Moenchstuff (#358)

* using standard header in moench03T1Receiver
* restructure slsDetectorData added override to moench03T1ReceiverDataNew
* removed unused function
This commit is contained in:
Erik Fröjdh
2022-01-31 11:55:12 +01:00
committed by GitHub
parent 92c767859f
commit 328279d315
2 changed files with 299 additions and 433 deletions

View File

@ -26,13 +26,11 @@ template <class dataType> class slsDetectorData {
public:
/**
General slsDetectors data structure. Works for data acquired using the
General slsDetectors data structure. Works for data acquired using the
slsDetectorReceiver. Can be generalized to other detectors (many virtual
funcs).
Constructor (no error checking if datasize and offsets are compatible!)
Constructor (no error checking if datasize and offsets are compatible!)
\param npx number of pixels in the x direction
\param npy number of pixels in the y direction (1 for strips)
\param dsize size of the data
@ -42,309 +40,26 @@ template <class dataType> class slsDetectorData {
is inversion is required) \param dROI Array of size nx*ny. The elements are
1s if the channel is good or in the ROI, 0 is bad or out of the ROI. NULL
(default) means all 1s.
*/
slsDetectorData(int npx, int npy, int dsize, int **dMap = NULL,
dataType **dMask = NULL, int **dROI = NULL)
: nx(npx), ny(npy), dataSize(dsize), orderedData(NULL), isOrdered(0) {
dataType **dMask = NULL, int **dROI = NULL);
int el = dsize / sizeof(dataType);
xmap = new int[el];
ymap = new int[el];
orderedData = new dataType *[ny];
dataMap = new int *[ny];
dataMask = new dataType *[ny];
dataROIMask = new int *[ny];
for (int i = 0; i < ny; i++) {
dataMap[i] = new int[nx];
orderedData[i] = new dataType[nx];
dataMask[i] = new dataType[nx];
dataROIMask[i] = new int[nx];
for (int j = 0; j < nx; j++)
dataROIMask[i][j] = 1;
}
for (int ip = 0; ip < el; ip++) {
xmap[ip] = -1;
ymap[ip] = -1;
}
setDataMap(dMap);
setDataMask(dMask);
setDataROIMask(dROI);
}
virtual ~slsDetectorData() {
for (int i = 0; i < ny; i++) {
delete[] dataMap[i];
delete[] dataMask[i];
delete[] dataROIMask[i];
delete[] orderedData[i];
}
delete[] dataMap;
delete[] dataMask;
delete[] dataROIMask;
delete[] orderedData;
delete[] xmap;
delete[] ymap;
};
virtual ~slsDetectorData();
// Virtual functions
virtual int getPointer(int ix, int iy) { return dataMap[iy][ix]; };
/**
defines the data map (as offset) - no error checking if datasize and
offsets are compatible! \param dMap array of size nx*ny storing the
pointers to the data in the dataset (as offset). If NULL (default),the
data are arranged as if read out row by row
(dataMap[iy][ix]=(iy*nx+ix)*sizeof(dataType);)
*/
void setDataMap(int **dMap = NULL) {
int ip = 0;
int ix, iy;
if (dMap == NULL) {
for (iy = 0; iy < ny; iy++) {
for (ix = 0; ix < nx; ix++) {
dataMap[iy][ix] = (iy * nx + ix) * sizeof(dataType);
}
}
} else {
// cout << "set dmap "<< dataMap << " " << dMap << endl;
for (iy = 0; iy < ny; iy++) {
// cout << iy << endl;
for (ix = 0; ix < nx; ix++) {
dataMap[iy][ix] = dMap[iy][ix];
// cout << ix << " " << iy << endl;
/*ip=dataMap[ix][iy]/sizeof(dataType);
xmap[ip]=ix;
ymap[ip]=iy;Annaa*/
}
}
}
for (iy = 0; iy < ny; iy++) {
for (ix = 0; ix < nx; ix++) {
ip = dataMap[iy][ix] / sizeof(dataType);
xmap[ip] = ix;
ymap[ip] = iy;
}
}
// cout << "nx:" <<nx << " ny:" << ny << endl;
};
/**
defines the data mask i.e. the polarity of the data
\param dMask Array of size nx*ny storing the polarity of the data in the
dataset (should be 0 if no inversion is required, 0xffffffff is inversion
is required)
*/
void setDataMask(dataType **dMask = NULL) {
if (dMask != NULL) {
for (int iy = 0; iy < ny; iy++)
for (int ix = 0; ix < nx; ix++)
dataMask[iy][ix] = dMask[iy][ix];
} else {
for (int iy = 0; iy < ny; iy++)
for (int ix = 0; ix < nx; ix++)
dataMask[iy][ix] = 0;
}
};
/**
defines the region of interest and/or the bad channels mask
\param dROI Array of size nx*ny. The lements are 1s if the channel is
good or in the ROI, 0 is bad or out of the ROI. NULL (default) means all
1s.
