default:
//do nothing
;
}
switch (syncMode) {
case NO_SYNCHRONIZATION:
return NO_SYNCHRONIZATION;
case MASTER_GATES:
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
if (masterMode==IS_MASTER && getFPGASignal(i)==GATE_OUT_ACTIVE_HIGH)
return MASTER_GATES;
else if (masterMode==IS_SLAVE && getFPGASignal(i)==GATE_IN_ACTIVE_HIGH)
return MASTER_GATES;
}
}
return NO_SYNCHRONIZATION;
case MASTER_TRIGGERS:
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
if (masterMode==IS_MASTER && getFPGASignal(i)==TRIGGER_OUT_RISING_EDGE)
return MASTER_TRIGGERS;
else if (masterMode==IS_SLAVE && getFPGASignal(i)==TRIGGER_IN_RISING_EDGE)
return MASTER_TRIGGERS;
}
}
return NO_SYNCHRONIZATION;
case SLAVE_STARTS_WHEN_MASTER_STOPS:
for (i=0; i<4; i++) {
if (signals[i]==MASTER_SLAVE_SYNCHRONIZATION) {
if (masterMode==IS_MASTER && getFPGASignal(i)==RO_TRIGGER_OUT_RISING_EDGE)
return SLAVE_STARTS_WHEN_MASTER_STOPS;
else if (masterMode==IS_SLAVE && getFPGASignal(i)==TRIGGER_IN_RISING_EDGE)
return SLAVE_STARTS_WHEN_MASTER_STOPS;
}
}
return NO_SYNCHRONIZATION;
default:
return NO_SYNCHRONIZATION;
}
*/
return NO_SYNCHRONIZATION;
}
#endif

