added patternGenerator and slsDteectorCalibration directory in order to compile the ctbGui

This commit is contained in:
bergamaschi 2019-05-29 11:38:43 +02:00
parent a008c2b2c8
commit 25541b37f6
67 changed files with 15213 additions and 2 deletions

View File

@ -8,11 +8,11 @@ ZMQLIB=../slsReceiverSoftware/include
LIBRARYCBF=$(CBFLIBDIR)/lib/*.o
INCDIR=-I../slsReceiverSoftware/include/ -I../slsDetectorSoftware/include/ -I../slsSupportLib/include/ -I../slsDetectorCalibration -I../slsDetectorCalibration/dataStructures -I$(CBFLIBDIR)/include -I../slsDetectorCalibration/interpolations
LDFLAG=-L../bin -lSlsDetector -lSlsSupport -L/usr/lib64/ -lpthread -lm -lstdc++ -lzmq -pthread -lrt -ltiff -L$(ZMQLIB) -L$(CBFLIBDIR)/lib/ -std=c++11
LDFLAG=-L../build/bin -lSlsDetector -lSlsSupport -L/usr/lib64/ -lpthread -lm -lstdc++ -lzmq -pthread -lrt -ltiff -L$(ZMQLIB) -L$(CBFLIBDIR)/lib/ -std=c++11
#
MAIN=ctbGui.cpp
DESTDIR?=../bin
DESTDIR?=../build/bin
OBJS = $(SRC:.cpp=.o) $(MAIN:.cpp=.o)

View File

@ -0,0 +1,110 @@
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/utsname.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <math.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
int main(int argc, char *argv[]) {
int iarg;
char fname[10000];
uint64_t word;
int val[64];
int bit[64];
FILE *fdin;
int nb=2;
int off=0;
int ioff=0;
int dr=24;
int idr=0;
int ib=0;
int iw=0;
bit[0]=19;
bit[1]=8;
// for (iarg=0; iarg<argc; iarg++) printf("%d %s\n",iarg, argv[iarg]);
if (argc<2) printf("Error: usage is %s fname [dr off b0 b1 bn]\n");
if (argc>2) dr=atoi(argv[2]);
if (argc>3) off=atoi(argv[3]);
if (argc>4) {
for (ib=0; ib<64; ib++) {
if (argc>4+ib) {
bit[ib]=atoi(argv[4+ib]);
nb++;
}
}
}
idr=0;
for (ib=0; ib<nb; ib++) {
val[ib]=0;
}
fdin=fopen(argv[1],"rb");
if (fdin==NULL) {
printf("Cannot open input file %s for reading\n",argv[1]);
return 200;
}
while (fread((void*)&word, 8, 1, fdin)) {
// printf("%llx\n",word);
if (ioff<off) ioff++;
else {
for (ib=0; ib<nb; ib++) {
if (word&(1<<bit[ib])) val[ib]|=(1<<idr);
}
idr++;
if (idr==dr) {
idr=0;
fprintf(stdout,"%d\t",iw++);
for (ib=0; ib<nb; ib++) {
#ifdef HEX
fprintf(stdout,"%08llx\t",val[ib]);
#else
fprintf(stdout,"%lld\t",val[ib]);
#endif
val[ib]=0;
}
fprintf(stdout,"\n");
}
}
}
if (idr!=0) {
fprintf(stdout,"%d\t",iw++);
for (ib=0; ib<nb; ib++) {
#ifdef HEX
fprintf(stdout,"%08llx\t",val[ib]);
#else
fprintf(stdout,"%lld\t",val[ib]);
#endif
val[ib]=0;
}
fprintf(stdout,"\n");
}
fclose(fdin);
return 0;
}

View File

@ -0,0 +1,30 @@
if [ "$#" -eq 0 ]; then
echo "Wrong number of arguments: usage should be $0 patname"
exit 1
fi
infile=$1
outfile=$infile"at"
outfilebin=$infile"bin"
if [ "$#" -ge 2 ]; then
outfile=$2
fi
exe=$infile"exe"
if [ "$#" -ge 4 ]; then
exe=$4
fi
if [ "$#" -ge 3 ]; then
outfilebin=$3
fi
if [ -f "$infile" ]
then
gcc -DINFILE="\"$infile\"" -DOUTFILE="\"$outfile\"" -DOUTFILEBIN="\"$outfilebin\"" -o $exe generator.c ;
echo compiling
$exe ;
echo cleaning
rm $exe
echo done
else
echo "$infile not found."
fi

View File

@ -0,0 +1,177 @@
/****************************************************************************
usage to generate a patter test.pat from test.p
gcc -DINFILE="\"test.p\"" -DOUTFILE="\"test.pat\"" -o test.exe generator.c ; ./test.exe ; rm test.exe
*************************************************************************/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/utsname.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <math.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#define MAXLOOPS 3
#define MAXTIMERS 3
#define MAXWORDS 1024
uint64_t pat=0;
uint64_t iopat=0;
uint64_t clkpat=0;
int iaddr=0;
int waitaddr[3]={MAXWORDS,MAXWORDS,MAXWORDS};
int startloopaddr[3]={MAXWORDS,MAXWORDS,MAXWORDS};
int stoploopaddr[3]={MAXWORDS,MAXWORDS,MAXWORDS};
int start=0, stop=0;
uint64_t waittime[3]={0,0,0};
int nloop[3]={0,0,0};
char infile[10000], outfile[10000];
FILE *fd, *fd1;
uint64_t PAT[MAXWORDS];
int i,ii,iii,j,jj,jjj,pixx,pixy,memx,memy,muxout,memclk,colclk,rowclk,muxclk,memcol,memrow,loopcounter;
void setstart() {
start=iaddr;
}
void setstop() {
stop=iaddr;
}
void setinput(int bit) {
uint64_t mask=1;
mask=mask<<bit;
iopat &= ~mask;
}
void setoutput(int bit) {
uint64_t mask=1;
mask=mask<<bit;
iopat |= mask;
}
void setclk(int bit) {
uint64_t mask=1;
mask=mask<<bit;
iopat |= mask;
clkpat |= mask;
}
void clearbit(int bit){
uint64_t mask=1;
mask=mask<<bit;
pat &= ~mask;
}
void setbit(int bit){
uint64_t mask=1;
mask=mask<<bit;
pat |= mask;
}
int checkbit(int bit) {
uint64_t mask=1;
mask=mask<<bit;
return (pat & mask ) >>bit;
}
void setstartloop(int iloop) {
if (iloop>=0 && iloop<MAXLOOPS)
startloopaddr[iloop]=iaddr;
}
void setstoploop(int iloop) {
if (iloop>=0 && iloop<MAXLOOPS)
stoploopaddr[iloop]=iaddr;
}
void setnloop(int iloop, int n) {
if (iloop>=0 && iloop<MAXLOOPS)
nloop[iloop]=n;
}
void setwaitpoint(int iloop) {
if (iloop>=0 && iloop<MAXTIMERS)
waitaddr[iloop]=iaddr;
}
void setwaittime(int iloop, uint64_t t) {
if (iloop>=0 && iloop<MAXTIMERS)
waittime[iloop]=t;
}
void pw(){
if (iaddr<MAXWORDS)
PAT[iaddr]= pat;
fprintf(fd,"patword %04x %016llx\n",iaddr, pat);
iaddr++;
if (iaddr>=MAXWORDS) printf("ERROR: too many word in the pattern (%d instead of %d)!",iaddr, MAXWORDS);
}
int parseCommand(int clk, int cmdbit, int cmd, int length) {
int ibit;
clearbit(clk);
for (ibit=0; ibit<length; ibit++) {
if (cmd&(1>>ibit))
setbit(cmdbit);
else
clearbit(cmdbit);
pw();
/******/
setbit(clk);
pw();
/******/
}
};
main(void) {
int iloop=0;
fd=fopen(OUTFILE,"w");
#include INFILE
fprintf(fd,"patioctrl %016llx\n",iopat);
fprintf(fd,"patclkctrl %016llx\n",clkpat);
fprintf(fd,"patlimits %04x %04x\n",start, stop);
for (iloop=0; iloop<MAXLOOPS; iloop++) {
fprintf(fd,"patloop%d %04x %04x\n",iloop, startloopaddr[iloop], stoploopaddr[iloop]);
if ( startloopaddr[iloop]<0 || stoploopaddr[iloop]<= startloopaddr[iloop]) nloop[iloop]=0;
fprintf(fd,"patnloop%d %d\n",iloop, nloop[iloop]);
}
for (iloop=0; iloop<MAXTIMERS; iloop++) {
fprintf(fd,"patwait%d %04x\n",iloop, waitaddr[iloop]);
if (waitaddr[iloop]<0) waittime[iloop]=0;
fprintf(fd,"patwaittime%d %lld\n",iloop, waittime[iloop]);
}
close((int)fd);
fd1=fopen(OUTFILEBIN,"w");
fwrite(PAT,sizeof(uint64_t),iaddr, fd1);
close((int)fd1);
}

201
ctbGui/patternGenerator/test.p Executable file
View File

@ -0,0 +1,201 @@
//define signals and directions (Input, outputs, clocks)
#define compTestIN 1
setoutput(compTestIN);
#define curON 32
setoutput(curON);
#define side_clk 2
setclk(side_clk);
#define side_din 3
setoutput(side_din);
#define clear_shr 4
setoutput(clear_shr);
#define bottom_din 5
setoutput(bottom_din);
#define bottom_clk 6
setclk(bottom_clk);
#define gHG 7
setoutput(gHG);
#define bypassCDS 31
setoutput(bypassCDS);
#define ENprechPRE 8
setoutput(ENprechPRE);
#define res 9
setoutput(res);
#define pulseOFF 30
setoutput(pulseOFF);
#define connCDS 27
setoutput(connCDS);
#define Dsg_1 24
setoutput(Dsg_1);
#define Dsg_2 25
setoutput(Dsg_2);
#define Dsg_3 23
setoutput(Dsg_3);
#define sto0 10
setoutput(sto0);
#define sto1 11
setoutput(sto1);
#define sto2 12
setoutput(sto2);
#define resCDS 13
setoutput(resCDS);
#define prechargeConnect 14
setoutput(prechargeConnect);
#define pulse 15
setoutput(pulse);
#define PCT_mode 21
setoutput(PCT_mode);
#define res_DGS 16
setoutput(res_DGS);
#define adc_ena 17
setoutput(adc_ena);
#define CLKBIT 18
setclk(CLKBIT);
#define adc_sync 63
setoutput(adc_sync);
#define PW pw()
#define SB(x) setbit(x)
#define CB(x) clearbit(x)
#define CLOCK clearbit(CLKBIT); pw();setbit(CLKBIT);pw()
#define LCLOCK clearbit(CLKBIT); pw();setbit(CLKBIT);pw();clearbit(CLKBIT); pw()
#define CLOCKS(x) for (i=0;i<x;i++) {clearbit(CLKBIT);pw(); setbit(CLKBIT); pw();}
#define STOP setstop();
#define START setstart();
#define REPEAT(x) for (i=0;i<(x);i++) {pw();}
#define DOFOR(x) for (j=0;j<(x);j++) {
// }
#define STARTUP1 CB(compTestIN);SB(clear_shr);CB(side_clk);CB(side_din);CB(bottom_din);CB(bottom_clk);
#define STARTUP2 CB(pulse);SB(PCT_mode);SB(pulseOFF);CB(curON);
#define STARTUP3 SB(res);SB(gHG);SB(ENprechPRE);
#define STARTUP4 SB(bypassCDS); CB(connCDS);CB(sto0);SB(sto1);SB(sto2);
#define STARTUP5 SB(resCDS);CB(Dsg_1);CB(Dsg_2);SB(Dsg_3);CB(prechargeConnect);SB(res_DGS);
#define STARTUP STARTUP1 STARTUP2 STARTUP3 STARTUP4 STARTUP5 PW;
//****NOTES****//
//FUNCTIONS
//Declare functions at the beginning
void load_pix(int nx, int ny)
{//SELECT PIXEL 1,1 for readout
SB(clear_shr);PW;PW;
CB(clear_shr);PW;PW;PW;PW;
SB(side_din);PW;
SB(side_clk);PW;
CB(side_din);
setstartloop(0); //loop on the rows
SB(side_clk);PW;
setstoploop(0); //finish loop on the rows
setnloop(0,ny); //set number row selected -can be changed dynamically
CB(side_clk);PW;
SB(bottom_din);PW;
SB(bottom_clk);PW;
CB(bottom_din);
setstartloop(1); //loop on the columns
SB(bottom_clk);PW;
setstoploop(1); //loop on the columns
setnloop(1,ny); //set number columns selected -can be changed dynamically
}
void load_col(void)
{//SELECT COLUMN 1 for readout
SB(clear_shr);PW;PW;
CB(clear_shr);PW;PW;PW;PW;
SB(bottom_din);PW;
SB(bottom_clk);PW;
CB(bottom_clk);PW;
CB(bottom_din);PW;
}
//END of FUNCTIONS
////////////////////////////////////////////////////////
//LET BYPASS PREAMP AND CDS and write on preamp out.//
//THIS ALLOWS CHECKING SOURCE FOLLOWERS //
////////////////////////////////////////////////////////
PW;
SB(5); PW;
CB(5); PW;
START; //pattern starts from here
STARTUP;
setwaitpoint(0); //set wait points
PW;
setwaittime(0,20); //wait time - can be changed dynamically
SB(adc_ena);PW;
printf("ADC sync %x %d %llx\n",iaddr,adc_sync, pat);
SB(adc_sync);PW;
printf("ADC sync %x %d %llx\n",iaddr, adc_sync, pat);
CB(gHG);
setwaitpoint(1); //set wait points
setwaittime(1,16); //wait time - can be changed dynamically
CB(adc_sync);PW;
load_pix(10, 20);
CB(res);
//CB(Dsg_3);PW;
CB(res_DGS);
setwaitpoint(2); //set wait points
setwaittime(2,1000); //wait time - can be changed dynamically
//SB(res_DGS);
//PW;
//SB(Dsg_3);
//
//CB(connCDS);
//TEST SIGNALS END
//
REPEAT(20)
//****************//
//*FINAL COMMANDS*//
//****************//
CB(adc_ena);PW;
//STARTUP;
STOP; PW; //stops here
//REPEAT(4);

View File

@ -0,0 +1,156 @@
#ifndef MOVINGSTAT_H
#define MOVINGSTAT_H
#include <math.h>
class MovingStat
{
/** @short approximated moving average structure */
public:
/** constructor
\param nn number of samples parameter to be used
*/
MovingStat(int nn=1000) : n(nn), m_n(0) {}
/**
clears the moving average number of samples parameter, mean and standard deviation
*/
void Clear()
{
m_n = 0;
m_newM=0;
m_newM2=0;
}
/**
clears the moving average number of samples parameter, mean and standard deviation
*/
void Set(double val, double rms=0, int m=-1)
{
if (m>=0) m_n = m; else m_n = n;
m_newM=val*m_n;
SetRMS(rms);
}
/**
clears the moving average number of samples parameter, mean and standard deviation
*/
void SetRMS(double rms)
{
if (rms<=0) {
m_newM2=m_newM*m_newM/n;
m_n=0;
} else {
if (m_n>0)
m_newM2=(m_n*rms*rms+m_newM*m_newM/m_n);
else {
m_newM2=(m_n*rms*rms+m_newM*m_newM/n);
m_n=0;
}
}
}
/** sets number of samples parameter
\param i number of samples parameter to be set
*/
int SetN(int i) {if (i>=1) n=i; return n;};
/**
gets number of samples parameter
\returns actual number of samples parameter
*/
int GetN() {return m_n;};
/** calculates the moving average i.e. adds if number of elements is lower than number of samples parameter, pushes otherwise
\param x value to calculate the moving average
*/
inline void Calc(double x) {
if (m_n<n) Add(x);
else Push(x);
}
/** adds the element to the accumulated average and standard deviation
\param x value to add
*/
inline void Add(double x) {
m_n++;
if (m_n == 1)
{
m_newM = x;
m_newM2 = x*x;
} else {
m_newM = m_newM + x;
m_newM2 = m_newM2 + x*x;
}
}
inline void Push(double x)
{
/** adds the element to the accumulated average and squared mean, while subtracting the current value of the average and squared average
\param x value to push
*/
if (m_n == 0)
{
m_newM = x;
m_newM2 = x*x;
m_n++;
} else {
m_newM = m_newM + x - m_newM/m_n;
m_newM2 = m_newM2 + x*x - m_newM2/m_n;
}
}
/** returns the current number of elements of the moving average
\returns returns the current number of elements of the moving average
*/
int NumDataValues() const
{
return m_n;
}
/** returns the mean, 0 if no elements are inside
\returns returns the mean
*/
inline double Mean() const
{
return (m_n > 0) ? m_newM/m_n : 0.0;
}
/** returns the squared mean, 0 if no elements are inside
\returns returns the squared average
*/
double M2() const
{
return ( (m_n > 1) ? m_newM2/m_n : 0.0 );
}
/** returns the variance, 0 if no elements are inside
\returns returns the variance
*/
inline double Variance() const
{
return ( (m_n > 1) ? (M2()-Mean()*Mean()) : 0.0 );
}
/** returns the standard deviation, 0 if no elements are inside
\returns returns the standard deviation
*/
inline double StandardDeviation() const
{
return ( (Variance() > 0) ? sqrt( Variance() ) : -1 );
}
private:
int n; /**< number of samples parameter */
int m_n; /**< current number of elements */
double m_newM; /**< accumulated average */
double m_newM2; /**< accumulated squared average */
};
#endif

View File

@ -0,0 +1,55 @@
class RunningStat
{
public:
RunningStat() : m_n(0) {}
void Clear()
{
m_n = 0;
}
void Push(double x)
{
m_n++;
// See Knuth TAOCP vol 2, 3rd edition, page 232
if (m_n == 1)
{
m_oldM = m_newM = x;
m_oldS = 0.0;
}
else
{
m_newM = m_oldM + (x - m_oldM)/m_n;
m_newS = m_oldS + (x - m_oldM)*(x - m_newM);
// set up for next iteration
m_oldM = m_newM;
m_oldS = m_newS;
}
}
int NumDataValues() const
{
return m_n;
}
double Mean() const
{
return (m_n > 0) ? m_newM : 0.0;
}
double Variance() const
{
return ( (m_n > 1) ? m_newS/(m_n - 1) : 0.0 );
}
double StandardDeviation() const
{
return sqrt( Variance() );
}
private:
int m_n;
double m_oldM, m_newM, m_oldS, m_newS;
};

View File

@ -0,0 +1,45 @@
class Stat
{
public:
Stat() : n(0), m(0.), m2(0.) {}
void Clear()
{
n = 0;
m=0;
m2=0;
}
void Push(double x)
{
m+=x;
m2+=x*x;
n++;
}
int NumDataValues() const
{
return n;
}
double Mean() const
{
return (n > 0) ? m/n : 0.0;
}
double Variance() const
{
return ( (n >0 ) ? (m2/n-m*m/(n*n)) : 0.0 );
}
double StandardDeviation() const
{
return sqrt( Variance() );
}
private:
int n;
double m, m2;
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,82 @@
#ifndef COMMONMODESUBTRACTION_H
#define COMMONMODESUBTRACTION_H
#include "MovingStat.h"
class commonModeSubtraction {
/** @short class to calculate the common mode of the pedestals based on an approximated moving average*/
public:
/** constructor
\param nn number of samples for the moving average to calculate the average common mode
\param iroi number of regions on which one can calculate the common mode separately. Defaults to 1 i.e. whole detector
*/
commonModeSubtraction(int nn=1000, int iroi=1) : cmStat(NULL), cmPed(NULL), nCm(NULL), nROI(iroi) {cmStat=new MovingStat[nROI]; for (int i=0; i<nROI; i++) cmStat[i].SetN(nn); cmPed=new double[nROI]; nCm=new double[nROI];};
/** destructor - deletes the moving average(s) and the sum of pedestals calculator(s) */
virtual ~commonModeSubtraction() {delete [] cmStat; delete [] cmPed; delete [] nCm;};
/** clears the moving average and the sum of pedestals calculation - virtual func*/
virtual void Clear(){
for (int i=0; i<nROI; i++) {
cmStat[i].Clear();
nCm[i]=0;
cmPed[i]=0;
}};
/** adds the average of pedestals to the moving average and reinitializes the calculation of the sum of pedestals for all ROIs. - virtual func*/
virtual void newFrame(){
for (int i=0; i<nROI; i++) {
if (nCm[i]>0) cmStat[i].Calc(cmPed[i]/nCm[i]);
nCm[i]=0;
cmPed[i]=0;
}};
/** adds the pixel to the sum of pedestals -- virtual func must be overloaded to define the regions of interest
\param val value to add
\param ix pixel x coordinate
\param iy pixel y coordinate
*/
virtual void addToCommonMode(double val, int ix=0, int iy=0) {
(void) ix; (void) iy;
//if (isc>=0 && isc<nROI) {
cmPed[0]+=val;
nCm[0]++;//}
};
/** gets the common mode i.e. the difference between the current average sum of pedestals mode and the average pedestal -- virtual func must be overloaded to define the regions of interest
\param ix pixel x coordinate
\param iy pixel y coordinate
\return the difference between the current average sum of pedestals and the average pedestal
*/
virtual double getCommonMode(int ix=0, int iy=0) {
(void) ix; (void) iy;
if (nCm[0]>0) return cmPed[0]/nCm[0]-cmStat[0].Mean();
return 0;};
protected:
MovingStat *cmStat; /**<array of moving average of the pedestal average per region of interest */
double *cmPed; /**< array storing the sum of pedestals per region of interest */
double *nCm; /**< array storing the number of pixels currently contributing to the pedestals */
const int nROI; /**< constant parameter for number of regions on which the common mode should be calculated separately e.g. supercolumns */
};
#endif

View File

@ -0,0 +1,116 @@
#ifndef COMMONMODESUBTRACTION_H
#define COMMONMODESUBTRACTION_H
#include <cmath>
class commonModeSubtraction {
/** @short class to calculate the common mode of the pedestals based on an approximated moving average*/
public:
/** constructor
\param nn number of samples for the moving average to calculate the average common mode
\param iroi number of regions on which one can calculate the common mode separately. Defaults to 1 i.e. whole detector
*/
commonModeSubtraction(int iroi=1, int ns=3) : nROI(iroi), nsigma(ns) {
mean=new double[nROI];
mean2=new double[nROI];
nCm=new double[nROI];
};
/** destructor - deletes the moving average(s) and the sum of pedestals calculator(s) */
virtual ~commonModeSubtraction() {delete [] mean; delete [] mean2; delete [] nCm;};
/** clears the moving average and the sum of pedestals calculation - virtual func*/
virtual void Clear(){
for (int i=0; i<nROI; i++) {
mean[i]=0;
nCm[i]=0;
mean2[i]=0;
}};
/** adds the average of pedestals to the moving average and reinitializes the calculation of the sum of pedestals for all ROIs. - virtual func*/
virtual void newFrame(){
for (int i=0; i<nROI; i++) {
// if (nCm[i]>0) cmStat[i].Calc(cmPed[i]/nCm[i]);
nCm[i]=0;
mean[i]=0;
mean2[i]=0;
}};
/** adds the pixel to the sum of pedestals -- virtual func must be overloaded to define the regions of interest
\param val value to add
\param ix pixel x coordinate
\param iy pixel y coordinate
*/
virtual void addToCommonMode(double val, int ix=0, int iy=0) {
int iroi=getROI(ix,iy);
// if (iroi==0) val=100;
// else val=-100;
// if (isc>=0 && isc<nROI) {
if (iroi>=0 && iroi<nROI) {
mean[iroi]+=val;
mean2[iroi]+=val*val;
nCm[iroi]++;
}
};
/** gets the common mode i.e. the difference between the current average sum of pedestals mode and the average pedestal
\param ix pixel x coordinate
\param iy pixel y coordinate
\return the difference between the current average sum of pedestals and the average pedestal
*/
virtual double getCommonMode(int ix=0, int iy=0) {
int iroi=getROI(ix,iy);
/* if (iroi==0) */
/* return 100; */
/* else */
/* return -100; */
if (iroi>=0 && iroi<nROI) {
if (nCm[iroi]>0)
return mean[iroi]/nCm[iroi];
}
return 0;
};
/** gets the common mode i.e. the difference between the current average sum of pedestals mode and the average pedestal
\param ix pixel x coordinate
\param iy pixel y coordinate
\return the difference between the current average sum of pedestals and the average pedestal
*/
virtual double getCommonModeRMS(int ix=0, int iy=0) {
int iroi=getROI(ix,iy);
if (iroi>=0 && iroi<nROI) {
if (nCm[iroi]>0)
return sqrt(mean2[iroi]/nCm[iroi]-(mean[iroi]/nCm[iroi])*(mean[iroi]/nCm[iroi]));
}
return 0;
};
/**
gets the common mode ROI for pixel ix, iy -should be overloaded!
*/
virtual int getROI(int ix, int iy){ (void) ix; (void) iy; return 0;};
protected:
double *mean; /**<array of moving average of the pedestal average per region of interest */
double *mean2; /**< array storing the sum of pedestals per region of interest */
double *nCm; /**< array storing the number of pixels currently contributing to the pedestals */
int nsigma; /** number of rms above which the pedestal should be considered as a photon */
const int nROI; /**< constant parameter for number of regions on which the common mode should be calculated separately e.g. supercolumns */
};
#endif

View File

@ -0,0 +1,123 @@
#ifndef MYTHEN301JCTBDATA_H
#define MYTHEN301JCTBDATA_H
class mythen3_01_jctbData : public slsDetectorData<short unsigned int> {
public:
mythen3_01_jctbData( int nch=64*3,int dr=24, int off=5): slsDetectorData<short unsigned int>(64*3,1,dr*8*nch,NULL,NULL,NULL), dynamicRange(dr), serialOffset(off), frameNumber(0), numberOfCounters(nch) {};
virtual void getPixel(int ip, int &x, int &y) {x=-1; y=-1;};
virtual short unsigned int getChannel(char *data, int ix, int iy=0) {
int ret=-1;
short unsigned int *val=mythen03_frame(data,dynamicRange,numberOfCounters,serialOffset);
if (ix>=0 && ix<numberOfCounters) ret=val[ix];
delete [] val;
return ret;
};
virtual int getFrameNumber(char *buff) {return frameNumber;};
virtual char *findNextFrame(char *data, int &ndata, int dsize) {
ndata=dsize;
return data;
}
virtual char *readNextFrame(ifstream &filebin) {
char *data=NULL;
if (filebin.is_open()) {
data=new char[dataSize];
filebin.read(data,dataSize);
}
return data;
}
virtual short unsigned int **getData(char *ptr, int dsize=-1) {
short unsigned int **val;
val=new short unsigned int*[1];
val[0]=mythen03_frame(ptr,dynamicRange,nx,serialOffset);
return val;
}
virtual short unsigned int* mythen03_frame(char *ptr, int dr=24, int nch=64*3, int off=5) {
// off=0;
int iarg;
int64_t word, *wp;
short unsigned int* val=new short unsigned int[nch];
int bit[64];
int nb=2;
int ioff=0;
int idr=0;
int ib=0;
int iw=0;
int ii=0;
bit[0]=19;
bit[1]=8;
idr=0;
for (ib=0; ib<nch; ib++) {
val[ib]=0;
}
wp=(int64_t*)ptr;
for (iw=0; iw<nch/nb; iw) {
word=*wp;;
if (ioff<off) {
ioff++;
cout <<"*";
} else {
if (idr<16) {
for (ib=0; ib<nb; ib++) {
if (word&(1<<bit[ib])) {
cout << "+" ;
val[iw+nch/nb*(ib)]|=(1<<idr);
} else {
cout << "-" ;
}
}//end for()
}
idr++;
if (idr==dr) {
idr=0;
// cout << dec << " " << iw << " " << val[iw] << " " << val[iw+nch/2] << endl;
cout <<dec << iw<<endl;
iw++;
}//end if()
}//end else()
wp+=1;
ii++;
}//end for
cout << "M3.01 Decoded "<<ii << " samples"<< endl;
cout << "M3.01 Should be "<< nch/nb*dr+off << " samples"<< endl;
return val;
}
virtual int setFrameNumber(int f=0) {if (f>=0) frameNumber=f; return frameNumber; };
virtual int setDynamicRange(int d=-1) {if (d>0 && d<=24) dynamicRange=d; return dynamicRange;};
virtual int setSerialOffset(int d=-1) {if (d>=0) serialOffset=d; return serialOffset;};
virtual int setNumberOfCounters(int d=-1) {if (d>=0) numberOfCounters=d; return numberOfCounters;};
private:
int dynamicRange;
int serialOffset;
int frameNumber;
int numberOfCounters;
};
#endif

View File

@ -0,0 +1,130 @@
#ifndef MYTHEN302JCTBDATA_H
#define MYTHEN302JCTBDATA_H
#include "Mythen3_01_jctbData.h"
//class mythen3_02_jctbData : public slsDetectorData<short unsigned int> {
class mythen3_02_jctbData : public mythen3_01_jctbData {
public:
mythen3_02_jctbData( int nch=64*3,int dr=24, int off=5): mythen3_01_jctbData( nch,dr, off)
//slsDetectorData<short unsigned int>(64*3,1,dr*8*nch,NULL,NULL,NULL), dynamicRange(dr), serialOffset(off), frameNumber(0), numberOfCounters(nch)
{};
/* virtual void getPixel(int ip, int &x, int &y) {x=-1; y=-1;}; */
/* virtual short unsigned int getChannel(char *data, int ix, int iy=0) { */
/* int ret=-1; */
/* short unsigned int *val=mythen03_frame(data,dynamicRange,numberOfCounters,serialOffset); */
/* if (ix>=0 && ix<numberOfCounters) ret=val[ix]; */
/* delete [] val; */
/* return ret; */
/* }; */
/* virtual int getFrameNumber(char *buff) {return frameNumber;}; */
/* virtual char *findNextFrame(char *data, int &ndata, int dsize) { */
/* ndata=dsize; */
/* return data; */
/* } */
/* virtual char *readNextFrame(ifstream &filebin) { */
/* char *data=NULL; */
/* if (filebin.is_open()) { */
/* data=new char[dataSize]; */
/* filebin.read(data,dataSize); */
/* } */
/* return data; */
/* } */
/* virtual short unsigned int **getData(char *ptr, int dsize=-1) { */
/* short unsigned int **val; */
/* val=new short unsigned int*[1]; */
/* val[0]=mythen03_frame(ptr,dynamicRange,nx,serialOffset); */
/* return val; */
/* } */
virtual short unsigned int* mythen03_frame(char *ptr, int dr=24, int nch=64*3, int off=5) {
// off=0;
int iarg;
int64_t word, *wp;
short unsigned int* val=new short unsigned int[nch];
int bit[64];
int nb=2;
int ioff=0;
int idr=0;
int ib=0;
int ich=0;
int ii=0;
int iw=0;
bit[0]=17;//19;
bit[1]=6;//8;
idr=0;
for (ib=0; ib<nch; ib++) {
val[ib]=0;
}
wp=(int64_t*)ptr;
for (iw=0; iw<nch/nb; iw) {
word=*wp;
if (ioff<off) {
ioff++;
cout <<"*";
} else {
if (idr<16) {
for (ib=0; ib<nb; ib++) {
if (word&(1<<bit[ib])) {
cout << "+" ;
val[iw+nch/nb*(ib)]|=(1<<idr);
} else {
cout << "-" ;
}
// cout << iw+nch/nb*(ib)<< " " ;
}//end for()
}
idr++;
if (idr==dr) {
idr=0;
// cout << dec << " " << iw << " " << val[iw] << " " << val[iw+nch/2] << endl;
cout <<dec << iw<<endl;
iw++;
}//end if()
}//end else()
wp+=1;
ii++;
}//end for
cout << "M3.02 Decoded "<<ii << " samples"<< endl;
cout << "M3.02 Should be "<< nch/nb*dr+off << " samples"<< endl;
return val;
}
/* virtual int setFrameNumber(int f=0) {if (f>=0) frameNumber=f; return frameNumber; }; */
/* virtual int setDynamicRange(int d=-1) {if (d>0 && d<=24) dynamicRange=d; return dynamicRange;}; */
/* virtual int setSerialOffset(int d=-1) {if (d>=0) serialOffset=d; return serialOffset;}; */
/* virtual int setNumberOfCounters(int d=-1) {if (d>=0) numberOfCounters=d; return numberOfCounters;}; */
/* private: */
/* int dynamicRange; */
/* int serialOffset; */
/* int frameNumber; */
/* int numberOfCounters; */
};
#endif

View File

@ -0,0 +1,63 @@
#ifndef ADCSAR2_JCTBDATA_H
#define ADCSAR2_JCTBDATA_H
class adcSar2_jctbData : public slsDetectorData<short unsigned int> {
public:
adcSar2_jctbData(int nsamples=1000): slsDetectorData<short unsigned int>(nsamples,1,nsamples*8,NULL,NULL,NULL){};
virtual void getPixel(int ip, int &x, int &y) {x=ip/8; y=1;};
virtual short unsigned int getChannel(char *data, int ix, int iy=0) {
int adcvalue=0;
int vv1= *((int16_t*) (data+8*ix));
int vv2= *((int16_t*) (data+8*ix+2));
for (int jj=0;jj<8;jj++){
adcvalue=adcvalue+ (((vv1>>(jj*2)) & 0x1)<<(jj));
}
for (int jj=0;jj<4;jj++){
adcvalue=adcvalue+ (((vv2>>(jj*2)) & 0x1)<<(jj+8));
}
return adcvalue;
};
virtual int getFrameNumber(char *buff) {return frameNumber;};
virtual char *findNextFrame(char *data, int &ndata, int dsize) {
ndata=dsize;
return data;
}
virtual char *readNextFrame(ifstream &filebin) {
char *data=NULL;
if (filebin.is_open()) {
data=new char[dataSize];
filebin.read(data,dataSize);
}
return data;
}
/* virtual int **getData(char *ptr, int dsize=-1) { */
/* int **val; */
/* val=new int*[1]; */
/* val[0]=mythen03_frame(ptr,dynamicRange,nx,serialOffset); */
/* return val; */
/* } */
virtual int setFrameNumber(int f=0) {if (f>=0) frameNumber=f; return frameNumber; };
private:
int frameNumber;
};
#endif

View File

@ -0,0 +1,89 @@
#ifndef CHIPTESTDATA_H
#define CHIPTESTDATA_H
#include "slsDetectorData.h"
class chiptestBoardData : public slsDetectorData<uint16_t> {
public:
/**
chiptestBoard data structure. Works for data acquired using the chiptestBoard.
Inherits and implements slsDetectorData.
Constructor (no error checking if datasize and offsets are compatible!)
\param npx number of pixels in the x direction
\param npy number of pixels in the y direction (1 for strips)
\param nadc number of adcs
\param offset offset at the beginning of the pattern
\param dMap array of size nx*ny storing the pointers to the data in the dataset (as offset)
\param dMask Array of size nx*ny storing the polarity of the data in the dataset (should be 0 if no inversion is required, 0xffffffff is inversion is required)
\param dROI Array of size nx*ny. The elements are 1s if the channel is good or in the ROI, 0 is bad or out of the ROI. NULL (default) means all 1s.
*/
chiptestBoardData(int npx, int npy, int nadc, int offset, int **dMap=NULL, uint16_t **dMask=NULL, int **dROI=NULL): slsDetectorData<uint16_t>(npx, npy, nadc*(npx*npy)+offset, dMap, dMask, dROI), nAdc(nadc), offSize(offset), iframe(0) {}; // should be? nadc*(npx*npy+offset)
/**
Returns the frame number for the given dataset. Virtual func: works for slsDetectorReceiver data (also for each packet), but can be overloaded.
\param buff pointer to the dataset
\returns frame number
*/
virtual int getFrameNumber(char *buff){(void)buff; return iframe;};
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param data pointer to the memory to be analyzed
\param ndata size of frame returned
\param dsize size of the memory slot to be analyzed
\returns always return the pointer to data (no frame loss!)
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize) {ndata=dsize;setDataSize(dsize); return data;};
/**
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param filebin input file stream (binary)
\returns pointer to the first packet of the last good frame, NULL if no frame is found or last frame is incomplete
*/
virtual char *readNextFrame(ifstream &filebin) {
int afifo_length=0;
uint16_t *afifo_cont;
if (filebin.is_open()) {
if (filebin.read((char*)&afifo_length,sizeof(uint32_t))) {
setDataSize(afifo_length*nAdc*sizeof(uint16_t));
afifo_cont=new uint16_t[afifo_length*nAdc];
if (filebin.read((char*)afifo_cont,afifo_length*sizeof(uint16_t)*nAdc)) {
iframe++;
return (char*)afifo_cont;
} else {
delete [] afifo_cont;
return NULL;
}
} else {
return NULL;
}
}
return NULL;
};
private:
const int nAdc; /**<number of ADC read out */
const int offSize; /**< offset at the beginning of the frame (depends on the pattern) */
int iframe; /**< frame number (calculated in software! not in the data)*/
};
#endif

View File

@ -0,0 +1,172 @@
#ifndef GOTTHARD2MODULEDATANEW_H
#define GOTTHARD2MODULEDATANEW_H
#include "gotthardModuleDataNew.h"
class gotthardDoubleModuleDataNew : public slsDetectorData<uint16_t> {
private:
const int nModules;
const int offset;
int iframe;
public:
/**
Implements the slsReceiverData structure for the gotthard read out by a module i.e. using the slsReceiver
(1x1280 pixels, 2 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
gotthardDoubleModuleDataNew(int off=24*2, int nmod=2): slsDetectorData<uint16_t>(1280*nmod, 1, nmod*(1280*2+off)), nModules(nmod), offset(off),iframe(0) {
#ifdef BCHIP074_BCHIP075
cout << "This is a bchip074-bchip075 system " << endl;
#endif
uint16_t **dMask;
int **dMap;
int ix, iy;
int ypixels=1;
int xpixels=1280*nmod;
int imod, ipix;
dMask=new uint16_t*[1];
dMap=new int*[1];
dMap[0] = new int[1280*nmod];
dMask[0] = new uint16_t[1280*nmod];
for(int ix=0; ix<xpixels; ix++) {
imod=ix%2;
if (imod==0)
ipix=ix/2;
else
ipix=1280-1-ix/2;
if (imod==0)
dMap[0][ix] =ipix*2+offset;
else
dMap[0][ix] = 1280*2+2*offset+ipix*2;//dataSize-2-ix;//+2*offset;
// dMap[0][ix] = 2*ipix+offset*(imod+1)+1280*2*imod;
dMask[0][ix] = 0x0;
#ifdef BCHIP074_BCHIP075
int ibad=ix/2+1280*imod;
if ((ibad>=128*4 && ibad<128*5) || (ibad>=9*128 && ibad<10*128) || (ibad>=(1280+128*4) && ibad<ibad>=(1280+128*6)))
dataROIMask[0][ix]=0;
#endif
}
setDataMap(dMap);
setDataMask(dMask);
};
/**
Returns the frame number for the given dataset.
\param buff pointer to the dataset
\returns frame number
*/
int getFrameNumber(char *buff){if (offset>=sizeof(sls_detector_header)) return ((sls_detector_header*)buff)->frameNumber; return iframe;};//*((int*)(buff+5))&0xffffff;};
/**
gets the packets number (last packet is labelled with 0 and is replaced with 40)
\param buff pointer to the memory
\returns packet number
*/
int getPacketNumber(char *buff){if (offset>=sizeof(sls_detector_header))return ((sls_detector_header*)buff)->packetNumber;};
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){
if (dsize<dataSize) ndata=dsize;
else ndata=dataSize;
return data;
}
virtual char *readNextFrame(ifstream &filebin) {
int ff=-1, np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int &ff) {
int np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np) {
char *data=new char[dataSize];
char *d=readNextFrame(filebin, ff, np, data);
if (d==NULL) {delete [] data; data=NULL;}
return data;
}
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np, char *data) {
char *retval=0;
int nd;
int fnum = -1;
np=0;
int pn;
// cout << dataSize << endl;
if (ff>=0)
fnum=ff;
if (filebin.is_open()) {
if (filebin.read(data, dataSize) ){
ff=getFrameNumber(data);
np=getPacketNumber(data);
return data;
}
}
return NULL;
};
};
#endif

View File

@ -0,0 +1,127 @@
#ifndef GOTTHARDSHORTMODULEDATA_H
#define GOTTHARDSHORTMODULEDATA_H
#include "slsReceiverData.h"
class gotthardShortModuleData : public slsReceiverData<uint16_t> {
public:
/**
Implements the slsReceiverData structure for the gotthard short read out by a module i.e. using the slsReceiver
(1x256 pixels, 1 packet 256 large etc.)
\param c crosstalk parameter for the output buffer
*/
gotthardShortModuleData(double c=0): slsReceiverData<uint16_t>(xpixels, ypixels, npackets, buffersize), xtalk(c){
uint16_t **dMask;
int **dMap;
int ix, iy;
int offset = 2;
dMask=new uint16_t*[ypixels];
dMap=new int*[ypixels];
for (int i = 0; i < ypixels; i++) {
dMap[i] = new int[xpixels];
dMask[i] = new uint16_t[xpixels];
}
for(ix=0; ix<ypixels; ++ix)
for(iy=0; iy<xpixels; ++iy)
dMask[ix][iy] = 0x0;
for(ix=0; ix<ypixels; ++ix)
for(iy=0; iy<xpixels; ++iy){
dMap[ix][iy] = offset;
offset++;
}
setDataMap(dMap);
setDataMask(dMask);
};
/**
Returns the frame number for the given dataset.
\param buff pointer to the dataset
\returns frame number
*/
int getFrameNumber(char *buff){
return (*(int*)buff);
};
/**
gets the packets number (last packet is labelled with 0 and is replaced with 40)
\param buff pointer to the memory
\returns packet number
*/
int getPacketNumber(char *buff){
return 1;
};
/**
returns the pixel value as double correcting for the output buffer crosstalk
\param data pointer to the memory
\param ix coordinate in the x direction
\param iy coordinate in the y direction
\returns channel value as double
*/
double getValue(char *data, int ix, int iy=0) {
//check how it is for gotthard
if (xtalk==0)
return slsDetectorData<uint16_t>::getValue(data, ix, iy);
else
return slsDetectorData<uint16_t>::getValue(data, ix, iy)-xtalk*slsDetectorData<uint16_t>::getValue(data, ix-1, iy);
};
/** sets the output buffer crosstalk correction parameter
\param c output buffer crosstalk correction parameter to be set
\returns current value for the output buffer crosstalk correction parameter
*/
double setXTalk(double c) {xtalk=c; return xtalk;}
/** gets the output buffer crosstalk parameter
\returns current value for the output buffer crosstalk correction parameter
*/
double getXTalk() {return xtalk;}
private:
double xtalk; /**<output buffer crosstalk correction parameter */
const static int xpixels = 256;
const static int ypixels = 1;
const static int npackets = 1;
const static int buffersize = 518;
};
#endif

View File

@ -0,0 +1,169 @@
#ifndef MOENCH02CTBDATA_H
#define MOENCH02CTBDATA_H
#include "slsDetectorData.h"
class moench02CtbData : public slsDetectorData<uint16_t> {
private:
int iframe;
// int *xmap, *ymap;
int nadc;
int sc_width;
int sc_height;
int maplength;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
moench02CtbData(int ns=6400): slsDetectorData<uint16_t>(160, 160, ns*2*32, NULL, NULL) , nadc(32), sc_width(40), sc_height(160) {
int adc_off[4]={40,0,120,80};
int adc_nr[4]={8,10,20,22};
int row, col;
int isample;
int iadc, iiadc;
int ix, iy;
maplength=this->getDataSize()/2;
//cout << maplength << endl;
for (iiadc=0; iiadc<4; iiadc++) {
iadc=adc_nr[iiadc];
//cout << iiadc << endl;
for (int i=0; i<sc_width*sc_height; i++) {
col=adc_off[iiadc]+(i%sc_width);
row=i/sc_width;
dataMap[row][col]=(32*i+iadc)*2;
if (dataMap[row][col]<0 || dataMap[row][col]>=dataSize) {
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
}
}
}
for (int i=0; i<maplength; i++) {
//cout << i << endl;
isample=i/32;
iiadc=i%32;
iadc=-1;
for (int iii=0; iii<4; iii++) {
if (iiadc==adc_nr[iii]) iadc=iii;
}
ix=isample%sc_width;
iy=isample/sc_width;
if(iadc>=0){
xmap[i]=adc_off[iadc]+ix;
ymap[i]=iy;
}else{
xmap[i]=-1;
ymap[i]=-1;
}
}
iframe=0;
cout << "data struct created" << endl;
};
void getPixel(int ip, int &x, int &y) {
if(ip>=0 && ip<maplength){
x=xmap[ip];
y=ymap[ip];
}/*else{
cerr<<"WRONG ARRAY LENGTH"<<endl;
cerr<<"Trying to access the "<<ip<<"-th element"<<endl;
}*/
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
virtual int getFrameNumber(char *buff){(void)buff; return iframe;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
virtual int getPacketNumber(char *buff)=0;
*/
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;};
/**
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param filebin input file stream (binary)
\returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete
*/
virtual char *readNextFrame(ifstream &filebin){
// int afifo_length=0;
uint16_t *afifo_cont;
int ib=0;
if (filebin.is_open()) {
afifo_cont=new uint16_t[dataSize/2];
while (filebin.read(((char*)afifo_cont)+ib,2)) {
ib+=2;
if (ib==dataSize) break;
}
if (ib>0) {
iframe++;
//cout << ib/2 << "-" << endl;
//for (int i=0; i<ib/2; i++)
//cout << i << " " << afifo_cont[i] << endl;
return (char*)afifo_cont;
} else {
delete [] afifo_cont;
return NULL;
}
}
return NULL;
};
};
#endif

View File

@ -0,0 +1,157 @@
#ifndef MOENCH03CTBDATA_H
#define MOENCH03CTBDATA_H
#include "slsDetectorData.h"
class moench03CtbData : public slsDetectorData<uint16_t> {
private:
int iframe;
int nadc;
int sc_width;
int sc_height;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
moench03CtbData(int ns=5000): slsDetectorData<uint16_t>(400, 400, ns*2*32, NULL, NULL) , nadc(32), sc_width(25), sc_height(200) {
int row, col;
int isample;
int iadc;
int ix, iy;
int adc_nr[32]={200,225,250,275,300,325,350,375,\
0,25,50,75,100,125,150,175,\
175,150,125,100,75,50,25,0,\
375,350,325,300,275,250,225,200};
/* int adc_nr[32]={300,325,350,375,300,325,350,375, \ */
/* 200,225,250,275,200,225,250,275,\ */
/* 100,125,150,175,100,125,150,175,\ */
/* 0,25,50,75,0,25,50,75}; */
for (iadc=0; iadc<nadc; iadc++) {
for (int i=0; i<sc_width*sc_height; i++) {
col=adc_nr[iadc]+(i%sc_width);
if (iadc<16) {
row=199-i/sc_width;
} else {
row=200+i/sc_width;
}
dataMap[row][col]=(nadc*i+iadc)*2;
if (dataMap[row][col]<0 || dataMap[row][col]>=2*400*400)
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
}
}
for (int i=0; i<nx*ny; i++) {
isample=i/nadc;
iadc=i%nadc;
ix=isample%sc_width;
iy=isample/sc_width;
if (iadc<(nadc/2)) {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2-1-iy;
} else {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2+iy;
}
}
iframe=0;
// cout << "data struct created" << endl;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
virtual int getFrameNumber(char *buff){(void)buff; return iframe;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
virtual int getPacketNumber(char *buff)=0;
*/
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;};
/**
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param filebin input file stream (binary)
\returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete
*/
virtual char *readNextFrame(ifstream &filebin){
// int afifo_length=0;
uint16_t *afifo_cont;
int ib=0;
if (filebin.is_open()) {
afifo_cont=new uint16_t[dataSize/2];
while (filebin.read(((char*)afifo_cont)+ib,2)) {
ib+=2;
if (ib==dataSize) break;
}
if (ib>0) {
iframe++;
// cout << ib << "-" << endl;
return (char*)afifo_cont;
} else {
delete [] afifo_cont;
return NULL;
}
}
return NULL;
};
};
#endif