*/
void setDataROIMask(int **dROI = NULL) {
if (dROI != NULL) {
for (int iy = 0; iy < ny; iy++)
for (int ix = 0; ix < nx; ix++)
dataROIMask[iy][ix] = dROI[iy][ix];
} else {
for (int iy = 0; iy < ny; iy++)
for (int ix = 0; ix < nx; ix++)
dataROIMask[iy][ix] = 1;
}
};
/**
Define bad channel or roi mask for a single channel
\param ix channel x coordinate
\param iy channel y coordinate (1 for strips)
\param i 1 if pixel is good (or in the roi), 0 if bad
\returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
*/
int setGood(int ix, int iy, int i = 1) {
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny)
dataROIMask[iy][ix] = i;
return isGood(ix, iy);
};
/**
Define bad channel or roi mask for a single channel
\param ix channel x coordinate
\param iy channel y coordinate (1 for strips)
\returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
*/
int isGood(int ix, int iy) {
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny)
return dataROIMask[iy][ix];
else
return -1;
};
/**
Returns detector size in x,y
\param npx reference to number of channels in x
\param npy reference to number of channels in y (will be 1 for strips)
\returns total number of channels
*/
int getDetectorSize(int &npx, int &npy) {
npx = nx;
npy = ny;
return nx * ny;
};
/** Returns the size of the data frame */
int getDataSize() { return dataSize; };
/** changes the size of the data frame */
int setDataSize(int d) {
dataSize = d;
return dataSize;
};
virtual void getPixel(int ip, int &x, int &y) {
x = xmap[ip];
y = ymap[ip];
};
virtual dataType **getData(char *ptr, int dsize = -1) {
int el = dsize / sizeof(dataType);
// dataType **data;
int ix, iy;
// data=new dataType*[ny];
// for(int i = 0; i < ny; i++) {
// data[i]=new dataType[nx];
// }
isOrdered = 0;
if (dsize <= 0 || dsize > dataSize)
dsize = dataSize;
for (int ip = 0; ip < (el); ip++) {
getPixel(ip, ix, iy);
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny) {
// data[iy][ix]=getChannel(ptr,ix,iy);
orderedData[iy][ix] = *(ptr + ip); // getChannel(ptr,ix,iy);
}
}
isOrdered = 1;
return orderedData;
}
void newFrame() { isOrdered = 0; };
virtual double **getImage(char *ptr, int dsize = -1) {
double **data;
int ix, iy;
data = new double *[ny];
for (int i = 0; i < ny; i++) {
data[i] = new double[nx];
}
int el = dsize / sizeof(dataType);
if (dsize <= 0 || dsize > dataSize)
dsize = dataSize;
for (int ip = 0; ip < el; ip++) {
getPixel(ip, ix, iy);
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny) {
data[iy][ix] = getValue(ptr, ix, iy);
}
}
return data;
};
/**
Returns the value of the selected channel for the given dataset. Virtual
function, can be overloaded. \param data pointer to the dataset
(including headers etc) \param ix pixel number in the x direction \param
iy pixel number in the y direction \returns data for the selected
channel, with inversion if required
*/
virtual dataType getChannel(char *data, int ix, int iy = 0) {
dataType m = 0, d = 0;
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny && dataMap[iy][ix] >= 0 &&
dataMap[iy][ix] < dataSize) {
// cout << ix << " " << iy << " " ;
// cout << dataMap[ix][iy] << " " << (void*)data << " " <<
// dataSize<< endl;
m = dataMask[iy][ix];
if (isOrdered == 0)
d = *((dataType *)(data + getPointer(ix, iy)));
else
d = orderedData[iy][ix];
}
return d ^ m;
};
virtual void getPixel(int ip, int &x, int &y);
virtual dataType **getData(char *ptr, int dsize = -1);
virtual double **getImage(char *ptr, int dsize = -1);
virtual dataType getChannel(char *data, int ix, int iy = 0);
virtual int getGain(char *data, int ix, int iy = 0) { return 0; };
/**
Returns the value of the selected channel for the given dataset. Virtual
function, can be overloaded. \param data pointer to the dataset
(including headers etc) \param ix pixel number in the x direction \param
iy pixel number in the y direction \returns data for the selected
channel, with inversion if required or -1 if its a missing packet
*/
virtual int getChannelwithMissingPackets(char *data, int ix, int iy) {