View File

@ -0,0 +1,292 @@
#ifdef SLS_DETECTOR_FUNCTION_LIST
#ifndef SLS_DETECTOR_FUNCTION_LIST_H
#define SLS_DETECTOR_FUNCTION_LIST_H
#include "sls_receiver_defs.h"
#include "slsDetectorServer_defs.h" // DAC_INDEX, ADC_INDEX, also include RegisterDefs.h
#include <stdlib.h>
#include <stdio.h> // FILE
/****************************************************
This functions are used by the slsDetectroServer_funcs interface.
Here are the definitions, but the actual implementation should be done for each single detector.
****************************************************/
// basic tests
#if defined(EIGERD) || defined(JUNGFRAUD) || defined(GOTTHARD)
int isFirmwareCheckDone();
int getFirmwareCheckResult(char** mess);
#endif
void checkFirmwareCompatibility(int flag);
#if defined(MYTHEN3D) || defined(JUNGFRAUD)
int checkType();
u_int32_t testFpga(void);
int testBus(void);
#endif
#if defined(MYTHEND) || defined(JUNGFRAUD) || defined(MYTHEN3D)
int moduleTest( enum digitalTestMode arg, int imod);
#endif
#if defined(MYTHEND) || defined(JUNGFRAUD)
int detectorTest( enum digitalTestMode arg);
#endif
// Ids
int64_t getDetectorId(enum idMode arg);
u_int64_t getFirmwareVersion();
#ifdef MYTHEND
int64_t getModuleId(enum idMode arg, int imod);
#elif JUNGFRAUD
u_int64_t getFirmwareAPIVersion();
u_int16_t getHardwareVersionNumber();
u_int16_t getHardwareSerialNumber();
#endif
#ifndef MYTHEN3D
u_int32_t getDetectorNumber();
#endif
u_int64_t getDetectorMAC();
u_int32_t getDetectorIP();
// initialization
void initControlServer();
void initStopServer();
#ifdef EIGERD
void getModuleConfiguration();
#endif
// set up detector
void allocateDetectorStructureMemory();
void setupDetector();
#ifdef JUNGFRAUD
int setDefaultDacs();
#endif
// advanced read/write reg
#ifndef EIGERD
extern u_int32_t writeRegister(u_int32_t offset, u_int32_t data); // blackfin.h
extern u_int32_t readRegister(u_int32_t offset); // blackfin.h
#else
uint32_t writeRegister(uint32_t offset, uint32_t data);
uint32_t readRegister(uint32_t offset);
#endif
// firmware functions (resets)
#if defined(MYTHEN3D) || defined(JUNGFRAUD)
int powerChip (int on);
void cleanFifos();
void resetCore();
void resetPeripheral();
#endif
#ifdef MYTHEN3D
int getPhase(int i);
int configurePhase(int val, enum CLKINDEX i);
int configureFrequency(int val, int i);
#elif JUNGFRAUD
int autoCompDisable(int on);
int adcPhase(int st);
int getPhase();
void configureASICTimer();
#endif
// parameters - nmod, dr, roi
int setNMod(int nm, enum dimension dim); // mythen specific, but for detector compatibility as a get
int getNModBoard(enum dimension arg); // mythen specific, but for detector compatibility as a get
int setDynamicRange(int dr);
#ifdef GOTTHARD
int setROI(int n, ROI arg[], int *retvalsize, int *ret);
#endif
// parameters - readout
int setSpeed(enum speedVariable arg, int val);
#if defined(EIGERD) || defined(MYTHEND)
enum readOutFlags setReadOutFlags(enum readOutFlags val);
#endif
#ifdef MYTHEND
int executeTrimming(enum trimMode mode, int par1, int par2, int imod);
#endif
// parameters - timer
#ifdef JUNGFRAUD
int selectStoragecellStart(int pos);
#endif
int64_t setTimer(enum timerIndex ind, int64_t val);
int64_t getTimeLeft(enum timerIndex ind);
// parameters - channel, chip, module, settings
#ifdef MYTHEND
int setChannel(sls_detector_channel myChan);
int getChannel(sls_detector_channel *myChan);
int setChip(sls_detector_chip myChip);
int getChip(sls_detector_chip *myChip);
#endif
#ifdef EIGERD
int setModule(sls_detector_module myMod, int delay);
#else
int setModule(sls_detector_module myMod);
#endif
int getModule(sls_detector_module *myMod);
enum detectorSettings setSettings(enum detectorSettings sett, int imod);
enum detectorSettings getSettings();
// parameters - threshold
#if defined(MYTHEND) || defined(EIGERD)
int getThresholdEnergy(int imod);
int setThresholdEnergy(int ev, int imod);
#endif
// parameters - dac, adc, hv
#if defined(MYTHEN3D) || defined(JUNGFRAUD)