View File

@ -0,0 +1,158 @@
#ifndef MOENCH03T1CTBDATA_H
#define MOENCH03T1CTBDATA_H
#include "slsDetectorData.h"
class moench03T1CtbData : public slsDetectorData<uint16_t> {
private:
int iframe;
int nadc;
int sc_width;
int sc_height;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
moench03T1CtbData(int ns=5000): slsDetectorData<uint16_t>(400, 400, ns*2*32, NULL, NULL) , nadc(32), sc_width(25), sc_height(200) {
int adc_nr[32]={300,325,350,375,300,325,350,375, \
200,225,250,275,200,225,250,275,\
100,125,150,175,100,125,150,175,\
0,25,50,75,0,25,50,75};
int row, col;
int isample;
int iadc;
int ix, iy;
for (iadc=0; iadc<nadc; iadc++) {
for (int i=0; i<sc_width*sc_height; i++) {
col=adc_nr[iadc]+(i%sc_width);
if (iadc<16) {
row=199-i/sc_width;
} else {
row=200+i/sc_width;
}
dataMap[row][col]=(nadc*i+iadc)*2;
if (dataMap[row][col]<0 || dataMap[row][col]>=2*400*400)
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
}
}
int adc4;
for (int i=0; i<nx*ny; i++) {
isample=i/nadc;
iadc=i%nadc;
ix=isample%sc_width;
iy=isample/sc_width;
adc4 = (int)iadc/4;
// if (iadc<(nadc/2)) {
if (adc4%2==0) {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2-1-iy;
} else {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2+iy;
}
}
iframe=0;
// cout << "data struct created" << endl;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
virtual int getFrameNumber(char *buff){(void)buff; return iframe;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
virtual int getPacketNumber(char *buff)=0;
*/
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;};
/**
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param filebin input file stream (binary)
\returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete
*/
virtual char *readNextFrame(ifstream &filebin){
// int afifo_length=0;
uint16_t *afifo_cont;
int ib=0;
if (filebin.is_open()) {
afifo_cont=new uint16_t[dataSize/2];
while (filebin.read(((char*)afifo_cont)+ib,2)) {
ib+=2;
if (ib==dataSize) break;
}
if (ib>0) {
iframe++;
// cout << ib << "-" << endl;
return (char*)afifo_cont;
} else {
delete [] afifo_cont;
return NULL;
}
}
return NULL;
};
};
#endif

View File

@ -0,0 +1,290 @@
#ifndef MOENCH03T1RECDATANEW_H
#define MOENCH03T1RECDATANEW_H
#include "slsDetectorData.h"
//#define VERSION_V2
/**
@short structure for a Detector Packet or Image Header
@li frameNumber is the frame number
@li expLength is the subframe number (32 bit eiger) or real time exposure time in 100ns (others)
@li packetNumber is the packet number
@li bunchId is the bunch id from beamline
@li timestamp is the time stamp with 10 MHz clock
@li modId is the unique module id (unique even for left, right, top, bottom)
@li xCoord is the x coordinate in the complete detector system
@li yCoord is the y coordinate in the complete detector system
@li zCoord is the z coordinate in the complete detector system
@li debug is for debugging purposes
@li roundRNumber is the round robin set number
@li detType is the detector type see :: detectorType
@li version is the version number of this structure format
*/
typedef struct {
uint64_t frameNumber; /**< is the frame number */
uint32_t expLength; /**< is the subframe number (32 bit eiger) or real time exposure time in 100ns (others) */
uint32_t packetNumber; /**< is the packet number */
uint64_t bunchId; /**< is the bunch id from beamline */
uint64_t timestamp; /**< is the time stamp with 10 MHz clock */
uint16_t modId; /**< is the unique module id (unique even for left, right, top, bottom) */
uint16_t xCoord; /**< is the x coordinate in the complete detector system */
uint16_t yCoord; /**< is the y coordinate in the complete detector system */
uint16_t zCoord; /**< is the z coordinate in the complete detector system */
uint32_t debug; /**< is for debugging purposes */
uint16_t roundRNumber; /**< is the round robin set number */
uint8_t detType; /**< is the detector type see :: detectorType */
uint8_t version; /**< is the version number of this structure format */
#ifndef VERSION_V1
uint64_t packetCaught[8]; /**< is the version number of this structure format */
#endif
} sls_detector_header;
class moench03T1ReceiverDataNew : public slsDetectorData<uint16_t> {
private:
int iframe;
int nadc;
int sc_width;
int sc_height;
const int nSamples;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
moench03T1ReceiverDataNew(int ns=5000): slsDetectorData<uint16_t>(400, 400, ns*2*32+sizeof(sls_detector_header)), nSamples(ns) {
int nadc=32;
int sc_width=25;
int sc_height=200;
int adc_nr[32]={300,325,350,375,300,325,350,375, \
200,225,250,275,200,225,250,275,\
100,125,150,175,100,125,150,175,\
0,25,50,75,0,25,50,75};
int row, col;
int isample;
int iadc;
int ix, iy;
int npackets=40;
int i;
int adc4(0);
for (int ip=0; ip<npackets; ip++) {
for (int is=0; is<128; is++) {
for (iadc=0; iadc<nadc; iadc++) {
i=128*ip+is;
adc4=(int)iadc/4;
if (i<sc_width*sc_height) {
// for (int i=0; i<sc_width*sc_height; i++) {
col=adc_nr[iadc]+(i%sc_width);
if (adc4%2==0) {
row=199-i/sc_width;
} else {
row=200+i/sc_width;
}
dataMap[row][col]=sizeof(sls_detector_header)+(nadc*i+iadc)*2;//+16*(ip+1);
if (dataMap[row][col]<0 || dataMap[row][col]>=nSamples*2*32)
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
}
}
}
}
int ipacket;
int ibyte;
int ii=0;
for (ibyte=0; ibyte<sizeof(sls_detector_header)/2; ibyte++){
xmap[ibyte]=-1;
ymap[ibyte]=-1;
}
int off=sizeof(sls_detector_header)/2;
for (ipacket=0; ipacket<npackets; ipacket++) {
for (ibyte=0; ibyte< 8192/2; ibyte++) {
i=ipacket*8208/2+ibyte;
isample=ii/nadc;
if (isample<nSamples) {
iadc=ii%nadc;
adc4 = (int)iadc/4;
ix=isample%sc_width;
iy=isample/sc_width;
if (adc4%2==0) {
xmap[i+off]=adc_nr[iadc]+ix;
ymap[i+off]=ny/2-1-iy;
} else {
xmap[i+off]=adc_nr[iadc]+ix;
ymap[i+off]=ny/2+iy;
}
}
ii++;
// }
}
}
iframe=0;
// cout << "data struct created" << endl;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
/* class jfrau_packet_header_t { */
/* public: */
/* unsigned char reserved[4]; */
/* unsigned char packetNumber[1]; */
/* unsigned char frameNumber[3]; */
/* unsigned char bunchid[8]; */
/* }; */
int getFrameNumber(char *buff){return ((sls_detector_header*)buff)->frameNumber;};//*((int*)(buff+5))&0xffffff;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
*/
int getPacketNumber(char *buff){return ((sls_detector_header*)buff)->packetNumber;}//((*(((int*)(buff+4))))&0xff)+1;};
/* /\** */
/* Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func */
/* \param data pointer to the memory to be analyzed */
/* \param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot */
/* \param dsize size of the memory slot to be analyzed */
/* \returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found */
/* *\/ */
/* virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;}; */
/* /\** */
/* Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors! */
/* \param filebin input file stream (binary) */
/* \returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete */
/* *\/ */
/* virtual char *readNextFrame(ifstream &filebin){ */
/* // int afifo_length=0; */
/* uint16_t *afifo_cont; */
/* int ib=0; */
/* if (filebin.is_open()) { */
/* afifo_cont=new uint16_t[dataSize/2]; */
/* while (filebin.read(((char*)afifo_cont)+ib,2)) { */
/* ib+=2; */
/* if (ib==dataSize) break; */
/* } */
/* if (ib>0) { */
/* iframe++; */
/* // cout << ib << "-" << endl; */
/* return (char*)afifo_cont; */
/* } else { */
/* delete [] afifo_cont; */
/* return NULL; */
/* } */
/* } */
/* return NULL; */
/* }; */
virtual char *readNextFrame(ifstream &filebin) {
int ff=-1, np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int &ff) {
int np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np) {
char *data=new char[dataSize];
char *d=readNextFrame(filebin, ff, np, data);
if (d==NULL) {delete [] data; data=NULL;}
return data;
}
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np, char *data) {
char *retval=0;
int nd;
int fnum = -1;
np=0;
int pn;
// cout << dataSize << endl;
if (ff>=0)
fnum=ff;
if (filebin.is_open()) {
if (filebin.read(data, dataSize) ){
ff=getFrameNumber(data);
np=getPacketNumber(data);
return data;
}
}
return NULL;
};
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){
if (dsize<dataSize) ndata=dsize;
else ndata=dataSize;
return data;
}
//int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;};
};
#endif

View File

@ -0,0 +1,321 @@
#ifndef MOENCH03T1RECDATANEWRECT_H
#define MOENCH03T1RECDATANEWRECT_H
#include "slsDetectorData.h"
#define VERT 1
/**
@short structure for a Detector Packet or Image Header
@li frameNumber is the frame number
@li expLength is the subframe number (32 bit eiger) or real time exposure time in 100ns (others)
@li packetNumber is the packet number
@li bunchId is the bunch id from beamline
@li timestamp is the time stamp with 10 MHz clock
@li modId is the unique module id (unique even for left, right, top, bottom)
@li xCoord is the x coordinate in the complete detector system
@li yCoord is the y coordinate in the complete detector system
@li zCoord is the z coordinate in the complete detector system
@li debug is for debugging purposes
@li roundRNumber is the round robin set number
@li detType is the detector type see :: detectorType
@li version is the version number of this structure format
*/
typedef struct {
uint64_t frameNumber; /**< is the frame number */
uint32_t expLength; /**< is the subframe number (32 bit eiger) or real time exposure time in 100ns (others) */
uint32_t packetNumber; /**< is the packet number */
uint64_t bunchId; /**< is the bunch id from beamline */
uint64_t timestamp; /**< is the time stamp with 10 MHz clock */
uint16_t modId; /**< is the unique module id (unique even for left, right, top, bottom) */
uint16_t xCoord; /**< is the x coordinate in the complete detector system */
uint16_t yCoord; /**< is the y coordinate in the complete detector system */
uint16_t zCoord; /**< is the z coordinate in the complete detector system */
uint32_t debug; /**< is for debugging purposes */
uint16_t roundRNumber; /**< is the round robin set number */
uint8_t detType; /**< is the detector type see :: detectorType */
uint8_t version; /**< is the version number of this structure format */
} sls_detector_header;
class moench03T1ReceiverDataNew : public slsDetectorData<uint16_t> {
private:
int iframe;
int nadc;
int sc_width;
int sc_height;
const int nSamples;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
#ifdef HOR
moench03T1ReceiverDataNew(int ns=5000): slsDetectorData<uint16_t>(800, 200, ns*2*32+sizeof(sls_detector_header)), nSamples(ns) {
#endif
#ifdef VERT
moench03T1ReceiverDataNew(int ns=5000): slsDetectorData<uint16_t>(200, 800, ns*2*32+sizeof(sls_detector_header)), nSamples(ns) {
#endif
int nadc=32;
int sc_width=25;
int sc_height=200;
int adc_nr[32]={300,325,350,375,300,325,350,375, \
200,225,250,275,200,225,250,275,\
100,125,150,175,100,125,150,175,\
0,25,50,75,0,25,50,75};
int row, col;
int isample;
int iadc;
int ix, iy;
int npackets=40;
int i;
int adc4(0);
int pix;
int off=0;
#ifdef OFF_1
off=1;
#endif
cout << "This is a MOENCH with rectangular pixels!" << endl;
for (int ip=0; ip<npackets; ip++) {
for (int is=0; is<128; is++) {
for (iadc=0; iadc<nadc; iadc++) {
i=128*ip+is;
adc4=(int)iadc/4;
if (i<sc_width*sc_height) {
// for (int i=0; i<sc_width*sc_height; i++) {
col=adc_nr[iadc]+(i%sc_width);
if (adc4%2==0) {
row=199-i/sc_width;
} else {
row=200+i/sc_width;
}
pix=sizeof(sls_detector_header)+(nadc*i+iadc)*2;//+16*(ip+1);
if (pix<0 || pix>=nSamples*2*32+sizeof(sls_detector_header))
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
ix=col;
iy=row;
#ifdef HOR
if (row%2==off) {
ix=2*col;
iy=row/2;
} else {
ix=2*col+1;
iy=row/2;
}
#endif
#ifdef VERT
if (col%2==off) {
ix=col/2;
iy=row*2+1;
} else {
ix=col/2;
iy=row*2;
}
#endif
dataMap[iy][ix]=pix;
}
}
}
}
/* int ipacket; */
/* int ibyte; */
/* int ii=0; */
/* for (ibyte=0; ibyte<sizeof(sls_detector_header)/2; ibyte++){ */
/* xmap[ibyte]=-1; */
/* ymap[ibyte]=-1; */
/* } */
/* int off=sizeof(sls_detector_header)/2; */
/* for (ipacket=0; ipacket<npackets; ipacket++) { */
/* for (ibyte=0; ibyte< 8192/2; ibyte++) { */
/* i=ipacket*8208/2+ibyte; */
/* isample=ii/nadc; */
/* if (isample<nSamples) { */
/* iadc=ii%nadc; */
/* adc4 = (int)iadc/4; */
/* ix=isample%sc_width; */
/* iy=isample/sc_width; */
/* if (adc4%2==0) { */
/* xmap[i+off]=adc_nr[iadc]+ix; */
/* ymap[i+off]=ny/2-1-iy; */
/* } else { */
/* xmap[i+off]=adc_nr[iadc]+ix; */
/* ymap[i+off]=ny/2+iy; */
/* } */
/* } */
/* ii++; */
/* // } */
/* } */
/* } */
iframe=0;
// cout << "data struct created" << endl;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
/* class jfrau_packet_header_t { */
/* public: */
/* unsigned char reserved[4]; */
/* unsigned char packetNumber[1]; */
/* unsigned char frameNumber[3]; */
/* unsigned char bunchid[8]; */
/* }; */
int getFrameNumber(char *buff){return ((sls_detector_header*)buff)->frameNumber;};//*((int*)(buff+5))&0xffffff;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
*/
int getPacketNumber(char *buff){return ((sls_detector_header*)buff)->packetNumber;}//((*(((int*)(buff+4))))&0xff)+1;};
/* /\** */
/* Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func */
/* \param data pointer to the memory to be analyzed */
/* \param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot */
/* \param dsize size of the memory slot to be analyzed */
/* \returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found */
/* *\/ */
/* virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;}; */
/* /\** */
/* Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors! */
/* \param filebin input file stream (binary) */
/* \returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete */
/* *\/ */
/* virtual char *readNextFrame(ifstream &filebin){ */
/* // int afifo_length=0; */
/* uint16_t *afifo_cont; */
/* int ib=0; */
/* if (filebin.is_open()) { */
/* afifo_cont=new uint16_t[dataSize/2]; */
/* while (filebin.read(((char*)afifo_cont)+ib,2)) { */
/* ib+=2; */
/* if (ib==dataSize) break; */
/* } */
/* if (ib>0) { */
/* iframe++; */
/* // cout << ib << "-" << endl; */
/* return (char*)afifo_cont; */
/* } else { */
/* delete [] afifo_cont; */
/* return NULL; */
/* } */
/* } */
/* return NULL; */
/* }; */
virtual char *readNextFrame(ifstream &filebin) {
int ff=-1, np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int &ff) {
int np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np) {
char *data=new char[dataSize];
char *d=readNextFrame(filebin, ff, np, data);
if (d==NULL) {delete [] data; data=NULL;}
return data;
}
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np, char *data) {
char *retval=0;
int nd;
int fnum = -1;
np=0;
int pn;
// cout << dataSize << endl;
if (ff>=0)
fnum=ff;
if (filebin.is_open()) {
if (filebin.read(data, dataSize) ){
ff=getFrameNumber(data);
np=getPacketNumber(data);
return data;
}
}
return NULL;
};
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){
if (dsize<dataSize) ndata=dsize;
else ndata=dataSize;
return data;
}
//int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;};
};
#endif

View File

@ -0,0 +1,176 @@
#ifndef MOENCH03T1REORDERED_H
#define MOENCH03T1REORDERED_H
#include "slsDetectorData.h"
class moench03T1ReorderedData : public slsDetectorData<uint16_t> {
private:
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
fwrite(&ff, 8, 1,of);//write detector frame number
fwrite(&ifr, 8, 1,of);//write datset frame number
fwrite(data,2,NX*NY,of);//write reordered data
*/
moench03T1ReorderedData(): slsDetectorData<uint16_t>(400, 400, 2*400*400+2*8) {
for (int iy=0; iy<400; iy++)
for (int ix=0; ix<400; ix++)
dataMap[iy][ix]=2*8+2*(iy*400+ix);
int ibyte;
for (ibyte=0; ibyte<8; ibyte++){
xmap[ibyte]=-1;
ymap[ibyte]=-1;
}
for (ibyte=0; ibyte<400*400; ibyte++){
xmap[ibyte+8]=ibyte%400;
ymap[ibyte+8]=ibyte/400;
}
// cout << "data struct created" << endl;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
/* class jfrau_packet_header_t { */
/* public: */
/* unsigned char reserved[4]; */
/* unsigned char packetNumber[1]; */
/* unsigned char frameNumber[3]; */
/* unsigned char bunchid[8]; */
/* }; */
int getFrameNumber(char *buff){return *((int*)buff);};
/* /\** */
/* Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func */
/* \param data pointer to the memory to be analyzed */
/* \param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot */
/* \param dsize size of the memory slot to be analyzed */
/* \returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found */
/* *\/ */
/* virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;}; */
/* /\** */
/* Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors! */
/* \param filebin input file stream (binary) */
/* \returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete */
/* *\/ */
/* virtual char *readNextFrame(ifstream &filebin){ */
/* // int afifo_length=0; */
/* uint16_t *afifo_cont; */
/* int ib=0; */
/* if (filebin.is_open()) { */
/* afifo_cont=new uint16_t[dataSize/2]; */
/* while (filebin.read(((char*)afifo_cont)+ib,2)) { */
/* ib+=2; */
/* if (ib==dataSize) break; */
/* } */
/* if (ib>0) { */
/* iframe++; */
/* // cout << ib << "-" << endl; */
/* return (char*)afifo_cont; */
/* } else { */
/* delete [] afifo_cont; */
/* return NULL; */
/* } */
/* } */
/* return NULL; */
/* }; */
virtual char *readNextFrame(ifstream &filebin) {
int ff=-1, np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int &ff) {
int np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np) {
char *data=new char[dataSize];
char *d=readNextFrame(filebin, ff, np, data);
if (d==NULL) {delete [] data; data=NULL;}
return data;
}
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np, char *data) {
char *retval=0;
int nd;
int fnum = -1;
np=0;
int pn;
if (ff>=0)
fnum=ff;
if (filebin.is_open()) {
if (filebin.read(data, dataSize) ){
ff=getFrameNumber(data);
np=40;
return data;
}
}
return NULL;
};
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){
if (dsize<dataSize) ndata=dsize;
else ndata=dataSize;
return data;
}
//int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;};
};
#endif

View File

@ -0,0 +1,268 @@
#ifndef MOENCH03T1ZMQDATANEW_H
#define MOENCH03T1ZMQDATANEW_H
#include "slsDetectorData.h"
class moench03T1ZmqDataNew : public slsDetectorData<uint16_t> {
private:
// int iframe;
int nadc;
int sc_width;
int sc_height;
const int nSamples;
const int offset;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
moench03T1ZmqDataNew(int ns=5000): slsDetectorData<uint16_t>(400, 400, ns*32*2+sizeof(int)), nSamples(ns), offset(sizeof(int)) {
int nadc=32;
int sc_width=25;
int sc_height=200;
int adc_nr[32]={300,325,350,375,300,325,350,375, \
200,225,250,275,200,225,250,275,\
100,125,150,175,100,125,150,175,\
0,25,50,75,0,25,50,75};
int row, col;
int isample;
int iadc;
int ix, iy;
int npackets=40;
int i;
int adc4(0);
for (int ip=0; ip<npackets; ip++) {
for (int is=0; is<128; is++) {
for (iadc=0; iadc<nadc; iadc++) {
i=128*ip+is;
adc4=(int)iadc/4;
if (i<sc_width*sc_height) {
// for (int i=0; i<sc_width*sc_height; i++) {
col=adc_nr[iadc]+(i%sc_width);
if (adc4%2==0) {
row=199-i/sc_width;
} else {
row=200+i/sc_width;
}
dataMap[row][col]=(nadc*i+iadc)*2+offset;//+16*(ip+1);
if (dataMap[row][col]<0 || dataMap[row][col]>=dataSize)
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
}
}
}
}
int ii=0;
for (i=0; i< dataSize; i++) {
if (i<offset) {
//header! */
xmap[i]=-1;
ymap[i]=-1;
} else {
// ii=ibyte+128*32*ipacket;
isample=ii/nadc;
if (isample<nSamples) {
iadc=ii%nadc;
adc4 = (int)iadc/4;
ix=isample%sc_width;
iy=isample/sc_width;
if (adc4%2==0) {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2-1-iy;
} else {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2+iy;
}
}
ii++;
}
}
// iframe=0;
// cout << "data struct created" << endl;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
/* class jfrau_packet_header_t { */
/* public: */
/* unsigned char reserved[4]; */
/* unsigned char packetNumber[1]; */
/* unsigned char frameNumber[3]; */
/* unsigned char bunchid[8]; */
/* }; */
int getFrameNumber(char *buff){return *((int*)buff);};//*((int*)(buff+5))&0xffffff;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
*/
int getPacketNumber(char *buff){return 0;}//((*(((int*)(buff+4))))&0xff)+1;};
/* /\** */
/* Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func */
/* \param data pointer to the memory to be analyzed */
/* \param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot */
/* \param dsize size of the memory slot to be analyzed */
/* \returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found */
/* *\/ */
/* virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;}; */
/* /\** */
/* Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors! */
/* \param filebin input file stream (binary) */
/* \returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete */
/* *\/ */
/* virtual char *readNextFrame(ifstream &filebin){ */
/* // int afifo_length=0; */
/* uint16_t *afifo_cont; */
/* int ib=0; */
/* if (filebin.is_open()) { */
/* afifo_cont=new uint16_t[dataSize/2]; */
/* while (filebin.read(((char*)afifo_cont)+ib,2)) { */
/* ib+=2; */
/* if (ib==dataSize) break; */
/* } */
/* if (ib>0) { */
/* iframe++; */
/* // cout << ib << "-" << endl; */
/* return (char*)afifo_cont; */
/* } else { */
/* delete [] afifo_cont; */
/* return NULL; */
/* } */
/* } */
/* return NULL; */
/* }; */
virtual char *readNextFrame(ifstream &filebin) {
int ff=-1, np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int &ff) {
int np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np) {
char *data=new char[32*2*nSamples];
char *d=readNextFrame(filebin, ff, np, data);
if (d==NULL) {delete [] data; data=NULL;}
return data;
}
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np, char *data) {
char *retval=0;
int nd;
int fnum = -1;
np=0;
int pn;
if (ff>=0)
fnum=ff;
if (filebin.is_open()) {
if (filebin.read(data, 32*2*nSamples) ){
// iframe++;
//ff=iframe;
return data;
}
}
return NULL;
};
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){
if (dsize<32*2*nSamples) ndata=dsize;
else ndata=32*2*nSamples;
return data;
}
// virtual int setFrameNumber(int ff){iframe=ff};
int getPacketNumber(int x, int y) {return 0;};
};
#endif

View File

@ -0,0 +1,180 @@
#ifndef MOENCH03TCTBDATA_H
#define MOENCH03TCTBDATA_H
#include "slsDetectorData.h"
class moench03TCtbData : public slsDetectorData<uint16_t> {
private:
int iframe;
int nadc;
int sc_width;
int sc_height;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
moench03TCtbData(int ns=5000): slsDetectorData<uint16_t>(400, 400, ns*2*32, NULL, NULL) , nadc(32), sc_width(25), sc_height(200) {
int row, col;
int isample;
int iadc;
int ix, iy;
int adc_nr[32]={300,325,350,375,300,325,350,375, \
200,225,250,275,200,225,250,275,\
100,125,150,175,100,125,150,175,\
0,25,50,75,0,25,50,75};
/* int adc_nr[32]={200,225,250,275,300,325,350,375,\ */
/* 0,25,50,75,100,125,150,175,\ */
/* 175,150,125,100,75,50,25,0,\ */
/* 375,350,325,300,275,250,225,200}; */
for (iadc=0; iadc<nadc; iadc++) {
for (int i=0; i<sc_width*sc_height; i++) {
col=adc_nr[iadc]+(i%sc_width);
if (iadc<16) {
row=199-i/sc_width;
} else {
row=200+i/sc_width;
}
dataMap[row][col]=(nadc*i+iadc)*2;
if (dataMap[row][col]<0 || dataMap[row][col]>=2*400*400)
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
}
}
int adc4;
for (int i=0; i<nx*ny; i++) {
isample=i/nadc;
iadc=i%nadc;
ix=isample%sc_width;
iy=isample/sc_width;
adc4 = (int)iadc/4;
// if (iadc<(nadc/2)) {
if (adc4%2==0) {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2-1-iy;
} else {
xmap[i]=adc_nr[iadc]+ix;
ymap[i]=ny/2+iy;
}
}
/* for (int i=0; i<nx*ny; i++) { */
/* isample=i/nadc; */
/* iadc=i%nadc; */
/* ix=isample%sc_width; */
/* iy=isample/sc_width; */
/* if (iadc<(nadc/2)) { */
/* xmap[i]=adc_nr[iadc]+ix; */
/* ymap[i]=ny/2-1-iy; */
/* } else { */
/* xmap[i]=adc_nr[iadc]+ix; */
/* ymap[i]=ny/2+iy; */
/* } */
/* } */
iframe=0;
// cout << "data struct created" << endl;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
virtual int getFrameNumber(char *buff){(void)buff; return iframe;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
virtual int getPacketNumber(char *buff)=0;
*/
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;};
/**
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param filebin input file stream (binary)
\returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete
*/
virtual char *readNextFrame(ifstream &filebin){
// int afifo_length=0;
uint16_t *afifo_cont;
int ib=0;
if (filebin.is_open()) {
afifo_cont=new uint16_t[dataSize/2];
while (filebin.read(((char*)afifo_cont)+ib,2)) {
ib+=2;
if (ib==dataSize) break;
}
if (ib>0) {
iframe++;
// cout << ib << "-" << endl;
return (char*)afifo_cont;
} else {
delete [] afifo_cont;
return NULL;
}
}
return NULL;
};
};
#endif

View File

@ -0,0 +1,291 @@
#ifndef MOENCH04RECDATA_H
#define MOENCH04RECDATA_H
#include "slsDetectorData.h"
//#define VERSION_V2
/**
@short structure for a Detector Packet or Image Header
@li frameNumber is the frame number
@li expLength is the subframe number (32 bit eiger) or real time exposure time in 100ns (others)
@li packetNumber is the packet number
@li bunchId is the bunch id from beamline
@li timestamp is the time stamp with 10 MHz clock
@li modId is the unique module id (unique even for left, right, top, bottom)
@li xCoord is the x coordinate in the complete detector system
@li yCoord is the y coordinate in the complete detector system
@li zCoord is the z coordinate in the complete detector system
@li debug is for debugging purposes
@li roundRNumber is the round robin set number
@li detType is the detector type see :: detectorType
@li version is the version number of this structure format
*/
typedef struct {
uint64_t frameNumber; /**< is the frame number */
uint32_t expLength; /**< is the subframe number (32 bit eiger) or real time exposure time in 100ns (others) */
uint32_t packetNumber; /**< is the packet number */
uint64_t bunchId; /**< is the bunch id from beamline */
uint64_t timestamp; /**< is the time stamp with 10 MHz clock */
uint16_t modId; /**< is the unique module id (unique even for left, right, top, bottom) */
uint16_t xCoord; /**< is the x coordinate in the complete detector system */
uint16_t yCoord; /**< is the y coordinate in the complete detector system */
uint16_t zCoord; /**< is the z coordinate in the complete detector system */
uint32_t debug; /**< is for debugging purposes */
uint16_t roundRNumber; /**< is the round robin set number */
uint8_t detType; /**< is the detector type see :: detectorType */
uint8_t version; /**< is the version number of this structure format */
uint64_t packetCaught[8]; /**< is the version number of this structure format */
} sls_detector_header;
class moench04ReceiverData : public slsDetectorData<uint16_t> {
private:
int iframe;
int nadc;
int sc_width;
int sc_height;
const int aSamples;
const int dSamples;
public:
/**
Implements the slsReceiverData structure for the moench02 prototype read out by a module i.e. using the slsReceiver
(160x160 pixels, 40 packets 1286 large etc.)
\param c crosstalk parameter for the output buffer
*/
moench04ReceiverData(int nas=5000, int nds=0): slsDetectorData<uint16_t>(400, 400, nas*2*32+sizeof(sls_detector_header)+nds*8), aSamples(nas), dSamples(nds) {
int nadc=32;
int sc_width=25;
int sc_height=200;
int adc_nr[32]={9, 8,11,10,13,12,15,14,1,0,3,2,5,4,7,6,23,22,21,20,19,18,17,16,31,30,29,28,27,26,25,24 };
int row, col;
int isample;
int iadc;
int ix, iy;
int npackets=40;
int i;
int adc4(0);
for (int ip=0; ip<npackets; ip++) {
for (int is=0; is<128; is++) {
for (iadc=0; iadc<nadc; iadc++) {
i=128*ip+is;
adc4=(int)iadc/4;
if (i<sc_width*sc_height) {
// for (int i=0; i<sc_width*sc_height; i++) {
col=(adc_nr[iadc]%16)*sc_width+(i%sc_width);
// if (adc4%2==0) {
if (iadc/16>0) {
row=199-i/sc_width;
} else {
row=200+i/sc_width;
}
dataMap[row][col]=sizeof(sls_detector_header)+(nadc*i+iadc)*2;//+16*(ip+1);
if (dataMap[row][col]<0 || dataMap[row][col]>=nSamples*2*32)
cout << "Error: pointer " << dataMap[row][col] << " out of range "<< endl;
}
}
}
}
int ipacket;
int ibyte;
int ii=0;
for (ibyte=0; ibyte<sizeof(sls_detector_header)/2; ibyte++){
xmap[ibyte]=-1;
ymap[ibyte]=-1;
}
/* int off=sizeof(sls_detector_header)/2; */
/* for (ibyte=0; ibyte<dataSize; ibyte++) { */
/* for (ipacket=0; ipacket<npackets; ipacket++) { */
/* for (ibyte=0; ibyte< 8192/2; ibyte++) { */
/* i=ipacket*8208/2+ibyte; */
/* isample=ii/nadc; */
/* if (isample<nSamples) { */
/* iadc=ii%nadc; */
/* adc4 = (int)iadc/4; */
/* ix=isample%sc_width; */
/* iy=isample/sc_width; */
/* if (adc4%2==0) { */
/* xmap[i+off]=adc_nr[iadc]+ix; */
/* ymap[i+off]=ny/2-1-iy; */
/* } else { */
/* xmap[i+off]=adc_nr[iadc]+ix; */
/* ymap[i+off]=ny/2+iy; */
/* } */
/* } */
/* ii++; */
/* // } */
/* } */
/* } */
iframe=0;
// cout << "data struct created" << endl;
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
/* class jfrau_packet_header_t { */
/* public: */
/* unsigned char reserved[4]; */
/* unsigned char packetNumber[1]; */
/* unsigned char frameNumber[3]; */
/* unsigned char bunchid[8]; */
/* }; */
int getFrameNumber(char *buff){return ((sls_detector_header*)buff)->frameNumber;};//*((int*)(buff+5))&0xffffff;};
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
*/
int getPacketNumber(char *buff){return ((sls_detector_header*)buff)->packetNumber;}//((*(((int*)(buff+4))))&0xff)+1;};
/* /\** */
/* Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func */
/* \param data pointer to the memory to be analyzed */
/* \param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot */
/* \param dsize size of the memory slot to be analyzed */
/* \returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found */
/* *\/ */
/* virtual char *findNextFrame(char *data, int &ndata, int dsize){ndata=dsize; setDataSize(dsize); return data;}; */
/* /\** */
/* Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors! */
/* \param filebin input file stream (binary) */
/* \returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete */
/* *\/ */
/* virtual char *readNextFrame(ifstream &filebin){ */
/* // int afifo_length=0; */
/* uint16_t *afifo_cont; */
/* int ib=0; */
/* if (filebin.is_open()) { */
/* afifo_cont=new uint16_t[dataSize/2]; */
/* while (filebin.read(((char*)afifo_cont)+ib,2)) { */
/* ib+=2; */
/* if (ib==dataSize) break; */
/* } */
/* if (ib>0) { */
/* iframe++; */
/* // cout << ib << "-" << endl; */
/* return (char*)afifo_cont; */
/* } else { */
/* delete [] afifo_cont; */
/* return NULL; */
/* } */
/* } */
/* return NULL; */
/* }; */
virtual char *readNextFrame(ifstream &filebin) {
int ff=-1, np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int &ff) {
int np=-1;
return readNextFrame(filebin, ff, np);
};
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np) {
char *data=new char[dataSize];
char *d=readNextFrame(filebin, ff, np, data);
if (d==NULL) {delete [] data; data=NULL;}
return data;
}
virtual char *readNextFrame(ifstream &filebin, int& ff, int &np, char *data) {
char *retval=0;
int nd;
int fnum = -1;
np=0;
int pn;
// cout << dataSize << endl;
if (ff>=0)
fnum=ff;
if (filebin.is_open()) {
if (filebin.read(data, dataSize) ){
ff=getFrameNumber(data);
np=getPacketNumber(data);
return data;
}
}
return NULL;
};
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize){
if (dsize<dataSize) ndata=dsize;
else ndata=dataSize;
return data;
}
//int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;};
};
#endif

View File

@ -0,0 +1,338 @@
#ifndef SLSDETECTORDATA_H
#define SLSDETECTORDATA_H
#include <inttypes.h>
#include <iostream>
#include <fstream>
using namespace std;
template <class dataType>
class slsDetectorData {
protected:
const int nx; /**< Number of pixels in the x direction */
const int ny; /**< Number of pixels in the y direction */
int dataSize; /**<size of the data constituting one frame */
int **dataMap; /**< Array of size nx*ny storing the pointers to the data in the dataset (as offset)*/
dataType **dataMask; /**< Array of size nx*ny storing the polarity of the data in the dataset (should be 0 if no inversion is required, 0xffffffff is inversion is required) */
int **dataROIMask; /**< Array of size nx*ny 1 if channel is good (or in the ROI), 0 if bad channel (or out of ROI) */
int *xmap;
int *ymap;
public:
/**
General slsDetectors data structure. Works for data acquired using the slsDetectorReceiver. Can be generalized to other detectors (many virtual funcs).
Constructor (no error checking if datasize and offsets are compatible!)
\param npx number of pixels in the x direction
\param npy number of pixels in the y direction (1 for strips)
\param dsize size of the data
\param dMap array of size nx*ny storing the pointers to the data in the dataset (as offset)
\param dMask Array of size nx*ny storing the polarity of the data in the dataset (should be 0 if no inversion is required, 0xffffffff is inversion is required)
\param dROI Array of size nx*ny. The elements are 1s if the channel is good or in the ROI, 0 is bad or out of the ROI. NULL (default) means all 1s.
*/
slsDetectorData(int npx, int npy, int dsize, int **dMap=NULL, dataType **dMask=NULL, int **dROI=NULL): nx(npx), ny(npy), dataSize(dsize) {
xmap=new int[dsize/sizeof(dataType)];
ymap=new int[dsize/sizeof(dataType)];
// if (dataMask==NULL) {
dataMask=new dataType*[ny];
for(int i = 0; i < ny; i++) {
dataMask[i] = new dataType[nx];
}
// }
// if (dataMap==NULL) {
dataMap=new int*[ny];
for(int i = 0; i < ny; i++) {
dataMap[i] = new int[nx];
}
// }
// if (dataROIMask==NULL) {
dataROIMask=new int*[ny];
for(int i = 0; i < ny; i++) {
dataROIMask[i] = new int[nx];
for (int j=0; j<nx; j++)
dataROIMask[i][j]=1;
}
// }
for (int ip=0; ip<dsize/sizeof(dataType); ip++){
xmap[ip]=-1;
ymap[ip]=-1;
}
setDataMap(dMap);
setDataMask(dMask);
setDataROIMask(dROI);
};
virtual ~slsDetectorData() {
for(int i = 0; i < ny; i++) {
delete [] dataMap[i];
delete [] dataMask[i];
delete [] dataROIMask[i];
}
delete [] dataMap;
delete [] dataMask;
delete [] dataROIMask;
delete [] xmap;
delete [] ymap;
};
/**
defines the data map (as offset) - no error checking if datasize and offsets are compatible!
\param dMap array of size nx*ny storing the pointers to the data in the dataset (as offset). If NULL (default),the data are arranged as if read out row by row (dataMap[iy][ix]=(iy*nx+ix)*sizeof(dataType);)
*/
void setDataMap(int **dMap=NULL) {
int ip=0;
int ix, iy;
if (dMap==NULL) {
for (iy=0; iy<ny; iy++) {
for (ix=0; ix<nx; ix++) {
dataMap[iy][ix]=(iy*nx+ix)*sizeof(dataType);
}
}
} else {
//cout << "set dmap "<< dataMap << " " << dMap << endl;
for (iy=0; iy<ny; iy++){
// cout << iy << endl;
for (ix=0; ix<nx; ix++) {
dataMap[iy][ix]=dMap[iy][ix];
// cout << ix << " " << iy << endl;
/*ip=dataMap[ix][iy]/sizeof(dataType);
xmap[ip]=ix;
ymap[ip]=iy;Annaa*/
}
}
}
for (iy=0; iy<ny; iy++){
for (ix=0; ix<nx; ix++) {
ip=dataMap[iy][ix]/sizeof(dataType);
xmap[ip]=ix;
ymap[ip]=iy;
}
}
// cout << "nx:" <<nx << " ny:" << ny << endl;
};
/**
defines the data mask i.e. the polarity of the data
\param dMask Array of size nx*ny storing the polarity of the data in the dataset (should be 0 if no inversion is required, 0xffffffff is inversion is required)
*/
void setDataMask(dataType **dMask=NULL){
if (dMask!=NULL) {
for (int iy=0; iy<ny; iy++)
for (int ix=0; ix<nx; ix++)
dataMask[iy][ix]=dMask[iy][ix];
} else {
for (int iy=0; iy<ny; iy++)
for (int ix=0; ix<nx; ix++)
dataMask[iy][ix]=0;
}
};
/**
defines the region of interest and/or the bad channels mask
\param dROI Array of size nx*ny. The lements are 1s if the channel is good or in the ROI, 0 is bad or out of the ROI. NULL (default) means all 1s.
*/
void setDataROIMask(int **dROI=NULL){
if (dROI!=NULL) {
for (int iy=0; iy<ny; iy++)
for (int ix=0; ix<nx; ix++)
dataROIMask[iy][ix]=dROI[iy][ix];
} else {
for (int iy=0; iy<ny; iy++)
for (int ix=0; ix<nx; ix++)
dataROIMask[iy][ix]=1;
}
};
/**
Define bad channel or roi mask for a single channel
\param ix channel x coordinate
\param iy channel y coordinate (1 for strips)
\param i 1 if pixel is good (or in the roi), 0 if bad
\returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
*/
int setGood(int ix, int iy, int i=1) { if (ix>=0 && ix<nx && iy>=0 && iy<ny) dataROIMask[iy][ix]=i; return isGood(ix,iy);};
/**
Define bad channel or roi mask for a single channel
\param ix channel x coordinate
\param iy channel y coordinate (1 for strips)
\returns 1 if pixel is good, 0 if it's bad, -1 if pixel is out of range
*/
int isGood(int ix, int iy) { if (ix>=0 && ix<nx && iy>=0 && iy<ny) return dataROIMask[iy][ix]; else return -1;};
/**
Returns detector size in x,y
\param npx reference to number of channels in x
\param npy reference to number of channels in y (will be 1 for strips)
\returns total number of channels
*/
int getDetectorSize(int &npx, int &npy){npx=nx; npy=ny; return nx*ny;};
/** Returns the size of the data frame */
int getDataSize() {return dataSize;};
/** changes the size of the data frame */
int setDataSize(int d) {dataSize=d; return dataSize;};
virtual void getPixel(int ip, int &x, int &y) {x=xmap[ip]; y=ymap[ip];};
virtual dataType **getData(char *ptr, int dsize=-1) {
dataType **data;
int ix,iy;
data=new dataType*[ny];
for(int i = 0; i < ny; i++) {
data[i]=new dataType[nx];
}
if (dsize<=0 || dsize>dataSize) dsize=dataSize;
for (int ip=0; ip<(dsize/sizeof(dataType)); ip++) {
getPixel(ip,ix,iy);
if (ix>=0 && ix<nx && iy>=0 && iy<ny) {
data[iy][ix]=getChannel(ptr,ix,iy);
}
}
return data;
};
virtual double **getImage(char *ptr, int dsize=-1) {
double **data;
int ix,iy;
data=new double*[ny];
for(int i = 0; i < ny; i++) {
data[i]=new double[nx];
}
if (dsize<=0 || dsize>dataSize) dsize=dataSize;
for (int ip=0; ip<(dsize/sizeof(dataType)); ip++) {
getPixel(ip,ix,iy);
if (ix>=0 && ix<nx && iy>=0 && iy<ny) {
data[iy][ix]=getValue(ptr,ix,iy);
}
}
return data;
};
/**
Returns the value of the selected channel for the given dataset. Virtual function, can be overloaded.
\param data pointer to the dataset (including headers etc)
\param ix pixel number in the x direction
\param iy pixel number in the y direction
\returns data for the selected channel, with inversion if required
*/
virtual dataType getChannel(char *data, int ix, int iy=0) {
dataType m=0, d=0;
if (ix>=0 && ix<nx && iy>=0 && iy<ny && dataMap[iy][ix]>=0 && dataMap[iy][ix]<dataSize) {
// cout << ix << " " << iy << " " ;
//cout << dataMap[ix][iy] << " " << (void*)data << " " << dataSize<< endl;
m=dataMask[iy][ix];
d=*((dataType*)(data+dataMap[iy][ix]));
}
return d^m;
};
/**
Returns the value of the selected channel for the given dataset. Virtual function, can be overloaded.
\param data pointer to the dataset (including headers etc)
\param ix pixel number in the x direction
\param iy pixel number in the y direction
\returns data for the selected channel, with inversion if required or -1 if its a missing packet
*/
virtual int getChannelwithMissingPackets(char *data, int ix, int iy) {
return 0;
};
/**
Returns the value of the selected channel for the given dataset as double.
\param data pointer to the dataset (including headers etc)
\param ix pixel number in the x direction
\param iy pixel number in the y direction
\returns data for the selected channel, with inversion if required as double
*/
virtual double getValue(char *data, int ix, int iy=0) {
/* cout << " x "<< ix << " y"<< iy << " val " << getChannel(data, ix, iy)<< endl;*/
return (double)getChannel(data, ix, iy);
};
/**
Returns the frame number for the given dataset. Purely virtual func.
\param buff pointer to the dataset
\returns frame number
*/
virtual int getFrameNumber(char *buff)=0;
/**
Returns the packet number for the given dataset. purely virtual func
\param buff pointer to the dataset
\returns packet number number
virtual int getPacketNumber(char *buff)=0;
*/
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). purely virtual func
\param data pointer to the memory to be analyzed
\param ndata reference to the amount of data found for the frame, in case the frame is incomplete at the end of the memory slot
\param dsize size of the memory slot to be analyzed
\returns pointer to the beginning of the last good frame (might be incomplete if ndata smaller than dataSize), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize)=0;
/**
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param filebin input file stream (binary)
\returns pointer to the begin of the last good frame, NULL if no frame is found or last frame is incomplete
*/
virtual char *readNextFrame(ifstream &filebin)=0;
};
#endif