return 0;
};
/**
Returns the value of the selected channel for the given dataset as
double. \param data pointer to the dataset (including headers etc) \param
ix pixel number in the x direction \param iy pixel number in the y
direction \returns data for the selected channel, with inversion if
required as double
*/
virtual double getValue(char *data, int ix, int iy = 0) {
/* cout << " x "<< ix << " y"<< iy << " val " << getChannel(data, ix,
* iy)<< endl;*/
return (double)getChannel(data, ix, iy);
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
virtual int getFrameNumber(char *buff) = 0;
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
virtual int getPacketNumber(char *buff)=0;
*/
/**
Loops over a memory slot until a complete frame is found (i.e. all
packets 0 to nPackets, same frame number). purely virtual func \param
data pointer to the memory to be analyzed \param ndata reference to the
@ -357,16 +72,276 @@ template <class dataType> class slsDetectorData {
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize) = 0;
/**
//Returns a pointer to the next complete frame, if none found nullptr
//data needs to be deallocated by caller
virtual char *readNextFrame(std::ifstream &filebin) = 0;
Loops over a file stream until a complete frame is found (i.e. all packets
0 to nPackets, same frame number). Can be overloaded for different kind of
detectors! \param filebin input file stream (binary) \returns pointer to
the begin of the last good frame, NULL if no frame is found or last frame
is incomplete
//END Virtual functions
/**
defines the data map (as offset) - no error checking if datasize and
offsets are compatible! \param dMap array of size nx*ny storing the
pointers to the data in the dataset (as offset). If NULL (default),the
data are arranged as if read out row by row
(dataMap[iy][ix]=(iy*nx+ix)*sizeof(dataType);)
*/
void setDataMap(int **dMap = NULL);
/**
defines the data mask i.e. the polarity of the data
\param dMask Array of size nx*ny storing the polarity of the data in the
dataset (should be 0 if no inversion is required, 0xffffffff is inversion
is required)
*/
virtual char *readNextFrame(std::ifstream &filebin) = 0;
void setDataMask(dataType **dMask = NULL);
/**
defines the region of interest and/or the bad channels mask
\param dROI Array of size nx*ny. The ements are 1s if the channel is
good or in the ROI, 0 is bad or out of the ROI. NULL (default) means all
1s.
*/
void setDataROIMask(int **dROI = NULL);
/**
Define bad channel or roi mask for a single channel
\param ix channel x coordinate
\param iy channel y coordinate (1 for strips)
\param i 1 if pixel is good (or in the roi), 0 if bad
\returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
*/
int setGood(int ix, int iy, int i = 1);
// returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
int isGood(int ix, int iy);
// returns total number of channels, outparam npx and npy x,y dimensions
int getDetectorSize(int &npx, int &npy);
/** Returns the size of the data frame */
int getDataSize() { return dataSize; };
/** changes the size of the data frame */
int setDataSize(int d) {
dataSize = d;
return dataSize;
};
void newFrame() { isOrdered = 0; };
/**
Returns the value of the selected channel for the given dataset. Virtual
function, can be overloaded. \param data pointer to the dataset
(including headers etc) \param ix pixel number in the x direction \param
iy pixel number in the y direction \returns data for the selected
channel, with inversion if required
*/
};
template <typename dataType>
slsDetectorData<dataType>::slsDetectorData(int npx, int npy, int dsize,
int **dMap, dataType **dMask,
int **dROI)
: nx(npx), ny(npy), dataSize(dsize), orderedData(NULL), isOrdered(0) {
int el = dsize / sizeof(dataType);
xmap = new int[el];
ymap = new int[el];
orderedData = new dataType *[ny];
dataMap = new int *[ny];
dataMask = new dataType *[ny];
dataROIMask = new int *[ny];
for (int i = 0; i < ny; i++) {
dataMap[i] = new int[nx];
orderedData[i] = new dataType[nx];