void serializeToSPI(u_int32_t addr, u_int32_t val, u_int32_t csmask, int numbitstosend, u_int32_t clkmask, u_int32_t digoutmask, int digofset);
void initDac(int dacnum);
int voltageToDac(int value);
int dacToVoltage(unsigned int digital);
#endif
#ifdef MYTHEN3D
int setPower(enum DACINDEX ind, int val);
int powerToDac(int value, int chip);
int dacToPower(int value, int chip);
#endif
#ifdef JUNGFRAUD
extern void setAdc(int addr, int val); // AD9257.h
#endif
void setDAC(enum DACINDEX ind, int val, int imod, int mV, int retval[]);
#ifdef MYTHEN3D
int getVLimit();
void setDacRegister(int dacnum,int dacvalue);
int getDacRegister(int dacnum);
#endif
#ifndef MYTHEN3D
int getADC(enum ADCINDEX ind, int imod);
#endif
#if !defined(MYTHEN3D) && !defined(MYTHEND)
int setHighVoltage(int val);
#endif
// parameters - timing, extsig
#ifdef MYTHEND
enum externalSignalFlag getExtSignal(int signalindex);
enum externalSignalFlag setExtSignal(int signalindex, enum externalSignalFlag flag);
#endif
enum externalCommunicationMode setTiming( enum externalCommunicationMode arg);
// configure mac
#ifdef JUNGFRAUD
long int calcChecksum(int sourceip, int destip);
#endif
#if !defined(MYTHEN3D) && !defined(MYTHEND)
int configureMAC(uint32_t destip, uint64_t destmac, uint64_t sourcemac, uint32_t sourceip, uint32_t udpport, uint32_t udpport2, int ival);
#endif
#if defined(JUNGFRAUD) || defined(EIGERD)
int setDetectorPosition(int pos[]);
#endif
// very detector specific
// gotthard specific - image, pedestal
#ifdef GOTTHARDD
int loadImage(enum imageType index, char *imageVals);
int readCounterBlock(int startACQ, char *counterVals);
int resetCounterBlock(int startACQ);
int calibratePedestal(int frames);
// jungfrau specific - pll, flashing firmware
#elif defined(JUNGFRAUD) || defined(MYTHEN3D)
void resetPLL();
u_int32_t setPllReconfigReg(u_int32_t reg, u_int32_t val);
void configurePll();
int setThresholdTemperature(int val);
int setTemperatureControl(int val);
int setTemperatureEvent(int val);
extern void eraseFlash(); // programfpga.h
extern int startWritingFPGAprogram(FILE** filefp); // programfpga.h
extern void stopWritingFPGAprogram(FILE* filefp); // programfpga.h
extern int writeFPGAProgram(char* fpgasrc, size_t fsize, FILE* filefp); // programfpga.h
// eiger specific - iodelay, 10g, pulse, rate, temp, activate, delay nw parameter
#elif EIGERD
int setIODelay(int val, int imod);
int enableTenGigabitEthernet(int val);
int setCounterBit(int val);
int pulsePixel(int n, int x, int y);
int pulsePixelNMove(int n, int x, int y);
int pulseChip(int n);
int64_t setRateCorrection(int64_t custom_tau_in_nsec);
int getRateCorrectionEnable();
int getDefaultSettingsTau_in_nsec();
void setDefaultSettingsTau_in_nsec(int t);
int64_t getCurrentTau();
void setExternalGating(int enable[]);
int setAllTrimbits(int val);
int getAllTrimbits();
int getBebFPGATemp();
int activate(int enable);
#endif
#if defined(JUNGFRAUD) || defined(EIGERD)
int setNetworkParameter(enum NETWORKINDEX mode, int value);
#endif
// aquisition
#if defined(EIGERD) || defined(GOTTHARD)
int prepareAcquisition();
#endif
int startStateMachine();
#ifdef VIRTUAL
void* start_timer(void* arg);
#endif
int stopStateMachine();
#ifdef EIGERD
int softwareTrigger();
#endif
#ifndef JUNGFRAUD
int startReadOut();
#endif
enum runStatus getRunStatus();
void readFrame(int *ret, char *mess);
#ifdef JUNGFRAUD
u_int32_t runBusy(void);
#endif
//common
int copyModule(sls_detector_module *destMod, sls_detector_module *srcMod);
int calculateDataBytes();
int getTotalNumberOfChannels();
int getTotalNumberOfChips();
int getTotalNumberOfModules();
int getNumberOfChannelsPerModule();
int getNumberOfChipsPerModule();
int getNumberOfDACsPerModule();
int getNumberOfADCsPerModule();
#ifdef EIGERD
int getNumberOfGainsPerModule();
int getNumberOfOffsetsPerModule();
#endif
int getNumberOfChannelsPerChip();
// sync
enum masterFlags setMaster(enum masterFlags arg);
enum synchronizationMode setSynchronization(enum synchronizationMode arg);
#endif
#endif