View File

@ -0,0 +1,238 @@
#ifndef SLSRECEIVERDATA_H
#define SLSRECEIVERDATA_H
#include "slsDetectorData.h"
#include <cstring>
#include <stdlib.h> // exit()
template <class dataType>
class slsReceiverData : public slsDetectorData<dataType> {
public:
/**
slsReceiver data structure. Works for data acquired using the slsDetectorReceiver subdivided in different packets with headers and footers.
Inherits and implements slsDetectorData.
Constructor (no error checking if datasize and offsets are compatible!)
\param npx number of pixels in the x direction
\param npy number of pixels in the y direction (1 for strips)
\param np number of packets
\param psize packets size
\param dMap array of size nx*ny storing the pointers to the data in the dataset (as offset)
\param dMask Array of size nx*ny storing the polarity of the data in the dataset (should be 0 if no inversion is required, 0xffffffff is inversion is required)
\param dROI Array of size nx*ny. The elements are 1s if the channel is good or in the ROI, 0 is bad or out of the ROI. NULL (default) means all 1s.
*/
slsReceiverData(int npx, int npy, int np, int psize, int **dMap=NULL, dataType **dMask=NULL, int **dROI=NULL): slsDetectorData<dataType>(npx, npy, np*psize, dMap, dMask, dROI), nPackets(np), packetSize(psize) {};
/**
Returns the frame number for the given dataset. Virtual func: works for slsDetectorReceiver data (also for each packet), but can be overloaded.
\param buff pointer to the dataset
\returns frame number
*/
virtual int getFrameNumber(char *buff){return ((*(int*)buff)&(0xffffff00))>>8;};
/**
Returns the packet number for the given dataset. Virtual func: works for slsDetectorReceiver packets, but can be overloaded.
\param buff pointer to the dataset
\returns packet number number
*/
virtual int getPacketNumber(char *buff){return (*(int*)buff)&0xff;};
/**
Loops over a memory slot until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param data pointer to the memory to be analyzed
\param ndata size of frame returned
\param dsize size of the memory slot to be analyzed
\returns pointer to the first packet of the last good frame (might be incomplete if npackets lower than the number of packets), or NULL if no frame is found
*/
virtual char *findNextFrame(char *data, int &ndata, int dsize) {
char *retval=NULL, *p=data;
int dd=0;
int fn, fnum=-1, np=0, pnum=-1;
while (dd<=(dsize-packetSize)) {
pnum=getPacketNumber(p);
fn=getFrameNumber(p);
//cout <<"fnum:"<<fn<<" pnum:"<<pnum<<" np:"<< np << "\t";
if (pnum<1 || pnum>nPackets) {
//cout << "Bad packet number " << pnum << " frame "<< fn << endl;
retval=NULL;
np=0;
} else if (pnum==1) {
retval=p;
if (np>0)
/*cout << "*Incomplete frame number " << fnum << endl;*/
np=0;
fnum=fn;
} else if (fn!=fnum) {
if (fnum!=-1) {
/* cout << " **Incomplete frame number " << fnum << " pnum " << pnum << " " << getFrameNumber(p) << endl;*/
retval=NULL;
}
np=0;
}
p+=packetSize;
dd+=packetSize;
np++;
//cout <<"fnum:"<<fn<<" pnum:"<<pnum<<" np:"<< np << "\t";
// cout << pnum << " " << fn << " " << np << " " << dd << " " << dsize << endl;
if (np==nPackets){
if (pnum==nPackets) {
//cprintf(BG_GREEN, "Frame Found\n");
// cout << "Frame found!" << endl;
break;
} else {
//cprintf(BG_RED, "Too many packets for this frame! fnum:%d, pnum:%d np:%d\n",fnum,pnum,np);
cout << "Too many packets for this frame! "<< fnum << " " << pnum << endl;//cprintf(BG_RED,"Exiting\n");exit(-1);
retval=NULL;
}
}
}
if (np<nPackets) {
if (np>0){
//cprintf(BG_RED, "Too few packets for this frame! fnum:%d, pnum:%d np:%d\n",fnum,pnum,np);
cout << "Too few packets for this frame! "<< fnum << " " << pnum << " " << np <<endl;//cprintf(BG_RED,"Exiting\n");exit(-1);
}
}
ndata=np*packetSize;
// cout << "return " << ndata << endl;
return retval;
};
/**
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param filebin input file stream (binary)
\returns pointer to the first packet of the last good frame, NULL if no frame is found or last frame is incomplete
*/
virtual char *readNextFrame(ifstream &filebin) {
char *data=new char[packetSize*nPackets];
char *retval=0;
int np=0, nd;
if (filebin.is_open()) {
while (filebin.read(data+np*packetSize,packetSize)) {
if (np==(nPackets-1)) {
retval=findNextFrame(data,nd,packetSize*nPackets);
np=nd/packetSize;
// cout << np << endl;
if (retval==data && np==nPackets) {
// cout << "-" << endl;
return data;
} else if (np>nPackets) {
cout << "too many packets!!!!!!!!!!" << endl;
delete [] data;
return NULL;
} else if (retval!=NULL) {
// cout << "+" << endl;;
for (int ip=0; ip<np; ip++)
memcpy(data+ip*packetSize,retval+ip*packetSize,packetSize);
}
} else if (np>nPackets) {
cout << "*******too many packets!!!!!!!!!!" << endl;
delete [] data;
return NULL;
} else {
// cout << "." << endl;;
np++;
}
}
}
delete [] data;
return NULL;
};
/**
Loops over a file stream until a complete frame is found (i.e. all packets 0 to nPackets, same frame number). Can be overloaded for different kind of detectors!
\param filebin input file stream (binary)
\param fnum frame number of frame returned
\returns pointer to the first packet of the last good frame, NULL if no frame is found or last frame is incomplete
*/
virtual char *readNextFrame(ifstream &filebin, int& fnum) {
char *data=new char[packetSize*nPackets];
char *retval=0;
int np=0, nd;
fnum = -1;
if (filebin.is_open()) {
while (filebin.read(data+np*packetSize,packetSize)) {
if (np==(nPackets-1)) {
fnum=getFrameNumber(data); //cout << "fnum:"<<fnum<<endl;
retval=findNextFrame(data,nd,packetSize*nPackets);
np=nd/packetSize;
// cout << np << endl;
if (retval==data && np==nPackets) {
// cout << "-" << endl;
return data;
} else if (np>nPackets) {
cout << "too many packets!!!!!!!!!!" << endl;
delete [] data;
return NULL;
} else if (retval!=NULL) {
// cout << "+" << endl;;
for (int ip=0; ip<np; ip++)
memcpy(data+ip*packetSize,retval+ip*packetSize,packetSize);
}
} else if (np>nPackets) {
cout << "*******too many packets!!!!!!!!!!" << endl;
delete [] data;
return NULL;
} else {
// cout << "." << endl;;
np++;
//cout<<"np:"<<np<<endl;
}
}
}
delete [] data;
return NULL;
};
virtual int* readNextFramewithMissingPackets(ifstream &filebin, int& fnum) {return NULL;}
virtual void getChannelArray(double* data, char* buffer){};
virtual int* readNextFrameOnlyData(ifstream &filebin, int& fnum) {return NULL;};
virtual int* decodeData(int* datain) {return NULL;};
virtual int getPacketNumber(int x, int y) {return 0;};
protected:
const int nPackets; /**<number of UDP packets constituting one frame */
const int packetSize; /**< size of a udp packet */
};
#endif

View File

@ -0,0 +1,85 @@
# If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in
# documentation are documented, even if no documentation was available.
# Private class members and static file members will be hidden unless
# the EXTRACT_PRIVATE and EXTRACT_STATIC tags are set to YES
EXTRACT_ALL = YES
# If the EXTRACT_PRIVATE tag is set to YES all private members of a class
# will be included in the documentation.
EXTRACT_PRIVATE = NO
# If the EXTRACT_STATIC tag is set to YES all static members of a file
# will be included in the documentation.
EXTRACT_STATIC = YES
# If the EXTRACT_LOCAL_CLASSES tag is set to YES classes (and structs)
# defined locally in source files will be included in the documentation.
# If set to NO only classes defined in header files are included.
EXTRACT_LOCAL_CLASSES = YES
# This flag is only useful for Objective-C code. When set to YES local
# methods, which are defined in the implementation section but not in
# the interface are included in the documentation.
# If set to NO (the default) only methods in the interface are included.
EXTRACT_LOCAL_METHODS = YES
# If this flag is set to YES, the members of anonymous namespaces will be
# extracted and appear in the documentation as a namespace called
# 'anonymous_namespace{file}', where file will be replaced with the base
# name of the file that contains the anonymous namespace. By default
# anonymous namespace are hidden.
EXTRACT_ANON_NSPACES = NO
# If the HIDE_UNDOC_MEMBERS tag is set to YES, Doxygen will hide all
# undocumented members of documented classes, files or namespaces.
# If set to NO (the default) these members will be included in the
# various overviews, but no documentation section is generated.
# This option has no effect if EXTRACT_ALL is enabled.
HIDE_UNDOC_MEMBERS = NO
# If the HIDE_UNDOC_CLASSES tag is set to YES, Doxygen will hide all
# undocumented classes that are normally visible in the class hierarchy.
# If set to NO (the default) these classes will be included in the various
# overviews. This option has no effect if EXTRACT_ALL is enabled.
HIDE_UNDOC_CLASSES = NO
# If the HIDE_FRIEND_COMPOUNDS tag is set to YES, Doxygen will hide all
# friend (class|struct|union) declarations.
# If set to NO (the default) these declarations will be included in the
# documentation.
HIDE_FRIEND_COMPOUNDS = NO
INTERNAL_DOCS = NO
SHOW_INCLUDE_FILES = NO
SHOW_FILES = NO
SHOW_NAMESPACES = NO
COMPACT_LATEX = YES
PAPER_TYPE = a4
PDF_HYPERLINKS = YES
USE_PDFLATEX = YES
LATEX_HIDE_INDICES = YES
PREDEFINED = __cplusplus
INPUT = MovingStat.h slsDetectorData.h slsReceiverData.h moench02ModuleData.h pedestalSubtraction.h commonModeSubtraction.h moenchCommonMode.h singlePhotonDetector.h energyCalibration.h moenchReadData.C single_photon_hit.h chiptestBoardData.h jungfrau02Data.h jungfrauReadData.C jungfrau02CommonMode.h
OUTPUT_DIRECTORY = docs

View File

@ -0,0 +1,462 @@
#ifndef ENERGYCALIBRATION_H
#define ENERGYCALIBRATION_H
#ifdef __CINT__
#define MYROOT
#endif
#ifdef G__ROOT
#define MYROOT
#endif
#ifdef __MAKECINT__
#define MYROOT
#endif
#ifdef ROOT_VERSION
#define MYROOT
#endif
#define MYROOT
#ifdef MYROOT
#include <TROOT.h>
#include <TF1.h>
class TH1F;
class TH2F;
class TGraphErrors;
#endif
using namespace std;
const double conven=1000./3.6; /**< electrons/keV */
const double el=1.67E-4; /**< electron charge in fC */
/**
\mainpage Common Root library for SLS detectors data analysis
*
* \section intro_sec Introduction
We know very well s-curves etc. but at the end everybody uses different functions ;-).
* \subsection mot_sec Motivation
It would be greate to use everybody the same functions...
*/
/**
*
*
@libdoc The energiCalibration class contains all the necessary functions for s-curve fitting and linear calibration of the threshold.
*
* @short Energy calibration functions
* @author Anna Bergamaschi
* @version 0.1alpha
*/
/**
class containing all the possible energy calibration functions (scurves with and without charge sharing, gaussian spectrum with and without charge sharing, possibility of chosing the sign of the X-axis)
*/
class energyCalibrationFunctions {
public:
energyCalibrationFunctions(int s=-1) {setScanSign(s);};
/** sets scan sign
\param s can be 1 (energy and x-axis have the same direction) or -1 (energy and x-axis have opposite directions) otherwise gets
\returns current scan sign can be 1 (energy and x-axis have the same direction) or -1 (energy and x-axis have opposite directions)
*/
int setScanSign(int s=0) {if (s==1 || s==-1) sign=s; return sign;};;
#ifdef MYROOT
/**
Gaussian Function with charge sharing pedestal
par[0] is the absolute height of the background pedestal
par[1] is the slope of the background pedestal
*/
Double_t pedestal(Double_t *x, Double_t *par);
/**
Gaussian Function with charge sharing pedestal
par[0] is the absolute height of the background pedestal
par[1] is the slope of the background pedestal
par[2] is the gaussian peak position
par[3] is the RMS of the gaussian (and of the pedestal)
par[4] is the height of the function
par[5] is the fractional height of the charge sharing pedestal (scales with par[3])
*/
Double_t gaussChargeSharing(Double_t *x, Double_t *par);
/**
Gaussian Function with charge sharing pedestal
par[0] is the absolute height of the background pedestal
par[1] is the slope of the background pedestal
par[2] is the gaussian peak position
par[3] is the RMS of the gaussian (and of the pedestal)
par[4] is the height of the function
par[5] is the fractional height of the charge sharing pedestal (scales with par[3])
*/
Double_t gaussChargeSharingPixel(Double_t *x, Double_t *par);
/**
Basic erf function
par[0] is the inflection point
par[1] is the RMS
par[2] is the amplitude
*/
Double_t erfFunction(Double_t *x, Double_t *par) ;
Double_t erfBox(Double_t *z, Double_t *par);
/** Erf function with charge sharing slope
par[0] is the pedestal
par[1] is the slope of the pedestal
par[2] is the inflection point
par[3] is the RMS
par[4] is the amplitude
par[5] is the angual coefficient of the charge sharing slope (scales with par[3])
*/
Double_t erfFunctionChargeSharing(Double_t *x, Double_t *par);
/** Double Erf function with charge sharing slope
par[0] is the pedestal
par[1] is the slope of the pedestal
par[2] is the inflection point of the first energy
par[3] is the RMS of the first energy
par[4] is the amplitude of the first energy
par[5] is the angual coefficient of the charge sharing slope of the first energy (scales with par[3])
par[6] is the inflection point of the second energy
par[7] is the RMS of the second energy
par[8] is the amplitude of the second energy
par[9] is the angual coefficient of the charge sharing slope of the second energy (scales with par[8])
*/
Double_t erfFuncFluo(Double_t *x, Double_t *par);
/**
static function Gaussian with charge sharing pedestal with the correct scan sign
par[0] is the absolute height of the background pedestal
par[1] is the slope of the pedestal
par[2] is the gaussian peak position
par[3] is the RMS of the gaussian (and of the pedestal)
par[4] is the height of the function
par[5] is the fractional height of the charge sharing pedestal (scales with par[4]
*/
Double_t spectrum(Double_t *x, Double_t *par);
/**
static function Gaussian with charge sharing pedestal with the correct scan sign
par[0] is the absolute height of the background pedestal
par[1] is the slope of the pedestal
par[2] is the gaussian peak position
par[3] is the RMS of the gaussian (and of the pedestal)
par[4] is the height of the function
par[5] is the fractional height of the charge sharing pedestal (scales with par[4]
*/
Double_t spectrumPixel(Double_t *x, Double_t *par);
/** Erf function with charge sharing slope with the correct scan sign
par[0] is the pedestal
par[1] is the slope of the pedestal
par[2] is the inflection point
par[3] is the RMS
par[4] is the amplitude
par[5] is the angual coefficient of the charge sharing slope (scales with par[3])
*/
Double_t scurve(Double_t *x, Double_t *par);
/** Double Erf function with charge sharing slope
par[0] is the pedestal
par[1] is the slope of the pedestal
par[2] is the inflection point of the first energy
par[3] is the RMS of the first energy
par[4] is the amplitude of the first energy
par[5] is the angual coefficient of the charge sharing slope of the first energy (scales with par[3])
par[6] is the inflection point of the second energy
par[7] is the RMS of the second energy
par[8] is the amplitude of the second energy
par[9] is the angual coefficient of the charge sharing slope of the second energy (scales with par[8])
*/
Double_t scurveFluo(Double_t *x, Double_t *par);
#endif
/** Calculates the median of an array of n elements */
static double median(double *x, int n);
/** Calculates the median of an array of n elements (swaps the arrays!)*/
static int quick_select(int arr[], int n);
/** Calculates the median of an array of n elements (swaps the arrays!)*/
static int kth_smallest(int *a, int n, int k);
private:
int sign;
};
/**
class alowing the energy calibration of photon counting and anlogue detectors
*/
class energyCalibration {
public:
/**
default constructor - creates the function with which the s-curves will be fitted
*/
energyCalibration();
/**
default destructor - deletes the function with which the s-curves will be fitted
*/
~energyCalibration();
/** sets plot flag
\param p plot flag (-1 gets, 0 unsets, >0 plot)
\returns current plot flag
*/
int setPlotFlag(int p=-1) {if (p>=0) plot_flag=p; return plot_flag;};
/** sets scan sign
\param s can be 1 (energy and x-axis have the same direction) or -1 (energy and x-axis have opposite directions) otherwise gets
\returns current scan sign can be 1 (energy and x-axis have the same direction) or -1 (energy and x-axis have opposite directions)
*/
int setScanSign(int s=0) {return funcs->setScanSign(s);};
/** sets plot flag
\param p plot flag (-1 gets, 0 unsets, >0 plot)
\returns current plot flag
*/
int setChargeSharing(int p=-1);
void fixParameter(int ip, Double_t val);
void releaseParameter(int ip);
#ifdef MYROOT
/**
Creates an histogram with the median of nchannels starting from a specified one. the direction on which it is mediated can be selected (defaults to x=0)
\param h2 2D histogram on which the median will be calculated
\param ch0 starting channel
\param nch number of channels to be mediated
\param direction can be either 0 (x, default) or 1 (y)
\returns a TH1F histogram with the X-axis as a clone of the h2 Y (if direction=0) or X (if direction=0) axis, and on the Y axis the median of the counts of the mediated channels f h2
*/
static TH1F* createMedianHistogram(TH2F* h2, int ch0, int nch, int direction=0);
/** sets the s-curve fit range
\param mi minimum of the fit range (-1 is histogram x-min)
\param ma maximum of the fit range (-1 is histogram x-max)
*/
void setFitRange(Double_t mi, Double_t ma){fit_min=mi; fit_max=ma;};
/** gets the s-curve fit range
\param mi reference for minimum of the fit range (-1 is histogram x-min)
\param ma reference for maximum of the fit range (-1 is histogram x-max)
*/
void getFitRange(Double_t &mi, Double_t &ma){mi=fit_min; ma=fit_max;};
/** set start parameters for the s-curve function
\param par parameters, -1 sets to auto-calculation
par[0] is the pedestal
par[1] is the slope of the pedestal
par[2] is the inflection point
par[3] is the RMS
par[4] is the amplitude
par[5] is the angual coefficient of the charge sharing slope (scales with par[3]) -- always positive
*/
void setStartParameters(Double_t *par);
/** get start parameters for the s-curve function
\param par parameters, -1 means auto-calculated
par[0] is the pedestal
par[1] is the slope of the pedestal
par[2] is the inflection point
par[3] is the RMS
par[4] is the amplitude
par[5] is the angual coefficient of the charge sharing slope (scales with par[3]) -- always positive
*/
void getStartParameters(Double_t *par);
/**
fits histogram with the s-curve function
\param h1 1d-histogram to be fitted
\param mypar pointer to fit parameters array
\param emypar pointer to fit parameter errors
\returns the fitted function - can be used e.g. to get the Chi2 or similar
*/
TF1 *fitSCurve(TH1 *h1, Double_t *mypar, Double_t *emypar);
/**
fits histogram with the spectrum
\param h1 1d-histogram to be fitted
\param mypar pointer to fit parameters array
\param emypar pointer to fit parameter errors
\returns the fitted function - can be used e.g. to get the Chi2 or similar
*/
TF1 *fitSpectrum(TH1 *h1, Double_t *mypar, Double_t *emypar);
/**
fits histogram with the spectrum
\param h1 1d-histogram to be fitted
\param mypar pointer to fit parameters array
\param emypar pointer to fit parameter errors
\returns the fitted function - can be used e.g. to get the Chi2 or similar
*/
TF1 *fitSpectrumPixel(TH1 *h1, Double_t *mypar, Double_t *emypar);
/**
calculates gain and offset for the set of inflection points
\param nscan number of energy scans
\param en array of energies (nscan long)
\param een array of errors on energies (nscan long) - can be NULL!
\param fl array of inflection points (nscan long)
\param efl array of errors on the inflection points (nscan long)
\param gain reference to gain resulting from the fit
\param off reference to offset resulting from the fit
\param egain reference to error on the gain resulting from the fit
\param eoff reference to the error on the offset resulting from the fit
\returns graph energy vs inflection point
*/
TGraphErrors* linearCalibration(int nscan, Double_t *en, Double_t *een, Double_t *fl, Double_t *efl, Double_t &gain, Double_t &off, Double_t &egain, Double_t &eoff);
/**
calculates gain and offset for the set of energy scans
\param nscan number of energy scans
\param en array of energies (nscan long)
\param een array of errors on energies (nscan long) - can be NULL!
\param h1 array of TH1
\param gain reference to gain resulting from the fit
\param off reference to offset resulting from the fit
\param egain reference to error on the gain resulting from the fit
\param eoff reference to the error on the offset resulting from the fit
\returns graph energy vs inflection point
*/
TGraphErrors* calibrateScurves(int nscan, Double_t *en, Double_t *een, TH1F **h1, Double_t &gain, Double_t &off, Double_t &egain, Double_t &eoff){return calibrate(nscan, en, een, h1, gain, off, egain, eoff, 1);};
/**
calculates gain and offset for the set of energy spectra
\param nscan number of energy scans
\param en array of energies (nscan long)
\param een array of errors on energies (nscan long) - can be NULL!
\param h1 array of TH1
\param gain reference to gain resulting from the fit
\param off reference to offset resulting from the fit
\param egain reference to error on the gain resulting from the fit
\param eoff reference to the error on the offset resulting from the fit
\returns graph energy vs peak
*/
TGraphErrors* calibrateSpectra(int nscan, Double_t *en, Double_t *een, TH1F **h1, Double_t &gain, Double_t &off, Double_t &egain, Double_t &eoff){return calibrate(nscan, en, een, h1, gain, off, egain, eoff, 0);};
#endif
private:
#ifdef MYROOT
/**
calculates gain and offset for the set of energies
\param nscan number of energy scans
\param en array of energies (nscan long)
\param een array of errors on energies (nscan long) - can be NULL!
\param h1 array of TH1
\param gain reference to gain resulting from the fit
\param off reference to offset resulting from the fit
\param egain reference to error on the gain resulting from the fit
\param eoff reference to the error on the offset resulting from the fit
\param integral 1 is an s-curve set (default), 0 spectra
\returns graph energy vs peak/inflection point
*/
TGraphErrors* calibrate(int nscan, Double_t *en, Double_t *een, TH1F **h1, Double_t &gain, Double_t &off, Double_t &egain, Double_t &eoff, int integral=1);
/**
Initializes the start parameters and the range of the fit depending on the histogram characteristics and/or on the start parameters specified by the user
\param fun pointer to function to be initialized
\param h1 histogram from which to extract the range and start parameters, if not already specified by the user
*/
void initFitFunction(TF1 *fun, TH1 *h1);
/**
Performs the fit according to the flags specified and returns the fitted function
\param fun function to fit
\param h1 histogram to fit
\param mypar pointer to fit parameters array
\param emypar pointer to fit parameter errors
\returns the fitted function - can be used e.g. to get the Chi2 or similar
*/
TF1 *fitFunction(TF1 *fun, TH1 *h1, Double_t *mypar, Double_t *emypar);
#endif
#ifdef MYROOT
Double_t fit_min; /**< minimum of the s-curve fitting range, -1 is histogram x-min */
Double_t fit_max; /**< maximum of the s-curve fitting range, -1 is histogram x-max */
Double_t bg_offset; /**< start value for the background pedestal */
Double_t bg_slope; /**< start value for the background slope */
Double_t flex; /**< start value for the inflection point */
Double_t noise; /**< start value for the noise */
Double_t ampl; /**< start value for the number of photons */
Double_t cs_slope; /**< start value for the charge sharing slope */
TF1 *fscurve; /**< function with which the s-curve will be fitted */
TF1 *fspectrum; /**< function with which the spectrum will be fitted */
TF1 *fspixel; /**< function with which the spectrum will be fitted */
#endif
energyCalibrationFunctions *funcs;
int plot_flag; /**< 0 does not plot, >0 plots (flags?) */
int cs_flag; /**< 0 functions without charge sharing contribution, >0 with charge sharing contribution */
};
#endif

View File

@ -0,0 +1,14 @@
slsReceiver --rx_tcpport 1954 &
slsReceiver --rx_tcpport 1955 &
./gotthard25umZmq pc8829 30003 129.129.202.98 40003 &
slsDetectorGui -f examples/bchip2modules_pc8829.config &
sls_detector_put settings veryhighgain
sls_detector_put exptime 0.000005
sls_detector_put period 0.01
sls_detector_put vhighvoltage 90

View File

@ -0,0 +1,275 @@
#ifndef INTERPOLATINGDETECTOR_H
#define INTERPOLATINGDETECTOR_H
#include "singlePhotonDetector.h"
#include "slsInterpolation.h"
//#define M015
#ifdef MYROOT1
#include <TTree.h>
#endif
#include <iostream>
using namespace std;
class interpolatingDetector : public singlePhotonDetector {
/** @short class to perform pedestal subtraction etc. and find single photon clusters for an analog detector */
public:
/**
Constructor (no error checking if datasize and offsets are compatible!)
\param d detector data structure to be used
\param csize cluster size (should be an odd number). Defaults to 3
\param nsigma number of rms to discriminate from the noise. Defaults to 5
\param sign 1 if photons are positive, -1 if negative
\param cm common mode subtraction algorithm, if any. Defaults to NULL i.e. none
\param nped number of samples for pedestal averaging
\param nd number of dark frames to average as pedestals without photon discrimination at the beginning of the measurement
*/
interpolatingDetector(slsDetectorData<uint16_t> *d, slsInterpolation *inte,
double nsigma=5,
int sign=1,
commonModeSubtraction *cm=NULL,
int nped=1000,
int nd=100, int nnx=-1, int nny=-1) :
singlePhotonDetector(d, 3,nsigma,sign, cm, nped, nd, nnx, nny) , interp(inte), id(0) {
//cout << "**"<< xmin << " " << xmax << " " << ymin << " " << ymax << endl;
fi=new pthread_mutex_t ;
};
interpolatingDetector(interpolatingDetector *orig) : singlePhotonDetector(orig) {
// if (orig->interp)
// interp=(orig->interp)->Clone();
// else
interp=orig->interp;
id=orig->id;
fi=orig->fi;
}
virtual interpolatingDetector *Clone() {
return new interpolatingDetector(this);
}
virtual int setId(int i) {
id=i;
// interp->setId(id);
return id;
};
virtual void prepareInterpolation(int &ok) {
/* cout << "*"<< endl; */
/* #ifdef SAVE_ALL */
/* char tit[1000]; */
/* sprintf(tit,"/scratch/ped_%d.tiff",id); */
/* writePedestals(tit); */
/* sprintf(tit,"/scratch/ped_rms_%d.tiff",id); */
/* writePedestalRMS(tit); */
/* if (gmap) { */
/* sprintf(tit,"/scratch/gmap_%d.tiff",id); */
/* writeGainMap(tit); */
/* } */
/* #endif */
if (interp){
pthread_mutex_lock(fi);
interp->prepareInterpolation(ok);
pthread_mutex_unlock(fi);
}
}
void clearImage() {
if (interp) {
pthread_mutex_lock(fi);
interp->clearInterpolatedImage();
pthread_mutex_unlock(fi);
} else
singlePhotonDetector::clearImage();
};
int getImageSize(int &nnx, int &nny, int &ns) {
if (interp)
return interp->getImageSize(nnx, nny, ns);
else
return analogDetector<uint16_t>::getImageSize(nnx, nny, ns);
};
#ifdef MYROOT1
virtual TH2F *getImage()
#endif
#ifndef MYROOT1
virtual int *getImage()
#endif
{
// cout << "image " << endl;
if (interp)
return interp->getInterpolatedImage();
else
return analogDetector<uint16_t>::getImage();
}
#ifdef MYROOT1
virtual TH2F *addToInterpolatedImage(char *data, int *val, int &nph)
#endif
#ifndef MYROOT1
virtual int *addToInterpolatedImage(char *data, int *val, int &nph)
#endif
{
nph=addFrame(data,val,0);
if (interp)
return interp->getInterpolatedImage();
else
singlePhotonDetector::getImage();
//return NULL;
};
#ifdef MYROOT1
virtual TH2F *addToFlatField(char *data, int *val, int &nph)
#endif
#ifndef MYROOT1
virtual int *addToFlatField(char *data, int *val, int &nph)
#endif
{
nph=addFrame(data,val,1);
if (interp)
return interp->getFlatField();
else
return NULL;
};
void *writeImage(const char * imgname) {
// cout << id << "=" << imgname<< endl;
if (interp)
interp->writeInterpolatedImage(imgname);
else
analogDetector<uint16_t>::writeImage(imgname);
return NULL;
}
int addFrame(char *data, int *ph=NULL, int ff=0) {
singlePhotonDetector::processData(data,ph);
int nph=0;
double int_x, int_y;
double eta_x, eta_y;
if (interp) {
// cout << "int" << endl;
pthread_mutex_lock(fi);
for (nph=0; nph<nphFrame; nph++) {
if (ff) {
interp->addToFlatField((clusters+nph)->quadTot,(clusters+nph)->quad,(clusters+nph)->get_cluster(),eta_x, eta_y);
} else {
interp->getInterpolatedPosition((clusters+nph)->x, (clusters+nph)->y, (clusters+nph)->quadTot,(clusters+nph)->quad,(clusters+nph)->get_cluster(),int_x, int_y);
interp->addToImage(int_x, int_y);
}
}
pthread_mutex_unlock(fi);
}
return nphFrame;
};
virtual void processData(char *data, int *val=NULL) {
switch (dMode) {
case eAnalog:
// cout << "an" << endl;
analogDetector<uint16_t>::processData(data,val);
break;
case ePhotonCounting:
// cout << "spc" << endl;
singlePhotonDetector::processData(data,val);
break;
default:
//cout << "int" << endl;
switch(fMode) {
case ePedestal:
addToPedestal(data);
break;
case eFlat:
if (interp)
addFrame(data,val,1);
else
singlePhotonDetector::processData(data,val);
break;
default:
if (interp)
addFrame(data,val,0);
else
singlePhotonDetector::processData(data,val);
}
}
};
virtual slsInterpolation *getInterpolation(){
return interp;
};
virtual slsInterpolation *setInterpolation(slsInterpolation *ii){
int ok;
interp=ii;
/* pthread_mutex_lock(fi);
if (interp)
interp->prepareInterpolation(ok);
pthread_mutex_unlock(fi); */
// cout << "det" << endl;
return interp;
};
virtual void resetFlatField() { if (interp) {
pthread_mutex_lock(fi);
interp->resetFlatField();
pthread_mutex_unlock(fi);
}
}
virtual int getNSubPixels(){ if (interp) return interp->getNSubPixels(); else return 1;}
virtual int setNSubPixels(int ns) {
if (interp) {
pthread_mutex_lock(fi);
interp->getNSubPixels();
pthread_mutex_unlock(fi);
}
return getNSubPixels();
}
protected:
slsInterpolation *interp;
int id;
pthread_mutex_t *fi;
};
#endif

View File

@ -0,0 +1,403 @@
#ifndef ETA2_INTERPOLATION_BASE_H
#define ETA2_INTERPOLATION_BASE_H
#ifdef MYROOT1
#include <TObject.h>
#include <TTree.h>
#include <TH2D.h>
#include <TH2F.h>
#endif
#include "etaInterpolationBase.h"
class eta2InterpolationBase : public virtual etaInterpolationBase {
public:
eta2InterpolationBase(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny, ns, nb, emin, emax) {
/* if (etamin>=etamax) { */
/* etamin=-1; */
/* etamax=2; */
/* // cout << ":" <<endl; */
/* } */
/* etastep=(etamax-etamin)/nbeta; */
};
eta2InterpolationBase(eta2InterpolationBase *orig): etaInterpolationBase(orig){ };
//////////////////////////////////////////////////////////////////////////////
//////////// /*It return position hit for the event in input */ //////////////
virtual void getInterpolatedPosition(int x, int y, int *data, double &int_x, double &int_y)
{
double sDum[2][2];
double tot, totquad;
double etax,etay;
int corner;
corner=calcQuad(data, tot, totquad, sDum);
if (nSubPixels>2)
calcEta(totquad, sDum, etax, etay);
getInterpolatedPosition(x,y,etax,etay,corner,int_x,int_y);
return;
};
virtual void getInterpolatedPosition(int x, int y, double *data, double &int_x, double &int_y)
{
double sDum[2][2];
double tot, totquad;
double etax,etay;
int corner;
corner=calcQuad(data, tot, totquad, sDum);
if (nSubPixels>2)
calcEta(totquad, sDum, etax, etay);
getInterpolatedPosition(x,y,etax,etay,corner,int_x,int_y);
return;
};
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,double *cl,double &int_x, double &int_y) {
double cc[2][2];
int xoff, yoff;
switch (quad) {
case BOTTOM_LEFT:
xoff=0;
yoff=0;
break;
case BOTTOM_RIGHT:
xoff=1;
yoff=0;
break;
case TOP_LEFT:
xoff=0;
yoff=1;
break;
case TOP_RIGHT:
xoff=1;
yoff=1;
break;
default:
;
}
double etax, etay;
if (nSubPixels>2) {
cc[0][0]=cl[xoff+3*yoff];
cc[1][0]=cl[xoff+3*(yoff+1)];
cc[0][1]=cl[xoff+1+3*yoff];
cc[1][1]=cl[xoff+1+3*(yoff+1)];
calcEta(totquad,cc,etax,etay);
}
return getInterpolatedPosition(x,y,etax, etay,quad,int_x,int_y);
}
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,int *cl,double &int_x, double &int_y) {
double cc[2][2];
int xoff, yoff;
switch (quad) {
case BOTTOM_LEFT:
xoff=0;
yoff=0;
break;
case BOTTOM_RIGHT:
xoff=1;
yoff=0;
break;
case TOP_LEFT:
xoff=0;
yoff=1;
break;
case TOP_RIGHT:
xoff=1;
yoff=1;
break;
default:
;
}
double etax, etay;
if (nSubPixels>2) {
cc[0][0]=cl[xoff+3*yoff];
cc[1][0]=cl[xoff+3*(yoff+1)];
cc[0][1]=cl[xoff+1+3*yoff];
cc[1][1]=cl[xoff+1+3*(xoff+1)];
calcEta(totquad,cc,etax,etay);
}
return getInterpolatedPosition(x,y,etax, etay,quad,int_x,int_y);
}
virtual void getInterpolatedPosition(int x, int y, double etax, double etay, int corner, double &int_x, double &int_y)
{
double xpos_eta=0,ypos_eta=0;
double dX,dY;
int ex,ey;
switch (corner)
{
case TOP_LEFT:
dX=-1.;
dY=0;
break;
case TOP_RIGHT:
;
dX=0;
dY=0;
break;
case BOTTOM_LEFT:
dX=-1.;
dY=-1.;
break;
case BOTTOM_RIGHT:
dX=0;
dY=-1.;
break;
default:
cout << "bad quadrant" << endl;
dX=0.;
dY=0.;
}
if (nSubPixels>2) {
ex=(etax-etamin)/etastep;
ey=(etay-etamin)/etastep;
if (ex<0) {
cout << "x*"<< ex << endl;
ex=0;
}
if (ex>=nbeta) {
cout << "x?"<< ex << endl;
ex=nbeta-1;
}
if (ey<0) {
cout << "y*"<< ey << endl;
ey=0;
}
if (ey>=nbeta) {
cout << "y?"<< ey << endl;
ey=nbeta-1;
}
xpos_eta=(((double)hhx[(ey*nbeta+ex)]))+dX ;///((double)nSubPixels);
ypos_eta=(((double)hhy[(ey*nbeta+ex)]))+dY ;///((double)nSubPixels);
} else {
xpos_eta=0.5*dX+0.25;
ypos_eta=0.5*dY+0.25;
}
int_x=((double)x) + xpos_eta+0.5;
int_y=((double)y) + ypos_eta+0.5;
}
virtual int addToFlatField(double totquad,int quad,int *cl,double &etax, double &etay) {
double cc[2][2];
int xoff, yoff;
switch (quad) {
case BOTTOM_LEFT:
xoff=0;
yoff=0;
break;
case BOTTOM_RIGHT:
xoff=1;
yoff=0;
break;
case TOP_LEFT:
xoff=0;
yoff=1;
break;
case TOP_RIGHT:
xoff=1;
yoff=1;
break;
default:
;
}
cc[0][0]=cl[xoff+3*yoff];
cc[1][0]=cl[xoff+3*(yoff+1)];
cc[0][1]=cl[xoff+1+3*yoff];
cc[1][1]=cl[xoff+1+3*(yoff+1)];
//calcMyEta(totquad,quad,cl,etax, etay);
calcEta(totquad, cc,etax, etay);
// cout <<"******"<< etax << " " << etay << endl;
return addToFlatField(etax,etay);
}
virtual int addToFlatField(double totquad,int quad,double *cl,double &etax, double &etay) {
double cc[2][2];
int xoff, yoff;
switch (quad) {
case BOTTOM_LEFT:
xoff=0;
yoff=0;
break;
case BOTTOM_RIGHT:
xoff=1;
yoff=0;
break;
case TOP_LEFT:
xoff=0;
yoff=1;
break;
case TOP_RIGHT:
xoff=1;
yoff=1;
break;
default:
;
}
cc[0][0]=cl[xoff+3*yoff];
cc[1][0]=cl[(yoff+1)*3+xoff];
cc[0][1]=cl[yoff*3+xoff+1];
cc[1][1]=cl[(yoff+1)*3+xoff+1];
/* cout << cl[0] << " " << cl[1] << " " << cl[2] << endl; */
/* cout << cl[3] << " " << cl[4] << " " << cl[5] << endl; */
/* cout << cl[6] << " " << cl[7] << " " << cl[8] << endl; */
/* cout <<"******"<<totquad << " " << quad << endl; */
/* cout << cc[0][0]<< " " << cc[0][1] << endl; */
/* cout << cc[1][0]<< " " << cc[1][1] << endl; */
//calcMyEta(totquad,quad,cl,etax, etay);
calcEta(totquad, cc,etax, etay);
// cout <<"******"<< etax << " " << etay << endl;
return addToFlatField(etax,etay);
}
//////////////////////////////////////////////////////////////////////////////////////
virtual int addToFlatField(double *cluster, double &etax, double &etay){
double sDum[2][2];
double tot, totquad;
int corner;
corner=calcQuad(cluster, tot, totquad, sDum);
double xpos_eta,ypos_eta;
double dX,dY;
calcEta(totquad, sDum, etax, etay);
return addToFlatField(etax,etay);
};
virtual int addToFlatField(int *cluster, double &etax, double &etay){
double sDum[2][2];
double tot, totquad;
int corner;
corner=calcQuad(cluster, tot, totquad, sDum);
double xpos_eta,ypos_eta;
double dX,dY;
calcEta(totquad, sDum, etax, etay);
return addToFlatField(etax,etay);
};
virtual int addToFlatField(double etax, double etay){
#ifdef MYROOT1
heta->Fill(etax,etay);
#endif
#ifndef MYROOT1
int ex,ey;
ex=(etax-etamin)/etastep;
ey=(etay-etamin)/etastep;
if (ey<nbeta && ex<nbeta && ex>=0 && ey>=0)
heta[ey*nbeta+ex]++;
#endif
return 0;
};
virtual int *getInterpolatedImage(){
int ipx, ipy;
// cout << "ff" << endl;
calcDiff(1, hhx, hhy); //get flat
double avg=0;
for (ipx=0; ipx<nSubPixels; ipx++)
for (ipy=0; ipy<nSubPixels; ipy++)
avg+=flat[ipx+ipy*nSubPixels];
avg/=nSubPixels*nSubPixels;
for (int ibx=0 ; ibx<nSubPixels*nPixelsX; ibx++) {
ipx=ibx%nSubPixels-nSubPixels/2;
if (ipx<0) ipx=nSubPixels+ipx;
for (int iby=0 ; iby<nSubPixels*nPixelsY; iby++) {
ipy=iby%nSubPixels-nSubPixels/2;
if (ipy<0) ipy=nSubPixels+ipy;
// cout << ipx << " " << ipy << " " << ibx << " " << iby << endl;
if (flat[ipx+ipy*nSubPixels]>0)
hintcorr[ibx+iby*nSubPixels*nPixelsX]=hint[ibx+iby*nSubPixels*nPixelsX]*(avg/flat[ipx+ipy*nSubPixels]);
else
hintcorr[ibx+iby*nSubPixels*nPixelsX]=hint[ibx+iby*nSubPixels*nPixelsX];
}
}
return hintcorr;
};
/* protected: */
/* #ifdef MYROOT1 */
/* TH2D *heta; */
/* TH2D *hhx; */
/* TH2D *hhy; */
/* #endif */
/* #ifndef MYROOT1 */
/* int *heta; */
/* float *hhx; */
/* float *hhy; */
/* #endif */
/* int nbeta; */
/* double etamin, etamax, etastep; */
};
#endif

View File

@ -0,0 +1,294 @@
#ifndef ETA3_INTERPOLATION_BASE_H
#define ETA3_INTERPOLATION_BASE_H
#ifdef MYROOT1
#include <TObject.h>
#include <TTree.h>
#include <TH2D.h>
#include <TH2F.h>
#endif
#include "etaInterpolationBase.h"
class eta3InterpolationBase : public virtual etaInterpolationBase {
public:
eta3InterpolationBase(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx, ny, ns, nb, emin, emax) {
// cout << "e3ib " << nb << " " << emin << " " << emax << endl;
/* if (nbeta<=0) { */
/* nbeta=nSubPixels*10; */
/* } */
if (etamin>=etamax) {
etamin=-1;
etamax=1;
}
etastep=(etamax-etamin)/nbeta;
#ifdef MYROOT1
delete heta;
delete hhx;
delete hhy;
heta=new TH2D("heta","heta",nbeta,etamin,etamax,nbeta,etamin,etamax);
hhx=new TH2D("hhx","hhx",nbeta,etamin,etamax,nbeta,etamin,etamax);
hhy=new TH2D("hhy","hhy",nbeta,etamin,etamax,nbeta,etamin,etamax);
#endif
#ifndef MYROOT1
/* delete [] heta; */
/* delete [] hhx; */
/* delete [] hhy; */
/* heta=new int[nbeta*nbeta]; */
/* hhx=new float[nbeta*nbeta]; */
/* hhy=new float[nbeta*nbeta]; */
#endif
// cout << nbeta << " " << etamin << " " << etamax << endl;
};
eta3InterpolationBase(eta3InterpolationBase *orig): etaInterpolationBase(orig){ };
/* virtual eta3InterpolationBase* Clone()=0; */
// virtual void prepareInterpolation(int &ok){};
//////////////////////////////////////////////////////////////////////////////
//////////// /*It return position hit for the event in input */ //////////////
virtual void getInterpolatedPosition(int x, int y, int *data, double &int_x, double &int_y)
{
double tot, totquad;
double etax,etay;
int corner=calcEta3(data,etax,etay, totquad);
getInterpolatedPosition(x,y,etax,etay,corner,int_x,int_y);
return;
};
virtual void getInterpolatedPosition(int x, int y, double *data, double &int_x, double &int_y)
{
double sDum[2][2];
double tot, totquad;
double etax,etay;
int corner=calcEta3(data,etax,etay, totquad);
getInterpolatedPosition(x,y,etax,etay,corner,int_x,int_y);
return;
};
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,double *cl,double &int_x, double &int_y) {
double etax, etay;
if (nSubPixels>2) {
calcEta3(cl,etax,etay, totquad);
}
return getInterpolatedPosition(x,y,etax, etay,quad,int_x,int_y);
}
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,int *cl,double &int_x, double &int_y) {
double etax, etay;
if (nSubPixels>2) {
calcEta3(cl,etax,etay, totquad);
}
return getInterpolatedPosition(x,y,etax, etay,quad,int_x,int_y);
}
virtual void getInterpolatedPosition(int x, int y, double etax, double etay, int corner, double &int_x, double &int_y)
{
double xpos_eta=0,ypos_eta=0;
int ex,ey;
if (nSubPixels>2) {
#ifdef MYROOT1
xpos_eta=(hhx->GetBinContent(hhx->GetXaxis()->FindBin(etax),hhy->GetYaxis()->FindBin(etay)))/((double)nSubPixels);
ypos_eta=(hhy->GetBinContent(hhx->GetXaxis()->FindBin(etax),hhy->GetYaxis()->FindBin(etay)))/((double)nSubPixels);
#endif
#ifndef MYROOT1
ex=(etax-etamin)/etastep;
ey=(etay-etamin)/etastep;
if (ex<0) {
/* cout << etax << " " << etamin << " "; */
/* cout << "3x*"<< ex << endl; */
ex=0;
}
if (ex>=nbeta) {
/* cout << etax << " " << etamin << " "; */
/* cout << "3x?"<< ex << endl; */
ex=nbeta-1;
}
if (ey<0) {
/* cout << etay << " " << etamin << " "; */
/* cout << "3y*"<< ey << endl; */
ey=0;
}
if (ey>=nbeta) {
/* cout << etay << " " << etamin << " "; */
/* cout << "3y?"<< ey << endl; */
ey=nbeta-1;
}
xpos_eta=(((double)hhx[(ey*nbeta+ex)]));///((double)nSubPixels);
ypos_eta=(((double)hhy[(ey*nbeta+ex)]));///((double)nSubPixels);
#endif
} else {
switch (corner) {
case BOTTOM_LEFT:
xpos_eta=-0.25;
ypos_eta=-0.25;
break;
case BOTTOM_RIGHT:
xpos_eta=0.25;
ypos_eta=-0.25;
break;
case TOP_LEFT:
xpos_eta=-0.25;
ypos_eta=0.25;
break;
case TOP_RIGHT:
xpos_eta=0.25;
ypos_eta=0.25;
break;
default:
xpos_eta=0;
ypos_eta=0;
}
}
int_x=((double)x) + xpos_eta;
int_y=((double)y) + ypos_eta;
// int_x=5. + xpos_eta;
// int_y=5. + ypos_eta;
}
/* ///////////////////////////////////////////////////////////////////////////////////////////////// */
/* virtual void getPositionETA3(int x, int y, double *data, double &int_x, double &int_y) */
/* { */
/* double sDum[2][2]; */
/* double tot, totquad; */
/* double eta3x,eta3y; */
/* double ex,ey; */
/* calcQuad(data, tot, totquad, sDum); */
/* calcEta3(data,eta3x, eta3y,tot); */
/* double xpos_eta,ypos_eta; */
/* #ifdef MYROOT1 */
/* xpos_eta=((hhx->GetBinContent(hhx->GetXaxis()->FindBin(eta3x),hhy->GetYaxis()->FindBin(eta3y))))/((double)nSubPixels); */
/* ypos_eta=((hhy->GetBinContent(hhx->GetXaxis()->FindBin(eta3x),hhy->GetYaxis()->FindBin(eta3y))))/((double)nSubPixels); */
/* #endif */
/* #ifndef MYROOT1 */
/* ex=(eta3x-etamin)/etastep; */
/* ey=(eta3y-etamin)/etastep; */
/* if (ex<0) ex=0; */
/* if (ex>=nbeta) ex=nbeta-1; */
/* if (ey<0) ey=0; */
/* if (ey>=nbeta) ey=nbeta-1; */
/* xpos_eta=(((double)hhx[(int)(ey*nbeta+ex)]))/((double)nSubPixels); */
/* ypos_eta=(((double)hhy[(int)(ey*nbeta+ex)]))/((double)nSubPixels); */
/* #endif */
/* int_x=((double)x) + xpos_eta; */
/* int_y=((double)y) + ypos_eta; */
/* return; */
/* }; */
virtual int addToFlatField(double totquad,int quad,int *cl,double &etax, double &etay) {
calcEta3(cl, etax, etay, totquad);
return addToFlatField(etax,etay);
}
virtual int addToFlatField(double totquad,int quad,double *cl,double &etax, double &etay) {
calcEta3(cl, etax, etay, totquad);
return addToFlatField(etax,etay);
}
//////////////////////////////////////////////////////////////////////////////////////
virtual int addToFlatField(double *cluster, double &etax, double &etay){
double totquad;
calcEta3(cluster, etax, etay, totquad);
return addToFlatField(etax,etay);
};
virtual int addToFlatField(int *cluster, double &etax, double &etay){
double totquad;
calcEta3(cluster, etax, etay, totquad);
return addToFlatField(etax,etay);
};
virtual int addToFlatField(double etax, double etay){
#ifdef MYROOT1
heta->Fill(etax,etay);
#endif
#ifndef MYROOT1
int ex,ey;
ex=(etax-etamin)/etastep;
ey=(etay-etamin)/etastep;
if (ey<nbeta && ex<nbeta && ex>=0 && ey>=0)
heta[ey*nbeta+ex]++;
#endif
return 0;
};
/* protected: */
/* #ifdef MYROOT1 */
/* TH2D *heta; */
/* TH2D *hhx; */
/* TH2D *hhy; */
/* #endif */
/* #ifndef MYROOT1 */
/* int *heta; */
/* float *hhx; */
/* float *hhy; */
/* #endif */
/* int nbeta; */
/* double etamin, etamax, etastep; */
};
#endif