dataMask[i] = new dataType[nx];
dataROIMask[i] = new int[nx];
for (int j = 0; j < nx; j++)
dataROIMask[i][j] = 1;
}
for (int ip = 0; ip < el; ip++) {
xmap[ip] = -1;
ymap[ip] = -1;
}
setDataMap(dMap);
setDataMask(dMask);
setDataROIMask(dROI);
}
template <typename dataType> slsDetectorData<dataType>::~slsDetectorData() {
for (int i = 0; i < ny; i++) {
delete[] dataMap[i];
delete[] dataMask[i];
delete[] dataROIMask[i];
delete[] orderedData[i];
}
delete[] dataMap;
delete[] dataMask;
delete[] dataROIMask;
delete[] orderedData;
delete[] xmap;
delete[] ymap;
}
template <typename dataType>
void slsDetectorData<dataType>::setDataMap(int **dMap) {
int ip = 0;
int ix, iy;
if (dMap == NULL) {
for (iy = 0; iy < ny; iy++) {
for (ix = 0; ix < nx; ix++) {
dataMap[iy][ix] = (iy * nx + ix) * sizeof(dataType);
}
}
} else {
// cout << "set dmap "<< dataMap << " " << dMap << endl;
for (iy = 0; iy < ny; iy++) {
// cout << iy << endl;
for (ix = 0; ix < nx; ix++) {
dataMap[iy][ix] = dMap[iy][ix];
// cout << ix << " " << iy << endl;
/*ip=dataMap[ix][iy]/sizeof(dataType);
xmap[ip]=ix;
ymap[ip]=iy;Annaa*/
}
}
}
for (iy = 0; iy < ny; iy++) {
for (ix = 0; ix < nx; ix++) {
ip = dataMap[iy][ix] / sizeof(dataType);
xmap[ip] = ix;
ymap[ip] = iy;
}
}
// cout << "nx:" <<nx << " ny:" << ny << endl;
}
template <typename dataType>
void slsDetectorData<dataType>::setDataMask(dataType **dMask) {
if (dMask != NULL) {
for (int iy = 0; iy < ny; iy++)
for (int ix = 0; ix < nx; ix++)
dataMask[iy][ix] = dMask[iy][ix];
} else {
for (int iy = 0; iy < ny; iy++)
for (int ix = 0; ix < nx; ix++)
dataMask[iy][ix] = 0;
}
}
template <typename dataType>
void slsDetectorData<dataType>::setDataROIMask(int **dROI) {
if (dROI != NULL) {
for (int iy = 0; iy < ny; iy++)
for (int ix = 0; ix < nx; ix++)
dataROIMask[iy][ix] = dROI[iy][ix];
} else {
for (int iy = 0; iy < ny; iy++)
for (int ix = 0; ix < nx; ix++)
dataROIMask[iy][ix] = 1;
}
}
template <typename dataType>
int slsDetectorData<dataType>::setGood(int ix, int iy, int i) {
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny)
dataROIMask[iy][ix] = i;
return isGood(ix, iy);
}
template <typename dataType>
int slsDetectorData<dataType>::isGood(int ix, int iy) {
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny)
return dataROIMask[iy][ix];
else
return -1;
};
template <typename dataType>
int slsDetectorData<dataType>::getDetectorSize(int &npx, int &npy) {
npx = nx;
npy = ny;
return nx * ny;
}
template <typename dataType>
void slsDetectorData<dataType>::getPixel(int ip, int &x, int &y) {
x = xmap[ip];
y = ymap[ip];
}
template <typename dataType>
dataType **slsDetectorData<dataType>::getData(char *ptr, int dsize) {
int el = dsize / sizeof(dataType);
// dataType **data;
int ix, iy;
// data=new dataType*[ny];
// for(int i = 0; i < ny; i++) {
// data[i]=new dataType[nx];
// }
isOrdered = 0;
if (dsize <= 0 || dsize > dataSize)
dsize = dataSize;
for (int ip = 0; ip < (el); ip++) {
getPixel(ip, ix, iy);
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny) {
// data[iy][ix]=getChannel(ptr,ix,iy);
orderedData[iy][ix] = *(ptr + ip); // getChannel(ptr,ix,iy);
}
}
isOrdered = 1;
return orderedData;
}
template <typename dataType>
double **slsDetectorData<dataType>::getImage(char *ptr, int dsize) {
double **data;
int ix, iy;
data = new double *[ny];
for (int i = 0; i < ny; i++) {
data[i] = new double[nx];
}
int el = dsize / sizeof(dataType);
if (dsize <= 0 || dsize > dataSize)
dsize = dataSize;
for (int ip = 0; ip < el; ip++) {
getPixel(ip, ix, iy);
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny) {
data[iy][ix] = getValue(ptr, ix, iy);
}
}
return data;
}
template <typename dataType>
dataType slsDetectorData<dataType>::getChannel(char *data, int ix, int iy) {
dataType m = 0, d = 0;
if (ix >= 0 && ix < nx && iy >= 0 && iy < ny && dataMap[iy][ix] >= 0 &&
dataMap[iy][ix] < dataSize) {
m = dataMask[iy][ix];
if (isOrdered == 0)
d = *((dataType *)(data + getPointer(ix, iy)));
else
d = orderedData[iy][ix];
}
return d ^ m;
};
#endif