View File

@ -0,0 +1,138 @@
/* A simple server in the internet domain using TCP
The port number is passed as an argument */
#include "sls_detector_defs.h"
#include "slsDetectorServer_defs.h"
#include "communication_funcs.h"
#include "slsDetectorServer_funcs.h"
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
extern int sockfd;
void error(char *msg){
perror(msg);
}
int main(int argc, char *argv[]){
int portno = DEFAULT_PORTNO;
int retval = OK;
int sd, fd;
int debugflag = 0;
int controlserver = 1;
// if socket crash, ignores SISPIPE, prevents global signal handler
// subsequent read/write to socket gives error - must handle locally
signal(SIGPIPE, SIG_IGN);
// circumvent the basic tests
{
int i;
for (i = 1; i < argc; ++i) {
if(!strcasecmp(argv[i],"-stopserver")) {
cprintf(BLUE,"Detected stop server\n");
controlserver = 0;
}
else if(!strcasecmp(argv[i],"-devel")){
cprintf(BLUE,"Detected developer mode\n");
debugflag = 1;
}
#ifdef JUNGFRAUD
else if(!strcasecmp(argv[i],"-update")){
cprintf(BLUE,"Detected update mode\n");
debugflag = PROGRAMMING_MODE;
}
#endif
else if(strchr(argv[i],'-') != NULL) {
cprintf(RED,"cannot scan program argument %s\n", argv[1]);
return -1;
}
}
}
#ifdef STOP_SERVER
char cmd[100];
memset(cmd, 0, 100);
#endif
if (controlserver) {
portno = DEFAULT_PORTNO;
cprintf(BLUE,
"********************************************************\n"
"********* opening control server on port %d **********\n"
"********************************************************\n\n"
, portno);
#ifdef STOP_SERVER
{
int i;
for (i = 0; i < argc; ++i)
sprintf(cmd, "%s %s", cmd, argv[i]);
sprintf(cmd,"%s -stopserver&", cmd);
cprintf(BLUE,"cmd:%s\n", cmd);
system(cmd);
}
#endif
} else {
portno = DEFAULT_PORTNO+1;
cprintf(BLUE,
"********************************************************\n"
"*********** opening stop server on port %d ***********\n"
"********************************************************\n\n"
, portno);
}
setModeFlag(debugflag); //defined in slsDetectorServer_funcs
init_detector(controlserver); //defined in slsDetectorServer_funcs
sd=bindSocket(portno); //defined in communication_funcs
sockfd=sd;
if (getServerError(sd)) { //defined in communication_funcs
printf("server error!\n");
return -1;
}
/* assign function table */
function_table(); //defined in slsDetectorServer_funcs
#ifdef VERBOSE
printf("function table assigned \n");
#endif
if (controlserver)
printf("\nControl Server Ready...\n\n");
else
printf("\nStop Server Ready...\n\n");
/* waits for connection */
while(retval!=GOODBYE) {
#ifdef VERBOSE
printf("\n");
#endif
#ifdef VERY_VERBOSE
printf("Waiting for client call\n");
#endif
fd=acceptConnection(sockfd); //defined in communication_funcs
#ifdef VERY_VERBOSE
printf("Conenction accepted\n");
#endif
if (fd>0) {
retval=decode_function(fd); //defined in slsDetectorServer_funcs
#ifdef VERY_VERBOSE
printf("function executed\n");
#endif
closeConnection(fd); //defined in communication_funcs
#ifdef VERY_VERBOSE
printf("connection closed\n");
#endif
}
}
exitServer(sockfd); //defined in communication_funcs
printf("Goodbye!\n");
return 0;
}