View File

@ -0,0 +1,285 @@
#ifndef ETA_INTERPOLATION_ADAPTIVEBINS_H
#define ETA_INTERPOLATION_ADAPTIVEBINS_H
#include <cmath>
#include "tiffIO.h"
//#include "etaInterpolationBase.h"
#include "etaInterpolationPosXY.h"
class etaInterpolationAdaptiveBins : public etaInterpolationPosXY {
// protected:
private:
virtual void iterate(float *newhhx, float *newhhy) {
double bsize=1./nSubPixels;
double hy[nSubPixels][nbeta]; //profile y
double hx[nSubPixels][nbeta]; //profile x
double hix[nSubPixels][nbeta]; //integral of projection x
double hiy[nSubPixels][nbeta]; //integral of projection y
int ipy, ipx;
double tot_eta_x[nSubPixels];
double tot_eta_y[nSubPixels];
//for (int ipy=0; ipy<nSubPixels; ipy++) {
for (ipy=0; ipy<nSubPixels; ipy++) {
for (int ibx=0; ibx<nbeta; ibx++) {
hx[ipy][ibx]=0;
hy[ipy][ibx]=0;
}
}
// cout << ipy << " " << ((ipy)*bsize) << " " << ((ipy+1)*bsize) << endl;
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
ipy=hhy[ibx+iby*nbeta]*nSubPixels;
if (ipy<0) ipy=0;
if (ipy>=nSubPixels) ipy=nSubPixels-1;
hx[ipy][ibx]+=heta[ibx+iby*nbeta];
ipx=hhx[ibx+iby*nbeta]*nSubPixels;
if (ipx<0) ipx=0;
if (ipx>=nSubPixels) ipx=nSubPixels-1;
hy[ipx][iby]+=heta[ibx+iby*nbeta];
}
}
for (ipy=0; ipy<nSubPixels; ipy++) {
hix[ipy][0]=hx[ipy][0];
hiy[ipy][0]=hy[ipy][0];
for (int ib=1; ib<nbeta; ib++) {
hix[ipy][ib]=hix[ipy][ib-1]+hx[ipy][ib];
hiy[ipy][ib]=hiy[ipy][ib-1]+hy[ipy][ib];
}
tot_eta_x[ipy]=hix[ipy][nbeta-1]+1;
tot_eta_y[ipy]=hiy[ipy][nbeta-1]+1;
// cout << ipy << " " << tot_eta_x[ipy] << " " << tot_eta_y[ipy] << endl;
}
// for (int ipy=0; ipy<nSubPixels; ipy++) {
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
// if ( hhy[ibx+iby*nbeta]>=((ipy)*bsize) && hhy[ibx+iby*nbeta]<=((ipy+1)*bsize)) {
ipy=hhy[ibx+iby*nbeta]*nSubPixels;
if (ipy<0) ipy=0;
if (ipy>=nSubPixels) ipy=nSubPixels-1;
if (ipy>=0 && ipy<nSubPixels)
if (tot_eta_x[ipy]>0)
newhhx[ibx+iby*nbeta]=hix[ipy][ibx]/(tot_eta_x[ipy]);
else
cout << "Bad tot_etax " << ipy << " " << tot_eta_x[ipy] << endl;
else
cout << "** Bad value ipy " << ibx << " " << iby << " "<< ipy << " " << hhy[ibx+iby*nbeta]*nSubPixels << endl;
// if (newhhx[ibx+iby*nbeta]>=1 || newhhx[ibx+iby*nbeta]<0 ) cout << "***"<< ibx << " " << iby << newhhx[ibx+iby*nbeta] << endl;
// if (ipy==3 && ibx==10) cout << newhhx[ibx+iby*nbeta] << " " << hix[ibx] << " " << ibx+iby*nbeta << endl;
// }
ipy=hhx[ibx+iby*nbeta]*nSubPixels;
//if (hhx[ibx+iby*nbeta]>=((ipy)*bsize) && hhx[ibx+iby*nbeta]<=((ipy+1)*bsize)) {
if (ipy<0) ipy=0;
if (ipy>=nSubPixels) ipy=nSubPixels-1;
if (ipy>=0 && ipy<nSubPixels)
if (tot_eta_y[ipy]>0)
newhhy[ibx+iby*nbeta]=hiy[ipy][iby]/(tot_eta_y[ipy]);
else
cout << "Bad tot_etay " << ipy << " " << tot_eta_y[ipy] << endl;
else
cout << "** Bad value ipx " << ibx << " " << iby << " "<< ipy << " " << hhx[ibx+iby*nbeta]*nSubPixels << endl;
// if (newhhy[ibx+iby*nbeta]>=1 || newhhy[ibx+iby*nbeta]<0 ) cout << "***"<< ibx << " " << iby << newhhy[ibx+iby*nbeta] << endl;
// if (ipy==3 && iby==10) cout << newhhy[ibx+iby*nbeta] << " " << hiy[iby] << " " << ibx+iby*nbeta << endl;
// }
}
}
// }
}
public:
etaInterpolationAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationPosXY(nx,ny,ns, nb, emin,emax){
// flat=new double[nSubPixels*nSubPixels]; flat_x=new double[nSubPixels]; flat_y=new double[nSubPixels];
// flat=new double[nSubPixels*nSubPixels];
};
etaInterpolationAdaptiveBins(etaInterpolationAdaptiveBins *orig): etaInterpolationPosXY(orig){hintcorr=new int[nPixelsX*nPixelsY*nSubPixels];};
virtual etaInterpolationAdaptiveBins* Clone()=0;
/* return new etaInterpolationAdaptiveBins(this); */
/* }; */
virtual void prepareInterpolation(int &ok) {
prepareInterpolation(ok, 1000);
}
virtual void prepareInterpolation(int &ok, int nint)
{
ok=1;
///*Eta Distribution Rebinning*///
double bsize=1./nSubPixels; //precision
// cout<<"nPixelsX = "<<nPixelsX<<" nPixelsY = "<<nPixelsY<<" nSubPixels = "<<nSubPixels<<endl;
double tot_eta=0;
double tot_eta_x=0;
double tot_eta_y=0;
for (int ip=0; ip<nbeta*nbeta; ip++)
tot_eta+=heta[ip];
if (tot_eta<=0) {ok=0; return;};
double hx[nbeta]; //profile x
double hy[nbeta]; //profile y
double hix[nbeta]; //integral of projection x
double hiy[nbeta]; //integral of projection y
int ii=0;
/** initialize distribution to linear interpolation */
// for (int ibx=0; ibx<nbeta; ibx++) {
// for (int ib=0; ib<nbeta; ib++) {
// hhx[ibx+ib*nbeta]=((float)ibx)/((float)nbeta);
// hhy[ibx+ib*nbeta]=((float)ib)/((float)nbeta);
// }
// }
etaInterpolationPosXY::prepareInterpolation(ok);
double thr=1./((double)nSubPixels);
double avg=tot_eta/((double)(nSubPixels*nSubPixels));
double rms=sqrt(tot_eta);
cout << "total eta entries is :"<< tot_eta << " avg: "<< avg << " rms: " << sqrt(tot_eta) << endl;
double old_diff=calcDiff(avg, hhx, hhy), new_diff=old_diff+1, best_diff=old_diff;
// cout << " chi2= " << old_diff << " (rms= " << sqrt(tot_eta) << ")" << endl;
cout << endl;
cout << endl;
debugSaveAll(0);
int iint=0;
float *newhhx=new float[nbeta*nbeta]; //profile x
float *newhhy=new float[nbeta*nbeta]; //profile y
float *besthhx=hhx; //profile x
float *besthhy=hhy; //profile y
cout << "Iteration "<< iint << " Chi2: " << old_diff << endl; //" Best: "<< best_diff << " RMS: "<< rms<< endl;
while (iint<nint && best_diff > rms) {
/* #ifdef SAVE_ALL */
/* if (iint%10==0) */
/* debugSaveAll(iint); */
/* #endif */
// cout << "Iteration " << iint << endl;
iterate(newhhx,newhhy);
new_diff=calcDiff(avg, newhhx, newhhy);
// cout << " chi2= " << new_diff << " (rms= " << sqrt(tot_eta) << ")"<<endl;
if (new_diff<best_diff) {
best_diff=new_diff;
besthhx=newhhx;
besthhy=newhhy;
}
if (hhx!=besthhx)
delete [] hhx;
if (hhy!=besthhy)
delete [] hhy;
hhx=newhhx;
hhy=newhhy;
#ifdef SAVE_ALL
if (new_diff<=best_diff) {
debugSaveAll(iint);
}
#endif
newhhx=new float[nbeta*nbeta]; //profile x
newhhy=new float[nbeta*nbeta]; //profile y
/* if (new_diff<old_diff){ */
/* cout << "best difference at iteration "<< iint << " (" << new_diff << " < " << old_diff << ")"<< "Best: "<< best_diff << " RMS: "<< sqrt(tot_eta) << endl; */
/* ; */
/* } else { */
// break;
// }
old_diff=new_diff;
iint++;
cout << "Iteration "<< iint << " Chi2: " << new_diff << endl; //" Best: "<< best_diff << " RMS: "<< rms<< endl;
}
delete [] newhhx;
delete [] newhhy;
if (hhx!=besthhx)
delete [] hhx;
if (hhy!=besthhy)
delete [] hhy;
hhx=besthhx;
hhy=besthhy;
cout << "Iteration "<< iint << " Chi2: " << best_diff << endl; //" Best: "<< best_diff << " RMS: "<< rms<< endl;
#ifdef SAVE_ALL
debugSaveAll(iint);
#endif
return ;
}
};
class eta2InterpolationAdaptiveBins : public virtual eta2InterpolationBase, public virtual etaInterpolationAdaptiveBins {
public:
eta2InterpolationAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta2InterpolationBase(nx,ny,ns, nb, emin,emax),etaInterpolationAdaptiveBins(nx,ny,ns, nb, emin,emax){
cout << "NSUBPIX is " << ns << " " << nSubPixels << endl;
// cout << "e2pxy " << nb << " " << emin << " " << emax << endl;
};
eta2InterpolationAdaptiveBins(eta2InterpolationAdaptiveBins *orig): etaInterpolationBase(orig), etaInterpolationAdaptiveBins(orig) {};
virtual eta2InterpolationAdaptiveBins* Clone() { return new eta2InterpolationAdaptiveBins(this);};
};
class eta3InterpolationAdaptiveBins : public virtual eta3InterpolationBase, public virtual etaInterpolationAdaptiveBins {
public:
eta3InterpolationAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta3InterpolationBase(nx,ny,ns, nb, emin,emax), etaInterpolationAdaptiveBins(nx,ny,ns, nb, emin,emax){
cout << "e3pxy " << nbeta << " " << etamin << " " << etamax << " " << nSubPixels<< endl;
};
eta3InterpolationAdaptiveBins(eta3InterpolationAdaptiveBins *orig): etaInterpolationBase(orig), etaInterpolationAdaptiveBins(orig) {};
virtual eta3InterpolationAdaptiveBins* Clone() { return new eta3InterpolationAdaptiveBins(this);};
};
#endif

View File

@ -0,0 +1,369 @@
#ifndef ETA_INTERPOLATION_BASE_H
#define ETA_INTERPOLATION_BASE_H
#ifdef MYROOT1
#include <TObject.h>
#include <TTree.h>
#include <TH2D.h>
#include <TH2F.h>
#endif
#include "slsInterpolation.h"
#include "tiffIO.h"
class etaInterpolationBase : public slsInterpolation {
public:
etaInterpolationBase(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : slsInterpolation(nx,ny,ns), hhx(NULL), hhy(NULL), heta(NULL), nbeta(nb), etamin(emin), etamax(emax) {
// cout << "eb " << nb << " " << emin << " " << emax << endl;
// cout << nb << " " << etamin << " " << etamax << endl;
if (nbeta<=0) {
//cout << "aaa:" <<endl;
nbeta=nSubPixels*10;
}
if (etamin>=etamax) {
etamin=-1;
etamax=2;
}
etastep=(etamax-etamin)/nbeta;
heta=new int[nbeta*nbeta];
hhx=new float[nbeta*nbeta];
hhy=new float[nbeta*nbeta];
rangeMin=etamin;
rangeMax=etamax;
flat= new double[nSubPixels*nSubPixels];
hintcorr=new int [nSubPixels*nSubPixels*nPixelsX*nPixelsY];
};
etaInterpolationBase(etaInterpolationBase *orig): slsInterpolation(orig){
nbeta=orig->nbeta;
etamin=orig->etamin;
etamax=orig->etamax;
rangeMin=orig->rangeMin;
rangeMax=orig->rangeMax;
etastep=(etamax-etamin)/nbeta;
heta=new int[nbeta*nbeta];
memcpy(heta,orig->heta,nbeta*nbeta*sizeof(int));
hhx=new float[nbeta*nbeta];
memcpy(hhx,orig->hhx,nbeta*nbeta*sizeof(float));
hhy=new float[nbeta*nbeta];
memcpy(hhy,orig->hhy,nbeta*nbeta*sizeof(float));
hintcorr=new int [nSubPixels*nSubPixels*nPixelsX*nPixelsY];
};
virtual void resetFlatField() {
for (int ibx=0; ibx<nbeta*nbeta; ibx++) {
heta[ibx]=0;
hhx[ibx]=0;
hhy[ibx]=0;
}
};
int *setEta(int *h, int nb=-1, double emin=1, double emax=0)
{
if (h) {
if (heta) delete [] heta;
heta=h;
nbeta=nb;
if (nb<=0) nbeta=nSubPixels*10;
etamin=emin;
etamax=emax;
if (etamin>=etamax) {
etamin=-1;
etamax=2;
}
rangeMin=etamin;
rangeMax=etamax;
etastep=(etamax-etamin)/nbeta;
}
return heta;
};
int *setFlatField(int *h, int nb=-1, double emin=1, double emax=0)
{
return setEta(h, nb, emin, emax);
};
int *getFlatField(){return setEta(NULL);};
int *getFlatField(int &nb, double &emin, double &emax){
nb=nbeta;
emin=etamin;
emax=etamax;
return getFlatField();
};
void *writeFlatField(const char * imgname) {
float *gm=NULL;
gm=new float[nbeta*nbeta];
for (int ix=0; ix<nbeta; ix++) {
for (int iy=0; iy<nbeta; iy++) {
gm[iy*nbeta+ix]=heta[iy*nbeta+ix];
}
}
WriteToTiff(gm, imgname, nbeta, nbeta);
delete [] gm;
return NULL;
};
int readFlatField(const char * imgname, double emin=1, double emax=0) {
if (emax>=1) etamax=emax;
if (emin<=0) etamin=emin;
if (etamin>=etamax) {
etamin=-1;
etamax=2;
}
etastep=(etamax-etamin)/nbeta;
uint32 nnx;
uint32 nny;
float *gm=ReadFromTiff(imgname, nnx, nny);
if (nnx!=nny) {
cout << "different number of bins in x " << nnx << " and y " << nny<< " !"<< endl;
cout << "Aborting read"<< endl;
return 0;
}
nbeta=nnx;
if (gm) {
if (heta) {
delete [] heta;
delete [] hhx;
delete [] hhy;
}
heta=new int[nbeta*nbeta];
hhx=new float[nbeta*nbeta];
hhy=new float[nbeta*nbeta];
for (int ix=0; ix<nbeta; ix++) {
for (int iy=0; iy<nbeta; iy++) {
heta[iy*nbeta+ix]=gm[iy*nbeta+ix];
}
}
delete [] gm;
return 1;
}
return 0;
};
float *gethhx()
{
// hhx->Scale((double)nSubPixels);
return hhx;
};
float *gethhy()
{
// hhy->Scale((double)nSubPixels);
return hhy;
};
virtual int addToFlatField(double etax, double etay){
int ex,ey;
ex=(etax-etamin)/etastep;
ey=(etay-etamin)/etastep;
if (ey<nbeta && ex<nbeta && ex>=0 && ey>=0)
heta[ey*nbeta+ex]++;
return 0;
};
// virtual void prepareInterpolation(int &ok)=0;
void debugSaveAll(int ind=0) {
int ib, ibx, iby;
char tit[10000];
float tot_eta=0;
float *etah=new float[nbeta*nbeta];
int etabins=nbeta;
int ibb=0;
for (int ii=0; ii<etabins*etabins; ii++) {
etah[ii]=heta[ii];
tot_eta+=heta[ii];
}
sprintf(tit,"/scratch/eta.tiff",ind);
WriteToTiff(etah, tit, etabins, etabins);
for (int ii=0; ii<etabins*etabins; ii++) {
ibb=(hhx[ii]*nSubPixels);
etah[ii]=ibb;
}
sprintf(tit,"/scratch/eta_hhx_%d.tiff",ind);
WriteToTiff(etah, tit, etabins, etabins);
for (int ii=0; ii<etabins*etabins; ii++) {
ibb=hhy[ii]*nSubPixels;
etah[ii]=ibb;
}
sprintf(tit,"/scratch/eta_hhy_%d.tiff",ind);
WriteToTiff(etah, tit, etabins, etabins);
float *ftest=new float[nSubPixels*nSubPixels];
for (int ib=0; ib<nSubPixels*nSubPixels; ib++) ftest[ib]=0;
//int ibx=0, iby=0;
for (int ii=0; ii<nbeta*nbeta; ii++) {
ibx=nSubPixels*hhx[ii];
iby=nSubPixels*hhy[ii];
if (ibx<0) ibx=0;
if (iby<0) iby=0;
if (ibx>=nSubPixels) ibx=nSubPixels-1;
if (iby>=nSubPixels) iby=nSubPixels-1;
if (ibx>=0 && ibx<nSubPixels && iby>=0 && iby<nSubPixels) {
//
// if (ibx>0 && iby>0) cout << ibx << " " << iby << " " << ii << endl;
ftest[ibx+iby*nSubPixels]+=heta[ii];
} else
cout << "Bad interpolation "<< ii << " " << ibx << " " << iby<< endl;
}
sprintf(tit,"/scratch/ftest_%d.tiff",ind);
WriteToTiff(ftest, tit, nSubPixels, nSubPixels);
//int ibx=0, iby=0;
tot_eta/=nSubPixels*nSubPixels;
int nbad=0;
for (int ii=0; ii<etabins*etabins; ii++) {
ibx=nSubPixels*hhx[ii];
iby=nSubPixels*hhy[ii];
if (ftest[ibx+iby*nSubPixels]<tot_eta*0.5) {
etah[ii]=1;
nbad++;
} else if(ftest[ibx+iby*nSubPixels]>tot_eta*2.){
etah[ii]=2;
nbad++;
} else
etah[ii]=0;
}
sprintf(tit,"/scratch/eta_bad_%d.tiff",ind);
WriteToTiff(etah, tit, etabins, etabins);
// cout << "Index: " << ind << "\t Bad bins: "<< nbad << endl;
//int ibx=0, iby=0;
delete [] ftest;
delete [] etah;
}
protected:
double calcDiff(double avg, float *hx, float *hy) {
//double p_tot=0;
double diff=0, d;
double bsize=1./nSubPixels;
int nbad=0;
double p_tot_x[nSubPixels], p_tot_y[nSubPixels], p_tot[nSubPixels*nSubPixels];
double maxdiff=0, mindiff=avg*nSubPixels*nSubPixels;
int ipx, ipy;
for (ipy=0; ipy<nSubPixels; ipy++) {
for (ipx=0; ipx<nSubPixels; ipx++) {
p_tot[ipx+ipy*nSubPixels]=0;
}
p_tot_y[ipy]=0;
p_tot_x[ipy]=0;
}
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
ipx=hx[ibx+iby*nbeta]*nSubPixels;
if (ipx<0) ipx=0;
if (ipx>=nSubPixels) ipx=nSubPixels-1;
ipy=hy[ibx+iby*nbeta]*nSubPixels;
if (ipy<0) ipy=0;
if (ipy>=nSubPixels) ipy=nSubPixels-1;
p_tot[ipx+ipy*nSubPixels]+=heta[ibx+iby*nbeta];
p_tot_y[ipy]+=heta[ibx+iby*nbeta];
p_tot_x[ipx]+=heta[ibx+iby*nbeta];
}
}
// cout << endl << endl;
for (ipy=0; ipy<nSubPixels; ipy++) {
cout.width(5);
//flat_y[ipy]=p_tot_y[ipy];//avg/nSubPixels;
for (ipx=0; ipx<nSubPixels; ipx++) {
// flat_x[ipx]=p_tot_x[ipx];///avg/nSubPixels;
flat[ipx+nSubPixels*ipy]=p_tot[ipx+nSubPixels*ipy];///avg;
d=p_tot[ipx+nSubPixels*ipy]-avg;
if (d<0) d*=-1.;
if (d>5*sqrt(avg) )
nbad++;
diff+=d*d;
if (d<mindiff) mindiff=d;
if (d>maxdiff) maxdiff=d;
// cout << setprecision(4) << p_tot[ipx+nSubPixels*ipy] << " ";
}
/* cout << "** " << setprecision(4) << flat_y[ipy]; */
//cout << "\n";
}
/* cout << "**" << endl; cout.width(5); */
/* for (ipx=0; ipx<nSubPixels; ipx++) { */
/* cout << setprecision(4) << flat_x[ipx] << " "; */
/* } */
//cout << "**" << endl; cout.width(5);
//cout << "Min diff: " << mindiff/sqrt(avg) << " Max diff: " << maxdiff/sqrt(avg) << " Nbad: " << nbad << endl;
// cout << "Bad pixels: " << 100.*(float)nbad/((float)(nSubPixels*nSubPixels)) << " %" << endl;
return sqrt(diff);
}
int *heta;
float *hhx;
float *hhy;
int nbeta;
double etamin, etamax, etastep;
double rangeMin, rangeMax;
double *flat;
int *hintcorr;
};
#endif

View File

@ -0,0 +1,263 @@
#ifndef ETA_INTERPOLATION_CLEVER_ADAPTIVEBINS_H
#define ETA_INTERPOLATION_CLEVER_ADAPTIVEBINS_H
#include <cmath>
#include "tiffIO.h"
//#include "etaInterpolationBase.h"
#include "etaInterpolationAdaptiveBins.h"
//#define HSIZE 1
class etaInterpolationCleverAdaptiveBins : public etaInterpolationAdaptiveBins {
private:
// double *gradientX, *gradientY, *gradientXY;
virtual void iterate(float *newhhx, float *newhhy) {
double bsize=1./nSubPixels;
/* double hy[nSubPixels*HSIZE][nbeta]; //profile y */
/* double hx[nSubPixels*HSIZE][nbeta]; //profile x */
// double hix[nSubPixels*HSIZE][nbeta]; //integral of projection x
// double hiy[nSubPixels*HSIZE][nbeta]; //integral of projection y
int ipy, ipx, ippx, ippy;
// double tot_eta_x[nSubPixels*HSIZE];
//double tot_eta_y[nSubPixels*HSIZE];
double mean=0;
double maxflat=0, minflat=0, maxgradX=0, mingradX=0, maxgradY=0, mingradY=0, maxgr=0, mingr=0;
int ix_maxflat, iy_maxflat, ix_minflat, iy_minflat, ix_maxgrX, iy_maxgrX, ix_mingrX, iy_mingrX,ix_maxgrY, iy_maxgrY, ix_mingrY, iy_mingrY, ix_mingr, iy_mingr, ix_maxgr, iy_maxgr;
int maskMin[nSubPixels*nSubPixels], maskMax[nSubPixels*nSubPixels];
//for (int ipy=0; ipy<nSubPixels; ipy++) {
for (ipy=0; ipy<nSubPixels; ipy++) {
for (ipx=0; ipx<nSubPixels; ipx++) {
// cout << ipx << " " << ipy << endl;
mean+=flat[ipx+nSubPixels*ipy]/((double)(nSubPixels*nSubPixels));
}
}
// cout << "Mean is " << mean << endl;
/*** Find local minima and maxima within the staistical uncertainty **/
for (ipy=0; ipy<nSubPixels; ipy++) {
for (ipx=0; ipx<nSubPixels; ipx++) {
if (flat[ipx+nSubPixels*ipy]<mean-3.*sqrt(mean))maskMin[ipx+nSubPixels*ipy]=1; else maskMin[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>mean+3.*sqrt(mean)) maskMax[ipx+nSubPixels*ipy]=1; else maskMax[ipx+nSubPixels*ipy]=0;
if (ipx>0 && ipy>0) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx-1+nSubPixels*(ipy-1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx-1+nSubPixels*(ipy-1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipx>0 && ipy<nSubPixels-1) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx-1+nSubPixels*(ipy+1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx-1+nSubPixels*(ipy+1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipy>0 && ipx<nSubPixels-1) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+1+nSubPixels*(ipy-1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+1+nSubPixels*(ipy-1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipy<nSubPixels-1 && ipx<nSubPixels-1) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+1+nSubPixels*(ipy+1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+1+nSubPixels*(ipy+1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipy<nSubPixels-1 ) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+nSubPixels*(ipy+1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+nSubPixels*(ipy+1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipx<nSubPixels-1) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+1+nSubPixels*(ipy)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+1+nSubPixels*(ipy)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipy>0 ) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx+nSubPixels*(ipy-1)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx+nSubPixels*(ipy-1)]) maskMin[ipx+nSubPixels*ipy]=0;
}
if (ipx>0 ) {
if (flat[ipx+nSubPixels*ipy]<flat[ipx-1+nSubPixels*(ipy)]) maskMax[ipx+nSubPixels*ipy]=0;
if (flat[ipx+nSubPixels*ipy]>flat[ipx-1+nSubPixels*(ipy)]) maskMin[ipx+nSubPixels*ipy]=0;
}
// if (maskMin[ipx+nSubPixels*ipy]) cout << ipx << " " << ipy << " is a local minimum " << flat[ipx+nSubPixels*ipy] << endl;
// if (maskMax[ipx+nSubPixels*ipy]) cout << ipx << " " << ipy << " is a local maximum "<< flat[ipx+nSubPixels*ipy] << endl;
}
}
int is_a_border=0;
//initialize the new partition to the previous one
// int ibx_p, iby_p, ibx_n, iby_n;
int ibbx, ibby;
memcpy(newhhx,hhx,nbeta*nbeta*sizeof(float));
memcpy(newhhy,hhy,nbeta*nbeta*sizeof(float));
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
ippy=hhy[ibx+iby*nbeta]*nSubPixels;
ippx=hhx[ibx+iby*nbeta]*nSubPixels;
is_a_border=0;
if (maskMin[ippx+nSubPixels*ippy] || maskMax[ippx+nSubPixels*ippy]) {
for (int ix=-1; ix<2; ix++) {
ibbx=ibx+ix;
if (ibbx<0) ibbx=0;
if (ibbx>nbeta-1) ibbx=nbeta-1;
for (int iy=-1; iy<2; iy++) {
ibby=iby+iy;
if (ibby<0) ibby=0;
if (ibby>nbeta-1) ibby=nbeta-1;
ipy=hhy[ibbx+ibby*nbeta]*nSubPixels;
ipx=hhx[ibbx+ibby*nbeta]*nSubPixels;
if (ipx!=ippx || ipy!=ippy) {
is_a_border=1;
if (maskMin[ippx+nSubPixels*ippy]) {
//increase the region
newhhx[ibbx+ibby*nbeta]=((double)ippx+0.5)/((double)nSubPixels);
newhhy[ibbx+ibby*nbeta]=((double)ippy+0.5)/((double)nSubPixels);
}
if (maskMax[ippx+nSubPixels*ippy]) {
//reduce the region
newhhx[ibx+iby*nbeta]=((double)ipx+0.5)/((double)nSubPixels);
newhhy[ibx+iby*nbeta]=((double)ipy+0.5)/((double)nSubPixels);
}
// cout << ippx << " " << ippy << " " << ibx << " " << iby << " * " << ipx << " " << ipy << " " << ibbx << " " << ibby << endl;
}
}
}
}
}
}
//Check that the resulting histograms are monotonic and they don't have holes!
for (int ibx=0; ibx<nbeta-1; ibx++) {
for (int iby=0; iby<nbeta-1; iby++) {
ippy=newhhy[ibx+iby*nbeta]*nSubPixels;
ippx=newhhx[ibx+iby*nbeta]*nSubPixels;
ipy=newhhy[ibx+(iby+1)*nbeta]*nSubPixels;
ipx=newhhx[ibx+1+iby*nbeta]*nSubPixels;
if ( ippx>ipx)
newhhx[ibx+1+iby*nbeta]=newhhx[ibx+iby*nbeta];
else if (ipx >ippx+1)
newhhx[ibx+1+iby*nbeta]=((double)(ippx+1+0.5))/((double)nSubPixels);
if ( ippy>ipy)
newhhy[ibx+(iby+1)*nbeta]=newhhy[ibx+iby*nbeta];
else if (ipy >ippy+1)
newhhy[ibx+(iby+1)*nbeta]=((double)(ippy+1+0.5))/((double)nSubPixels);
}
}
}
public:
etaInterpolationCleverAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationAdaptiveBins(nx,ny,ns, nb, emin,emax){
};
etaInterpolationCleverAdaptiveBins(etaInterpolationCleverAdaptiveBins *orig): etaInterpolationAdaptiveBins(orig){};
virtual etaInterpolationCleverAdaptiveBins* Clone()=0;
/* return new etaInterpolationCleverAdaptiveBins(this); */
/* }; */
};
class eta2InterpolationCleverAdaptiveBins : public virtual eta2InterpolationBase, public virtual etaInterpolationCleverAdaptiveBins {
public:
eta2InterpolationCleverAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta2InterpolationBase(nx,ny,ns, nb, emin,emax),etaInterpolationCleverAdaptiveBins(nx,ny,ns, nb, emin,emax){
};
eta2InterpolationCleverAdaptiveBins(eta2InterpolationCleverAdaptiveBins *orig): etaInterpolationBase(orig), etaInterpolationCleverAdaptiveBins(orig) {};
virtual eta2InterpolationCleverAdaptiveBins* Clone() { return new eta2InterpolationCleverAdaptiveBins(this);};
// virtual int *getInterpolatedImage(){return eta2InterpolationBase::getInterpolatedImage();};
/* virtual int *getInterpolatedImage(){ */
/* int ipx, ipy; */
/* cout << "ff" << endl; */
/* calcDiff(1, hhx, hhy); //get flat */
/* double avg=0; */
/* for (ipx=0; ipx<nSubPixels; ipx++) */
/* for (ipy=0; ipy<nSubPixels; ipy++) */
/* avg+=flat[ipx+ipy*nSubPixels]; */
/* avg/=nSubPixels*nSubPixels; */
/* for (int ibx=0 ; ibx<nSubPixels*nPixelsX; ibx++) { */
/* ipx=ibx%nSubPixels-nSubPixels; */
/* if (ipx<0) ipx=nSubPixels+ipx; */
/* for (int iby=0 ; iby<nSubPixels*nPixelsY; iby++) { */
/* ipy=iby%nSubPixels-nSubPixels; */
/* if (ipy<0) ipy=nSubPixels+ipy; */
/* if (flat[ipx+ipy*nSubPixels]>0) */
/* hintcorr[ibx+iby*nSubPixels*nPixelsX]=hint[ibx+iby*nSubPixels*nPixelsX]*(avg/flat[ipx+ipy*nSubPixels]); */
/* else */
/* hintcorr[ibx+iby*nSubPixels*nPixelsX]=hint[ibx+iby*nSubPixels*nPixelsX]; */
/* } */
/* } */
/* return hintcorr; */
/* }; */
};
class eta3InterpolationCleverAdaptiveBins : public virtual eta3InterpolationBase, public virtual etaInterpolationCleverAdaptiveBins {
public:
eta3InterpolationCleverAdaptiveBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta3InterpolationBase(nx,ny,ns, nb, emin,emax), etaInterpolationCleverAdaptiveBins(nx,ny,ns, nb, emin,emax){
};
eta3InterpolationCleverAdaptiveBins(eta3InterpolationCleverAdaptiveBins *orig): etaInterpolationBase(orig), etaInterpolationCleverAdaptiveBins(orig) {};
virtual eta3InterpolationCleverAdaptiveBins* Clone() { return new eta3InterpolationCleverAdaptiveBins(this);};
};
#endif

View File

@ -0,0 +1,85 @@
#ifndef ETA_INTERPOLATION_GLOBAL_H
#define ETA_INTERPOLATION_GLOBAL_H
#include "etaInterpolationBase.h"
class etaInterpolationGlobal : public etaInterpolationBase{
public:
globalEtaInterpolation(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax){};
virtual void prepareInterpolation(int &ok)
{
ok=1;
#ifdef MYROOT1
if (hhx) delete hhx;
if (hhy) delete hhy;
hhx=new TH2D("hhx","hhx",heta->GetNbinsX(),heta->GetXaxis()->GetXmin(),heta->GetXaxis()->GetXmax(), heta->GetNbinsY(),heta->GetYaxis()->GetXmin(),heta->GetYaxis()->GetXmax());
hhy=new TH2D("hhy","hhy",heta->GetNbinsX(),heta->GetXaxis()->GetXmin(),heta->GetXaxis()->GetXmax(), heta->GetNbinsY(),heta->GetYaxis()->GetXmin(),heta->GetYaxis()->GetXmax());
#endif
///*Eta Distribution Rebinning*///
double bsize=1./nSubPixels; //precision
// cout<<"nPixelsX = "<<nPixelsX<<" nPixelsY = "<<nPixelsY<<" nSubPixels = "<<nSubPixels<<endl;
double tot_eta=0;
for (int ip=0; ip<nbeta*nbeta; ip++)
tot_eta+=heta[ip];
cout << "total eta entries is :"<< tot_eta << endl;
if (tot_eta<=0) {ok=0; return;};
double hx[nbeta]; //projection x
double hy[nbeta]; //projection y
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
hx[ibx]=hx[ibx]+heta[ibx+iby*nbeta];
hy[iby]=hx[iby]+heta[ibx+iby*nbeta];
}
}
double hix[nbeta]; //integral of projection x
double hiy[nbeta]; //integral of projection y
hix[0]=hx[0];
hiy[0]=hy[0];
for (int ib=1; ib<nbeta; ib++) {
hix[ib]=hix[ib-1]+hx[ib];
hiy[ib]=hiy[ib-1]+hx[ib];
}
int ib=0;
for (int ibx=0; ibx<nbeta; ibx++) {
if (hix[ibx]>(ib+1)*tot_eta*bsize) ib++;
for (int iby=0; iby<nbeta; iby++) {
#ifdef MYROOT1
hhx->SetBinContent(ibx+1,iby+1,ib);
#endif
#ifndef MYROOT1
hhx[ibx+iby*nbeta]=ib;
#endif
}
}
ib=0;
for (int iby=0; iby<nbeta; iby++) {
if (hiy[iby]>(ib+1)*tot_eta*bsize) ib++;
for (int ibx=0; ibx<nbeta; ibx++) {
#ifdef MYROOT1
hhy->SetBinContent(ibx+1,iby+1,ib);
#endif
#ifndef MYROOT1
hhy[ibx+iby*nbeta]=ib;
#endif
}
}
return ;
};
};
#endif

View File

@ -0,0 +1,184 @@
#ifndef ETA_INTERPOLATION_POSXY_H
#define ETA_INTERPOLATION_POSXY_H
//#include "tiffIO.h"
#include "etaInterpolationBase.h"
#include "eta2InterpolationBase.h"
#include "eta3InterpolationBase.h"
class etaInterpolationPosXY : public virtual etaInterpolationBase{
public:
etaInterpolationPosXY(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax){
// cout << "epxy " << nb << " " << emin << " " << emax << endl; cout << nbeta << " " << etamin << " " << etamax << endl;
};
etaInterpolationPosXY(etaInterpolationPosXY *orig): etaInterpolationBase(orig) {};
virtual etaInterpolationPosXY* Clone()=0; /* { */
/* return new etaInterpolationPosXY(this); */
/* }; */
virtual void prepareInterpolation(int &ok)
{
ok=1;
#ifdef MYROOT1
if (hhx) delete hhx;
if (hhy) delete hhy;
hhx=new TH2D("hhx","hhx",heta->GetNbinsX(),heta->GetXaxis()->GetXmin(),heta->GetXaxis()->GetXmax(), heta->GetNbinsY(),heta->GetYaxis()->GetXmin(),heta->GetYaxis()->GetXmax());
hhy=new TH2D("hhy","hhy",heta->GetNbinsX(),heta->GetXaxis()->GetXmin(),heta->GetXaxis()->GetXmax(), heta->GetNbinsY(),heta->GetYaxis()->GetXmin(),heta->GetYaxis()->GetXmax());
#endif
///*Eta Distribution Rebinning*///
double bsize=1./nSubPixels; //precision
// cout<<"nPixelsX = "<<nPixelsX<<" nPixelsY = "<<nPixelsY<<" nSubPixels = "<<nSubPixels<<endl;
double tot_eta=0;
double tot_eta_x=0;
double tot_eta_y=0;
for (int ip=0; ip<nbeta*nbeta; ip++)
tot_eta+=heta[ip];
cout << "total eta entries is :"<< tot_eta << endl;
if (tot_eta<=0) {ok=0; return;};
double hx[nbeta]; //profile x
double hy[nbeta]; //profile y
double hix[nbeta]; //integral of projection x
double hiy[nbeta]; //integral of projection y
int ii=0;
double etax, etay;
for (int ib=0; ib<nbeta; ib++) {
tot_eta_x=0;
tot_eta_y=0;
for (int iby=0; iby<nbeta; iby++) {
etax=etamin+iby*etastep;
//cout << etax << endl;
if (etax>=0 && etax<=1)
hx[iby]=heta[iby+ib*nbeta];
else {
hx[iby]=0;
}
// tot_eta_x+=hx[iby];
if (etax>=0 && etax<=1)
hy[iby]=heta[ib+iby*nbeta];
else
hy[iby]=0;
// tot_eta_y+=hy[iby];
}
hix[0]=hx[0];
hiy[0]=hy[0];
for (int iby=1; iby<nbeta; iby++) {
hix[iby]=hix[iby-1]+hx[iby];
hiy[iby]=hiy[iby-1]+hy[iby];
}
ii=0;
tot_eta_x=hix[nbeta-1]+1;
tot_eta_y=hiy[nbeta-1]+1;
for (int ibx=0; ibx<nbeta; ibx++) {
if (tot_eta_x<=0) {
hhx[ibx+ib*nbeta]=-1;
//ii=(ibx)/nbeta;
} else //if (hix[ibx]>(ii+1)*tot_eta_x*bsize)
{
//if (hix[ibx]>tot_eta_x*(ii+1)/nSubPixels) ii++;
hhx[ibx+ib*nbeta]=hix[ibx]/tot_eta_x;
}
}
/* if (ii!=(nSubPixels-1)) */
/* cout << ib << " x " << tot_eta_x << " " << (ii+1)*tot_eta_x*bsize << " " << ii << " " << hix[nbeta-1]<< endl; */
ii=0;
for (int ibx=0; ibx<nbeta; ibx++) {
if (tot_eta_y<=0) {
hhy[ib+ibx*nbeta]=-1;
//ii=(ibx*nSubPixels)/nbeta;
} else {
//if (hiy[ibx]>tot_eta_y*(ii+1)/nSubPixels) ii++;
hhy[ib+ibx*nbeta]=hiy[ibx]/tot_eta_y;
}
}
}
int ibx, iby, ib;
iby=0;
while (hhx[iby*nbeta+nbeta/2]<0) iby++;
for (ib=0; ib<iby;ib++) {
for (ibx=0; ibx<nbeta;ibx++)
hhx[ibx+nbeta*ib]=hhx[ibx+nbeta*iby];
}
iby=nbeta-1;
while (hhx[iby*nbeta+nbeta/2]<0) iby--;
for (ib=iby+1; ib<nbeta;ib++) {
for (ibx=0; ibx<nbeta;ibx++)
hhx[ibx+nbeta*ib]=hhx[ibx+nbeta*iby];
}
iby=0;
while (hhy[nbeta/2*nbeta+iby]<0) iby++;
for (ib=0; ib<iby;ib++) {
for (ibx=0; ibx<nbeta;ibx++)
hhy[ib+nbeta*ibx]=hhy[iby+nbeta*ibx];
}
iby=nbeta-1;
while (hhy[nbeta/2*nbeta+iby]<0) iby--;
for (ib=iby+1; ib<nbeta;ib++) {
for (ibx=0; ibx<nbeta;ibx++)
hhy[ib+nbeta*ibx]=hhy[iby+nbeta*ibx];
}
#ifdef SAVE_ALL
debugSaveAll();
#endif
return ;
}
};
class eta2InterpolationPosXY : public virtual eta2InterpolationBase, public virtual etaInterpolationPosXY {
public:
eta2InterpolationPosXY(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta2InterpolationBase(nx,ny,ns, nb, emin,emax),etaInterpolationPosXY(nx,ny,ns, nb, emin,emax){
// cout << "e2pxy " << nb << " " << emin << " " << emax << endl;
};
eta2InterpolationPosXY(eta2InterpolationPosXY *orig): etaInterpolationBase(orig), etaInterpolationPosXY(orig) {};
virtual eta2InterpolationPosXY* Clone() { return new eta2InterpolationPosXY(this);};
};
class eta3InterpolationPosXY : public virtual eta3InterpolationBase, public virtual etaInterpolationPosXY {
public:
eta3InterpolationPosXY(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationBase(nx,ny,ns, nb, emin,emax),eta3InterpolationBase(nx,ny,ns, nb, emin,emax), etaInterpolationPosXY(nx,ny,ns, nb, emin,emax){
cout << "e3pxy " << nbeta << " " << etamin << " " << etamax << " " << nSubPixels<< endl;
};
eta3InterpolationPosXY(eta3InterpolationPosXY *orig): etaInterpolationBase(orig), etaInterpolationPosXY(orig) {};
virtual eta3InterpolationPosXY* Clone() { return new eta3InterpolationPosXY(this);};
};
#endif

View File

@ -0,0 +1,417 @@
#ifndef ETA_INTERPOLATION_RANDOMBINS_H
#define ETA_INTERPOLATION_RANDOMBINS_H
#include "tiffIO.h"
//#include "etaInterpolationBase.h"
#include "etaInterpolationPosXY.h"
#include <cstdlib>
#include <algorithm>
//#include <math>
#include <cmath> // std::abs
#define PI 3.14159265
#define TWOPI 2.*PI
using namespace std;
class etaInterpolationRandomBins : public etaInterpolationPosXY {
private:
double calcDiff(double avg, float *hx, float *hy) {
double p_tot=0;
double diff=0;
double bsize=1./nSubPixels;
for (int ipx=0; ipx<nSubPixels; ipx++) {
for (int ipy=0; ipy<nSubPixels; ipy++) {
p_tot=0;
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
if ( hx[ibx+iby*nbeta]>=((ipx)*bsize) && hx[ibx+iby*nbeta]<((ipx+1)*bsize) && hy[ibx+iby*nbeta]>=((ipy)*bsize) && hy[ibx+iby*nbeta]<((ipy+1)*bsize)) {
p_tot+=heta[ibx+iby*nbeta];
}
}
}
// cout << p_tot << " \t ";
diff+=(p_tot-avg)*(p_tot-avg);
}
// cout << "\n";
}
return diff;
}
double iterate(float *newhhx, float *newhhy, double avg) {
double bsize=1./nSubPixels;
double hy[nbeta]; //profile y
double hx[nbeta]; //profile x
double hix[nbeta]; //integral of projection x
double hiy[nbeta]; //integral of projection y
double tot_eta_x=0;
double tot_eta_y=0;
int p0;
int vx[(nSubPixels+1)*(nSubPixels+1)], vy[(nSubPixels+1)*(nSubPixels+1)];
int arrx[nSubPixels+1], arry[nSubPixels+1];
int bad=1;
int isby, isbx;
int ii=0;
// using default comparison (operator <):
// std::sort (myvector.begin(), myvector.begin()+4); //(12 32 45 71)26 80 53 33
for (isby=0; isby<(nSubPixels+1)/2+1; isby++) {
for (isbx=0; isbx<(nSubPixels+1)/2+1; isbx++) {
p0=isby*(nSubPixels+1)+isbx;
// for (int iv=0; iv<(nSubPixels+1)*(nSubPixels+1); iv++) {
if (isbx==0) {
vy[p0]=isby*nbeta/nSubPixels;
vx[p0]=0;
} else if ( isby==0 ) {
vy[p0]=0;
vx[p0]=isbx*nbeta/nSubPixels;
}
else {
vy[p0]=rand()%(nbeta/2);
vx[p0]=rand()%(nbeta/2);
if (nSubPixels%2==0 && isbx==nSubPixels/2)
vx[p0]=nbeta/2;
if (nSubPixels%2==0 && isby==nSubPixels/2 )
vy[p0]=nbeta/2;
}
// cout << "(" << vx[p0] << " , " << vy[p0] << " ) \t" ;
// }
}
//cout << endl;
}
// cout << "rand" << endl;
while (bad) {
for (isby=0; isby<(nSubPixels+1)/2+1; isby++) {
for (isbx=0; isbx<(nSubPixels+1)/2+1; isbx++) {
arrx[isbx]=vx[isby*(nSubPixels+1)+isbx];
arry[isbx]=vy[isbx*(nSubPixels+1)+isby];
//cout << isbx << " " << arrx[isbx] << " " << isby << " " << arry[isbx] << endl;
}
sort(arrx,arrx+(nSubPixels+1)/2+1);
sort(arry,arry+(nSubPixels+1)/2+1);
// cout << "*****"<< endl;
// cout << endl;
for (int isbx=0; isbx<(nSubPixels+1)/2+1; isbx++) {
vx[isby*(nSubPixels+1)+isbx]=arrx[isbx];
vy[isbx*(nSubPixels+1)+isby]=arry[isbx];
vx[(nSubPixels-isby)*(nSubPixels+1)+(nSubPixels-isbx)]=nbeta-arrx[isbx];
vy[(nSubPixels-isbx)*(nSubPixels+1)+(nSubPixels-isby)]=nbeta-arry[isbx];
vx[isby*(nSubPixels+1)+(nSubPixels-isbx)]=nbeta-arrx[isbx];
vy[isbx*(nSubPixels+1)+(nSubPixels-isby)]=arry[isbx];
vx[(nSubPixels-isby)*(nSubPixels+1)+(isbx)]=arrx[isbx];
vy[(nSubPixels-isbx)*(nSubPixels+1)+(isby)]=nbeta-arry[isbx];
}
}
/* for (isby=0; isby<nSubPixels+1; isby++) { */
/* for (isbx=0; isbx<nSubPixels+1; isbx++) { */
/* cout << "("<< vx[isby*(nSubPixels+1)+isbx] << " " << vy[isby*(nSubPixels+1)+isbx] << ")\t";//<< endl; */
/* } */
/* cout << endl; */
/* } */
bad=0;
for (isby=1; isby<(nSubPixels+1)/2+1; isby++) {
for (isbx=1; isbx<(nSubPixels+1)/2+1; isbx++) {
if (heta[vx[isby*(nSubPixels+1)+isbx]+vy[isby*(nSubPixels+1)+isbx]*nbeta]<avg*(nSubPixels*nSubPixels)/(nbeta*nbeta)) {
// cout << ii << " " << isbx << " " << isby << " " << vx[isby*(nSubPixels+1)+isbx] << " " << vy[isby*(nSubPixels+1)+isbx] << " " << heta[vx[isby*(nSubPixels+1)+isbx]+vy[isby*(nSubPixels+1)+isbx]*nbeta] << endl;
if (nSubPixels%2==0 && isbx==nSubPixels/2)
;
else
vx[isby*(nSubPixels+1)+isbx]=rand()%(nbeta/2);
if (nSubPixels%2==0 && isbx==nSubPixels/2)
;
else
vy[isby*(nSubPixels+1)+isbx]=rand()%(nbeta/2);
if (bad==0)
ii++;
bad=1;
// break;
}
}
//if (bad) break;
}
// cout << "sort" << endl;
}
cout << ii << " sub iteractions " << avg*(nSubPixels*nSubPixels)/(nbeta*nbeta) << endl;
double m,q;
int in_quad;
int p[4];
int p1x,p2x, p1y, p2y;
// cout << nbeta << endl;
double angle;
double dtheta,theta1,theta2;
for (int ibx=0; ibx<nbeta; ibx++) {
for (int iby=0; iby<nbeta; iby++) {
in_quad=0;
/* if (ibx==0) */
/* isbx=0; */
/* else */
/* isbx= (newhhx[ibx-1+iby*nbeta])/bsize-1; */
/* if (isbx<0) isbx=0; */
/* if (isbx>nSubPixels-1) isbx=nSubPixels-1; */
/* if (iby==0) */
/* isby=0; */
/* else */
/* isby= (newhhx[ibx+(iby-1)*nbeta])/bsize-1; */
/* if (isby<0) isbx=0; */
/* if (isby>nSubPixels-1) isby=nSubPixels-1; */
/* // cout << isbx << " " << isby << endl; */
for (isby=0; isby<nSubPixels; isby++) {
for (isbx=0; isbx<nSubPixels; isbx++) {
// cout << ibx << " " << iby << " " << isbx << " " << isby << endl;
p[0]=isby*(nSubPixels+1)+isbx;
p[1]=isby*(nSubPixels+1)+isbx+1;
p[2]=(isby+1)*(nSubPixels+1)+isbx+1;
p[3]=(isby+1)*(nSubPixels+1)+isbx;
angle=0;
for (int i=0;i<4;i++) {
p1x = vx[p[i]] - ibx;
p1y = vy[p[i]] - iby;
p2x = vx[p[(i+1)%4]] - ibx;
p2y = vy[p[(i+1)%4]] - iby;
theta1 = atan2(p1y,p1x);
theta2 = atan2(p2y,p2x);
dtheta = theta2 - theta1;
while (dtheta > PI)
dtheta -= TWOPI;
while (dtheta < -PI)
dtheta += TWOPI;
angle += dtheta;
}
if (abs((double)angle) < PI)
in_quad=0;
else
in_quad=1;
if (in_quad) {
newhhx[ibx+iby*nbeta]=bsize*((double)isbx);
newhhy[ibx+iby*nbeta]=bsize*((double)isby);
break;
}
}
if (in_quad) break;
}
}
}
// cout << "hist" << endl;
return calcDiff(avg, newhhx, newhhy);
}
public:
etaInterpolationRandomBins(int nx=400, int ny=400, int ns=25, int nb=-1, double emin=1, double emax=0) : etaInterpolationPosXY(nx,ny,ns, nb, emin,emax){};
etaInterpolationRandomBins(etaInterpolationRandomBins *orig): etaInterpolationPosXY(orig){};
virtual etaInterpolationRandomBins* Clone() {
return new etaInterpolationRandomBins(this);
};
virtual void prepareInterpolation(int &ok)
{
ok=1;
cout << "Adaptive bins" << endl;
///*Eta Distribution Rebinning*///
double bsize=1./nSubPixels; //precision
// cout<<"nPixelsX = "<<nPixelsX<<" nPixelsY = "<<nPixelsY<<" nSubPixels = "<<nSubPixels<<endl;
double tot_eta=0;
for (int ip=0; ip<nbeta*nbeta; ip++)
tot_eta+=heta[ip];
if (tot_eta<=0) {ok=0; return;};
int ii=0;
int nint=1000;
double thr=1./((double)nSubPixels);
double avg=tot_eta/((double)(nSubPixels*nSubPixels));
cout << "total eta entries is :"<< tot_eta << " avg: "<< avg << endl;
cout << "Start " << endl;
double old_diff=-1, new_diff=-1;
// cout << " diff= " << new_diff << endl;
etaInterpolationPosXY::prepareInterpolation(ok);
old_diff=calcDiff(avg, hhx, hhy);
cout << " diff= " << old_diff << endl;
int iint=0;
float *newhhx=new float[nbeta*nbeta]; //profile x
float *newhhy=new float[nbeta*nbeta]; //profile y
int igood=0, ibad=0;
#ifdef SAVE_ALL
int etabins=nbeta;
float *etah=new float[nbeta*nbeta];
char tit[1000];
#endif
while (iint<nint) {
cout << "Iteration " << iint << endl;
new_diff=iterate(newhhx,newhhy, avg);
//new_diff=calcDiff(avg, newhhx, newhhy);
cout << " diff= " << new_diff << " ( " << old_diff<< " ) " << endl;
/* #ifdef SAVE_ALL */
/* for (int ii=0; ii<etabins*etabins; ii++) { */
/* etah[ii]=newhhx[ii]; */
/* if (etah[ii]>1 || etah[ii]<0 ) cout << "***"<< ii << etah[ii] << endl; */
/* } */
/* sprintf(tit,"/scratch/randeta_hhx_%d.tiff",iint); */
/* WriteToTiff(etah, tit, etabins, etabins); */
/* for (int ii=0; ii<etabins*etabins; ii++) { */
/* etah[ii]=newhhy[ii]; */
/* if (etah[ii]>1 || etah[ii]<0 ) cout << "***"<< ii << etah[ii] << endl; */
/* } */
/* sprintf(tit,"/scratch/randeta_hhy_%d.tiff",iint); */
/* WriteToTiff(etah, tit, etabins, etabins); */
/* #endif */
if (new_diff<old_diff) {
cout << "******************** GOOD! ***********************"<< endl;
delete [] hhx;
delete [] hhy;
igood++;
hhx=newhhx;
hhy=newhhy;
newhhx=new float[nbeta*nbeta]; //profile x */
newhhy=new float[nbeta*nbeta]; //profile y */
old_diff=new_diff;
} else
ibad++;
iint++;
}
delete [] newhhx;
delete [] newhhy;
cout << "performed " << iint << " iterations of which " << igood << " positive " << endl;
/* #ifdef SAVE_ALL */
/* for (int ii=0; ii<etabins*etabins; ii++) { */
/* etah[ii]=hhx[ii]; */
/* } */
/* sprintf(tit,"/scratch/eta_hhx_%d.tiff",id); */
/* WriteToTiff(etah, tit, etabins, etabins); */
/* for (int ii=0; ii<etabins*etabins; ii++) { */
/* etah[ii]=hhy[ii]; */
/* } */
/* sprintf(tit,"/scratch/eta_hhy_%d.tiff",id); */
/* WriteToTiff(etah, tit, etabins, etabins); */
/* for (int ii=0; ii<etabins*etabins; ii++) { */
/* etah[ii]=heta[ii]; */
/* } */
/* sprintf(tit,"/scratch/eta_%d.tiff",id); */
/* WriteToTiff(etah, tit, etabins, etabins); */
/* delete [] etah; */
/* #endif */
return ;
}
};
#endif

View File

@ -0,0 +1,678 @@
#include <TH1D.h>
#include <TH2D.h>
#include <TPad.h>
#include <TDirectory.h>
#include <TEntryList.h>
#include <TFile.h>
#include <TMath.h>
#include <TTree.h>
#include <TChain.h>
#include <THStack.h>
#include <TCanvas.h>
#include <TF1.h>
#include <TLegend.h>
#include <stdio.h>
#include <iostream>
#include <deque>
#include <list>
#include <queue>
#include <fstream>
#include "EtaVEL.h"
#include "EtaVEL.cpp"
/*
Zum erstellen der correction map ist createGainAndEtaFile(...) in EVELAlg.C der entry point.
Zum erstellen des HR images ist createImage(...) der entry point.
*/
int etabins = 25;
int nEtas = 25;
Double_t dum[3][3];
Int_t x,y,f,q;
int counter[5];
int remoteCounter[5];
//TH2D *sum = new TH2D("sum","sum",3,-0.1,2.1,3,-0.1,2.1);
//TH2F *subPos = new TH2F("subPos","subPos", 100, -1.,1. ,100, -1.,1.);
TH2D *subPosAEta = new TH2D("subPosAEta","subPosAEta", 50, -.5,1.5 ,50, -.5,1.5);
TH2D *subPosBEta = new TH2D("subPosBEta","subPosBEta", 50, -.5,1.5 ,50, -.5,1.5);
TH1D *cE = new TH1D("clusterEnergy","clusterEnergy",400, 0.,4000.);
//TH1D *cES = new TH1D("clusterEnergyS","clusterEnergyS",400, 0.,4000.);
TH2D *cES3vs2 = new TH2D("clusterEnergy3vs2","clusterEnergy3vs2",800, 0.,8000.,600,0.,6000.);
TH2D *cES3vs2S = new TH2D("clusterEnergy3vs2S","clusterEnergy3vs2S",800, 0.,8000.,600,0.,6000.);
double th = 0.99;
double sigmas = 1.0;
TH2D *imgRLR = new TH2D("imgRLR","imgRLR",160,0.0,160.0 ,160 ,0.0,160.0);
TH2D *imgLR = new TH2D("imgLR","imgLR",160*2,0.0,160.0 ,160*2 ,0.0,160.0);
TH2D *clusHist= new TH2D("clusHist","clusHist",3,-0.5,2.5,3,-0.5,2.5);
TH2D *clusHistC= new TH2D("clusHistC","clusHistC",3,-0.5,2.5,3,-0.5,2.5);
int **imgArray;
int findShape(Double_t cluster[3][3], double sDum[2][2]){
int corner = -1;
double sum = cluster[0][0] + cluster[1][0] + cluster[2][0] + cluster[0][1] + cluster[1][1] + cluster[2][1] + cluster[0][2] + cluster[1][2] + cluster[2][2];
double sumTL = cluster[0][0] + cluster[1][0] + cluster[0][1] + cluster[1][1]; //2 ->BL
double sumTR = cluster[1][0] + cluster[2][0] + cluster[2][1] + cluster[1][1]; //0 ->TL
double sumBL = cluster[0][1] + cluster[0][2] + cluster[1][2] + cluster[1][1]; //3 ->BR
double sumBR = cluster[1][2] + cluster[2][1] + cluster[2][2] + cluster[1][1]; //1 ->TR
double sumMax = 0;
//double **sDum = subCluster;
Double_t ssDum[2][2];
// if(sumTL >= sumMax){
sDum[0][0] = cluster[0][0]; sDum[1][0] = cluster[1][0];
sDum[0][1] = cluster[0][1]; sDum[1][1] = cluster[1][1];
ssDum[0][0] = cluster[0][0]; ssDum[1][0] = cluster[0][1];
ssDum[0][1] = cluster[1][0]; ssDum[1][1] = cluster[1][1];
corner = 2;
sumMax=sumTL;
// }
if(sumTR >= sumMax){
sDum[0][0] = cluster[1][0]; sDum[1][0] = cluster[2][0];
sDum[0][1] = cluster[1][1]; sDum[1][1] = cluster[2][1];
ssDum[0][0] = cluster[2][0]; ssDum[1][0] = cluster[2][1];
ssDum[0][1] = cluster[1][0]; ssDum[1][1] = cluster[1][1];
corner = 0;
sumMax=sumTR;
}
if(sumBL >= sumMax){
sDum[0][0] = cluster[0][1]; sDum[1][0] = cluster[1][1];
sDum[0][1] = cluster[0][2]; sDum[1][1] = cluster[1][2];
ssDum[0][0] = cluster[0][2]; ssDum[1][0] = cluster[0][1];
ssDum[0][1] = cluster[1][2]; ssDum[1][1] = cluster[1][1];
corner = 3;
sumMax=sumBL;
}
if(sumBR >= sumMax){
sDum[0][0] = cluster[1][1]; sDum[1][0] = cluster[2][1];
sDum[0][1] = cluster[1][2]; sDum[1][1] = cluster[2][2];
ssDum[0][0] = cluster[2][2]; ssDum[1][0] = cluster[2][1];
ssDum[0][1] = cluster[1][2]; ssDum[1][1] = cluster[1][1];
corner = 1;
sumMax=sumBR;
}
switch(corner){
case 0:
cES3vs2->Fill(sum,sumTR); break;
case 1:
cES3vs2->Fill(sum,sumBR); break;
case 2:
cES3vs2->Fill(sum,sumTL); break;
case 3:
cES3vs2->Fill(sum,sumBL); break;
}
counter[corner]++;
remoteCounter[q]++;
// cout << "local corner is: " << corner << " remote corner is: " << q << endl;
return corner;
}
int placePhoton( TH2D *img, double subCluster[2][2], int cX, int cY, int corner, double *sX, double *sY, double *scX, double *scY){
double tot = subCluster[0][0] + subCluster[0][1] + subCluster[1][0] + subCluster[1][1];
double t = subCluster[1][0] + subCluster[1][1];
double r = subCluster[0][1] + subCluster[1][1];
double xHitC = r/tot;
double yHitC = t/tot;
imgRLR->Fill(cX,cY);
cE->Fill(tot);
double dX, dY;
//before looking at annas code
/* if(corner == 0){ dX=-1.; dY=-1.; }
if(corner == 1){ dX=-1.; dY=+1.; }
if(corner == 2){ dX=+1.; dY=-1.; }
if(corner == 3){ dX=+1.; dY=+1.; }*/
if(corner == 0){ dX=-1.; dY=+1.; } //top left
if(corner == 1){ dX=+1.; dY=+1.; } //top right
if(corner == 2){ dX=-1.; dY=-1.; } //bottom left
if(corner == 3){ dX=+1.; dY=-1.; } //bottom right
imgLR->Fill(cX+0.25*dX,cY+0.25*dY);
double posX = ((double)cX) + 0.5*dX + xHitC;
double posY = ((double)cY) + 0.5*dY + yHitC;
subPosBEta->Fill(xHitC ,yHitC);
if(img){
img->Fill(posX,posY);
}
if(xHitC < 0.02&& yHitC < 0.02){
cES3vs2S->Fill(dum[0][0]+dum[0][1]+dum[0][2]+dum[1][0]+dum[1][1]+dum[1][2]+dum[2][0]+dum[2][1]+dum[2][2],subCluster[0][0]+subCluster[0][1]+subCluster[1][0]+subCluster[1][1]);
}
if(sX && sY && scX && scY){
*sX = xHitC; //0.5 + 0.5*dX + xHitC;
*sY = yHitC; //0.5 + 0.5*dY + yHitC;
*scX = ((double)cX) + 0.5*dX;
*scY = ((double)cY) + 0.5*dY;
}
return 1;
}
void placePhotonCorr(TH2D *img, EtaVEL *e,double sX, double sY, double scX, double scY){
int bin = e->findBin(sX,sY);
if(bin <= 0) return;
double subX = ((double)(e->getXBin(bin))+.5)/((double)e->getNPixels());
double subY = ((double)(e->getYBin(bin))+.5)/((double)e->getNPixels());
if(img!=NULL){
img->Fill(scX+ subX , scY+ subY);
}
subPosAEta->Fill(subX,subY);
int iscx = scX;
int iscy = scY;
if(iscx >=nx || iscx<0 || iscy >=ny || iscy<0) return;
//cout << iscx*e->getNPixels()+e->getXBin(bin) << " " << iscy*e->getNPixels()+e->getXBin(bin) << endl;
if(img==NULL) return;
imgArray[iscx*e->getNPixels()+e->getXBin(bin)][iscy*e->getNPixels()+e->getYBin(bin)]++;
}
void gainCorrection(Double_t corrected[3][3], TH2D *gainMap){
for(int xx = 0; xx < 3; xx++)
for(int yy = 0; yy < 3; yy++){
if(gainMap && gainMap->GetBinContent(x+xx+2,y+yy+2) != 0){
corrected[xx][yy] = dum[xx][yy] / gainMap->GetBinContent(x+xx+2,y+yy+2);
clusHistC->Fill(xx,yy,corrected[xx][yy]);
}
else
corrected[xx][yy] = dum[xx][yy];
clusHist->Fill(xx,yy,dum[xx][yy]);
}
}
EtaVEL *plotEtaDensity(TChain* tree2, TEntryList *el, EtaVEL *oldEta = NULL, TH2D **img = NULL, TH2D *gainMap=NULL, int nPixels=25) {
EtaVEL *newEta = new EtaVEL(25,-0.02,1.02);
Long64_t listEntries=el->GetN();
Long64_t treeEntry;
Long64_t chainEntry;
Int_t treenum=0;
tree2->SetEntryList(el);
double gainCorrC[3][3];
double subCluster[2][2];
double sX, sY, scX, scY;
cout << "Events: " << listEntries << endl;
if(oldEta == NULL){ cout << "Old Eta is NULL " << endl; }
for(int i = 0; i<4; i++){ counter[i] = 0; remoteCounter[i] = 0; }
for (Long64_t il =0; il<listEntries;il++) {
treeEntry = el->GetEntryAndTree(il,treenum);
chainEntry = treeEntry+tree2->GetTreeOffset()[treenum];
if (tree2->GetEntry(chainEntry)) {
gainCorrection(gainCorrC,gainMap);
//cout << gainCorrC[1][1] << endl;
//finds corner
int corner = findShape(gainCorrC,subCluster);
int validEvent;
if(img){
validEvent = placePhoton(img[0],subCluster,x,y, corner, &sX, &sY, &scX, &scY);
}else{
//calc etaX, etaY
validEvent = placePhoton(NULL,subCluster,x,y, corner, &sX, &sY, &scX, &scY);
}
//fill etavel
newEta->fill(sX,sY);
if(oldEta && img && img[1]){
placePhotonCorr(img[1],oldEta, sX,sY, scX, scY);
}else{
placePhotonCorr(NULL,newEta,sX,sY,scX,scY);
}
}
//cout << il << endl;
int ssize = 500000;
if(il % ssize == 0 && il != 0 && oldEta==NULL){
cout << " -------------- "<< endl;
newEta->updatePixelPos();
//newEta->resolveSelfIntersect();
char tit[1000];
/* TFile *ff = new TFile("/scratch/Spider.root","UPDATE");
sprintf(tit,"subPosAEta%i",newEta->getIt()); subPosAEta->SetName(tit);
subPosAEta->Write(); subPosAEta->Reset();
sprintf(tit,"subPosBEta%i",newEta->getIt()); subPosBEta->SetName(tit);
subPosBEta->Write(); subPosBEta->Reset();
sprintf(tit,"Eta%i",newEta->getIt()); newEta->Write(tit);
ff->Close(); */
//il = 0;
}
if(il % ssize == ssize-1){
double prog = (double)il/(double)listEntries*100.;
cout << prog << "%" << endl;
//if(prog > 19.) return newEta;
if(newEta->converged == 1){ cout << "converged ... " << endl; return newEta; }
}
}
cout << "local corners: " ;
for(int i = 0; i<4; i++) cout << i << ": " << counter[i] << " || " ;
cout << endl;
//cout << "remote corners: " ;
//for(int i = 0; i<4; i++) cout << i << ": " << remoteCounter[i] << " || " ;
//cout << endl;
return newEta;
}
TChain *openTree(char *tname, char *fname,double lEc, double hEc, double rms=5., char *chainName=">>thischan"){
TChain *tree2;
// TH1D **etaDI;
char cut[1000];
tree2=new TChain(tname);
tree2->Add(fname);
tree2->Print();
//sprintf(cut,"(x<=40) && (data[%d][%d]>%f*rms) && Sum$(data)<%f && Sum$(data)>%f",1,1,rms, hEc, lEc);
// sprintf(cut,"(x<=40) && (data[%d][%d]>%f*rms)",1,1,rms);// && Sum$(data)<%f && Sum$(data)>%f",1,1,rms, hEc, lEc);
sprintf(cut,"(x<=40) && Sum$(data)<%f && Sum$(data)>%f", hEc, lEc);
// sprintf(cut,"");
cout << cut << endl;
tree2->Draw(chainName, cut, "entrylist");
tree2->SetBranchAddress("iFrame",&f);
tree2->SetBranchAddress("x",&x);
tree2->SetBranchAddress("y",&y);
tree2->SetBranchAddress("data",dum);
//tree2->SetBranchAddress("q",&q);
cout << "openTree : end" << endl;
return tree2;
}
EtaVEL *etaDensity(char *tname, char *fname, double lEc = 1000, double hEc=3000, TH2D *gainMap=NULL, int nPixels=25) {
/** open tree and make selection */
TChain *tree2 = openTree(tname,fname,lEc,hEc);
TEntryList *elist = (TEntryList*)gDirectory->Get("thischan");
if(elist == NULL) { cout << "could not open tree " << endl; return NULL; }
EtaVEL *etaDen = plotEtaDensity(tree2,elist,NULL,NULL,gainMap,nPixels);
//etaDen->Draw("colz");
cout << "done" << endl;
return etaDen;
}
void interpolate(char *tname, char *fname, EtaVEL *etaDI, double lEc = 1000, double hEc=3000, TH2D *gainMap=NULL) {
TChain *tree2 = openTree(tname,fname,lEc,hEc,5.,">>intChain");
TEntryList *elist = (TEntryList*)gDirectory->Get("intChain");
if(elist == NULL) { cout << "could not open tree " << endl; return; }
double nPixels = (double)etaDI->getNPixels();
TH2D **img = new TH2D*[3];
img[0] = new TH2D("img","img",nPixels*160,0.0,160.0 ,nPixels*160 ,0.0,160.0);
img[1] = new TH2D("imgE","imgE",nPixels*160,0.0,160.0 ,nPixels*160 ,0.0,160.0);
int inPixels = etaDI->getNPixels();
imgArray = new int*[inPixels*160];
for(int i = 0; i < inPixels*160; i++){
imgArray[i] = new int[inPixels*160];
for(int j = 0; j < inPixels*160; j++){
imgArray[i][j] = 0;
}
}
cout << "starting" << endl;
plotEtaDensity(tree2,elist, etaDI,img,gainMap);
//img->Draw("colz");
}
TH2D *createGainMap(char *tname, char *fname, double lEc = 0,double hEc=10000){
char name[100];
TH1D *avgSpec3 = new TH1D("avgSpec3", "avgSpec3",hEc/20,0,hEc);
TH1D ***specs3 = new TH1D**[160];
TH1D ***specs1 = new TH1D**[160];
for(int xx = 0; xx < 160; xx++){
specs3[xx] = new TH1D*[160];
specs1[xx] = new TH1D*[160];
for(int yy = 0; yy < 160; yy++){
sprintf(name,"S3x%iy%i",xx,yy);
specs3[xx][yy] = new TH1D(name,name,hEc/20,0,hEc);
sprintf(name,"S1x%iy%i",xx,yy);
specs1[xx][yy] = new TH1D(name,name,hEc/20,0,hEc);
}
}
TChain *tree2 = openTree(tname,fname,0,hEc,5.,">>gainChan");
TEntryList *elist = (TEntryList*)gDirectory->Get("gainChan");
if(elist == NULL) { cout << "could not open tree " << endl; return NULL; }
Long64_t listEntries=elist->GetN();
Long64_t treeEntry;
Long64_t chainEntry;
Int_t treenum=0;
tree2->SetEntryList(elist);
cout << "Events: " << listEntries << endl;
for(int i = 0; i<4; i++) counter[i] = 0;
for (Long64_t il =0; il<listEntries;il++) {
treeEntry = elist->GetEntryAndTree(il,treenum);
chainEntry = treeEntry+tree2->GetTreeOffset()[treenum];
if (tree2->GetEntry(chainEntry)) {
double sum = 0;
for(int xx = 0; xx < 3; xx++)
for(int yy = 0; yy < 3; yy++)
sum += dum[xx][yy];
specs3[x][y]->Fill(sum);
specs1[x][y]->Fill(dum[1][1]);
avgSpec3->Fill(sum);
}
}
TH2D *gainMap3 = new TH2D("gainMap3","gainMap3",160,-0.5,160.-0.5,160,-.5,160.-.5);
TH2D *gainMap1 = new TH2D("gainMap1","gainMap1",160,-0.5,160.-0.5,160,-.5,160.-.5);
for(int xx = 0; xx < 160; xx++){
for(int yy = 0; yy < 160; yy++){
TF1 *gf3 = new TF1("gf3","gaus", lEc, hEc);
specs3[xx][yy]->Fit(gf3,"Q");
double e3 = gf3->GetParameter(1);
gainMap3->Fill(xx,yy,e3);
TF1 *gf1 = new TF1("gf1","gaus", lEc, hEc);
specs1[xx][yy]->Fit(gf1,"Q");
double e1 = gf1->GetParameter(1);
gainMap1->Fill(xx,yy,e1);
}
}
return gainMap3;
}
void writeMatlab2DHisto(int xx, int yy,char *outFileName){
ofstream outFile;
outFile.open (outFileName);
cout << "create matlab file with " << xx << " xbins and " << yy << " ybins" << endl;
for(int y = 0; y < yy; y++){
for(int x = 0; x < xx; x++){
outFile << imgArray[x][y] << "\t";
}
outFile << endl;
}
outFile.close();
}
//COMPLETE STUFF
void createImage(char *tdir, char *tname, char *ftname, char *ifname = NULL, int useGM=0, double lEth=-1., double hEth=-1.){
imgRLR->Reset();
imgLR->Reset();
char fname[1000];
char inFName[1000];
char outFName[1000];
char moutFName[1000];
if(ifname == NULL){
sprintf(fname,"%s/%s_*.root",tdir,tname);
}else{
sprintf(fname,"%s",ifname);
}
if(useGM) sprintf(inFName,"%s/%s-PlotsWGMVEL.root",tdir,ftname);
else sprintf(inFName,"%s/%s-PlotsVEL.root",tdir,ftname);
sprintf(outFName,"%s/%s-ImgVEL.root",tdir,tname);
sprintf(moutFName,"%s/%s-ImgVEL.mf",tdir,tname);
TFile *inFile = new TFile(inFName,"READ");
cout << "Image Tree File Name: " << fname << endl;
cout << "Eta File Name: " << inFName << endl;
cout << "Out File Name: " << outFName << endl;
cout << "Matlab Out File Name: " << moutFName << endl;
TH2D *gm = NULL;
if(useGM){
cout << "Load gain map" << endl;
gm = (TH2D *)gDirectory->Get("gainMap");
if(gm == NULL){ cout << "can not find gainMap in file" << endl; return; }
}
cout << "Load eta" << endl;
EtaVEL *ee = (EtaVEL *)gDirectory->Get("etaDist");
cout << "Select Energy BW" << endl;
TH1D *spec = (TH1D *)gDirectory->Get("avgSpec3");
if(spec == NULL){ cout << "can not find avgSpec3" << endl; return; }
TF1 *gf3 = new TF1("gf3","gaus", 0, 10000);
spec->Fit(gf3,"Q");
double avgE = gf3->GetParameter(1);
double sigE = gf3->GetParameter(2);
cout << "avgE: " << avgE << " sigE: " << sigE << endl;
cout << endl;
if(lEth == -1.) lEth = avgE-5.*sigE;
if(hEth == -1.) hEth = avgE+5.*sigE;
cout << lEth << " < E < " << hEth << " (eV)" << endl;
cout << "start with interpolation" << endl;
interpolate( tname, fname, ee,lEth,hEth ,gm);
TH2D *img = (TH2D *)gDirectory->Get("img");
if(img == NULL){ cout << "could not find 2d-histogram: img " << endl; return; }
TH2D *imgE = (TH2D *)gDirectory->Get("imgE");
if(imgE == NULL){ cout << "could not find 2d-histogram: imgE " << endl; return; }
//TH2D *imgEOM = (TH2D *)gDirectory->Get("imgEOM");
//if(imgEOM == NULL){ cout << "could not find 2d-histogram: imgEOM " << endl; return; }
TFile *outFile = new TFile(outFName,"UPDATE");
imgLR->Write();
imgRLR->Write();
imgE->Write();
//imgEOM->Write();
img->Write();
outFile->Close();
inFile->Close();
cout << "writing matlab file: " << moutFName << endl;
writeMatlab2DHisto(160*ee->getNPixels(),160*ee->getNPixels(),moutFName);
cout << "Done : " << outFName << endl;
}
/**
\par tdir input tree directory
\par tname input tree name
\par ifname input file name if different than tdir/tname_*.root
\par useGM use gain map
\par maxExpEinEv spectrum maximum
\par nPixels sub-pixels bins
\par lEth low threshold
\par hEth high threshold
*/
EtaVEL *createGainAndEtaFile(char *tdir, char *tname, char *ifname=NULL, int useGM=0, double maxExpEinEv=25000., int nPixels =25, double lEth=-1., double hEth=-1.){
char fname[1000];
char outFName[1000];
if(ifname == NULL){
sprintf(fname,"%s/%s_*.root",tdir,tname);
}else{
sprintf(fname,"%s",ifname);
}
if(useGM) sprintf(outFName,"%s/%s-PlotsWGVEL.root",tdir,tname);
else sprintf(outFName,"%s/%s-PlotsVEL.root",tdir,tname);
cout << "Tree File Name: " << fname << endl;
cout << "Output File Name: " << outFName << endl;
/** creates gain map and 3x3 spectrum */
cout << "Creating gain map: " << endl;
TH2D *gm = createGainMap(tname,fname,0,maxExpEinEv/10.);
gm->SetName("gainMap");
/** gets average 3x3 spectrum and fits it with a gaus */
TH1D *spec = (TH1D *)gDirectory->Get("avgSpec3");
if(spec == NULL){ cout << "can not find avgSpec3" << endl; return NULL; }
TF1 *gf3 = new TF1("gf3","gaus", 0, maxExpEinEv/10.);
spec->Fit(gf3,"Q");
double avgE = gf3->GetParameter(1);
double sigE = gf3->GetParameter(2);
cout << "avgE: " << avgE << " sigE: " << sigE << endl;
cout << endl;
/** sets high and low threshold if not given by the user */
if(lEth == -1.) lEth = avgE-5.*sigE;
if(hEth == -1.) hEth = avgE+5.*sigE;
cout << lEth << " < E < " << hEth << " (eV)" << endl;
cout << "calculating eta stuff" << endl;
EtaVEL *newEta;
if(useGM) newEta = etaDensity(tname,fname,lEth,hEth,gm,nPixels);
else newEta = etaDensity(tname,fname,lEth,hEth,NULL,nPixels);
cout << "writing to file " << outFName << endl;
TFile *outFile = new TFile(outFName,"UPDATE");
newEta->Write("etaDist");
gm->Write();
spec->Write();
subPosAEta->Write();
cES3vs2->Write();
outFile->Close();
cout << "Done : " << outFName << endl;
return newEta;
}
void exportSpec(char *tdir, char *tname){
char tfname[1000];
char ofname[1000];
char cleanName[1000];
for(int p = 0; p < strlen(tname);p++){
cleanName[p+1] = '\0';
cleanName[p] = tname[p];
if(tname[p] == '-') cleanName[p] = '_';
}
sprintf(tfname,"%s/%s-PlotsVEL.root",tdir,tname);
sprintf(ofname,"%s/%s_SpecVEL.m",tdir,cleanName);
TFile *tf = new TFile(tfname);
TH1D *spec = (TH1D *)gDirectory->Get("avgSpec3");
ofstream outFile;
outFile.open (ofname);
if(outFile.fail()){
cout << "Could not open file : " << ofname << endl;
return;
}
cout << "create matlab file with with spec " << ofname << endl;
outFile << cleanName << " = [ " << endl;
for(int i = 0; i < spec->GetNbinsX(); i++){
outFile << i << " " << spec->GetBinCenter(i) << " " << spec->GetBinContent(i) << " ; " << endl;
}
outFile << " ] ; " << endl;
outFile.close();
}

View File

@ -0,0 +1,679 @@
#include "EtaVEL.h"
#include <iomanip>
// ClassImp(EtaVEL);
// double Median(const TH1D * histo1) {
// int numBins = histo1->GetXaxis()->GetNbins();
// Double_t *x = new Double_t[numBins];
// Double_t* y = new Double_t[numBins];
// for (int i = 0; i < numBins; i++) {
// x[i] = histo1->GetBinCenter(i);
// y[i] = histo1->GetBinContent(i);
// }
// return TMath::Median(numBins, x, y);
// }
double *EtaVEL::getPixelCorners(int x, int y){
double tlX,tlY,trX,trY,blX,blY,brX,brY;
tlX = xPPos[getCorner(x,y+1)];
tlY = yPPos[getCorner(x,y+1)];
trX = xPPos[getCorner(x+1,y+1)];
trY = yPPos[getCorner(x+1,y+1)];
blX = xPPos[getCorner(x,y)];
blY = yPPos[getCorner(x,y)];
brX = xPPos[getCorner(x+1,y)];
brY = yPPos[getCorner(x+1,y)];
//cout << "gPC: TL: " << getCorner(x,y+1) << " TR: " << getCorner(x+1,y+1) << " BL " << getCorner(x,y) << " BR " << getCorner(x+1,y) << endl;
double *c = new double[8];
c[0] = tlX; c[1] = trX; c[2] = brX; c[3] = blX;
c[4] = tlY; c[5] = trY; c[6] = brY; c[7] = blY;
return c;
}
int EtaVEL::findBin(double xx, double yy){
double tlX,tlY,trX,trY,blX,blY,brX,brY;
/********Added by anna ******/
// if (xx<min) xx=min+1E-6;
// if (xx>max) xx=max-1E-6;
// if (yy<min) yy=min+1E-6;
// if (yy>max) yy=max-1E-6;
/**************/
int bin = -1;
for(int x = 0; x < nPixels; x++){
for(int y = 0; y < nPixels; y++){
double *c = getPixelCorners(x,y);
tlX = c[0]; trX = c[1]; brX = c[2]; blX = c[3];
tlY = c[4]; trY = c[5]; brY = c[6]; blY = c[7];
///if(y == 0){
// cout << "x: " << x << " blY " << blY << " brY " << brY << endl;
//}
int out = 0;
double tb = 0;
double bb = 0;
double lb = 0;
double rb = 0;
if((trX-tlX)>0.)
tb = (trY - tlY)/(trX-tlX);
if((brX-blX)>0.)
bb = (brY - blY)/(brX-blX);
if((tlY-blY)>0.)
lb = (tlX - blX)/(tlY-blY);
if((trY-brY)>0.)
rb = (trX - brX)/(trY-brY);
double ty = tlY + tb * (xx - tlX);
double by = blY + bb * (xx - blX);
double lx = blX + lb * (yy - blY);
double rx = brX + rb * (yy - brY);
if(yy >= ty) out++;
if(yy < by) out++;
if(xx < lx) out++;
if(xx >= rx) out++;
//cout << "ty " << ty << endl;
//cout << "by " << by << endl;
//cout << "lx " << lx << endl;
//cout << "rx " << rx << endl;
//double dist = (xx - xPPos[getBin(x,y)]) * (xx - xPPos[getBin(x,y)]) + (yy - yPPos[getBin(x,y)]) * (yy - yPPos[getBin(x,y)]);
//cout << "x " << x << " y " << y << " out " << out << " ty " << ty << endl;
//cout << "tl " << tlX << "/" << tlY << " tr " << trX << "/" << trY << endl;
//cout << "bl " << blX << "/" << blY << " br " << brX << "/" << brY << endl;
//cout << " tb " << tb << endl;
delete[] c;
if(out == 0){ return getBin(x,y); }
}
}
return -1;
}
void EtaVEL::createLogEntry(){
if(it >= nIterations){
cerr << "log full" << endl;
}
log[it].itN = it;
log[it].xPos = new double[nPixels*nPixels+1];
log[it].yPos = new double[nPixels*nPixels+1];
log[it].binCont = new double[nPixels*nPixels+1];
for(int x = 0; x < nPixels; x++)
for(int y = 0; y < nPixels; y++){
log[it].xPos[getBin(x,y)] = xPPos[getBin(x,y)];
log[it].yPos[getBin(x,y)] = yPPos[getBin(x,y)];
log[it].binCont[getBin(x,y)] = binCont[getBin(x,y)];
}
it++;
}
void EtaVEL::updatePixelCorner(){
double w = 20;
int rows = (nPixels+1)*(nPixels+1) + 4 + 4 * 4;//(4*(nPixels+1))-4;
int cols = (nPixels+1)*(nPixels+1);
double *rVx = new double[rows];
double *rVy = new double[rows];
double *posMat = new double[rows*cols];
for(int i = 0 ; i < rows*cols; i++) posMat[i] = 0;
int boundaryPoint = 0;
cout << "linear sys stuff" << endl;
double minELength = 100000000000000; int minX=-1, minY=-1;
for(int y = 0; y < nPixels+1; y++){
for(int x = 0; x < nPixels+1; x++){
double bx = 0, by = 0;
//boundary conditions
if((x == 0 && y % 5 == 0) ||
(x == nPixels && y % 5 == 0) ||
(y == 0 && x % 5 == 0) ||
(y == nPixels && x % 5 == 0)){
bx = xPPos[getCorner(x,y)];
//cout << "bP " << boundaryPoint << " bx " << bx << endl;
by = yPPos[getCorner(x,y)];
rVx[(nPixels+1)*(nPixels+1) + boundaryPoint] = bx*w;
rVy[(nPixels+1)*(nPixels+1) + boundaryPoint] = by*w;
posMat[(nPixels+1)*(nPixels+1)*cols + boundaryPoint * cols + getCorner(x,y)-1] = w;
boundaryPoint++;
}
double tot = 4 - (x == 0) - (y == 0) - (x == nPixels) - (y == nPixels);
//cout << "totW: " << tot << endl;
//tot = 4.;
double eLength = 0;
if(x != 0) eLength += edgeL[getEdgeX(x-1,y)];
if(y != 0) eLength += edgeL[getEdgeY(x,y-1)];
if(x != nPixels) eLength += edgeL[getEdgeX(x,y)];
if(y != nPixels) eLength += edgeL[getEdgeY(x,y)];
/*cout << "Corner X:" <<x << " Y: " << y ;
cout << " C# " << getCorner(x,y);
cout << " eXl " << getEdgeX(x-1,y) << "(C# " << getCorner(x-1,y) << " ) ";
cout << " eXr " << getEdgeX(x,y) << "(C# " << getCorner(x+1,y) << " ) ";
cout << " eYb " << getEdgeY(x,y-1) << "(C# " << getCorner(x,y-1) << " ) ";
cout << " eYt " << getEdgeY(x,y) << "(C# " << getCorner(x,y+1) << " ) " << endl; */
//" totW: " << tot << " totE: " << eLength << endl;
if(eLength < minELength & tot == 4){
minELength = eLength;
minX = x; minY = y;
}
//matrixes updated
if(x != 0) posMat[y*(nPixels+1)*cols+x*cols+getCorner(x-1,y)-1] = -edgeL[getEdgeX(x-1,y)]/eLength;
if(y != 0) posMat[y*(nPixels+1)*cols+x*cols+getCorner(x,y-1)-1] = -edgeL[getEdgeY(x,y-1)]/eLength;;
if(x != nPixels) posMat[y*(nPixels+1)*cols+x*cols+getCorner(x+1,y)-1] = -edgeL[getEdgeX(x,y)]/eLength;;
if(y != nPixels) posMat[y*(nPixels+1)*cols+x*cols+getCorner(x,y+1)-1] = -edgeL[getEdgeY(x,y)]/eLength;;
posMat[y*(nPixels+1)*cols+x*cols+getCorner(x,y)-1] = 1.;
rVx[getCorner(x,y)-1] = 0.;
rVy[getCorner(x,y)-1] = 0.;
}
}
cout << "Min Corner X: " <<minX << " Y: " << minY << " C# " << getCorner(minX,minY) << " length " << minELength << endl;
TMatrixD *k = new TMatrixD(rows,cols);
TVectorD *fx = new TVectorD(rows,rVx);
TVectorD *fy = new TVectorD(rows,rVy);
// f->Print();
k->SetMatrixArray(posMat);
// k->Print();
//solve linear system
Bool_t ok;
TDecompSVD *s = new TDecompSVD(*k);
s->Solve(*fx);
s->Solve(*fy);
double *fxA = fx->GetMatrixArray();
double *fyA = fy->GetMatrixArray();
for(int y = 0; y < nPixels+1; y++){
for(int x = 0; x < nPixels+1; x++){
//do not update boundaries
if(!(x == 0 ||
x == nPixels||
y == 0 ||
y == nPixels)){
xPPos[getCorner(x,y)] = fxA[getCorner(x,y)-1];
yPPos[getCorner(x,y)] = fyA[getCorner(x,y)-1];
}
}
}
}
void EtaVEL::updatePixelPos(){
double xMov, yMov, d1Mov, d2Mov;
createLogEntry();
double *chMap = getChangeMap();
int ch =0;
cout << "update edge lengths" << endl;
for(int x = 0; x < nPixels; x++)
for(int y = 0; y < nPixels; y++){
/*cout << "Pixel X:" <<x << " Y: " << y << " P# " << getBin(x,y) << " eXb " << getEdgeX(x,y);
cout << " eXt " << getEdgeX(x,y+1) << " eYl " << getEdgeY(x,y) << " eYr " << getEdgeY(x+1,y) << endl;
*/
edgeL[getEdgeX(x,y)] *= chMap[getBin(x,y)];
edgeL[getEdgeX(x,y+1)] *= chMap[getBin(x,y)];
edgeL[getEdgeY(x,y)] *= chMap[getBin(x,y)];
edgeL[getEdgeY(x+1,y)] *= chMap[getBin(x,y)];
//cout << "Pixel x: " << x << " y: " << y << " Ch: " << chMap[getBin(x,y)] << " counts: " << binCont[getBin(x,y)] << endl;
//cout << "BE " << getEdgeX(x,y) << endl;
//cout << "TE " << getEdgeX(x,y+1) << endl;
//cout << "LE " << getEdgeY(x,y) << endl;
//cout << "RE " << getEdgeY(x+1,y) << endl;
binCont[getBin(x,y)] = 0;
}
updatePixelCorner();
//double *pSize = getSizeMap();
double totEdgeLength = 0;
for(int e = 1; e < 2*nPixels*(nPixels+1)+1; e++){
totEdgeLength += edgeL[e];
}
cout << "tot edge Length: " << totEdgeLength << endl;
totCont = 0.;
}
double *EtaVEL::getSizeMap(){
double tlX,tlY,trX,trY,blX,blY,brX,brY;
double *szMap = new double[nPixels*nPixels+1];
for(int x = 1; x < nPixels-1; x++)
for(int y = 1; y < nPixels-1; y++){
double *c = getPixelCorners(x,y);
tlX = c[0]; trX = c[1]; brX = c[2]; blX = c[3];
tlY = c[4]; trY = c[5]; brY = c[6]; blY = c[7];
//double area = dtl * dtr / 2. + dtr * dbr / 2. + dbr * dbl / 2. + dbl * dtl / 2.;
//http://en.wikipedia.org/wiki/Shoelace_formula
double sl1 = tlX * trY + trX * brY + brX * blY + blX * tlY;
double sl2 = tlY * trX + trY * brX + brY * blX + blY * tlX;
double area = 1./2. * (- sl1 + sl2);
if(area < 0.){
cout << "negative area: X " << x << " Y " << y << " area " << endl;
edgeL[getEdgeX(x,y)] *= 2.;
edgeL[getEdgeX(x,y+1)] *= 2.;
edgeL[getEdgeY(x,y)] *= 2.;
edgeL[getEdgeY(x+1,y)] *= 2.;
}
szMap[getBin(x,y)] = area / (max - min) / (max - min) * nPixels * nPixels;
delete[] c;
}
return szMap;
}
double *EtaVEL::getChangeMap(){
double *chMap = new double[nPixels*nPixels+1];
double avg = totCont/(double)(nPixels*nPixels);
// TH1D *hmed=getCounts();
// double med = Median(hmed);
// delete hmed;
double acc = TMath::Sqrt(avg);
cout << "totC: " << totCont << " avg " << avg << " acc: " << acc << endl;//<< " med " << med
double totOffAcc = 0.;
int totInRange03s = 0;
int totInRange07s = 0;
int totInRange12s = 0;
int totInRange20s = 0;
int totInRange25s = 0;
double dd;
int totInBins = 0;
//double
chi_sq=0;
int maxC = 0, maxX=-1, maxY=-1;
double minC = 1000000000000000, minX, minY;
for(int x = 0; x < nPixels; x++){
for(int y = 0; y < nPixels; y++){
totInBins += binCont[getBin(x,y)];
double r = (double)binCont[getBin(x,y)];
if(r > 0. & totCont > 0.){
dd=sqrt(r/avg);
/**Added by Anna */
if (dd>2.) dd=1.5;
if (dd<0.5) dd=0.75;
chMap[getBin(x,y)] = dd;
/** */
//if( chMap[getBin(x,y)] < 1.){ chMap[getBin(x,y)] = 1/1.2; }
//if( chMap[getBin(x,y)] > 1.){ chMap[getBin(x,y)] = 1.2; }
//if( chMap[getBin(x,y)] < 1/1.2){ chMap[getBin(x,y)] = 1/1.2; }
//if( chMap[getBin(x,y)] > 1.2){ chMap[getBin(x,y)] = 1.2; }
}else if(totCont > 0.){
chMap[getBin(x,y)] =0.5; //1/1.2;
}else{
chMap[getBin(x,y)] = 1.;
}
//if(r < avg + 2*acc && r > avg - 2*acc){ totInRange++;}// chMap[getBin(x,y)] = 1.; }
/** Commente away by Anna
if(converged == 0 && r < med+20*acc){ chMap[getBin(x,y)] = 1.; }
if(converged == 2 && r < med+20*acc && r > med-03*acc){ chMap[getBin(x,y)] = 1.; }
if(r < med+03*acc){ totInRange03s++; }
if(r < med+07*acc){ totInRange07s++; }
if(r < med+12*acc){ totInRange12s++; }
if(r < med+20*acc){ totInRange20s++; }
if(r < med+25*acc){ totInRange25s++; }
*/
//cout << "x " << x << " y " << y << " r " << r << " ch " << chMap[getBin(x,y)] << endl;
// if(r - avg > acc){ totOffAcc += r-avg;}
//if(r - avg < -acc){ totOffAcc += avg-r;}
totOffAcc += (avg-r)*(avg-r);
chi_sq+=(avg-r)*(avg-r)/r;
//cout << " x " << x << " y " << y << " bC " << binCont[x*nPixels+y] << " r " << r << endl;
if(r > maxC){ maxC = r; maxX = x; maxY = y; }
if(r < minC){minC = r; minX = x; minY = y; }
}
}
// cout << "totInBins " << totInBins << " zero Bin " << binCont[0] << endl;
cout << "AvgOffAcc: " << sqrt(totOffAcc/(double)(nPixels*nPixels)) << endl;
cout << "***********Reduced Chi Square: " << chi_sq/((double)(nPixels*nPixels)) << endl;
// cout << "totInRange03 (<" << med+03*acc << "): " << totInRange03s << endl;
// cout << "totInRange07 (<" << med+07*acc << "): " << totInRange07s << endl;
// cout << "totInRange12 (<" << med+12*acc << "): " << totInRange12s << endl;
// cout << "totInRange20 (<" << med+20*acc << "): " << totInRange20s << endl;
// cout << "totInRange25 (<" << med+25*acc << "): " << totInRange25s << endl;
double maxSig = (maxC - avg)*(maxC - avg) / avg;//acc;
double minSig = (avg - minC)*(avg - minC) / avg;//acc;
cout << "Max Pixel X: " << maxX << " Y: " << maxY << " P# " << getBin(maxX,maxY) << " count: " << maxC << " sig: "<< maxSig << endl;
cout << "Min Pixel X: " << minX << " Y: " << minY << " P# " << getBin(minX,minY) << " count: " << minC << " sig: "<< minSig << endl;
// if(maxSig <= 25){ converged = 2; cout << "reached first converstion step!!!" << endl; }
//if(minSig <= 7 && converged == 2) { converged = 1; }
if (chi_sq<3) converged=2;
if (chi_sq<1) converged=1;
cout << "Conversion step "<< converged << endl;
return chMap;
}
TH2D *EtaVEL::getContent(int it, int changeType){
TH2D *cont = new TH2D("cont","cont",nPixels,min,max,nPixels,min,max);
double *chMap = NULL;
if(changeType ==1) chMap = getChangeMap();
double *szMap = getSizeMap();
for(int x = 0; x < nPixels; x++)
for(int y = 0; y < nPixels; y++){
if(changeType ==2 ){
cont->SetBinContent(x+1,y+1,szMap[getBin(x,y)]);
}
if(changeType ==1 ){
cont->SetBinContent(x+1,y+1,chMap[getBin(x,y)]);
}
if(changeType ==0 ){
if(it == -1){
cont->SetBinContent(x+1,y+1,binCont[getBin(x,y)]);
//cout << "x " << x << " y " << y << " cont " << binCont[getBin(x,y)] << endl;
}
else{cont->SetBinContent(x+1,y+1,log[it].binCont[getBin(x,y)]);}
}
}
return cont;
}
TH1D *EtaVEL::getCounts(){
TH1D *ch = new TH1D("ch","ch",500,0,totCont/(nPixels*nPixels)*4);
for(int x = 0; x < nPixels; x++)
for(int y = 0; y < nPixels; y++){
ch->Fill(binCont[getBin(x,y)]);
}
return ch;
}
void EtaVEL::printGrid(){
double *colSum = new double[nPixels+1];
double *rowSum = new double[nPixels+1];
for(int i = 0; i < nPixels+1; i++){
colSum[i] = 0.;
rowSum[i] = 0.;
for(int j = 0; j < nPixels; j++){
rowSum[i] += edgeL[getEdgeX(j,i)];
colSum[i] += edgeL[getEdgeY(i,j)];
}
}
cout << endl;
cout.precision(3); cout << fixed;
cout << " ";
for(int x = 0; x < nPixels+1; x++){
cout << setw(2) << x << " (" << colSum[x] << ") ";
}
cout << endl;
for(int y = 0; y < nPixels+1; y++){
cout << setw(2) << y << " ";
for(int x = 0; x < nPixels+1; x++){
cout << "(" << xPPos[getCorner(x,y)] << "/" << yPPos[getCorner(x,y)] << ") " ;
if(x < nPixels) cout << " -- " << edgeL[getEdgeX(x,y)]/rowSum[y]*(max-min) << " -- ";
}
cout << " | " << rowSum[y] << endl;
if(y < nPixels){
cout << " ";
for(int x = 0; x < nPixels+1; x++){
cout << edgeL[getEdgeY(x,y)]/colSum[x]*(max-min) << " ";
}
cout << endl;
}
}
delete[] colSum;
delete[] rowSum;
}
TMultiGraph *EtaVEL::plotPixelBorder(int plotCenters){
TMultiGraph *mg = new TMultiGraph();
double cx[5], cy[5];
for(int x = 0; x < nPixels; x++)
for(int y = 0; y < nPixels; y++){
double *c = getPixelCorners(x,y);
cx[0]=c[0]; cx[1]=c[1]; cx[2]=c[2]; cx[3]=c[3]; cx[4]=c[0];
cy[0]=c[4]; cy[1]=c[5]; cy[2]=c[6]; cy[3]=c[7]; cy[4]=c[4];
TGraph *g = new TGraph(5,cx,cy);
mg->Add(g);
if(plotCenters){
g = new TGraph(1,&(xPPos[getBin(x,y)]),&(yPPos[getBin(x,y)]));
mg->Add(g);
}
delete[] c;
}
return mg;
}
TMultiGraph *EtaVEL::plotLog(int stepSize, int maxIt){
int mIt;
TMultiGraph *mg = new TMultiGraph();
double **xposl = new double*[nPixels*nPixels+1];
double **yposl = new double*[nPixels*nPixels+1];
if(maxIt==-1){ mIt = it; } else{ mIt = maxIt; };
cout << "mIt " << mIt << " steps " << mIt/stepSize << endl;
for(int x = 0; x < nPixels; x++){
for(int y = 0; y < nPixels; y++){
xposl[getBin(x,y)] = new double[mIt/stepSize];
yposl[getBin(x,y)] = new double[mIt/stepSize];
for(int i = 0; i < mIt/stepSize; i++){
xposl[getBin(x,y)][i] = log[i*stepSize].xPos[getBin(x,y)];
yposl[getBin(x,y)][i] = log[i*stepSize].yPos[getBin(x,y)];
}
TGraph *g = new TGraph(mIt/stepSize,xposl[getBin(x,y)],yposl[getBin(x,y)]);
g->SetLineColor((x*y % 9) + 1);
if(x == 0) g->SetLineColor(2);
if(y == 0) g->SetLineColor(3);
if(x == nPixels-1) g->SetLineColor(4);
if(y == nPixels-1) g->SetLineColor(5);
mg->Add(g);
}
}
return mg;
}
void EtaVEL::serialize(ostream &o){
// b.WriteVersion(EtaVEL::IsA());
char del = '|';
o << min << del;
o << max << del;
o << ds << del;
o << nPixels << del;
o << it << del;
o << totCont << del;
for(int i = 0; i < (nPixels+1)*(nPixels+1)+1; i++){
o << xPPos[i] << del;
o << yPPos[i] << del;
}
for(int i = 0; i < nPixels*nPixels+1; i++){
o << binCont[i] << del;
}
for(int i = 0; i < it; i++){
o << log[i].itN << del;
for(int j = 0; j < (nPixels+1)*(nPixels+1)+1; j++){
o << log[i].xPos[j] << del;
o << log[i].yPos[j] << del;
}
for(int j = 0; j < nPixels*nPixels+1; j++){
o << log[i].binCont[j] << del;
}
}
}
void EtaVEL::deserialize(istream &is){
delete[] xPPos;
delete[] yPPos;
delete[] binCont;
char del;
is >> min >> del;
is >> max >> del;
is >> ds >> del;
is >> nPixels >> del;
is >> it >> del;
is >> totCont >> del;
xPPos = new double[(nPixels+1)*(nPixels+1)+1];
yPPos = new double[(nPixels+1)*(nPixels+1)+1];
binCont = new double[nPixels*nPixels+1];
cout << "d";
for(int i = 0; i < (nPixels+1)*(nPixels+1)+1; i++){
is >> xPPos[i] >> del;
is >> yPPos[i] >> del;
}
cout << "d";
for(int i = 0; i < nPixels*nPixels+1; i++){
is >> binCont[i] >> del;
}
cout << "d";
for(int i = 0; i < it; i++){
is >> log[i].itN >> del;
log[i].xPos = new double[(nPixels+1)*(nPixels+1)+1];
log[i].yPos = new double[(nPixels+1)*(nPixels+1)+1];
log[i].binCont = new double[nPixels*nPixels+1];
for(int j = 0; j < (nPixels+1)*(nPixels+1)+1; j++){
is >> log[i].xPos[j] >> del;
is >> log[i].yPos[j] >> del;
}
for(int j = 0; j < nPixels*nPixels+1; j++){
is >> log[i].binCont[j] >> del;
}
cout << "d";
}
cout << endl;
}
void EtaVEL::Streamer(TBuffer &b){
if (b.IsReading()) {
Version_t v = b.ReadVersion();
delete[] xPPos;
delete[] yPPos;
delete[] binCont;
b >> min;
b >> max;
b >> ds;
b >> nPixels;
b >> it;
b >> totCont;
xPPos = new double[(nPixels+1)*(nPixels+1)+1];
yPPos = new double[(nPixels+1)*(nPixels+1)+1];
binCont = new double[nPixels*nPixels+1];
for(int i = 0; i < (nPixels+1)*(nPixels+1)+1; i++){
b >> xPPos[i];
b >> yPPos[i];
}
for(int i = 0; i < nPixels*nPixels+1; i++){
b >> binCont[i];
}
for(int i = 0; i < it; i++){
b >> log[i].itN;
log[i].xPos = new double[(nPixels+1)*(nPixels+1)+1];
log[i].yPos = new double[(nPixels+1)*(nPixels+1)+1];
log[i].binCont = new double[nPixels*nPixels+1];
for(int j = 0; j < (nPixels+1)*(nPixels+1)+1; j++){
b >> log[i].xPos[j];
b >> log[i].yPos[j];
}
for(int j = 0; j < nPixels*nPixels+1; j++){
b >> log[i].binCont[j];
}
}
} else {
b.WriteVersion(EtaVEL::IsA());
b << min;
b << max;
b << ds;
b << nPixels;
b << it;
b << totCont;
for(int i = 0; i < (nPixels+1)*(nPixels+1)+1; i++){
b << xPPos[i];
b << yPPos[i];
}
for(int i = 0; i < nPixels*nPixels+1; i++){
b << binCont[i];
}
for(int i = 0; i < it; i++){
b << log[i].itN;
for(int j = 0; j < (nPixels+1)*(nPixels+1)+1; j++){
b << log[i].xPos[j];
b << log[i].yPos[j];
}
for(int j = 0; j < nPixels*nPixels+1; j++){
b << log[i].binCont[j];
}
}
}
}