View File

@ -0,0 +1,31 @@
/*
* slsDetectorServer_defs.h
*
* Created on: Jan 24, 2013
* Author: l_maliakal_d
*/
#ifndef SLSDETECTORSERVER_DEFS_H_
#define SLSDETECTORSERVER_DEFS_H_
#include "sls_detector_defs.h"
#include <stdint.h>
/** This is only an example file!!! */
/*
#define GOODBYE (-200)
enum DAC_INDEX {examplesdac}
Hardware Definitions
#define NMAXMOD (1)
#define NMOD (1)
#define NCHAN (256 * 256)
#define NCHIP (4)
#define NADC (0)
#define NDAC (16)
#define NGAIN (0)
#define NOFFSET (0)
*/
#endif /* SLSDETECTORSERVER_DEFS_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,101 @@
#ifndef SERVER_FUNCS_H
#define SERVER_FUNCS_H
#include "sls_receiver_defs.h"
#include <stdlib.h>
// initialization functions
int printSocketReadError();
void setModeFlag(int);
void basictests();
void init_detector(int);
int decode_function(int);
const char* getFunctionName(enum detFuncs func);
void function_table();
int M_nofunc(int);
int M_nofuncMode(int);
// functions called by client
int exec_command(int);
int get_error(int);
int get_detector_type(int);
int set_number_of_modules(int);
int get_max_number_of_modules(int);
int set_external_signal_flag(int);
int set_external_communication_mode(int);
int get_id(int);
int digital_test(int);
int analog_test(int);
int enable_analog_out(int);
int calibration_pulse(int);
int set_dac(int);
int get_adc(int);
int write_register(int);
int read_register(int);
int write_memory(int);
int read_memory(int);
int set_channel(int);
int get_channel(int);
int set_all_channels(int);
int set_chip(int);
int get_chip(int);
int set_all_chips(int);
int set_module(int);
int get_module(int);
int set_all_modules(int);
int set_settings(int);
int get_threshold_energy(int);
int set_threshold_energy(int);
int start_acquisition(int);
int stop_acquisition(int);
int start_readout(int);
int get_run_status(int);
int start_and_read_all(int);
int read_frame(int);
int read_all(int);
int set_timer(int);
int get_time_left(int);
int set_dynamic_range(int);
int set_readout_flags(int);
int set_roi(int);
int set_speed(int);
int execute_trimming(int);
int exit_server(int);
int lock_server(int);
int get_last_client_ip(int);
int set_port(int);
int update_client(int);
int send_update(int);
int configure_mac(int);
int load_image(int);
int set_master(int);
int set_synchronization(int);
int read_counter_block(int);
int reset_counter_block(int);
int calibrate_pedestal(int);
int enable_ten_giga(int);
int set_all_trimbits(int);
int set_ctb_pattern(int);
int write_adc_register(int);
int set_counter_bit(int);
int pulse_pixel(int);
int pulse_pixel_and_move(int);
int pulse_chip(int);
int set_rate_correct(int);
int get_rate_correct(int);
int set_network_parameter(int);
int program_fpga(int);
int reset_fpga(int);
int power_chip(int);
int set_activate(int);
int prepare_acquisition(int);
int cleanup_acquisition(int);
int threshold_temp(int);
int temp_control(int);
int temp_event(int);
int auto_comp_disable(int);
int storage_cell_start(int);
int check_version(int);
int software_trigger(int);
#endif

View File

@ -0,0 +1,46 @@
/* A simple server in the internet domain using TCP
The port number is passed as an argument */
#include "communication_funcs.h"
#include "slsDetectorFunctionList.h"/*#include "slsDetector_firmware.h" for the time being*/
#include "slsDetectorServer_defs.h"
#include <stdio.h>
#include <stdlib.h>
int sockfd;
int main(int argc, char *argv[])
{
int portno;
int retval=0;
int sd,fd;
portno = DEFAULT_PORTNO;
sd=bindSocket(portno); //defined in communication_funcs
if (getServerError(sd)) //defined in communication_funcs
return -1;
/* waits for connection */
while(retval!=GOODBYE) {
#ifdef VERBOSE
printf("\n");
#endif
#ifdef VERY_VERBOSE
printf("Stop server: waiting for client call\n");
#endif
fd=acceptConnection(sd); //defined in communication_funcs
retval=stopStateMachine();//defined in slsDetectorFirmare_funcs
closeConnection(fd); //defined in communication_funcs
}
exitServer(sd); //defined in communication_funcs
printf("Goodbye!\n");
return 0;
}

View File

@ -0,0 +1 @@
../commonFiles/sls_detector_defs.h

View File

@ -0,0 +1 @@
../commonFiles/sls_detector_funcs.h