View File

@ -0,0 +1,164 @@
#include <iostream>
#include <TGraph.h>
#include <TAxis.h>
#include <TMultiGraph.h>
#include <TH2D.h>
#include <TMath.h>
#include <TObject.h>
#include <TBuffer.h>
#include <TMatrixD.h>
#include <TDecompSVD.h>
//#include <TDecompQRH.h>
#include <TH1.h>
#include <TMath.h>
#include <vector>
#include <ostream>
#include <istream>
using namespace std;
#ifndef ETAVPS
#define ETAVPS
typedef struct {
int itN;
double *xPos;
double *yPos;
double *binCont;
} itLog;
class EtaVEL : public TObject{
public:
EtaVEL(int numberOfPixels = 25, double minn=0., double maxx=1., int nnx=160, int nny=160) : nPixels(numberOfPixels), min(minn), max(maxx), converged(0), nx(nnx), ny(nny), chi_sq(0){
//acc = 0.02;
ds = 0.005;
init();
}
void init(){
double pOffset = (max-min)/(double)nPixels;
xPPos = new double[(nPixels+1)*(nPixels+1)+1];
yPPos = new double[(nPixels+1)*(nPixels+1)+1];
binCont = new double[nPixels*nPixels+1];
totCont = 0.;
edgeL = new double[2*nPixels*(nPixels+1)+1];
for(int ii = 0; ii < 2*nPixels*(nPixels+1)+1; ii++){
edgeL[ii] = 1.0;
//cout << "ii " << ii << endl;
}
for(int x = 0; x < nPixels+1; x++){
for(int y = 0; y < nPixels+1; y++){
xPPos[getCorner(x,y)] = min + (double)x * pOffset;
yPPos[getCorner(x,y)] = min + (double)y * pOffset;
if(x < nPixels && y < nPixels) binCont[getBin(x,y)] = 0;
}
}
// edgeL[1] = 3.0;
updatePixelCorner();
it = 0;
log = new itLog[nIterations];
}
void fill(double x, double y, double amount = 1.){
totCont+=amount;
int bin = findBin(x,y);
if(bin < 0) {
//cout << "can not find bin x: " << x << " y: " << y << endl;
totCont-=amount;
}
binCont[bin]+=amount;
}
int getBin(int x, int y){
if(x < 0 || x >= nPixels || y < 0 || y >= nPixels){
//cout << "getBin: out of bounds : x " << x << " y " << y << endl;
return 0;
}
return y*nPixels+x+1;
}
int getXBin(int bin){
return (bin-1)%nPixels;
}
int getYBin(int bin){
return (bin-1)/nPixels;
}
int getCorner(int x, int y){
return y*(nPixels+1)+x+1;
}
int getEdgeX(int x,int row){
int ret = row*nPixels+x+1;
//cout << "| edge X x " << x << " row " << row << ": "<< ret << " | ";
return ret;
}
int getEdgeY(int col, int y){
int ret = nPixels*(nPixels+1)+col*nPixels+y+1;
//cout << "| edge Y col " << col << " y " << y << ": "<< ret << " | ";
return ret;
}
int getIt(){ return it; };
int getNPixels(){ return nPixels; }
double *getXPPos(){ return xPPos; }
double *getYPPos(){ return yPPos; }
void updatePixelCorner();
double *getPixelCorners(int x, int y);
int findBin(double xx, double yy);
void createLogEntry();
void updatePixelPos();
double *getSizeMap();
double *getChangeMap();
TH2D *getContent(int it=-1, int changeType = 0);
TMultiGraph *plotPixelBorder(int plotCenters=0);
TMultiGraph *plotLog(int stepSize=1, int maxIt=-1);
void printGrid();
TH1D *getCounts();
void serialize(ostream &o);
void deserialize(istream &is);
int converged ;
double getChiSq(){return chi_sq;};
private:
itLog *log;
int it;
const static int nIterations =10000;
int nx, ny;
int nPixels;
double *xPPos;
double *yPPos;
double *binCont;
double totCont;
double *edgeL;
// double acc;
double ds;
double min,max;
double chi_sq;
ClassDefNV(EtaVEL,1);
#pragma link C++ class EtaVEL-;
};
#endif

View File

@ -0,0 +1,393 @@
import numpy as np
import math
maxf = 2
minf = 0.5
class EtaVELTr:
def __init__(self, numberOfPixels = 25, minn=0., maxx=1.):
self.nPixels = numberOfPixels
self.nCorners = self.nPixels + 1
self.minEta = minn
self.maxEta = maxx
#self.corners = []
self.edgesX = []
self.edgesY = []
self.edgesE = []
self.edgesF = []
self.edgesG = []
self.edgesH = []
self.counts = []
self.pOffset = (self.maxEta-self.minEta)/self.nPixels
self.cPosX = []
self.cPosY = []
self.zPosX = []
self.zPosY = []
self.sqSums = []
self.cIteration = 0
self.bSqSum = 0
self.initGrid()
#self.calculatePixelCorners()
self.update()
def initGrid(self):
dd = 1 / math.sqrt(2)
#self.corners = [ [self.minEta + x * pOffset, self.minEta + y * pOffset] for y in range(self.nPixels)] for x in range(self.nPixels)
self.cPosX = [ [self.minEta + x * self.pOffset for x in range(self.nCorners)] for y in range(self.nCorners) ]
self.cPosY = [ [self.minEta + y * self.pOffset for x in range(self.nCorners)] for y in range(self.nCorners) ]
self.counts = [ [ [0,0,0,0] for x in range(self.nPixels) ] for y in range(self.nPixels) ]
self.edgesX = [ [ 1 for x in range(self.nCorners) ] for y in range(self.nCorners + 1) ]
self.edgesY = [ [ 1 for x in range(self.nCorners+1) ] for y in range(self.nCorners) ]
self.edgesE = [ [ dd for x in range(self.nPixels) ] for y in range(self.nPixels) ]
self.edgesF = [ [ dd for x in range(self.nPixels) ] for y in range(self.nPixels) ]
self.edgesG = [ [ dd for x in range(self.nPixels) ] for y in range(self.nPixels) ]
self.edgesH = [ [ dd for x in range(self.nPixels) ] for y in range(self.nPixels) ]
def update(self):
self.normalizeEdgeLengths()
self.calculateEdgeLengths2()
self.calculatePixelCorners2()
conv = False
out = 0
outList = []
tot = self.nPixels*self.nPixels*4
sqSum = 0
avg = self.getAvgCounts()
avgPS = self.getAvgCounts() + 1*math.sqrt(self.getAvgCounts())
avgMS = self.getAvgCounts() - 1*math.sqrt(self.getAvgCounts())
for y in range(self.nPixels):
for x in range(self.nPixels):
for t in range(4):
sqSum += (avg -self.counts[y][x][t]) * (avg -self.counts[y][x][t])
if self.counts[y][x][t] > avgPS or self.counts[y][x][t] < avgMS:
out += 1
outList.append([y,x,t,self.counts[y][x][t]])
outList = sorted(outList,key=lambda t: abs(self.counts[t[0]][t[1]][t[2]]/self.getAvgCounts()))
self.counts = [ [ [0,0,0,0] for x in range(self.nPixels) ] for y in range(self.nPixels) ]
print("There are {} of {} triangles out of 1 std ({} %)".format(out,tot,out/tot*100))
print("Total Sq Err: {}".format(sqSum))
self.sqSums.append(sqSum)
if len(self.sqSums) > 2 and np.diff(self.sqSums)[-1] > 0:
print("converged after {} steps: sqSums {} diff(sqSums) {}".format(self.cIteration,self.sqSums,np.diff(self.sqSums)))
conv = True
self.bSqSum = self.sqSums[-2]
self.cIteration += 1
return [conv,outList,sqSum]
def normalizeEdgeLengths(self):
sumL = 0
sumL += sum(map(sum,zip(*self.edgesX)))
sumL += sum(map(sum,zip(*self.edgesY)))
sumL += sum(map(sum,zip(*self.edgesE)))
sumL += sum(map(sum,zip(*self.edgesF)))
sumL += sum(map(sum,zip(*self.edgesG)))
sumL += sum(map(sum,zip(*self.edgesH)))
avgL = sumL/(4*self.nPixels*self.nPixels+2*self.nCorners*(self.nCorners+1))
print("total Sum is {} avg: {}".format(sumL,avgL))
self.edgesX = [ [ x/avgL for x in y ] for y in self.edgesX ]
self.edgesY = [ [ x/avgL for x in y ] for y in self.edgesY ]
self.edgesE = [ [ x/avgL for x in y ] for y in self.edgesE ]
self.edgesF = [ [ x/avgL for x in y ] for y in self.edgesF ]
self.edgesG = [ [ x/avgL for x in y ] for y in self.edgesG ]
self.edgesH = [ [ x/avgL for x in y ] for y in self.edgesH ]
def _shapeF(self,f):
f = (f - 1) * 0.6 + 1
if f > maxf:
return maxf
if f < minf:
return minf
return f
def calculateEdgeLengths2(self):
if self.getTotalCounts() == 0:
return
avg = self.getAvgCounts()
for y in range(self.nPixels):
for x in range(self.nPixels):
for t in range(4):
pc = self.counts[y][x][t]
if pc == 0:
f = maxf
else:
f = math.sqrt(avg/pc)
if pc > avg-math.sqrt(avg) and pc < avg+math.sqrt(avg):
f = 1.
sf = self._shapeF(f)
if t == 0:
self.edgesX[y][x] = self.edgesX[y][x] / sf
self.edgesE[y][x] = self.edgesE[y][x] / sf
self.edgesF[y][x] = self.edgesF[y][x] / sf
if t == 1:
self.edgesY[y][x+1] = self.edgesY[y][x+1] / sf
self.edgesF[y][x] = self.edgesF[y][x] / sf
self.edgesH[y][x] = self.edgesH[y][x] / sf
if t == 2:
self.edgesX[y+1][x] = self.edgesX[y+1][x] / sf
self.edgesH[y][x] = self.edgesH[y][x] / sf
self.edgesG[y][x] = self.edgesG[y][x] / sf
if t == 3:
self.edgesY[y][x] = self.edgesY[y][x] / sf
self.edgesG[y][x] = self.edgesG[y][x] / sf
self.edgesE[y][x] = self.edgesE[y][x] / sf
def calculatePixelCorners2(self):
w = 20
posMat = []
CrVx = np.zeros((self.nCorners,self.nCorners))
CrVy = np.zeros((self.nCorners,self.nCorners))
ZrVx = np.zeros((self.nPixels,self.nPixels))
ZrVy = np.zeros((self.nPixels,self.nPixels))
#boundary conditions matrix/vectors
BCposMatX = []
BCposMatY = []
BCrVx = []
BCrVy = []
for y in range(self.nCorners):
for x in range(self.nCorners):
BClineX = np.zeros((self.nCorners,self.nCorners))
BClineY = np.zeros((self.nCorners,self.nCorners))
if (x == 0 and y == 0) or \
(x == 0 and y == self.nPixels) or \
(x == self.nPixels and y == 0) or \
(x == self.nPixels and y == self.nPixels):
BClineX[y][x] = w
BClineY[y][x] = w
BCrVx.append(self.getCornerPos(y,x)[0] * w)
BCrVy.append(self.getCornerPos(y,x)[1] * w)
#print("bclinex shape {} zeros shape {}".format( BClineX.reshape((self.nCorners*self.nCorners,)).shape , np.zeros((self.nPixels*self.nPixels)).shape ))
BCposMatX.append(np.hstack((BClineX.reshape((self.nCorners*self.nCorners,)),np.zeros((self.nPixels*self.nPixels,)) )) )
BCposMatY.append(np.hstack((BClineY.reshape((self.nCorners*self.nCorners,)),np.zeros((self.nPixels*self.nPixels,)) )) )
elif x == 0 or x == self.nPixels:
BClineX[y][x] = w
#BClineY[y][x] = 1
BCrVx.append(self.getCornerPos(y,x)[0] * w)
#BCrVy.append(self.getCornerPos(y,x)[1])
BCposMatX.append(np.hstack((BClineX.reshape((self.nCorners*self.nCorners,)),np.zeros((self.nPixels*self.nPixels,)) )) )
#BCposMatY.append(np.hstack((BClineY.reshape((self.nCorners*self.nCorners,)),np.zeros((self.nPixels*self.nPixels,)) )) )
elif y == 0 or y == self.nPixels:
#BClineX[y][x] = 1
BClineY[y][x] = w
#BCrVx.append(self.getCornerPos(y,x)[0])
BCrVy.append(self.getCornerPos(y,x)[1] * w)
#BCposMatX.append(np.hstack((BClineX.reshape((self.nCorners*self.nCorners,)),np.zeros((self.nPixels*self.nPixels,)) )) )
BCposMatY.append(np.hstack((BClineY.reshape((self.nCorners*self.nCorners,)),np.zeros((self.nPixels*self.nPixels,)) )) )
eLength = 0
if x != 0:
eLength += self.edgesX[y][x-1]
if y != 0:
eLength += self.edgesY[y-1][x]
if x != self.nPixels:
eLength += self.edgesX[y][x]
if y != self.nPixels:
eLength += self.edgesY[y][x]
if y != 0 and x != 0:
eLength += self.edgesH[y-1][x-1]
if y != self.nPixels and x != 0:
eLength += self.edgesF[y][x-1]
if y != 0 and x != self.nPixels:
eLength += self.edgesG[y-1][x]
if y != self.nPixels and x != self.nPixels:
eLength += self.edgesE[y][x]
line = np.zeros((self.nCorners,self.nCorners))
lineZ = np.zeros((self.nPixels,self.nPixels))
if x != 0:
line[y][x-1] = - self.edgesX[y][x-1]/eLength
if y != 0:
line[y-1][x] = - self.edgesY[y-1][x]/eLength
if x != self.nPixels:
line[y][x+1] = - self.edgesX[y][x]/eLength
if y != self.nPixels:
line[y+1][x] = - self.edgesY[y][x]/eLength
if y != 0 and x != 0:
lineZ[y-1][x-1] = -self.edgesH[y-1][x-1]/eLength
if y != self.nPixels and x != 0:
lineZ[y][x-1] = -self.edgesF[y][x-1]/eLength
if y != 0 and x != self.nPixels:
lineZ[y-1][x] = -self.edgesG[y-1][x]/eLength
if y != self.nPixels and x != self.nPixels:
lineZ[y][x] = -self.edgesE[y][x]/eLength
line[y][x] = 1
CrVx[y][x] = 0
CrVy[y][x] = 0
posMat.append( \
np.hstack(( \
line.reshape((self.nCorners*self.nCorners,)), \
lineZ.reshape((self.nPixels*self.nPixels,)) \
)) \
)
for y in range(self.nPixels):
for x in range(self.nPixels):
line = np.zeros((self.nCorners,self.nCorners))
lineZ = np.zeros((self.nPixels,self.nPixels))
eLength = self.edgesE[y][x] + self.edgesF[y][x] +self.edgesG[y][x] +self.edgesH[y][x]
line[y][x] = -self.edgesE[y][x] / eLength
line[y][x+1] = -self.edgesF[y][x] / eLength
line[y+1][x] = -self.edgesG[y][x] / eLength
line[y+1][x+1] = -self.edgesH[y][x] / eLength
lineZ[y][x] = 1
ZrVx[y][x] = 0
ZrVy[y][x] = 0
posMat.append( \
np.hstack(( \
line.reshape((self.nCorners*self.nCorners,)), \
lineZ.reshape((self.nPixels*self.nPixels,)) \
)) \
)
CrVxFlat = CrVx.reshape((self.nCorners*self.nCorners,))
CrVyFlat = CrVy.reshape((self.nCorners*self.nCorners,))
ZrVxFlat = ZrVx.reshape((self.nPixels*self.nPixels,))
ZrVyFlat = ZrVy.reshape((self.nPixels*self.nPixels,))
posMat = np.asarray(posMat)
BCrVyFlat = np.asarray(BCrVy)
BCrVxFlat = np.asarray(BCrVx)
BCposMatX = np.asarray(BCposMatX)
BCposMatY = np.asarray(BCposMatY)
print ("BCposMatY vy {} shape posMat {}".format(BCposMatY.shape,posMat.shape))
FinalrVy = np.hstack((CrVyFlat,ZrVyFlat,BCrVyFlat))
FinalrVx = np.hstack((CrVxFlat,ZrVxFlat,BCrVxFlat))
FinalposMatX = np.vstack((posMat,BCposMatX))
FinalposMatY = np.vstack((posMat,BCposMatY))
print("posMat shape {}".format(posMat.shape))
print("posMatX shape {}".format(FinalposMatX.shape))
print("rVxFlat shape {}".format(FinalrVx.shape))
#print("posMat {}".format(FinalposMat))
#print("rVxFlat {}".format(FinalrVx))
xPos = np.linalg.lstsq(FinalposMatX,FinalrVx)[0]
yPos = np.linalg.lstsq(FinalposMatY,FinalrVy)[0]
print("xPosShape {} cutXPosShape {}".format(xPos.shape,xPos[:self.nCorners][:self.nCorners].shape))
self.cPosX = xPos[:self.nCorners*self.nCorners].reshape((self.nCorners,self.nCorners))
self.cPosY = yPos[:self.nCorners*self.nCorners].reshape((self.nCorners,self.nCorners))
self.zPosX = xPos[self.nCorners*self.nCorners:].reshape((self.nPixels,self.nPixels))
self.zPosY = yPos[self.nCorners*self.nCorners:].reshape((self.nPixels,self.nPixels))
def fill(self,yy,xx,count = 1):
[y,x,t] = self.getPixel(yy,xx)
self.counts[y][x][t] += count
def getCountDist(self):
c = []
for y in range(self.nPixels):
for x in range(self.nPixels):
c.append(self.counts[y][x])
return c
def getPixel(self,yy,xx, debug = False):
for y in range(self.nPixels):
for x in range(self.nPixels):
for t in range(4):
[v1x,v1y,v2x,v2y,v3x,v3y] = self.getTriangleCorner(y,x,t)
if self.pointInTriangle([xx,yy],[v1x,v1y],[v2x,v2y],[v3x,v3y]):
return [y,x,t]
if not debug:
raise Exception("not inside a pixel")
else:
print("no pixel found")
return [0,0]
#http://stackoverflow.com/questions/2049582/how-to-determine-a-point-in-a-2d-triangle
def trSign (self, p1, p2, p3):
return (p1[0] - p3[0]) * (p2[1] - p3[1]) - (p2[0] - p3[0]) * (p1[1] - p3[1]);
def pointInTriangle (self,pt, v1, v2, v3):
b1 = self.trSign(pt, v1, v2) < 0.0
b2 = self.trSign(pt, v2, v3) < 0.0
b3 = self.trSign(pt, v3, v1) < 0.0
return ((b1 == b2) and (b2 == b3));
def getAvgCounts(self):
return self.getTotalCounts() / self.nPixels/self.nPixels/4.
def getTotalCounts(self):
tot = 0
for y in range(self.nPixels):
for x in range(self.nPixels):
for t in range(4):
tot += self.counts[y][x][t]
return tot
#tl tr bl br
def getPixelCorners(self,iy,ix):
return self.getCornerPos(iy,ix) + self.getCornerPos(iy,ix+1) + self.getCornerPos(iy+1,ix) + self.getCornerPos(iy+1,ix+1)
def getTriangleCorner(self,iy,ix,tr):
if tr == 0:
return self.getCornerPos(iy,ix) + self.getCornerPos(iy,ix+1) + [self.zPosX[iy][ix],self.zPosY[iy][ix]]
if tr == 1:
return self.getCornerPos(iy,ix+1) + self.getCornerPos(iy+1,ix+1) + [self.zPosX[iy][ix],self.zPosY[iy][ix]]
if tr == 2:
return self.getCornerPos(iy+1,ix+1) + self.getCornerPos(iy+1,ix) + [self.zPosX[iy][ix],self.zPosY[iy][ix]]
if tr == 3:
return self.getCornerPos(iy+1,ix) + self.getCornerPos(iy,ix) + [self.zPosX[iy][ix],self.zPosY[iy][ix]]
def getCornerPos(self,iy,ix):
return [self.cPosX[iy][ix],self.cPosY[iy][ix]]
def getXEdgePos(self,iy,ix):
p1 = self.getCornerPos(iy,ix)
p2 = self.getCornerPos(iy,ix+1)
return [p1[0],p1[1],p2[0],p2[1]]
def getYEdgePos(self,iy,ix):
p1 = self.getCornerPos(iy,ix)
p2 = self.getCornerPos(iy+1,ix)
return [p1[0],p1[1],p2[0],p2[1]]
def getEEdgePos(self,iy,ix):
p1 = self.getCornerPos(iy,ix)
return [p1[0],p1[1],self.zPosX[iy][ix],self.zPosY[iy][ix]]
def getFEdgePos(self,iy,ix):
p1 = self.getCornerPos(iy,ix+1)
return [p1[0],p1[1],self.zPosX[iy][ix],self.zPosY[iy][ix]]
def getGEdgePos(self,iy,ix):
p1 = self.getCornerPos(iy+1,ix)
return [p1[0],p1[1],self.zPosX[iy][ix],self.zPosY[iy][ix]]
def getHEdgePos(self,iy,ix):
p1 = self.getCornerPos(iy+1,ix+1)
return [p1[0],p1[1],self.zPosX[iy][ix],self.zPosY[iy][ix]]

View File

@ -0,0 +1,134 @@
#include "interpolation_EtaVEL.h"
#include "TH2F.h"
#include "TCanvas.h"
#include "TROOT.h"
//#include "EtaVEL.h"
#include "EtaVEL.cpp"
/*
Zum erstellen der correction map ist createGainAndEtaFile(...) in EVELAlg.C der entry point.
Zum erstellen des HR images ist createImage(...) der entry point.
*/
interpolation_EtaVEL::interpolation_EtaVEL(int nx, int ny, int ns, double etamin, double etamax, int p) : slsInterpolation(nx, ny, ns), newEta(NULL), heta(NULL), plot(p) {
newEta = new EtaVEL(nSubPixels,etamin,etamax,nPixelsX, nPixelsY);
heta= new TH2F("heta","heta",50*nSubPixels, etamin,etamax,50*nSubPixels, etamin,etamax);
heta->SetStats(kFALSE);
}
interpolation_EtaVEL::~interpolation_EtaVEL() {
delete newEta;
delete heta;
}
void interpolation_EtaVEL::prepareInterpolation(int &ok, int maxit) {
int nit=0;
while ((newEta->converged != 1) && nit++<maxit) {
cout << " -------------- new step "<< nit << endl;
iterate();
}
if (plot) {
Draw();
gPad->Modified();
gPad->Update();
}
if (newEta->converged==1) ok=1; else ok=0;
}
int interpolation_EtaVEL::addToFlatField(Double_t *cluster, Double_t &etax, Double_t &etay) {
Double_t sum, totquad, sDum[2][2];
int corner =calcEta(cluster, etax, etay, sum, totquad, sDum);
//check if it's OK...should redo it every time?
//or should we fill a finer histogram and afterwards re-fill the newEta?
addToFlatField(etax, etay);
return corner;
}
int interpolation_EtaVEL::addToFlatField(Double_t etax, Double_t etay) {
// newEta->fill(etaX,etaY);
heta->Fill(etax,etay);
return 0;
}
void interpolation_EtaVEL::iterate() {
cout << " -------------- newEta refilled"<< endl;
for (int ibx=0; ibx<heta->GetNbinsX(); ibx++) {
for (int iby=0; iby<heta->GetNbinsY(); iby++) {
newEta->fill(heta->GetXaxis()->GetBinCenter(ibx+1),heta->GetYaxis()->GetBinCenter(iby+1),heta->GetBinContent(ibx+1,iby+1));
}
}
newEta->updatePixelPos();
cout << " -------------- pixelPosition updated"<< endl;
}
void interpolation_EtaVEL::DrawH() {
heta->Draw("col");
(newEta->plotPixelBorder())->Draw();
}
void interpolation_EtaVEL::getInterpolatedPosition(Int_t x, Int_t y, Double_t *cluster, Double_t &int_x, Double_t &int_y) {
Double_t etax, etay, sum, totquad, sDum[2][2];
int corner =calcEta(cluster, etax, etay, sum, totquad, sDum);
int bin = newEta->findBin(etax,etay);
if (bin<=0) {
int_x=-1;
int_y=-1;
return;
}
double subX = ((double)(newEta->getXBin(bin))+.5)/((double)newEta->getNPixels());
double subY = ((double)(newEta->getYBin(bin))+.5)/((double)newEta->getNPixels());
double dX, dY;
switch (corner) {
case TOP_LEFT:
dX=-1.;
dY=+1.;
break;
case TOP_RIGHT:
dX=+1.;
dY=+1.;
break;
case BOTTOM_LEFT:
dX=-1.;
dY=-1.;
break;
case BOTTOM_RIGHT:
dX=+1.;
dY=-1.;
break;
default:
dX=0;
dY=0;
}
int_x=((double)x)+ subX+0.5*dX;
int_y=((double)y)+ subY+0.5*dY;
// cout << corner << " " << subX<< " " << subY << " " << dX << " " << dY << " " << int_x << " " << int_y << endl;
};
// void interpolation_EtaVEL::Streamer(TBuffer &b){newEta->Streamer(b);};
void interpolation_EtaVEL::getInterpolatedBin(Double_t *cluster, Int_t &int_x, Int_t &int_y) {
Double_t etax, etay, sum, totquad, sDum[2][2];
int corner =calcEta(cluster, etax, etay, sum, totquad, sDum);
int bin = newEta->findBin(etax,etay);
if (bin<0) {
int_x=-1;
int_y=-1;
return;
}
int_x=newEta->getXBin(bin);
int_y=newEta->getYBin(bin);
};

View File

@ -0,0 +1,55 @@
#ifndef INTERPOLATION_ETAVEL_H
#define INTERPOLATION_ETAVEL_H
#include <slsInterpolation.h>
#include "EtaVEL.h"
//#include "TH2F.h"
//#include "EtaVEL.cpp"
//class EtaVEL;
class etaVELInterpolation: public etaInterpolationBase {
public:
interpolation_EtaVEL(int nx=40, int ny=160, int ns=25, double etamin=-0.02, double etamax=1.02, int p=0);
~interpolation_EtaVEL();
//create eta distribution, eta rebinnining etc.
//returns flat field image
void prepareInterpolation(int &ok){prepareInterpolation(ok,10000);};
void prepareInterpolation(int &ok, int maxit);
//create interpolated image
//returns interpolated image
//return position inside the pixel for the given photon
void getInterpolatedPosition(Int_t x, Int_t y, Double_t *data, Double_t &int_x, Double_t &int_y);
void getInterpolatedBin(Double_t *cluster, Int_t &int_x, Int_t &int_y);
int addToFlatField(Double_t *cluster, Double_t &etax, Double_t &etay);
int addToFlatField(Double_t etax, Double_t etay);
int setPlot(int p=-1) {if (p>=0) plot=p; return plot;};
// int WriteH(){newEta->Write("newEta"); heta->Write("heta");};
EtaVEL *setEta(EtaVEL *ev){if (ev) {delete newEta; newEta=ev;} return newEta;};
// TH2F *setEta(TH2F *ev){if (ev) {delete heta; heta=ev;} return heta;};
void iterate();
// void DrawH();
double getChiSq(){return newEta->getChiSq();};
protected:
EtaVEL *newEta;
// TH2F *heta;
int plot;
// ClassDefNV(interpolation_EtaVEL,1);
// #pragma link C++ class interpolation_EtaVEL-;
};
#endif

View File

@ -0,0 +1,234 @@
#ifndef LINEAR_INTERPOLATION_H
#define LINEAR_INTERPOLATION_H
//#include <TObject.h>
//#include <TTree.h>
//#include <TH2F.h>
#include "slsInterpolation.h"
class linearInterpolation : public slsInterpolation{
public:
linearInterpolation(int nx=400, int ny=400, int ns=25) : slsInterpolation(nx,ny,ns) {};
linearInterpolation(linearInterpolation *orig) : slsInterpolation(orig) {};
virtual void prepareInterpolation(int &ok){ok=1;};
virtual linearInterpolation* Clone() {
return new linearInterpolation(this);
};
//////////////////////////////////////////////////////////////////////////////
//////////// /*It return position hit for the event in input */ //////////////
virtual void getInterpolatedPosition(int x, int y, double *data, double &int_x, double &int_y)
{
double sDum[2][2];
double tot, totquad;
double etax,etay;
int corner;
corner=calcQuad(data, tot, totquad, sDum);
if (nSubPixels>2) {
calcEta(totquad, sDum, etax, etay);
}
getInterpolatedPosition(x, y, etax,etay, corner, int_x, int_y);
return;
};
virtual void getInterpolatedPosition(int x, int y, int *data, double &int_x, double &int_y)
{
double sDum[2][2];
double tot, totquad;
double etax,etay;
int corner;
corner=calcQuad(data, tot, totquad, sDum);
if (nSubPixels>2)
calcEta(totquad, sDum, etax, etay);
getInterpolatedPosition(x,y,etax,etay,corner,int_x,int_y);
return;
};
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,double *cl,double &int_x, double &int_y) {
double eta_x, eta_y;
if (nSubPixels>2) {
double cc[2][2];
double *cluster[3];
cluster[0]=cl;
cluster[1]=cl+3;
cluster[2]=cl+6;
int xoff, yoff;
switch (quad) {
case BOTTOM_LEFT:
xoff=0;
yoff=0;
break;
case BOTTOM_RIGHT:
xoff=1;
yoff=0;
break;
case TOP_LEFT:
xoff=0;
yoff=1;
break;
case TOP_RIGHT:
xoff=1;
yoff=1;
break;
default:
;
}
cc[0][0]=cluster[yoff][xoff];
cc[1][0]=cluster[yoff+1][xoff];
cc[0][1]=cluster[yoff][xoff+1];
cc[1][1]=cluster[yoff+1][xoff+1];
calcEta(totquad,cc,eta_x,eta_y);
}
// cout << x << " " << y << " " << eta_x << " " << eta_y << " " << int_x << " " << int_y << endl;
return getInterpolatedPosition(x,y,eta_x, eta_y,quad,int_x,int_y);
}
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,int *cl,double &int_x, double &int_y) {
double cc[2][2];
int *cluster[3];
int xoff, yoff;
cluster[0]=cl;
cluster[1]=cl+3;
cluster[2]=cl+6;
switch (quad) {
case BOTTOM_LEFT:
xoff=0;
yoff=0;
break;
case BOTTOM_RIGHT:
xoff=1;
yoff=0;
break;
case TOP_LEFT:
xoff=0;
yoff=1;
break;
case TOP_RIGHT:
xoff=1;
yoff=1;
break;
default:
;
}
double etax, etay;
if (nSubPixels>2) {
cc[0][0]=cluster[yoff][xoff];
cc[1][0]=cluster[yoff+1][xoff];
cc[0][1]=cluster[yoff][xoff+1];
cc[1][1]=cluster[yoff+1][xoff+1];
calcEta(totquad,cc,etax,etay);
}
// cout << x << " " << y << " " << etax << " " << etay << " " << int_x << " " << int_y << endl;
return getInterpolatedPosition(x,y,etax, etay,quad,int_x,int_y);
}
virtual void getInterpolatedPosition(int x, int y, double etax, double etay, int corner, double &int_x, double &int_y)
{
double xpos_eta,ypos_eta;
double dX,dY;
switch (corner)
{
case TOP_LEFT:
dX=-1.;
dY=0;
break;
case TOP_RIGHT:
dX=0;
dY=0;
break;
case BOTTOM_LEFT:
dX=-1.;
dY=-1.;
break;
case BOTTOM_RIGHT:
dX=0;
dY=-1.;
break;
default:
cout << "bad quadrant" << endl;
dX=0.;
dY=0.;
}
if (nSubPixels>2) {
xpos_eta=(etax)+dX;
ypos_eta=(etay)+dY;
} else {
xpos_eta=0.5*dX+0.25;
ypos_eta=0.5*dY+0.25;
}
int_x=((double)x) + xpos_eta;
int_y=((double)y) + ypos_eta;
// cout <<"**"<< x << " " << y << " " << xpos_eta << " " << ypos_eta << " " << corner << endl;
return;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////
virtual void getPositionETA3(int x, int y, double *data, double &int_x, double &int_y)
{
double sDum[2][2];
double tot, totquad;
double eta3x,eta3y;
calcQuad(data, tot, totquad, sDum);
calcEta3(data,eta3x, eta3y,tot);
double xpos_eta,ypos_eta;
xpos_eta=eta3x;
ypos_eta=eta3y;
int_x=((double)x) + xpos_eta;
int_y=((double)y) + ypos_eta;
return;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////
virtual int addToFlatField(double *cluster, double &etax, double &etay){};
virtual int addToFlatField(int *cluster, double &etax, double &etay){};
virtual int addToFlatField(double etax, double etay){};
virtual int addToFlatField(double totquad,int quad,double *cl,double &etax, double &etay) {};
virtual int addToFlatField(double totquad,int quad,int *cl,double &etax, double &etay) {};
protected:
;
};
#endif

View File

@ -0,0 +1,104 @@
#ifndef NO_INTERPOLATION_H
#define NO_INTERPOLATION_H
/* #ifdef MYROOT1 */
/* #include <TObject.h> */
/* #include <TTree.h> */
/* #include <TH2F.h> */
/* #include <TROOT.h> */
/* #include <TRandom.h> */
/* #endif */
#include <cstdlib>
#include "slsInterpolation.h"
class noInterpolation : public slsInterpolation{
public:
noInterpolation(int nx=400, int ny=400, int ns=25) : slsInterpolation(nx,ny,ns) {};// {eventGenerator=new TRandom();};
noInterpolation(noInterpolation *orig) : slsInterpolation(orig){};
virtual void prepareInterpolation(int &ok){ok=1;};
//////////////////////////////////////////////////////////////////////////////
//////////// /*It return position hit for the event in input */ //////////////
virtual noInterpolation* Clone() {
return new noInterpolation(this);
};
virtual void getInterpolatedPosition(int x, int y, double *data, double &int_x, double &int_y)
{
//Random coordinate in the Pixel reference
int_x = x + ((double)rand())/((double)RAND_MAX) -0.5;//eventGenerator->Uniform(-0.5,0.5);
int_y = y + ((double)rand())/((double)RAND_MAX) -0.5;//eventGenerator->Uniform(-0.5,0.5);
return ;
};
virtual void getInterpolatedPosition(int x, int y, int *data, double &int_x, double &int_y)
{
return getInterpolatedPosition(x, y, (double*)NULL, int_x, int_y);
}
virtual void getInterpolatedPosition(int x, int y, double etax, double etay, int corner, double &int_x, double &int_y)
{
getInterpolatedPosition(x, y, (double*)NULL, int_x, int_y);
};
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,double *cl,double &etax, double &etay){
getInterpolatedPosition(x, y, (double*)NULL, etax, etay);
};
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,int *cl,double &etax, double &etay){
getInterpolatedPosition(x, y, (double*)NULL, etax, etay);
};
//////////////////////////////////////////////////////////////////////////////////////
virtual void getPositionETA3(int x, int y, double *data, double &int_x, double &int_y)
{
//Random coordinate in the Pixel reference
int_x = x + ((double)rand())/((double)RAND_MAX) -0.5;//eventGenerator->Uniform(-0.5,0.5);
int_y = y + ((double)rand())/((double)RAND_MAX) -0.5;//eventGenerator->Uniform(-0.5,0.5);
return ;
};
virtual void getPositionETA3(int x, int y, int *data, double &int_x, double &int_y)
{
return getPositionETA3(x, y, (double*)NULL, int_x, int_y);
};
//////////////////////////////////////////////////////////////////////////////////////
virtual int addToFlatField(double *cluster, double &etax, double &etay){return 0;};
virtual int addToFlatField(int *cluster, double &etax, double &etay){return 0;};
virtual int addToFlatField(double etax, double etay){return 0;};
virtual int addToFlatField(double totquad,int quad,double *cl,double &etax, double &etay){return 0;};
virtual int addToFlatField(double totquad,int quad,int *cl,double &etax, double &etay){return 0;};
virtual void resetFlatField(){};
protected:
;
// TRandom *eventGenerator;
// ClassDefNV(slsInterpolation,1);
// #pragma link C++ class slsInterpolation-;
};
#endif

View File

@ -0,0 +1,503 @@
#ifndef SLS_INTERPOLATION_H
#define SLS_INTERPOLATION_H
#include <cstdlib>
#ifndef MY_TIFF_IO_H
#include "tiffIO.h"
#endif
#ifndef DEF_QUAD
#define DEF_QUAD
enum quadrant {
TOP_LEFT=0,
TOP_RIGHT=1,
BOTTOM_LEFT=2,
BOTTOM_RIGHT=3,
UNDEFINED_QUADRANT=-1
};
#endif
#include <memory.h>
#include <stdio.h>
#include <iostream>
using namespace std;
//#ifdef MYROOT1
//: public TObject
//#endif
class slsInterpolation
{
public:
slsInterpolation(int nx=400, int ny=400, int ns=25) :nPixelsX(nx), nPixelsY(ny), nSubPixels(ns), id(0) {
hint=new int[ns*nx*ns*ny];
};
slsInterpolation(slsInterpolation *orig){
nPixelsX=orig->nPixelsX;
nPixelsY=orig->nPixelsY;
nSubPixels=orig->nSubPixels;
hint=new int[nSubPixels*nPixelsX*nSubPixels*nPixelsY];
memcpy(hint, orig->hint,nSubPixels*nPixelsX*nSubPixels*nPixelsY*sizeof(int));
};
virtual int setId(int i) {id=i; return id;};
virtual slsInterpolation* Clone() =0; /*{
return new slsInterpolation(this);
}*/
int getNSubPixels() {return nSubPixels;};
int setNSubPixels(int ns) {
if (ns>0 && ns!=nSubPixels) {
delete [] hint;
nSubPixels=ns;
hint=new int[nSubPixels*nPixelsX*nSubPixels*nPixelsY];
}
return nSubPixels;
}
int getImageSize(int &nnx, int &nny, int &ns) {
nnx=nSubPixels*nPixelsX;
nny=nSubPixels*nPixelsY;
ns=nSubPixels;
return nSubPixels*nSubPixels*nPixelsX*nPixelsY;
};
//create eta distribution, eta rebinnining etc.
//returns flat field image
virtual void prepareInterpolation(int &ok)=0;
//create interpolated image
//returns interpolated image
virtual int *getInterpolatedImage(){
// cout << "return interpolated image " << endl;
/* for (int i=0; i<nSubPixels* nSubPixels* nPixelsX*nPixelsY; i++) { */
/* cout << i << " " << hint[i] << endl; */
/* } */
return hint;
};
void *writeInterpolatedImage(const char * imgname) {
//cout << "!" <<endl;
float *gm=NULL;
int *dummy=getInterpolatedImage();
gm=new float[ nSubPixels* nSubPixels* nPixelsX*nPixelsY];
if (gm) {
for (int ix=0; ix<nPixelsX*nSubPixels; ix++) {
for (int iy=0; iy<nPixelsY*nSubPixels; iy++) {
gm[iy*nPixelsX*nSubPixels+ix]=dummy[iy*nPixelsX*nSubPixels+ix];
}
}
WriteToTiff(gm, imgname,nSubPixels* nPixelsX ,nSubPixels* nPixelsY);
delete [] gm;
} else cout << "Could not allocate float image " << endl;
return NULL;
}
//return position inside the pixel for the given photon
virtual void getInterpolatedPosition(int x, int y, double *data, double &int_x, double &int_y)=0;
virtual void getInterpolatedPosition(int x, int y, int *data, double &int_x, double &int_y)=0;
//return position inside the pixel for the given photon
virtual void getInterpolatedPosition(int x, int y, double etax, double etay, int quad, double &int_x, double &int_y)=0;
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,int *cluster,double &etax, double &etay)=0;
virtual void getInterpolatedPosition(int x, int y, double totquad,int quad,double *cluster,double &etax, double &etay)=0;
//return position inside the pixel for the given photon
virtual void clearInterpolatedImage() {
for (int ix=0; ix<nPixelsX*nSubPixels; ix++) {
for (int iy=0; iy<nPixelsY*nSubPixels; iy++) {
hint[iy*nPixelsX*nSubPixels+ix]=0;
}
}
};
virtual int *addToImage(double int_x, double int_y){
int iy=((double)nSubPixels)*int_y;
int ix=((double)nSubPixels)*int_x;
if (ix>=0 && ix<(nPixelsX*nSubPixels) && iy<(nSubPixels*nPixelsY) && iy>=0 ){
// cout << int_x << " " << int_y << " " << " " << ix << " " << iy << " " << ix+iy*nPixelsX*nSubPixels << " " << hint[ix+iy*nPixelsX*nSubPixels];
(*(hint+ix+iy*nPixelsX*nSubPixels))+=1;
// cout << " " << hint[ix+iy*nPixelsX*nSubPixels] << endl;
}// else
// cout << "bad! "<< int_x << " " << int_y << " " << " " << ix << " " << iy << " " << ix+iy*nPixelsX*nSubPixels << endl;
return hint;
};
virtual int addToFlatField(double *cluster, double &etax, double &etay)=0;
virtual int addToFlatField(int *cluster, double &etax, double &etay)=0;
virtual int addToFlatField(double totquad,int quad,int *cl,double &etax, double &etay)=0;
virtual int addToFlatField(double totquad,int quad,double *cluster,double &etax, double &etay)=0;
virtual int addToFlatField(double etax, double etay)=0;
virtual int *getFlatField(){return NULL;};
virtual int *setFlatField(int *h, int nb=-1, double emin=-1, double emax=-1){return NULL;};
virtual void *writeFlatField(const char * imgname){return NULL;};
virtual void *readFlatField(const char * imgname, int nb=-1, double emin=1, double emax=0){return NULL;};
virtual int *getFlatField(int &nb, double &emin, double &emax){nb=0; emin=0; emax=0; return getFlatField();};
virtual void resetFlatField()=0;
//virtual void Streamer(TBuffer &b);
static int calcQuad(int *cl, double &sum, double &totquad, double sDum[2][2]){
double cli[3*3];//=new int[3*3];
for (int i=0; i<9; i++)
cli[i]=cl[i];
return calcQuad(cli, sum, totquad, sDum);
}
static int calcQuad(double *cl, double &sum, double &totquad, double sDum[2][2]){
int corner = UNDEFINED_QUADRANT;
/* double *cluster[3]; */
/* cluster[0]=cl; */
/* cluster[1]=cl+3; */
/* cluster[2]=cl+6; */
sum=0;
double sumBL=0;
double sumTL=0;
double sumBR=0;
double sumTR=0;
int xoff=0, yoff=0;
for (int ix=0; ix<3; ix++) {
for (int iy=0; iy<3; iy++) {
sum+=cl[ix+3*iy];
if (ix<=1 && iy<=1) sumBL+=cl[ix+iy*3];
if (ix<=1 && iy>=1) sumTL+=cl[ix+iy*3];
if (ix>=1 && iy<=1) sumBR+=cl[ix+iy*3];
if (ix>=1 && iy>=1) sumTR+=cl[ix+iy*3];
}
}
/* sDum[0][0] = cluster[0][0]; sDum[1][0] = cluster[1][0]; */
/* sDum[0][1] = cluster[0][1]; sDum[1][1] = cluster[1][1]; */
corner = BOTTOM_LEFT;
totquad=sumBL;
xoff=0;
yoff=0;
if(sumTL >= totquad){
/* sDum[0][0] = cluster[1][0]; sDum[1][0] = cluster[2][0]; */
/* sDum[0][1] = cluster[1][1]; sDum[1][1] = cluster[2][1]; */
corner = TOP_LEFT;
totquad=sumTL;
xoff=0;
yoff=1;
}
if(sumBR >= totquad){
/* sDum[0][0] = cluster[0][1]; sDum[1][0] = cluster[1][1]; */
/* sDum[0][1] = cluster[0][2]; sDum[1][1] = cluster[1][2]; */
xoff=1;
yoff=0;
corner = BOTTOM_RIGHT;
totquad=sumBR;
}
if(sumTR >= totquad){
xoff=1;
yoff=1;
/* sDum[0][0] = cluster[1][1]; sDum[1][0] = cluster[2][1]; */
/* sDum[0][1] = cluster[1][2]; sDum[1][1] = cluster[2][2]; */
corner = TOP_RIGHT;
totquad=sumTR;
}
for (int ix=0; ix<2; ix++) {
for (int iy=0; iy<2; iy++) {
sDum[iy][ix] = cl[ix+xoff+(iy+yoff)*3];
}
}
return corner;
}
static int calcEta(double totquad, double sDum[2][2], double &etax, double &etay){
double t,r;
if (totquad>0) {
t = sDum[1][0] + sDum[1][1];
r = sDum[0][1] + sDum[1][1];
etax=r/totquad;
etay=t/totquad;
}
return 0;
}
static int calcEta(double *cl, double &etax, double &etay, double &sum, double &totquad, double sDum[2][2]) {
int corner = calcQuad(cl,sum,totquad,sDum);
calcEta(totquad, sDum, etax, etay);
return corner;
}
static int calcEta(int *cl, double &etax, double &etay, double &sum, double &totquad, double sDum[2][2]) {
int corner = calcQuad(cl,sum,totquad,sDum);
calcEta(totquad, sDum, etax, etay);
return corner;
}
static int calcEtaL(double totquad, int corner, double sDum[2][2], double &etax, double &etay){
double t,r, toth, totv;
if (totquad>0) {
switch(corner) {
case TOP_LEFT:
t = sDum[1][1];
r = sDum[0][1] ;
toth=sDum[0][1]+sDum[0][0];
totv=sDum[0][1]+sDum[1][1];
break;
case TOP_RIGHT:
t = sDum[1][0] ;
r = sDum[0][1] ;
toth=sDum[0][1]+sDum[0][0];
totv=sDum[1][0]+sDum[0][0];
break;
case BOTTOM_LEFT:
r = sDum[1][1] ;
t = sDum[1][1] ;
toth=sDum[1][0]+sDum[1][1];
totv=sDum[0][1]+sDum[1][1];
break;
case BOTTOM_RIGHT:
t = sDum[1][0] ;
r = sDum[1][1] ;
toth=sDum[1][0]+sDum[1][1];
totv=sDum[1][0]+sDum[0][0];
break;
default:
etax=-1000;
etay=-1000;
return 0;
}
//etax=r/totquad;
//etay=t/totquad;
etax=r/toth;
etay=t/totv;
}
return 0;
}
static int calcEtaL(double *cl, double &etax, double &etay, double &sum, double &totquad, double sDum[2][2]) {
int corner = calcQuad(cl,sum,totquad,sDum);
calcEtaL(totquad, corner, sDum, etax, etay);
return corner;
}
static int calcEtaL(int *cl, double &etax, double &etay, double &sum, double &totquad, double sDum[2][2]) {
int corner = calcQuad(cl,sum,totquad,sDum);
calcEtaL(totquad, corner, sDum, etax, etay);
return corner;
}
static int calcEtaC3(double *cl, double &etax, double &etay, double &sum, double &totquad, double sDum[2][2]){
int corner = calcQuad(cl,sum,totquad,sDum);
calcEta(sum, sDum, etax, etay);
return corner;
}
static int calcEtaC3(int *cl, double &etax, double &etay, double &sum, double &totquad, double sDum[2][2]){
int corner = calcQuad(cl,sum,totquad,sDum);
calcEta(sum, sDum, etax, etay);
return corner;
}
static int calcEta3(double *cl, double &etax, double &etay, double &sum) {
double l=0,r=0,t=0,b=0, val;
sum=0;
// int quad;
for (int ix=0; ix<3; ix++) {
for (int iy=0; iy<3; iy++) {
val=cl[ix+3*iy];
sum+=val;
if (iy==0) l+=val;
if (iy==2) r+=val;
if (ix==0) b+=val;
if (ix==2) t+=val;
}
}
if (sum>0) {
etax=(-l+r)/sum;
etay=(-b+t)/sum;
}
/* if (etax<-1 || etax>1 || etay<-1 || etay>1) { */
/* cout << "**********" << etax << " " << etay << endl; */
/* for (int ix=0; ix<3; ix++) { */
/* for (int iy=0; iy<3; iy++) { */
/* cout << cl[iy+3*ix] << "\t" ; */
/* } */
/* cout << endl; */
/* } */
/* cout << sum << " " << l << " " << r << " " << t << " " << b << endl; */
/* } */
if (etax>=0 && etay>=0)
return TOP_RIGHT;
if (etax<0 && etay>=0)
return TOP_LEFT;
if (etax<0 && etay<0)
return BOTTOM_LEFT;
return BOTTOM_RIGHT;
}
static int calcEta3(int *cl, double &etax, double &etay, double &sum) {
double cli[9];
for (int ix=0; ix<9; ix++) cli[ix]=cl[ix];
return calcEta3(cli, etax, etay, sum);
}
/* static int calcMyEta(double totquad, int quad, double *cl, double &etax, double &etay) { */
/* double l,r,t,b, sum; */
/* int yoff; */
/* switch (quad) { */
/* case BOTTOM_LEFT: */
/* case BOTTOM_RIGHT: */
/* yoff=0; */
/* break; */
/* case TOP_LEFT: */
/* case TOP_RIGHT: */
/* yoff=1; */
/* break; */
/* default: */
/* ; */
/* } */
/* l=cl[0+yoff*3]+cl[0+yoff*3+3]; */
/* r=cl[2+yoff*3]+cl[2+yoff*3+3]; */
/* b=cl[0+yoff*3]+cl[1+yoff*3]*cl[2+yoff*3]; */
/* t=cl[0+yoff*3+3]+cl[1+yoff*3+3]*cl[0+yoff*3+3]; */
/* sum=t+b; */
/* if (sum>0) { */
/* etax=(-l+r)/sum; */
/* etay=(+t)/sum; */
/* } */
/* return -1; */
/* } */
/* static int calcMyEta(double totquad, int quad, int *cl, double &etax, double &etay) { */
/* double l,r,t,b, sum; */
/* int yoff; */
/* switch (quad) { */
/* case BOTTOM_LEFT: */
/* case BOTTOM_RIGHT: */
/* yoff=0; */
/* break; */
/* case TOP_LEFT: */
/* case TOP_RIGHT: */
/* yoff=1; */
/* break; */
/* default: */
/* ; */
/* } */
/* l=cl[0+yoff*3]+cl[0+yoff*3+3]; */
/* r=cl[2+yoff*3]+cl[2+yoff*3+3]; */
/* b=cl[0+yoff*3]+cl[1+yoff*3]*cl[2+yoff*3]; */
/* t=cl[0+yoff*3+3]+cl[1+yoff*3+3]*cl[0+yoff*3+3]; */
/* sum=t+b; */
/* if (sum>0) { */
/* etax=(-l+r)/sum; */
/* etay=(+t)/sum; */
/* } */
/* return -1; */
/* } */
/* static int calcEta3X(double *cl, double &etax, double &etay, double &sum) { */
/* double l,r,t,b; */
/* sum=cl[0]+cl[1]+cl[2]+cl[3]+cl[4]+cl[5]+cl[6]+cl[7]+cl[8]; */
/* if (sum>0) { */
/* l=cl[3]; */
/* r=cl[5]; */
/* b=cl[1]; */
/* t=cl[7]; */
/* etax=(-l+r)/sum; */
/* etay=(-b+t)/sum; */
/* } */
/* return -1; */
/* } */
/* static int calcEta3X(int *cl, double &etax, double &etay, double &sum) { */
/* double l,r,t,b; */
/* sum=cl[0]+cl[1]+cl[2]+cl[3]+cl[4]+cl[5]+cl[6]+cl[7]+cl[8]; */
/* if (sum>0) { */
/* l=cl[3]; */
/* r=cl[5]; */
/* b=cl[1]; */
/* t=cl[7]; */
/* etax=(-l+r)/sum; */
/* etay=(-b+t)/sum; */
/* } */
/* return -1; */
/* } */
protected:
int nPixelsX, nPixelsY;
int nSubPixels;
int id;
int *hint;
};
#endif

View File

@ -0,0 +1,45 @@
#ifndef MOENCH03COMMONMODE_H
#define MOENCH03COMMONMODE_H
#include "commonModeSubtraction.h"
class moench03CommonMode : public commonModeSubtraction {
/** @short class to calculate the common mode noise for moench02 i.e. on 4 supercolumns separately */
public:
/** constructor - initalizes a commonModeSubtraction with 4 different regions of interest
\param nn number of samples for the moving average
*/
moench03CommonMode(int nn=1000) : commonModeSubtraction(nn,32){} ;
/** add value to common mode as a function of the pixel value, subdividing the region of interest in the 4 supercolumns of 40 columns each;
\param val value to add to the common mode
\param ix pixel coordinate in the x direction
\param iy pixel coordinate in the y direction
*/
virtual void addToCommonMode(double val, int ix=0, int iy=0) {
// (void) iy;
int isc=ix/25+(iy/200)*16;
if (isc>=0 && isc<nROI) {
cmPed[isc]+=val;
nCm[isc]++;
}
};
/**returns common mode value as a function of the pixel value, subdividing the region of interest in the 4 supercolumns of 40 columns each;
\param ix pixel coordinate in the x direction
\param iy pixel coordinate in the y direction
\returns common mode value
*/
virtual double getCommonMode(int ix=0, int iy=0) {
(void) iy;
int isc=ix/25+(iy/200)*16;
if (isc>=0 && isc<nROI) {
if (nCm[isc]>0) return cmPed[isc]/nCm[isc]-cmStat[isc].Mean();
}
return 0;
};
};
#endif

View File

@ -0,0 +1,45 @@
#ifndef MOENCHCOMMONMODE_H
#define MOENCHCOMMONMODE_H
#include "commonModeSubtraction.h"
class moenchCommonMode : public commonModeSubtraction {
/** @short class to calculate the common mode noise for moench02 i.e. on 4 supercolumns separately */
public:
/** constructor - initalizes a commonModeSubtraction with 4 different regions of interest
\param nn number of samples for the moving average
*/
moenchCommonMode(int nn=1000) : commonModeSubtraction(nn,4){} ;
/** add value to common mode as a function of the pixel value, subdividing the region of interest in the 4 supercolumns of 40 columns each;
\param val value to add to the common mode
\param ix pixel coordinate in the x direction
\param iy pixel coordinate in the y direction
*/
virtual void addToCommonMode(double val, int ix=0, int iy=0) {
(void) iy;
int isc=ix/40;
if (isc>=0 && isc<nROI) {
cmPed[isc]+=val;
nCm[isc]++;
}
};
/**returns common mode value as a function of the pixel value, subdividing the region of interest in the 4 supercolumns of 40 columns each;
\param ix pixel coordinate in the x direction
\param iy pixel coordinate in the y direction
\returns common mode value
*/
virtual double getCommonMode(int ix=0, int iy=0) {
(void) iy;
int isc=ix/40;
if (isc>=0 && isc<nROI) {
if (nCm[isc]>0) return cmPed[isc]/nCm[isc]-cmStat[isc].Mean();
}
return 0;
};
};
#endif

View File

@ -0,0 +1,34 @@
#module add CBFlib/0.9.5
INCDIR=-I. -I../ -I../interpolations -I../interpolations/etaVEL -I../dataStructures -I../../slsSupportLib/include/ -I../../slsReceiverSoftware/include/
LDFLAG= ../tiffIO.cpp -L/usr/lib64/ -lpthread -lm -lstdc++ -pthread -lrt -ltiff -O3 -std=c++11
MAIN=moench03ClusterFinder.cpp
all: moenchClusterFinder moenchMakeEta moenchInterpolation moenchNoInterpolation moenchPhotonCounter moenchAnalog
moenchClusterFinder: moench03ClusterFinder.cpp $(INCS) clean
g++ -o moenchClusterFinder moench03ClusterFinder.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DSAVE_ALL -DNEWRECEIVER
moenchMakeEta: moench03Interpolation.cpp $(INCS) clean
g++ -o moenchMakeEta moench03Interpolation.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DFF
moenchInterpolation: moench03Interpolation.cpp $(INCS) clean
g++ -o moenchInterpolation moench03Interpolation.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF)
moenchNoInterpolation: moench03NoInterpolation.cpp $(INCS) clean
g++ -o moenchNoInterpolation moench03NoInterpolation.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF)
moenchPhotonCounter: moenchPhotonCounter.cpp $(INCS) clean
g++ -o moenchPhotonCounter moenchPhotonCounter.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DNEWRECEIVER
moenchAnalog: moenchPhotonCounter.cpp $(INCS) clean
g++ -o moenchAnalog moenchPhotonCounter.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DNEWRECEIVER -DANALOG
clean:
rm -f moenchClusterFinder moenchMakeEta moenchInterpolation moenchNoInterpolation moenchPhotonCounter moenchAnalog

View File

@ -0,0 +1,16 @@
INCDIR= -I. -I../dataStructures ../tiffIO.cpp -I../ -I../interpolations/ -I../../slsSupportLib/include/ -I../../slsReceiverSoftware/include/
LDFLAG= -L/usr/lib64/ -lpthread -lm -lstdc++ -lzmq -pthread -lrt -ltiff -O3 -g -std=c++11
#-L../../bin -lhdf5 -L.
#DESTDIR?=../bin
all: moenchZmqProcess
moenchZmqProcess: moenchZmqProcess.cpp clean
g++ -o moenchZmqProcess moenchZmqProcess.cpp $(LDFLAG) $(INCDIR) $(LIBHDF5) $(LIBRARYCBF) -DNEWZMQ -DINTERP
clean:
rm -f moenchZmqProcess

View File

@ -0,0 +1,237 @@
//#include "ansi.h"
#include <iostream>
//#include "moench03T1ZmqData.h"
#ifdef NEWRECEIVER
#ifndef RECT
#include "moench03T1ReceiverDataNew.h"
#endif
#ifdef RECT
#include "moench03T1ReceiverDataNewRect.h"
#endif
#endif
#ifdef CSAXS_FP
#include "moench03T1ReceiverData.h"
#endif
#ifdef OLDDATA
#include "moench03Ctb10GbT1Data.h"
#endif
#ifdef REORDERED
#include "moench03T1ReorderedData.h"
#endif
// #include "interpolatingDetector.h"
//#include "etaInterpolationPosXY.h"
// #include "linearInterpolation.h"
// #include "noInterpolation.h"
#include "multiThreadedAnalogDetector.h"
#include "singlePhotonDetector.h"
//#include "interpolatingDetector.h"
#include <stdio.h>
#include <map>
#include <fstream>
#include <sys/stat.h>
#include <ctime>
using namespace std;
int main(int argc, char *argv[]) {
if (argc<6) {
cout << "Usage is " << argv[0] << "indir outdir fname runmin runmax " << endl;
return 1;
}
int p=10000;
int fifosize=1000;
int nthreads=1;
int nsubpix=25;
int etabins=nsubpix*10;
double etamin=-1, etamax=2;
int csize=3;
int nx=400, ny=400;
int save=1;
int nsigma=5;
int nped=1000;
int ndark=100;
int ok;
int iprog=0;
#ifdef NEWRECEIVER
#ifdef RECT
cout << "Should be rectangular!" <<endl;
#endif
moench03T1ReceiverDataNew *decoder=new moench03T1ReceiverDataNew();
cout << "RECEIVER DATA WITH ONE HEADER!"<<endl;
#endif
#ifdef CSAXS_FP
moench03T1ReceiverData *decoder=new moench03T1ReceiverData();
cout << "RECEIVER DATA WITH ALL HEADERS!"<<endl;
#endif
#ifdef OLDDATA
moench03Ctb10GbT1Data *decoder=new moench03Ctb10GbT1Data();
cout << "OLD RECEIVER DATA!"<<endl;
#endif
#ifdef REORDERED
moench03T1ReorderedData *decoder=new moench03T1ReorderedData();
cout << "REORDERED DATA!"<<endl;
#endif
decoder->getDetectorSize(nx,ny);
cout << "nx " << nx << " ny " << ny << endl;
//moench03T1ZmqData *decoder=new moench03T1ZmqData();
singlePhotonDetector *filter=new singlePhotonDetector(decoder,csize, nsigma, 1, 0, nped, 200);
// char tit[10000];
cout << "filter " << endl;
// filter->readPedestals("/scratch/ped_100.tiff");
// interp->readFlatField("/scratch/eta_100.tiff",etamin,etamax);
// cout << "filter "<< endl;
int size = 327680;////atoi(argv[3]);
int* image;
//int* image =new int[327680/sizeof(int)];
filter->newDataSet();
int ff, np;
int dsize=decoder->getDataSize();
cout << " data size is " << dsize;
char data[dsize];
ifstream filebin;
char *indir=argv[1];
char *outdir=argv[2];
char *fformat=argv[3];
int runmin=atoi(argv[4]);
int runmax=atoi(argv[5]);
char fname[10000];
char outfname[10000];
char imgfname[10000];
char pedfname[10000];
// strcpy(pedfname,argv[6]);
char fn[10000];
std::time_t end_time;
FILE *of=NULL;
cout << "input directory is " << indir << endl;
cout << "output directory is " << outdir << endl;
cout << "fileformat is " << fformat << endl;
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
char* buff;
multiThreadedAnalogDetector *mt=new multiThreadedAnalogDetector(filter,nthreads,fifosize);
mt->setDetectorMode(ePhotonCounting);
mt->setFrameMode(eFrame);
mt->StartThreads();
mt->popFree(buff);
cout << "mt " << endl;
int ifr=0;
for (int irun=runmin; irun<runmax; irun++) {
sprintf(fn,fformat,irun);
sprintf(fname,"%s/%s.raw",indir,fn);
sprintf(outfname,"%s/%s.clust",outdir,fn);
sprintf(imgfname,"%s/%s.tiff",outdir,fn);
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
cout << fname << " " << outfname << " " << imgfname << endl;
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
if (filebin.is_open()){
of=fopen(outfname,"w");
if (of) {
mt->setFilePointer(of);
// cout << "file pointer set " << endl;
} else {
cout << "Could not open "<< outfname << " for writing " << endl;
mt->setFilePointer(NULL);
return 1;
}
// //while read frame
ff=-1;
while (decoder->readNextFrame(filebin, ff, np,buff)) {
// cout << "*"<<ifr++<<"*"<<ff<< endl;
// cout << ff << " " << np << endl;
// //push
// for (int ix=0; ix<400; ix++)
// for (int iy=0; iy<400; iy++) {
// if (decoder->getChannel(buff, ix, iy)<3000 || decoder->getChannel(buff, ix, iy)>8000) {
// cout << ifr << " " << ff << " " << ix << " " << iy << " " << decoder->getChannel(buff, ix, iy) << endl ;
// }
// }
mt->pushData(buff);
// // //pop
mt->nextThread();
// // // cout << " " << (void*)buff;
mt->popFree(buff);
ifr++;
if (ifr%10000==0) cout << ifr << " " << ff << endl;
ff=-1;
}
cout << "--" << endl;
filebin.close();
// //close file
// //join threads
while (mt->isBusy()) {;}//wait until all data are processed from the queues
if (of)
fclose(of);
mt->writeImage(imgfname);
mt->clearImage();
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
} else
cout << "Could not open "<< fname << " for reading " << endl;
}
return 0;
}

View File

@ -0,0 +1,249 @@
#include "ansi.h"
#include <iostream>
//#include "moench03T1ZmqData.h"
//#define DOUBLE_SPH
//#define MANYFILES
#ifdef DOUBLE_SPH
#include "single_photon_hit_double.h"
#endif
#ifndef DOUBLE_SPH
#include "single_photon_hit.h"
#endif
//#include "etaInterpolationPosXY.h"
#include "noInterpolation.h"
#include "etaInterpolationCleverAdaptiveBins.h"
//#include "etaInterpolationRandomBins.h"
using namespace std;
#define NC 400
#define NR 400
#define MAX_ITERATIONS (nSubPixels*100)
#define XTALK
int main(int argc, char *argv[]) {
#ifndef FF
if (argc<9) {
cout << "Wrong usage! Should be: "<< argv[0] << " infile etafile outfile runmin runmax ns cmin cmax" << endl;
return 1;
}
#endif
#ifdef FF
if (argc<7) {
cout << "Wrong usage! Should be: "<< argv[0] << " infile etafile runmin runmax cmin cmax" << endl;
return 1;
}
#endif
int iarg=4;
char infname[10000];
char fname[10000];
char outfname[10000];
#ifndef FF
iarg=4;
#endif
#ifdef FF
iarg=3;
#endif
int runmin=atoi(argv[iarg++]);
int runmax=atoi(argv[iarg++]);
cout << "Run min: " << runmin << endl;
cout << "Run max: " << runmax << endl;
int nsubpix=4;
#ifndef FF
nsubpix=atoi(argv[iarg++]);
cout << "Subpix: " << nsubpix << endl;
#endif
float cmin=atof(argv[iarg++]);
float cmax=atof(argv[iarg++]);
cout << "Energy min: " << cmin << endl;
cout << "Energy max: " << cmax << endl;
//int etabins=500;
int etabins=1000;//nsubpix*2*100;
double etamin=-1, etamax=2;
//double etamin=-0.1, etamax=1.1;
double eta3min=-2, eta3max=2;
int quad;
double sum, totquad;
double sDum[2][2];
double etax, etay, int_x, int_y;
double eta3x, eta3y, int3_x, int3_y, noint_x, noint_y;
int ok;
int f0=-1;
int ix, iy, isx, isy;
int nframes=0, lastframe=-1;
double d_x, d_y, res=5, xx, yy;
int nph=0, badph=0, totph=0;
FILE *f=NULL;
#ifdef DOUBLE_SPH
single_photon_hit_double cl(3,3);
#endif
#ifndef DOUBLE_SPH
single_photon_hit cl(3,3);
#endif
int nSubPixels=nsubpix;
#ifndef NOINTERPOLATION
eta2InterpolationPosXY *interp=new eta2InterpolationPosXY(NC, NR, nsubpix, etabins, etamin, etamax);
//eta2InterpolationCleverAdaptiveBins *interp=new eta2InterpolationCleverAdaptiveBins(NC, NR, nsubpix, etabins, etamin, etamax);
#endif
#ifdef NOINTERPOLATION
noInterpolation *interp=new noInterpolation(NC, NR, nsubpix);
#endif
#ifndef FF
#ifndef NOINTERPOLATION
cout << "read ff " << argv[2] << endl;
sprintf(fname,"%s",argv[2]);
interp->readFlatField(fname);
interp->prepareInterpolation(ok);//, MAX_ITERATIONS);
#endif
// return 0;
#endif
#ifdef FF
cout << "Will write eta file " << argv[2] << endl;
#endif
int *img;
float *totimg=new float[NC*NR*nsubpix*nsubpix];
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]=0;
}
}
}
}
#ifdef FF
sprintf(outfname,argv[2]);
#endif
int irun;
for (irun=runmin; irun<runmax; irun++) {
sprintf(infname,argv[1],irun);
#ifndef FF
sprintf(outfname,argv[3],irun);
#endif
f=fopen(infname,"r");
if (f) {
cout << infname << endl;
nframes=0;
f0=-1;
while (cl.read(f)) {
totph++;
if (lastframe!=cl.iframe) {
lastframe=cl.iframe;
// cout << cl.iframe << endl;
// f0=cl.iframe;
if (nframes==0) f0=lastframe;
nframes++;
}
//quad=interp->calcQuad(cl.get_cluster(), sum, totquad, sDum);
quad=interp->calcEta(cl.get_cluster(), etax, etay, sum, totquad, sDum);
if (sum>cmin && totquad/sum>0.8 && totquad/sum<1.2 && sum<cmax ) {
nph++;
// if (sum>200 && sum<580) {
// interp->getInterpolatedPosition(cl.x,cl.y, totquad,quad,cl.get_cluster(),int_x, int_y);
// #ifdef SOLEIL
// if (cl.x>210 && cl.x<240 && cl.y>210 && cl.y<240) {
// #endif
#ifndef FF
// interp->getInterpolatedPosition(cl.x,cl.y, cl.get_cluster(),int_x, int_y);
interp->getInterpolatedPosition(cl.x,cl.y, etax, etay, quad,int_x, int_y);
// cout <<"**************"<< endl;
// cout << cl.x << " " << cl.y << " " << sum << endl;
// cl.print();
// cout << int_x << " " << int_y << endl;
// cout <<"**************"<< endl;
// if (etax!=0 && etay!=0 && etax!=1 && etay!=1)
interp->addToImage(int_x, int_y);
if (int_x<0 || int_y<0 || int_x>400 || int_y>400) {
cout <<"**************"<< endl;
cout << cl.x << " " << cl.y << " " << sum << endl;
cl.print();
cout << int_x << " " << int_y << endl;
cout <<"**************"<< endl;
}
#endif
#ifdef FF
// interp->addToFlatField(cl.get_cluster(), etax, etay);
// #ifdef UCL
// if (cl.x>50)
// #endif
// if (etax!=0 && etay!=0 && etax!=1 && etay!=1)
interp->addToFlatField(etax, etay);
// if (etax==0 || etay==0) cout << cl.x << " " << cl.y << endl;
#endif
// #ifdef SOLEIL
// }
// #endif
if (nph%1000000==0) cout << nph << endl;
if (nph%10000000==0) {
#ifndef FF
interp->writeInterpolatedImage(outfname);
#endif
#ifdef FF
interp->writeFlatField(outfname);
#endif
}
}
}
fclose(f);
#ifdef FF
interp->writeFlatField(outfname);
#endif
#ifndef FF
interp->writeInterpolatedImage(outfname);
img=interp->getInterpolatedImage();
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]+=img[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)];
}
}
}
}
cout << "Read " << nframes << " frames (first frame: " << f0 << " last frame: " << lastframe << " delta:" << lastframe-f0 << ") nph="<< nph <<endl;
interp->clearInterpolatedImage();
#endif
} else
cout << "could not open file " << infname << endl;
}
#ifndef FF
sprintf(outfname,argv[3],11111);
WriteToTiff(totimg, outfname,NC*nsubpix,NR*nsubpix);
#endif
#ifdef FF
interp->writeFlatField(outfname);
#endif
cout << "Filled " << nph << " (/"<< totph <<") " << endl;
return 0;
}

View File

@ -0,0 +1,170 @@
#include "ansi.h"
#include <iostream>
#include "single_photon_hit.h"
#include "noInterpolation.h"
using namespace std;
#define NC 400
#define NR 400
int main(int argc, char *argv[]) {
/**
* trial.o [socket ip] [starting port number] [outfname]
*
*/
if (argc<7) {
cout << "Wrong usage! Should be: "<< argv[0] << " infile " << " etafile outfile runmin runmax ns" << endl;
return 1;
}
char infname[10000];
char outfname[10000];
int runmin=atoi(argv[4]);
int runmax=atoi(argv[5]);
int nsubpix=atoi(argv[6]);
int etabins=1000;//nsubpix*2*100;
double etamin=-1, etamax=2;
int quad;
double sum, totquad;
double sDum[2][2];
double etax, etay, int_x, int_y;
int ok;
int ix, iy, isx, isy;
FILE *f=NULL;
single_photon_hit cl(3,3);
// etaInterpolationPosXY *interp=new etaInterpolationPosXY(NC, NR, nsubpix, etabins, etamin, etamax);
noInterpolation *interp=new noInterpolation(NC, NR, nsubpix);
// interp->readFlatField(argv[2]);
// interp->prepareInterpolation(ok);
int *img;
float *totimg=new float[NC*NR*nsubpix*nsubpix];
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]=0;
}
}
}
}
#ifdef FF
float ff[nsubpix*nsubpix];
float *ffimg=new float[NC*NR*nsubpix*nsubpix];
float totff=0;
#endif
for (int irun=runmin; irun<runmax; irun++) {
sprintf(infname,argv[1],irun);
sprintf(outfname,argv[3],irun);
f=fopen(infname,"r");
if (f) {
while (cl.read(f)) {
quad=interp->calcQuad(cl.get_cluster(), sum, totquad, sDum);
if (sum>200 && sum<580) {
interp->getInterpolatedPosition(cl.x,cl.y, totquad,quad,cl.get_cluster(),int_x, int_y);
interp->addToImage(int_x, int_y);
}
}
fclose(f);
#ifdef FF
img=interp->getInterpolatedImage();
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
ff[isy*nsubpix+isx]=0;
}
}
totff=0;
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR-100; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
ff[isy*nsubpix+isx]+=img[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)];
}
}
}
}
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
totff+=ff[isy*nsubpix+isx];
}
}
totff/=nsubpix*nsubpix;
if (totff) {
cout << "ff: " << totff << endl;
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
ff[isy*nsubpix+isx]/=totff;
cout << ff[isy*nsubpix+isx] << "\t";
}
cout << endl;
}
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
ffimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]=img[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]/ff[isy*nsubpix+isx];
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]+=ffimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)];
}
}
}
}
WriteToTiff(ffimg, outfname,NC*nsubpix,NR*nsubpix);
}
#endif
#ifndef FF
interp->writeInterpolatedImage(outfname);
img=interp->getInterpolatedImage();
for (ix=0; ix<NC; ix++) {
for (iy=0; iy<NR; iy++) {
for (isx=0; isx<nsubpix; isx++) {
for (isy=0; isy<nsubpix; isy++) {
totimg[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)]+=img[ix*nsubpix+isx+(iy*nsubpix+isy)*(NC*nsubpix)];
}
}
}
}
#endif
interp->clearInterpolatedImage();
}
}
sprintf(outfname,argv[3],11111);
WriteToTiff(totimg, outfname,NC*nsubpix,NR*nsubpix);
return 0;
}

View File

@ -0,0 +1,358 @@
//#include "ansi.h"
#include <iostream>
//#define VERSION_V1
//#include "moench03T1ZmqData.h"
#ifdef NEWRECEIVER
#ifndef RECT
#include "moench03T1ReceiverDataNew.h"
#endif
#ifdef RECT
#include "moench03T1ReceiverDataNewRect.h"
#endif
#endif
#ifdef CSAXS_FP
#include "moench03T1ReceiverData.h"
#endif
#ifdef OLDDATA
#include "moench03Ctb10GbT1Data.h"
#endif
// #include "interpolatingDetector.h"
//#include "etaInterpolationPosXY.h"
// #include "linearInterpolation.h"
// #include "noInterpolation.h"
#include "multiThreadedAnalogDetector.h"
#include "singlePhotonDetector.h"
//#include "interpolatingDetector.h"
#include <stdio.h>
#include <map>
#include <fstream>
#include <sys/stat.h>
#include <ctime>
using namespace std;
int main(int argc, char *argv[]) {
if (argc<4) {
cout << "Usage is " << argv[0] << "indir outdir fname [runmin] [runmax] [pedfile] [threshold] [nframes] [xmin xmax ymin ymax]" << endl;
cout << "threshold <0 means analog; threshold=0 means cluster finder; threshold>0 means photon counting" << endl;
cout << "nframes <0 means sum everything; nframes=0 means one file per run; nframes>0 means one file every nframes" << endl;
return 1;
}
int p=10000;
int fifosize=1000;
int nthreads=1;
int nsubpix=25;
int etabins=nsubpix*10;
double etamin=-1, etamax=2;
int csize=3;
int save=1;
int nsigma=5;
int nped=10000;
int ndark=100;
int ok;
int iprog=0;
int cf=0;
#ifdef NEWRECEIVER
#ifdef RECT
cout << "Should be rectangular!" <<endl;
#endif
moench03T1ReceiverDataNew *decoder=new moench03T1ReceiverDataNew();
cout << "RECEIVER DATA WITH ONE HEADER!"<<endl;
#endif
#ifdef CSAXS_FP
moench03T1ReceiverData *decoder=new moench03T1ReceiverData();
cout << "RECEIVER DATA WITH ALL HEADERS!"<<endl;
#endif
#ifdef OLDDATA
moench03Ctb10GbT1Data *decoder=new moench03Ctb10GbT1Data();
cout << "OLD RECEIVER DATA!"<<endl;
#endif
int nx=400, ny=400;
decoder->getDetectorSize(nx,ny);
singlePhotonDetector *filter=new singlePhotonDetector(decoder,csize, nsigma, 1, 0, nped, 200);
int size = 327680;////atoi(argv[3]);
int* image;
//int* image =new int[327680/sizeof(int)];
filter->newDataSet();
int ff, np;
int dsize=decoder->getDataSize();
//cout << " data size is " << dsize;
char data[dsize];
ifstream filebin;
char *indir=argv[1];
char *outdir=argv[2];
char *fformat=argv[3];
int runmin=0;
// cout << "argc is " << argc << endl;
if (argc>=5) {
runmin=atoi(argv[4]);
}
int runmax=runmin;
if (argc>=6) {
runmax=atoi(argv[5]);
}
char *pedfile=NULL;
if (argc>=7) {
pedfile=argv[6];
}
double thr=0;
double thr1=1;
if (argc>=8) {
thr=atoi(argv[7]);
}
int nframes=0;
if (argc>=9) {
nframes=atoi(argv[8]);
}
int xmin=0, xmax=nx, ymin=0, ymax=ny;
if (argc>=13) {
xmin=atoi(argv[9]);
xmax=atoi(argv[10]);
ymin=atoi(argv[11]);
ymax=atoi(argv[12]);
}
char ffname[10000];
char fname[10000];
char imgfname[10000];
char cfname[10000];
char fn[10000];
std::time_t end_time;
FILE *of=NULL;
cout << "input directory is " << indir << endl;
cout << "output directory is " << outdir << endl;
cout << "input file is " << fformat << endl;
cout << "runmin is " << runmin << endl;
cout << "runmax is " << runmax << endl;
if (pedfile)
cout << "pedestal file is " << pedfile << endl;
//#ifndef ANALOG
if (thr>0) {
cout << "threshold is " << thr << endl;
//#ifndef ANALOG
filter->setThreshold(thr);
//#endif
} else
cf=1;
//#endif
filter->setROI(xmin,xmax,ymin,ymax);
#ifdef SOLEIL
filter->setROI(150,210,170,230);
nframes=-1;
#endif
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
char* buff;
multiThreadedAnalogDetector *mt=new multiThreadedAnalogDetector(filter,nthreads,fifosize);
#ifndef ANALOG
mt->setDetectorMode(ePhotonCounting);
cout << "Counting!" << endl;
if (thr>0) {
cf=0;
}
#endif
//{
#ifdef ANALOG
mt->setDetectorMode(eAnalog);
cout << "Analog!" << endl;
cf=0;
// thr1=thr;
#endif
// }
mt->StartThreads();
mt->popFree(buff);
// cout << "mt " << endl;
int ifr=0;
if (pedfile) {
cout << "PEDESTAL " ;
sprintf(fname,"%s.raw",pedfile);
cout << fname << endl ;
sprintf(imgfname,"%s/pedestals.tiff",outdir,fformat);
std::time(&end_time);
cout << "aaa" << std::ctime(&end_time) << endl;
mt->setFrameMode(ePedestal);
// sprintf(fn,fformat,irun);
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
if (filebin.is_open()){
ff=-1;
while (decoder->readNextFrame(filebin, ff, np,buff)) {
if (np==40) {
mt->pushData(buff);
mt->nextThread();
mt->popFree(buff);
ifr++;
if (ifr%10000==0)
cout << ifr << " " << ff << " " << np << endl;
} else
cout << ifr << " " << ff << " " << np << endl;
ff=-1;
}
filebin.close();
while (mt->isBusy()) {;}
mt->writePedestal(imgfname);
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
} else
cout << "Could not open pedestal file "<< fname << " for reading " << endl;
}
ifr=0;
int ifile=0;
mt->setFrameMode(eFrame);
for (int irun=runmin; irun<=runmax; irun++) {
cout << "DATA " ;
// sprintf(fn,fformat,irun);
sprintf(ffname,"%s/%s.raw",indir,fformat);
sprintf(fname,ffname,irun);
sprintf(ffname,"%s/%s.tiff",outdir,fformat);
sprintf(imgfname,ffname,irun);
sprintf(ffname,"%s/%s.clust",outdir,fformat);
sprintf(cfname,ffname,irun);
cout << fname << " " ;
cout << imgfname << endl;
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
// cout << fname << " " << outfname << " " << imgfname << endl;
filebin.open((const char *)(fname), ios::in | ios::binary);
// //open file
ifile=0;
if (filebin.is_open()){
if (thr<=0 && cf!=0) { //cluster finder
if (of==NULL) {
of=fopen(cfname,"w");
if (of) {
mt->setFilePointer(of);
cout << "file pointer set " << endl;
} else {
cout << "Could not open "<< cfname << " for writing " << endl;
mt->setFilePointer(NULL);
return 1;
}
}
}
// //while read frame
ff=-1;
ifr=0;
while (decoder->readNextFrame(filebin, ff, np,buff)) {
if (np==40) {
// cout << "*"<<ifr++<<"*"<<ff<< endl;
// cout << ff << " " << np << endl;
// //push
mt->pushData(buff);
// // //pop
mt->nextThread();
// // // cout << " " << (void*)buff;
mt->popFree(buff);
ifr++;
if (ifr%1000==0) cout << ifr << " " << ff << endl;
if (nframes>0) {
if (ifr%nframes==0) {
//The name has an additional "_fXXXXX" at the end, where "XXXXX" is the initial frame number of the image (0,1000,2000...)
sprintf(ffname,"%s/%s_f%05d.tiff",outdir,fformat,ifile);
sprintf(imgfname,ffname,irun);
//cout << "Writing tiff to " << imgfname << " " << thr1 << endl;
mt->writeImage(imgfname, thr1);
mt->clearImage();
ifile++;
}
}
} else
cout << ifr << " " << ff << " " << np << endl;
ff=-1;
}
cout << "--" << endl;
filebin.close();
// //close file
// //join threads
while (mt->isBusy()) {;}
if (nframes>=0) {
if (nframes>0) {
sprintf(ffname,"%s/%s_f%05d.tiff",outdir,fformat,ifile);
sprintf(imgfname,ffname,irun);
}
sprintf(ffname,"%s/%s.tiff",outdir,fformat);
sprintf(imgfname,ffname,irun);
cout << "Writing tiff to " << imgfname << " " << thr1 <<endl;
mt->writeImage(imgfname, thr1);
mt->clearImage();
if (of) {
fclose(of);
of=NULL;
mt->setFilePointer(NULL);
}
}
std::time(&end_time);
cout << std::ctime(&end_time) << endl;
} else
cout << "Could not open "<< fname << " for reading " << endl;
}
return 0;
}

View File

@ -0,0 +1,707 @@
#define WRITE_QUAD
#include "sls_detector_defs.h"
#include "ZmqSocket.h"
#include "moench03T1ZmqDataNew.h"
#include <vector>
#include <string>
#include <sstream>
#include <iomanip>
#include <fstream>
#include "tiffIO.h"
//#include <zmq.h>
#include <rapidjson/document.h> //json header in zmq stream
#include<iostream>
//#include "analogDetector.h"
//#include "multiThreadedAnalogDetector.h"
//#include "singlePhotonDetector.h"
//#include "interpolatingDetector.h"
//#include "multiThreadedCountingDetector.h"
#include "multiThreadedInterpolatingDetector.h"
#include "etaInterpolationPosXY.h"
#include "ansi.h"
#include <iostream>
//#include <chrono>
#include <ctime> // time_t
#include <cstdio>
using namespace std;
//using namespace std::chrono;
//#define SLS_DETECTOR_JSON_HEADER_VERSION 0x2
// myDet->setNetworkParameter(ADDITIONAL_JSON_HEADER, " \"what\":\"nothing\" ");
int main(int argc, char *argv[]) {
/**
* trial.o [socket ip] [starting port number] [send_socket ip] [send port number]
*
*/
FILE *of=NULL;
int fifosize=5000;
int etabins=1000;//nsubpix*2*100;
double etamin=-1, etamax=2;
// help
if (argc < 3 ) {
cprintf(RED, "Help: ./trial [receive socket ip] [receive starting port number] [send_socket ip] [send starting port number] [nthreads] [nsubpix] [etafile]\n");
return EXIT_FAILURE;
}
// receive parameters
bool send = false;
char* socketip=argv[1];
uint32_t portnum = atoi(argv[2]);
// send parameters if any
char* socketip2 = 0;
uint32_t portnum2 = 0;
int ok;
// high_resolution_clock::time_point t1;
// high_resolution_clock::time_point t2 ;
time_t begin,end,finished;
if (argc > 4) {
socketip2 = argv[3];
portnum2 = atoi(argv[4]);
if (portnum2>0)
send = true;
}
cout << "\nrx socket ip : " << socketip <<
"\nrx port num : " << portnum ;
if (send) {
cout << "\ntx socket ip : " << socketip2 <<
"\ntx port num : " << portnum2;
}
int nthreads=5;
if (argc>5)
nthreads=atoi(argv[5]);
cout << "Number of threads is: " << nthreads << endl;
int nSubPixels=2;
if (argc>6)
nSubPixels=atoi(argv[6]);
cout << "Number of subpixels is: " << nSubPixels << endl;
char *etafname=NULL;
if (argc>7) {
etafname=argv[7];
cout << "Eta file name is: " << etafname << endl;
}
//slsDetectorData *det=new moench03T1ZmqDataNew();
moench03T1ZmqDataNew *det=new moench03T1ZmqDataNew();
cout << endl << " det" <<endl;
int npx, npy;
det->getDetectorSize(npx, npy);
int maxSize = npx*npy*2;//32*2*8192;//5000;//atoi(argv[3]);
int size= maxSize;//32*2*5000;
int multisize=size;
int dataSize=size;
char dummybuff[size];
//analogDetector<uint16_t> *filter=new analogDetector<uint16_t>(det,1,NULL,1000);
#ifndef INTERP
singlePhotonDetector *filter=new singlePhotonDetector(det,3, 5, 1, 0, 1000, 10);
multiThreadedCountingDetector *mt=new multiThreadedCountingDetector(filter,nthreads,fifosize);
// multiThreadedAnalogDetector *mt=new multiThreadedAnalogDetector(filter,nthreads,fifosize);
#endif
#ifdef INTERP
eta2InterpolationPosXY *interp=new eta2InterpolationPosXY(npx, npy, nSubPixels, etabins, etamin, etamax);
if (etafname) interp->readFlatField(etafname);
interpolatingDetector *filter=new interpolatingDetector(det,interp, 5, 1, 0, 1000, 10);
multiThreadedInterpolatingDetector *mt=new multiThreadedInterpolatingDetector(filter,nthreads,fifosize);
#endif
char* buff;
mt->setFrameMode(eFrame);
mt->StartThreads();
mt->popFree(buff);
ZmqSocket* zmqsocket=NULL;
#ifdef NEWZMQ
// receive socket
try{
#endif
zmqsocket = new ZmqSocket(socketip,portnum);
#ifdef NEWZMQ
} catch (...) {
cprintf(RED, "Error: Could not create Zmq socket on port %d with ip %s\n", portnum, socketip);
delete zmqsocket;
return EXIT_FAILURE;
}
#endif
#ifndef NEWZMQ
if (zmqsocket->IsError()) {
cprintf(RED, "Error: Could not create Zmq socket on port %d with ip %s\n", portnum, socketip);
delete zmqsocket;
return EXIT_FAILURE;
}
#endif
if (zmqsocket->Connect()) {
cprintf(RED, "Error: Could not connect to socket %s\n",
zmqsocket->GetZmqServerAddress());
delete zmqsocket;
return EXIT_FAILURE;
} else
printf("Zmq Client at %s\n", zmqsocket->GetZmqServerAddress());
// send socket
ZmqSocket* zmqsocket2 = 0;
// cout << "zmq2 " << endl;
if (send) {
#ifdef NEWZMQ
// receive socket
try{
#endif
zmqsocket2 = new ZmqSocket(portnum2, socketip2);
#ifdef NEWZMQ
} catch (...) {
cprintf(RED, "Error: Could not create Zmq socket server on port %d and ip %s\n", portnum2, socketip2);
// delete zmqsocket2;
// zmqsocket2=NULL;
// delete zmqsocket;
// return EXIT_FAILURE;
send = false;
}
#endif
#ifndef NEWZMQ
if (zmqsocket2->IsError()) {
cprintf(RED, "AAA Error: Could not create Zmq socket server on port %d and ip %s\n", portnum2, socketip2);
// delete zmqsocket2;
//delete zmqsocket;
// return EXIT_FAILURE;
send = false;
}
#endif
if (zmqsocket2->Connect()) {
cprintf(RED, "BBB Error: Could not connect to socket %s\n",
zmqsocket2->GetZmqServerAddress());
// delete zmqsocket2;
send = false;
// return EXIT_FAILURE;
} else
printf("Zmq Client at %s\n", zmqsocket2->GetZmqServerAddress());
}
// header variables
uint64_t acqIndex = -1;
uint64_t frameIndex = -1;
uint32_t subFrameIndex = -1;
uint64_t fileindex = -1;
string filename = "";
// char* image = new char[size];
//int* image = new int[(size/sizeof(int))]();
uint32_t flippedDataX = -1;
int *nph;
int iframe=0;
char ofname[10000];
char fname[10000];
int length;
int *detimage;
int nnx, nny,nns;
uint32_t imageSize = 0, nPixelsX = 0, nPixelsY = 0, dynamicRange = 0;
// infinite loop
uint32_t packetNumber = 0;
uint64_t bunchId = 0;
uint64_t timestamp = 0;
int16_t modId = 0;
uint16_t xCoord = 0;
uint16_t yCoord = 0;
uint16_t zCoord = 0;
uint32_t debug = 0;
//uint32_t dr = 16;
//int16_t *dout;//=new int16_t [nnx*nny];
uint32_t dr = 32;
int32_t *dout=NULL;//=new int32_t [nnx*nny];
uint32_t nSigma=5;
uint16_t roundRNumber = 0;
uint8_t detType = 0;
uint8_t version = 0;
int* flippedData = 0;
char* additionalJsonHeader = 0;
int32_t threshold=0;
int32_t xmin=0, xmax=400, ymin=0, ymax=400;
string frameMode_s, detectorMode_s, intMode_s;
int emin, emax;
int resetFlat=0;
int resetPed=0;
int nsubPixels=1;
int isPedestal;
int isFlat=0;
int newFrame=1;
detectorMode dMode;
frameMode fMode;
double *ped;
filter->getImageSize(nnx, nny,nns);
while(1) {
// cout << "+++++++++++++++++++++++++++++++LOOP" << endl;
// get header, (if dummy, fail is on parse error or end of acquisition)
#ifndef NEWZMQ
if (!zmqsocket->ReceiveHeader(0, acqIndex, frameIndex, subframeIndex, filename, fileindex)){
#endif
#ifdef NEWZMQ
rapidjson::Document doc;
if (!zmqsocket->ReceiveHeader(0, doc, SLS_DETECTOR_JSON_HEADER_VERSION)) {
/* zmqsocket->CloseHeaderMessage();*/
#endif
// if (!zmqsocket->ReceiveHeader(0, acqIndex, frameIndex, subframeIndex, filename, fileindex)) {
// cprintf(RED, "Got Dummy\n");
// t1=high_resolution_clock::now();
time(&end);
while (mt->isBusy()) {;}//wait until all data are processed from the queues
if (of) {
fclose(of);
of=NULL;
}
if (newFrame>0) {
cprintf(RED,"DIDn't receive any data!\n");
if (send) {
zmqsocket2->SendHeaderData(0, true, SLS_DETECTOR_JSON_HEADER_VERSION);
cprintf(RED, "Sent Dummy\n");
}
} else {
if (fMode==ePedestal) {
sprintf(ofname,"%s_%d_ped.tiff",fname,fileindex);
mt->writePedestal(ofname);
cout << "Writing pedestal to " << ofname << endl;
}
#ifdef INTERP
else if (fMode==eFlat) {
mt->prepareInterpolation(ok);
sprintf(ofname,"%s_%d_eta.tiff",fname,fileindex);
mt->writeFlatField(ofname);
cout << "Writing eta to " << ofname << endl;
}
#endif
else {
sprintf(ofname,"%s_%d.tiff",fname,fileindex);
mt->writeImage(ofname);
cout << "Writing image to " << ofname << endl;
}
// cout << nns*nnx*nny*nns*dr/8 << " " << length << endl;
if (send) {
if (fMode==ePedestal) {
cprintf(MAGENTA,"Get pedestal!\n");
nns=1;
nnx=npx;
nny=npy;
//dout= new int16_t[nnx*nny*nns*nns];
dout= new int32_t[nnx*nny*nns*nns];
// cout << "get pedestal " << endl;
ped=mt->getPedestal();
// cout << "got pedestal " << endl;
for (int ix=0; ix<nnx*nny; ix++) {
dout[ix]=ped[ix];
// if (ix<100*400)
// cout << ix << " " << ped[ix] << endl;
}
}
#ifdef INTERP
else if (fMode==eFlat) {
int nb;
double emi, ema;
int *ff=mt->getFlatField(nb, emi, ema);
nnx=nb;
nny=nb;
dout= new int32_t[nb*nb];
for (int ix=0; ix<nb*nb; ix++) {
dout[ix]=ff[ix];
}
}
#endif
else {
detimage=mt->getImage(nnx,nny,nns);
cprintf(MAGENTA,"Get image!\n");
cout << nnx << " " << nny << " " << nns << endl;
// nns=1;
// nnx=npx;
// nny=npy;
// nnx=nnx*nns;
//nny=nny*nns;
dout= new int32_t[nnx*nny];
for (int ix=0; ix<nnx*nny; ix++) {
// for (int iy=0; iy<nny*nns; iy++) {
// for (int isx=0; isx<nns; isx++) {
// for (int isy=0; isy<nns; isy++) {
// if (isx==0 && isy==0)
// dout[iy*nnx+ix]=detimage[(iy+isy)*nnx*nns+ix+isx];
// else
// dout[iy*nnx+ix]+=detimage[(iy+isy)*nnx*nns+ix+isx];
// }
// }
dout[ix]=detimage[ix];
if (dout[ix]<0) dout[ix]=0;
// cout << ix << " " << dout[ix] << endl;
// }
}
}
#ifdef NEWZMQ
cout << "Sending image size " << nnx << " " << nny << endl;
zmqsocket2->SendHeaderData (0, false, SLS_DETECTOR_JSON_HEADER_VERSION, dr, fileindex, nnx, nny, nnx*nny*dr/8,acqIndex, frameIndex, fname, acqIndex, subFrameIndex, packetNumber,bunchId, timestamp, modId, xCoord, yCoord, zCoord,debug, roundRNumber, detType, version, flippedData, additionalJsonHeader);
#endif
#ifndef NEWZMQ
zmqsocket2->SendHeaderData(0, false, SLS_DETECTOR_JSON_HEADER_VERSION,0,0,0,0,0, 0,0,fname, 0, 0,0,0,0,0,0,0,0,0,0,0,1);
#endif
zmqsocket2->SendData((char*)dout,nnx*nny*dr/8);
cprintf(GREEN, "Sent Data\n");
zmqsocket2->SendHeaderData(0, true, SLS_DETECTOR_JSON_HEADER_VERSION);
cprintf(RED, "Sent Dummy\n");
if (dout)
delete [] dout;
dout=NULL;
}
}
mt->clearImage();
newFrame=1;
//t2 = high_resolution_clock::now();
time(&finished);
// auto meas_duration = duration_cast<microseconds>( t2 - t0 ).count();
// auto real_duration = duration_cast<microseconds>( t2 - t1 ).count();
cout << "Measurement lasted " << difftime(end,begin) << endl;
cout << "Processing lasted " << difftime(finished,begin) << endl;
continue; //continue to not get out
}
#ifdef NEWZMQ
if (newFrame) {
time(&begin);
// t0 = high_resolution_clock::now();
//cout <<"new frame" << endl;
// acqIndex, frameIndex, subframeIndex, filename, fileindex
size = doc["size"].GetUint();
// multisize = size;// * zmqsocket->size();
dynamicRange = doc["bitmode"].GetUint();
// nPixelsX = doc["shape"][0].GetUint();
// nPixelsY = doc["shape"][1].GetUint();
filename = doc["fname"].GetString();
//acqIndex = doc["acqIndex"].GetUint64();
//frameIndex = doc["fIndex"].GetUint64();
fileindex = doc["fileIndex"].GetUint64();
//subFrameIndex = doc["expLength"].GetUint();
//packetNumber=doc["packetNumber"].GetUint();
//bunchId=doc["bunchId"].GetUint();
//timestamp=doc["timestamp"].GetUint();
//modId=doc["modId"].GetUint();
//debug=doc["debug"].GetUint();
//roundRNumber=doc["roundRNumber"].GetUint();
//detType=doc["detType"].GetUint();
//version=doc["version"].GetUint();
dataSize=size;
strcpy(fname,filename.c_str());
// cprintf(BLUE, "Header Info:\n"
// "size: %u\n"
// "multisize: %u\n"
// "dynamicRange: %u\n"
// "nPixelsX: %u\n"
// "nPixelsY: %u\n"
// "currentFileName: %s\n"
// "currentAcquisitionIndex: %lu\n"
// "currentFrameIndex: %lu\n"
// "currentFileIndex: %lu\n"
// "currentSubFrameIndex: %u\n"
// "xCoordX: %u\n"
// "yCoordY: %u\n"
// "zCoordZ: %u\n"
// "flippedDataX: %u\n"
// "packetNumber: %u\n"
// "bunchId: %u\n"
// "timestamp: %u\n"
// "modId: %u\n"
// "debug: %u\n"
// "roundRNumber: %u\n"
// "detType: %u\n"
// "version: %u\n",
// size, multisize, dynamicRange, nPixelsX, nPixelsY,
// filename.c_str(), acqIndex,
// frameIndex, fileindex, subFrameIndex,
// xCoord, yCoord,zCoord,
// flippedDataX, packetNumber, bunchId, timestamp, modId, debug, roundRNumber, detType, version);
/* Analog detector commands */
isPedestal=0;
isFlat=0;
fMode=eFrame;
frameMode_s="frame";
cprintf(MAGENTA, "Frame mode: ");
if (doc.HasMember("frameMode")) {
if (doc["frameMode"].IsString()) {
frameMode_s=doc["frameMode"].GetString();
if (frameMode_s == "pedestal"){
fMode=ePedestal;
isPedestal=1;
} else if (frameMode_s == "newPedestal"){
mt->newDataSet(); //resets pedestal
// cprintf(MAGENTA, "Resetting pedestal\n");
fMode=ePedestal;
isPedestal=1;
}
#ifdef INTERP
else if (frameMode_s == "flatfield") {
fMode=eFlat;
isFlat=1;
} else if (frameMode_s == "newFlatfield") {
mt->resetFlatField();
isFlat=1;
cprintf(MAGENTA, "Resetting flatfield\n");
fMode=eFlat;
}
#endif
else {
fMode=eFrame;
isPedestal=0;
isFlat=0;
fMode=eFrame;
frameMode_s="frame";
}
}
}
cprintf(MAGENTA, "%s\n" , frameMode_s.c_str());
mt->setFrameMode(fMode);
// threshold=0;
cprintf(MAGENTA, "Threshold: ");
if (doc.HasMember("threshold")) {
if (doc["threshold"].IsInt()) {
threshold=doc["threshold"].GetInt();
mt->setThreshold(threshold);
}
}
cprintf(MAGENTA, "%d\n", threshold);
xmin=0;
xmax=npx;
ymin=0;
ymax=npy;
cprintf(MAGENTA, "ROI: ");
if (doc.HasMember("roi")) {
if (doc["roi"].IsArray()) {
if (doc["roi"].Size() > 0 )
if (doc["roi"][0].IsInt())
xmin=doc["roi"][0].GetInt();
if (doc["roi"].Size() > 1 )
if (doc["roi"][1].IsInt())
xmax=doc["roi"][1].GetInt();
if (doc["roi"].Size() > 2 )
if (doc["roi"][2].IsInt())
ymin=doc["roi"][2].GetInt();
if (doc["roi"].Size() > 3 )
if (doc["roi"][3].IsInt())
ymax=doc["roi"][3].GetInt();
}
}
cprintf(MAGENTA, "%d %d %d %d\n", xmin, xmax, ymin, ymax);
mt->setROI(xmin, xmax, ymin, ymax);
if (doc.HasMember("dynamicRange")) {
dr=doc["dynamicRange"].GetUint();
dr=32;
}
dMode=eAnalog;
detectorMode_s="analog";
cprintf(MAGENTA, "Detector mode: ");
if (doc.HasMember("detectorMode")) {
if (doc["detectorMode"].IsString()) {
detectorMode_s=doc["detectorMode"].GetString();
#ifdef INTERP
if (detectorMode_s == "interpolating"){
dMode=eInterpolating;
mt->setInterpolation(interp);
} else
#endif
if (detectorMode_s == "counting"){
dMode=ePhotonCounting;
#ifdef INTERP
mt->setInterpolation(NULL);
#endif
} else {
dMode=eAnalog;
#ifdef INTERP
mt->setInterpolation(NULL);
#endif
}
}
}
mt->setDetectorMode(dMode);
cprintf(MAGENTA, "%s\n" , detectorMode_s.c_str());
// cout << "done " << endl;
// /* Single Photon Detector commands */
// nSigma=5;
// if (doc.HasMember("nSigma")) {
// if (doc["nSigma"].IsInt())
// nSigma=doc["nSigma"].GetInt();
// mt->setNSigma(nSigma);
// }
// emin=-1;
// emax=-1;
// if (doc.HasMember("energyRange")) {
// if (doc["energyRange"].IsArray()) {
// if (doc["energyRange"].Size() > 0 )
// if (doc["energyRange"][0].IsInt())
// emin=doc["energyRange"][0].GetInt();
// if (doc["energyRange"].Size() > 1 )
// if (doc["energyRange"][1].IsInt())
// emax=doc["energyRange"][1].GetUint();
// }
// }
// if (doc.HasMember("eMin")) {
// if (doc["eMin"][1].IsInt())
// emin=doc["eMin"].GetInt();
// }
// if (doc.HasMember("eMax")) {
// if (doc["eMax"][1].IsInt())
// emin=doc["eMax"].GetInt();
// }
// mt->setEnergyRange(emin,emax);
// /* interpolating detector commands */
// if (doc.HasMember("nSubPixels")) {
// if (doc["nSubPixels"].IsUint())
// nSubPixels=doc["nSubPixels"].GetUint();
// mt->setNSubPixels(nSubPixels);
// }
newFrame=0;
/* zmqsocket->CloseHeaderMessage();*/
}
#endif
// cout << "file" << endl;
// cout << "data " << endl;
if (of==NULL) {
sprintf(ofname,"%s_%d.clust",filename.c_str(),fileindex);
of=fopen(ofname,"w");
if (of) {
mt->setFilePointer(of);
}else {
cout << "Could not open "<< ofname << " for writing " << endl;
mt->setFilePointer(NULL);
}
}
// cout << "data" << endl;
// get data
// acqIndex = doc["acqIndex"].GetUint64();
frameIndex = doc["fIndex"].GetUint64();
// subFrameIndex = doc["expLength"].GetUint();
// bunchId=doc["bunchId"].GetUint();
// timestamp=doc["timestamp"].GetUint();
packetNumber=doc["packetNumber"].GetUint();
// cout << acqIndex << " " << frameIndex << " " << subFrameIndex << " "<< bunchId << " " << timestamp << " " << packetNumber << endl;
if (packetNumber>=40) {
//*((int*)buff)=frameIndex;
memcpy(buff,&frameIndex,sizeof(int));
length = zmqsocket->ReceiveData(0, buff+sizeof(int), size);
mt->pushData(buff);
mt->nextThread();
mt->popFree(buff);
} else {
cprintf(RED, "Incomplete frame: received only %d packet\n", packetNumber);
length = zmqsocket->ReceiveData(0, dummybuff, size);
}
iframe++;
} // exiting infinite loop
delete zmqsocket;
if (send)
delete zmqsocket2;
cout<<"Goodbye"<< endl;
return 0;
}

View File

@ -0,0 +1,568 @@
#ifndef MULTITHREADED_ANALOG_DETECTOR_H
#define MULTITHREADED_ANALOG_DETECTOR_H
#define MAXTHREADS 1000
#include <vector>
#include <string>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <stdio.h>
//#include <deque>
//#include <list>
//#include <queue>
#include <fstream>
#include <cstdlib>
#include <pthread.h>
#include "analogDetector.h"
#include "circularFifo.h"
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
//#include <mutex>
using namespace std;
class threadedAnalogDetector
{
public:
threadedAnalogDetector(analogDetector<uint16_t> *d, int fs=10000) {
char *mem, *mm;
det=d;
fifoFree=new CircularFifo<char>(fs);
fifoData=new CircularFifo<char>(fs);
/* mem=(char*)calloc(fs, det->getDataSize()); */
/* if (mem) */
/* memset(mem,0, fs*det->getDataSize()); */
int i;
for (i=0; i<fs; i++) {
//
// mm=mem+i*det->getDataSize();
// cout << i << endl;
mm=(char*)calloc(1, det->getDataSize());
if (mm) {
//memset(mm,0, det->getDataSize());
fifoFree->push(mm);
} else
break;
}
if (i<fs) cout << "Could allocate only "<< i <<" frames";
busy=0;
stop=1;
fMode=eFrame;
ff=NULL;
}
virtual int setFrameMode(int fm) {
if (fm>=0) {
det->setFrameMode((frameMode)fm);
fMode=fm;
}
return fMode;
};
virtual double setThreshold(double th) {return det->setThreshold(th);};
virtual void setROI(int xmin, int xmax, int ymin, int ymax) {det->setROI(xmin,xmax,ymin,ymax);};
virtual int setDetectorMode(int dm) {
if (dm>=0) {
det->setDetectorMode((detectorMode)dm);
dMode=dm;
}
return dMode;
};
virtual void newDataSet(){det->newDataSet();};
//fMode=fm; return fMode;}
/* void prepareInterpolation(int &ok) { */
/* cout << "-" << endl; */
/* det->prepareInterpolation(ok); */
/* }; */
virtual int *getImage() {
return det->getImage();
}
virtual int getImageSize(int &nnx, int &nny, int &ns) {return det->getImageSize(nnx, nny, ns);};
virtual int getDetectorSize(int &nnx, int &nny) {return det->getDetectorSize(nnx, nny);};
~threadedAnalogDetector() {StopThread(); free(mem); delete fifoFree; delete fifoData;}
/** Returns true if the thread was successfully started, false if there was an error starting the thread */
virtual bool StartThread()
{ stop=0;
return (pthread_create(&_thread, NULL, processData, this) == 0);
}
virtual void StopThread()
{ stop=1;
(void) pthread_join(_thread, NULL);
}
virtual bool pushData(char* &ptr) {
fifoData->push(ptr);
}
virtual bool popFree(char* &ptr) {
fifoFree->pop(ptr);
}
virtual int isBusy() {return busy;}
//protected:
/** Implement this method in your subclass with the code you want your thread to run. */
//virtual void InternalThreadEntry() = 0;
virtual void *writeImage(const char * imgname) {return det->writeImage(imgname);};
virtual void clearImage(){det->clearImage();};
virtual void setPedestal(double *ped, double *rms=NULL, int m=-1){det->setPedestal(ped,rms,m);};
virtual void setPedestalRMS(double *rms){ det->setPedestalRMS(rms);};
virtual double *getPedestal(double *ped=NULL){return det->getPedestal(ped);};
virtual double *getPedestalRMS(double *rms=NULL){ return det->getPedestalRMS(rms);};
/** sets file pointer where to write the clusters to
\param f file pointer
\returns current file pointer
*/
FILE *setFilePointer(FILE *f){return det->setFilePointer(f); };
/** gets file pointer where to write the clusters to
\returns current file pointer
*/
FILE *getFilePointer(){return det->getFilePointer();};
virtual double setNSigma(double n) {return det->setNSigma(n);};
virtual void setEnergyRange(double emi, double ema) {det->setEnergyRange(emi,ema);};
virtual void prepareInterpolation(int &ok){
slsInterpolation *interp=det->getInterpolation();
if (interp)
interp->prepareInterpolation(ok);
}
virtual int *getFlatField(){
slsInterpolation *interp=(det)->getInterpolation();
if (interp)
return interp->getFlatField();
else
return NULL;
}
virtual int *setFlatField(int *ff, int nb, double emin, double emax){
slsInterpolation *interp=(det)->getInterpolation();
if (interp)
return interp->setFlatField(ff, nb, emin, emax);
else
return NULL;
}
void *writeFlatField(const char * imgname) {
slsInterpolation *interp=(det)->getInterpolation();
cout << "interp " << interp << endl;
if (interp) {
cout << imgname << endl;
interp->writeFlatField(imgname);
}
}
void *readFlatField(const char * imgname, int nb=-1, double emin=1, double emax=0){
slsInterpolation *interp=(det)->getInterpolation();
if (interp)
interp->readFlatField(imgname, nb, emin, emax);
}
virtual int *getFlatField(int &nb, double emi, double ema){
slsInterpolation *interp=(det)->getInterpolation();
int *ff=NULL;
if (interp) {
ff=interp->getFlatField(nb,emi,ema);
}
return ff;
}
virtual slsInterpolation *getInterpolation() {
return (det)->getInterpolation();
}
virtual void resetFlatField() {
slsInterpolation *interp=(det)->getInterpolation();
if (interp) interp->resetFlatField();//((interpolatingDetector*)det)->resetFlatField();
}
virtual int setNSubPixels(int ns) {
slsInterpolation *interp=(det)->getInterpolation();
if (interp) return interp->setNSubPixels(ns);
else return 1;};
virtual slsInterpolation *setInterpolation(slsInterpolation *f){
return (det)->setInterpolation(f);
};
protected:
analogDetector<uint16_t> *det;
int fMode;
int dMode;
int *dataSize;
pthread_t _thread;
char *mem;
CircularFifo<char> *fifoFree;
CircularFifo<char> *fifoData;
int stop;
int busy;
char *data;
int *ff;
static void * processData(void * ptr) {
threadedAnalogDetector *This=((threadedAnalogDetector *)ptr);
return This->processData();
}
void * processData() {
busy=1;
while (!stop) {
if (fifoData->isEmpty()) {
busy=0;
usleep(100);
} else {
busy=1;
fifoData->pop(data); //blocking!
det->processData(data);
fifoFree->push(data);
}
}
return NULL;
}
};
class multiThreadedAnalogDetector
{
public:
multiThreadedAnalogDetector(analogDetector<uint16_t> *d, int n, int fs=1000) : stop(0), nThreads(n), ithread(0) {
dd[0]=d;
if (nThreads==1)
dd[0]->setId(100);
else
dd[0]->setId(0);
for (int i=1; i<nThreads; i++) {
dd[i]=d->Clone();
dd[i]->setId(i);
}
for (int i=0; i<nThreads; i++) {
cout << "**" << i << endl;
dets[i]=new threadedAnalogDetector(dd[i], fs);
}
image=NULL;
ff=NULL;
ped=NULL;
cout << "Ithread is " << ithread << endl;
}
~multiThreadedAnalogDetector() {
StopThreads();
for (int i=0; i<nThreads; i++)
delete dets[i];
for (int i=1; i<nThreads; i++)
delete dd[i];
//delete [] image;
}
virtual int setFrameMode(int fm) { int ret; for (int i=0; i<nThreads; i++) { ret=dets[i]->setFrameMode(fm);} return ret;};
virtual double setThreshold(int fm) { double ret; for (int i=0; i<nThreads; i++) ret=dets[i]->setThreshold(fm); return ret;};
virtual int setDetectorMode(int dm) { int ret; for (int i=0; i<nThreads; i++) ret=dets[i]->setDetectorMode(dm); return ret;};
virtual void setROI(int xmin, int xmax, int ymin, int ymax) { for (int i=0; i<nThreads; i++) dets[i]->setROI(xmin, xmax,ymin,ymax);};
virtual void newDataSet(){for (int i=0; i<nThreads; i++) dets[i]->newDataSet();};
virtual int *getImage(int &nnx, int &nny, int &ns) {
int *img;
// int nnx, nny, ns;
// int nnx, nny, ns;
int nn=dets[0]->getImageSize(nnx, nny,ns);
if (image) {
delete image;
image=NULL;
}
image=new int[nn];
//int nn=dets[0]->getImageSize(nnx, nny, ns);
//for (i=0; i<nn; i++) image[i]=0;
for (int ii=0; ii<nThreads; ii++) {
//cout << ii << " " << nn << " " << nnx << " " << nny << " " << ns << endl;
img=dets[ii]->getImage();
for (int i=0; i<nn; i++) {
if (ii==0)
// if (img[i]>0)
image[i]=img[i];
// else
// image[i]=0;
else //if (img[i]>0)
image[i]+=img[i];
//if (img[i]) cout << "det " << ii << " pix " << i << " val " << img[i] << " " << image[i] << endl;
}
}
return image;
}
virtual void clearImage() {
for (int ii=0; ii<nThreads; ii++) {
dets[ii]->clearImage();
}
}
virtual void *writeImage(const char * imgname, double t=1) {
/* #ifdef SAVE_ALL */
/* for (int ii=0; ii<nThreads; ii++) { */
/* char tit[10000];cout << "m" <<endl; */
/* sprintf(tit,"/scratch/int_%d.tiff",ii); */
/* dets[ii]->writeImage(tit); */
/* } */
/* #endif */
int nnx, nny, ns;
getImage(nnx, nny, ns);
//int nnx, nny, ns;
int nn=dets[0]->getImageSize(nnx, nny, ns);
float *gm=new float[nn];
if (gm) {
for (int ix=0; ix<nn; ix++) {
if (t) {
if (image[ix]<0)
gm[ix]=0;
else
gm[ix]=(image[ix])/t;
} else
gm[ix]=image[ix];
//if (image[ix]>0 && ix/nnx<350) cout << ix/nnx << " " << ix%nnx << " " << image[ix]<< " " << gm[ix] << endl;
}
//cout << "image " << nnx << " " << nny << endl;
WriteToTiff(gm,imgname ,nnx, nny);
delete [] gm;
} else cout << "Could not allocate float image " << endl;
return NULL;
}
virtual void StartThreads() {
for (int i=0; i<nThreads; i++) {
dets[i]->StartThread();
}
}
virtual void StopThreads() {
for (int i=0; i<nThreads; i++)
dets[i]->StopThread();
}
virtual int isBusy() {
int ret=0, ret1;
for (int i=0; i<nThreads; i++) {
ret1=dets[i]->isBusy();
ret|=ret1;
// if (ret1) cout << "thread " << i <<" still busy " << endl;
}
return ret;
}
virtual bool pushData(char* &ptr) {
dets[ithread]->pushData(ptr);
}
virtual bool popFree(char* &ptr) {
// cout << ithread << endl;
dets[ithread]->popFree(ptr);
}
virtual int nextThread() {
ithread++;
if (ithread==nThreads) ithread=0;
return ithread;
}
virtual double *getPedestal(){
int nx, ny;
dets[0]->getDetectorSize(nx,ny);
if (ped) delete [] ped;
ped=new double[nx*ny];
double *p0=new double[nx*ny];
for (int i=0; i<nThreads; i++) {
//inte=(slsInterpolation*)dets[i]->getInterpolation(nb,emi,ema);
// cout << i << endl;
p0=dets[i]->getPedestal(p0);
if (p0) {
if (i==0) {
for (int ib=0; ib<nx*ny; ib++) {
ped[ib]=p0[ib]/((double)nThreads);
// cout << p0[ib] << " ";
}
} else {
for (int ib=0; ib<nx*ny; ib++) {
ped[ib]+=p0[ib]/((double)nThreads);
// cout << p0[ib] << " ";
}
}
}
}
delete [] p0;
return ped;
};
virtual double *setPedestal(double *h=NULL){
//int nb=0;
int nx, ny;
dets[0]->getDetectorSize(nx,ny);
if (h==NULL) h=ped;
for (int i=0; i<nThreads; i++) {
dets[i]->setPedestal(h);
}
return NULL;
};
virtual void *writePedestal(const char * imgname){
int nx, ny;
dets[0]->getDetectorSize(nx,ny);
getPedestal();
float *gm=new float[nx*ny];
if (gm) {
for (int ix=0; ix<nx*ny; ix++) {
gm[ix]=ped[ix];
}
WriteToTiff(gm,imgname ,nx, ny);
delete [] gm;
} else cout << "Could not allocate float image " << endl;
return NULL;
};
virtual void *readPedestal(const char * imgname, int nb=-1, double emin=1, double emax=0){
int nx, ny;
dets[0]->getDetectorSize(nx,ny);
uint32 nnx;
uint32 nny;
float *gm=ReadFromTiff(imgname, nnx, nny);
if (ped) delete [] ped;
if (nnx>nx) nx=nnx;
if (nny>ny) ny=nny;
ped=new double[nx*ny];
for (int ix=0; ix<nx*ny; ix++) {
ped[ix]=gm[ix];
}
delete [] gm;
return setPedestal();
};
/** sets file pointer where to write the clusters to
\param f file pointer
\returns current file pointer
*/
virtual FILE *setFilePointer(FILE *f){
for (int i=0; i<nThreads; i++) {
dets[i]->setFilePointer(f);
//dets[i]->setMutex(&fmutex);
}
return dets[0]->getFilePointer();
};
/** gets file pointer where to write the clusters to
\returns current file pointer
*/
virtual FILE *getFilePointer(){return dets[0]->getFilePointer();};
protected:
bool stop;
const int nThreads;
threadedAnalogDetector *dets[MAXTHREADS];
analogDetector<uint16_t> *dd[MAXTHREADS];
int ithread;
int *image;
int *ff;
double *ped;
pthread_mutex_t fmutex;
};
#endif

View File

@ -0,0 +1,51 @@
#ifndef MULTITHREADED_COUNTING_DETECTOR_H
#define MULTITHREADED_COUNTING_DETECTOR_H
#include "singlePhotonDetector.h"
#include "multiThreadedAnalogDetector.h"
//#include <mutex>
using namespace std;
/* class threadedCountingDetector : public threadedAnalogDetector */
/* { */
/* public: */
/* threadedCountingDetector(singlePhotonDetector *d, int fs=10000) : threadedAnalogDetector(d,fs) {}; */
/* }; */
class multiThreadedCountingDetector : public multiThreadedAnalogDetector
{
public:
multiThreadedCountingDetector(singlePhotonDetector *d, int n, int fs=1000) : multiThreadedAnalogDetector(d,n,fs) { };
virtual double setNSigma(double n) {double ret; for (int i=0; i<nThreads; i++) ret=(dets[i])->setNSigma(n); return ret;};
virtual void setEnergyRange(double emi, double ema) {for (int i=0; i<nThreads; i++) (dets[i])->setEnergyRange(emi,ema);};
};
#endif

View File

@ -0,0 +1,112 @@
#ifndef MULTITHREADED_INTERPOLATING_DETECTOR_H
#define MULTITHREADED_INTERPOLATING_DETECTOR_H
#include "interpolatingDetector.h"
#include "multiThreadedCountingDetector.h"
//#include <mutex>
using namespace std;
class multiThreadedInterpolatingDetector : public multiThreadedCountingDetector
{
public:
multiThreadedInterpolatingDetector(interpolatingDetector *d, int n, int fs=1000) : multiThreadedCountingDetector(d,n,fs) { };
virtual void prepareInterpolation(int &ok){
/* getFlatField(); //sum up all etas */
/* setFlatField(); //set etas to all detectors */
/* for (int i=0; i<nThreads; i++) { */
(dets[0])->prepareInterpolation(ok);
// }
}
virtual int *getFlatField(){
return (dets[0])->getFlatField();
}
virtual int *getFlatField(int &nb, double emi, double ema){
return (dets[0])->getFlatField(nb,emi,ema);
}
virtual int *setFlatField(int *h=NULL, int nb=-1, double emin=1, double emax=0){
return (dets[0])->setFlatField(h,nb,emin,emax);
};
void *writeFlatField(const char * imgname){
dets[0]->writeFlatField(imgname);
};
void *readFlatField(const char * imgname, int nb=-1, double emin=1, double emax=0){
(dets[0])->readFlatField(imgname, nb, emin, emax);
};
virtual int setNSubPixels(int ns) { return (dets[0])->setNSubPixels(ns);};
virtual void resetFlatField() {(dets[0])->resetFlatField();};
/** sets file pointer where to write the clusters to
\param f file pointer
\returns current file pointer
*/
virtual slsInterpolation *setInterpolation(slsInterpolation *f){
int ok;
for (int i=0; i<nThreads; i++)
(dets[i])->setInterpolation(f);
return (dets[0])->getInterpolation();
};
virtual slsInterpolation *getInterpolation(){
return (dets[0])->getInterpolation();
};
virtual int *getImage(int &nnx, int &nny, int &ns) {
if (getInterpolation()==NULL) return multiThreadedAnalogDetector::getImage(nnx,nny,ns);
//if one interpolates, the whole image is stored in detector 0;
int *img;
// int nnx, nny, ns;
// int nnx, nny, ns;
int nn=dets[0]->getImageSize(nnx, nny,ns);
if (image) {
delete image;
image=NULL;
}
image=new int[nn];
img=dets[0]->getImage();
for (int i=0; i<nn; i++) {
image[i]=img[i];
}
return image;
};
};
#endif

View File

@ -0,0 +1,63 @@
#ifndef PEDESTALSUBTRACTION_H
#define PEDESTALSUBTRACTION_H
#include "MovingStat.h"
class pedestalSubtraction {
/** @short class defining the pedestal subtraction based on an approximated moving average */
public:
/** constructor
\param nn number of samples to calculate the moving average (defaults to 1000)
*/
pedestalSubtraction (int nn=1000) : stat(nn) {};
/** virtual destructorr
*/
virtual ~pedestalSubtraction() {};
/** clears the moving average */
virtual void Clear() {stat.Clear();}
/** adds the element to the moving average
\param val value to be added
*/
virtual void addToPedestal(double val){stat.Calc(val);};
/** returns the average value of the pedestal
\returns mean of the moving average
*/
virtual double getPedestal(){return stat.Mean();};
/** returns the standard deviation of the moving average
\returns standard deviation of the moving average
*/
virtual double getPedestalRMS(){return stat.StandardDeviation();};
/**sets/gets the number of samples for the moving average
\param i number of elements for the moving average. If -1 (default) or negative, gets.
\returns actual number of samples for the moving average
*/
virtual int SetNPedestals(int i=-1) {return stat.SetN(i);};
/**sets/gets the number of samples for the moving average
\returns actual number of samples for the moving average
*/
virtual int GetNPedestals() {return stat.GetN();};
/** sets the moving average */
virtual void setPedestal(double val, double rms=0, int m=-1) {stat.Set(val, rms, m);}
/** sets the moving average */
virtual void setPedestalRMS(double rms) {stat.SetRMS(rms);}
/**sets/gets the number of samples for the moving average
\returns actual number of samples for the moving average
*/
virtual int getNumpedestals() {return stat.NumDataValues();};
private:
MovingStat stat; /**< approximated moving average struct */
};
#endif

View File

@ -0,0 +1,642 @@
#ifndef SINGLEPHOTONDETECTOR_H
#define SINGLEPHOTONDETECTOR_H
#include "analogDetector.h"
#include "single_photon_hit.h"
//#define MYROOT1
#ifdef MYROOT1
#include <TTree.h>
#endif
#ifndef EVTYPE_DEF
#define EVTYPE_DEF
/** enum to define the even types */
enum eventType {
PEDESTAL=0, /** pedestal */
NEIGHBOUR=1, /** neighbour i.e. below threshold, but in the cluster of a photon */
PHOTON=2, /** photon i.e. above threshold */
PHOTON_MAX=3, /** maximum of a cluster satisfying the photon conditions */
NEGATIVE_PEDESTAL=4, /** negative value, will not be accounted for as pedestal in order to avoid drift of the pedestal towards negative values */
UNDEFINED_EVENT=-1 /** undefined */
};
#endif
//template <class dataType> class singlePhotonDetector :
//public analogDetector<dataType> {
class singlePhotonDetector :
public analogDetector<uint16_t> {
/** @short class to perform pedestal subtraction etc. and find single photon clusters for an analog detector */
public:
/**
Constructor (no error checking if datasize and offsets are compatible!)
\param d detector data structure to be used
\param csize cluster size (should be an odd number). Defaults to 3
\param nsigma number of rms to discriminate from the noise. Defaults to 5
\param sign 1 if photons are positive, -1 if negative
\param cm common mode subtraction algorithm, if any. Defaults to NULL i.e. none
\param nped number of samples for pedestal averaging
\param nd number of dark frames to average as pedestals without photon discrimination at the beginning of the measurement
*/
singlePhotonDetector(slsDetectorData<uint16_t> *d,
int csize=3,
double nsigma=5,
int sign=1,
commonModeSubtraction *cm=NULL,
int nped=1000,
int nd=100, int nnx=-1, int nny=-1, double *gm=NULL) : analogDetector<uint16_t>(d, sign, cm, nped, nnx, nny, gm), nDark(nd), eventMask(NULL),nSigma (nsigma), clusterSize(csize), clusterSizeY(csize), clusters(NULL), quad(UNDEFINED_QUADRANT), tot(0), quadTot(0), eMin(-1), eMax(-1) {
fm=new pthread_mutex_t ;
eventMask=new eventType*[ny];
for (int i=0; i<ny; i++) {
eventMask[i]=new eventType[nx];
}
if (ny==1)
clusterSizeY=1;
// cluster=new single_photon_hit(clusterSize,clusterSizeY);
clusters=new single_photon_hit[nx*ny];
// cluster=clusters;
setClusterSize(csize);
nphTot=0;
nphFrame=0;
};
/**
destructor. Deletes the cluster structure, the pdestalSubtraction and the image array
*/
virtual ~singlePhotonDetector() {delete [] clusters; for (int i=0; i<ny; i++) delete [] eventMask[i]; delete [] eventMask; };
/**
copy constructor
\param orig detector to be copied
*/
singlePhotonDetector(singlePhotonDetector *orig) : analogDetector<uint16_t>(orig) {
nDark=orig->nDark;
myFile=orig->myFile;
eventMask=new eventType*[ny];
for (int i=0; i<ny; i++) {
eventMask[i]=new eventType[nx];
}
eMin=orig->eMin;
eMax=orig->eMax;
nSigma=orig->nSigma;
clusterSize=orig->clusterSize;
clusterSizeY=orig->clusterSizeY;
// cluster=new single_photon_hit(clusterSize,clusterSizeY);
clusters=new single_photon_hit[nx*ny];
// cluster=clusters;
setClusterSize(clusterSize);
fm=orig->fm;
quad=UNDEFINED_QUADRANT;
tot=0;
quadTot=0;
gmap=orig->gmap;
nphTot=0;
nphFrame=0;
}
/**
duplicates the detector structure
\returns new single photon detector with same parameters
*/
virtual singlePhotonDetector *Clone() {
return new singlePhotonDetector(this);
}
/** sets/gets number of rms threshold to detect photons
\param n number of sigma to be set (0 or negative gets)
\returns actual number of sigma parameter
*/
double setNSigma(double n=-1){if (n>=0) nSigma=n; return nSigma;}
/** sets/gets cluster size
\param n cluster size to be set, (0 or negative gets). If even is incremented by 1.
\returns actual cluster size
*/
int setClusterSize(int n=-1){
if (n>0 && n!=clusterSize) {
if (n%2==0)
n+=1;
clusterSize=n;
// if (clusters)
// delete [] clusters;
if (ny>clusterSize)
clusterSizeY=clusterSize;
else
clusterSizeY=1;
for (int ip=0; ip<nx*ny; ip++)
(clusters+ip)->set_cluster_size(clusterSize,clusterSizeY);
//cluster=new single_photon_hit(clusterSize,clusterSizeY);
}
return clusterSize;
}
/**
converts the image into number of photons
\param data pointer to data
\param nph pointer where to add the calculated photons. If NULL, the internal image will be used
\returns array with data converted into number of photons.
*/
virtual int *getNPhotons(char *data, int *nph=NULL) {
nphFrame=0;
double val;
if (nph==NULL)
nph=image;
//nph=new int[nx*ny];
double rest[ny][nx];
int cy=(clusterSizeY+1)/2; //quad size
int cs=(clusterSize+1)/2; //quad size
int ccs=clusterSize; //cluster size
int ccy=clusterSizeY; //cluster size
double g=1.;
double tthr=thr, tthr1, tthr2;
int nn=0;
double max=0, tl=0, tr=0, bl=0,br=0, v;
double rms=0;
int cm=0;
if (cmSub) cm=1;
if (thr>0) {
cy=1;
cs=1;
ccs=1;
ccy=1;
}
if (iframe<nDark) {
// cout << "ped " << iframe << endl;
//this already adds to common mode
addToPedestal(data);
return nph;
} else {
if (thr>0) {
newFrame();
if (cmSub) {
cout << "add to common mode?"<< endl;
addToCommonMode(data);
}
for (int iy=ymin; iy<ymax; iy++) {
for (int ix=xmin; ix<xmax; ix++) {
if (det->isGood(ix,iy)) {
val=subtractPedestal(data,ix,iy, cm);
nn=analogDetector<uint16_t>::getNPhotons(data,ix,iy);//val/thr;//
if (nn>0) {
nph[ix+nx*iy]+=nn;
rest[iy][ix]=(val-nn*thr);//?+0.5*thr
nphFrame+=nn;
nphTot+=nn;
} else
rest[iy][ix]=val;
}
}
}
for (int iy=ymin; iy<ymax; iy++) {
for (int ix=xmin; ix<xmax; ix++) {
if (det->isGood(ix,iy)) {
eventMask[iy][ix]=PEDESTAL;
max=0;
tl=0;
tr=0;
bl=0;
br=0;
tot=0;
quadTot=0;
if (rest[iy][ix]>0.25*thr) {
eventMask[iy][ix]=NEIGHBOUR;
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
if ((iy+ir)>=0 && (iy+ir)<ny && (ix+ic)>=0 && (ix+ic)<nx) {
//clusters->set_data(rest[iy+ir][ix+ic], ic, ir);
v=rest[iy+ir][ix+ic];//clusters->get_data(ic,ir);
tot+=v;
if (ir<=0 && ic<=0)
bl+=v;
if (ir<=0 && ic>=0)
br+=v;
if (ir>=0 && ic<=0)
tl+=v;
if (ir>=0 && ic>=0)
tr+=v;
if (v>max) {
max=v;
}
// if (ir==0 && ic==0) {
//}
}
}
if (rest[iy][ix]>=max) {
if (bl>=br && bl>=tl && bl>=tr) {
quad=BOTTOM_LEFT;
quadTot=bl;
} else if (br>=bl && br>=tl && br>=tr) {
quad=BOTTOM_RIGHT;
quadTot=br;
} else if (tl>=br && tl>=bl && tl>=tr) {
quad=TOP_LEFT;
quadTot=tl;
} else if (tr>=bl && tr>=tl && tr>=br) {
quad=TOP_RIGHT;
quadTot=tr;
}
if (nSigma==0) {
tthr=thr;
tthr1=thr;
tthr2=thr;
} else {
rms=getPedestalRMS(ix,iy);
tthr=nSigma*rms;
tthr1=nSigma*sqrt(clusterSize*clusterSizeY)*rms;
tthr2=nSigma*sqrt((clusterSize+1)/2.*((clusterSizeY+1)/2.))*rms;
if (thr>2*tthr) tthr=thr-tthr;
if (thr>2*tthr1) tthr1=tthr-tthr1;
if (thr>2*tthr2) tthr2=tthr-tthr2;
}
if (tot>tthr1 || quadTot>tthr2 || max>tthr) {
eventMask[iy][ix]=PHOTON;
nph[ix+nx*iy]++;
rest[iy][ix]-=thr;
nphFrame++;
nphTot++;
}
}
}
}
}
}
}
} else return getClusters(data, nph);
}
return NULL;
};
/**
Loops in the region of interest to find the clusters
\param data pointer to the data structure
\returns number of clusters found
*/
int *getClusters(char *data, int *ph=NULL) {
int nph=0;
double val[ny][nx];
int cy=(clusterSizeY+1)/2;
int cs=(clusterSize+1)/2;
int ir, ic;
double max=0, tl=0, tr=0, bl=0,br=0, *v, vv;
int cm=0;
int good=1;
if (cmSub) cm=1;
if (ph==NULL)
ph=image;
if (iframe<nDark) {
addToPedestal(data);
return 0;
}
newFrame();
if (cm)
addToCommonMode(data);
for (int iy=ymin; iy<ymax; iy++) {
for (int ix=xmin; ix<xmax; ix++) {
if (det->isGood(ix,iy)) {
max=0;
tl=0;
tr=0;
bl=0;
br=0;
tot=0;
quadTot=0;
quad=UNDEFINED_QUADRANT;
eventMask[iy][ix]=PEDESTAL;
(clusters+nph)->rms=getPedestalRMS(ix,iy);
// cluster=clusters+nph;
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
if ((iy+ir)>=iy && (iy+ir)<ny && (ix+ic)>=ix && (ix+ic)<nx) {
val[iy+ir][ix+ic]=subtractPedestal(data,ix+ic,iy+ir, cm);
}
v=&(val[iy+ir][ix+ic]);
tot+=*v;
if (ir<=0 && ic<=0)
bl+=*v;
if (ir<=0 && ic>=0)
br+=*v;
if (ir>=0 && ic<=0)
tl+=*v;
if (ir>=0 && ic>=0)
tr+=*v;
if (*v>max) {
max=*v;
}
if (ir==0 && ic==0) {
if (*v<-nSigma*(clusters+nph)->rms)
eventMask[iy][ix]=NEGATIVE_PEDESTAL;
else if (*v>nSigma*(clusters+nph)->rms)
eventMask[iy][ix]=PHOTON;
}
}
}
if (eventMask[iy][ix]==PHOTON && val[iy][ix]<max)
continue;
if (bl>=br && bl>=tl && bl>=tr) {
(clusters+nph)->quad=BOTTOM_LEFT;
(clusters+nph)->quadTot=bl;
} else if (br>=bl && br>=tl && br>=tr) {
(clusters+nph)->quad=BOTTOM_RIGHT;
(clusters+nph)->quadTot=br;
} else if (tl>=br && tl>=bl && tl>=tr) {
(clusters+nph)->quad=TOP_LEFT;
(clusters+nph)->quadTot=tl;
} else if (tr>=bl && tr>=tl && tr>=br) {
(clusters+nph)->quad=TOP_RIGHT;
(clusters+nph)->quadTot=tr;
}
if (max>nSigma*(clusters+nph)->rms || tot>sqrt(clusterSizeY*clusterSize)*nSigma*(clusters+nph)->rms || ((clusters+nph)->quadTot)>sqrt(cy*cs)*nSigma*(clusters+nph)->rms) {
if (val[iy][ix]>=max) {
eventMask[iy][ix]=PHOTON_MAX;
(clusters+nph)->tot=tot;
(clusters+nph)->x=ix;
(clusters+nph)->y=iy;
// (clusters+nph)->iframe=det->getFrameNumber(data);
// cout << det->getFrameNumber(data) << " " << (clusters+nph)->iframe << endl;
(clusters+nph)->ped=getPedestal(ix,iy,0);
for (int ir=-(clusterSizeY/2); ir<(clusterSizeY/2)+1; ir++) {
for (int ic=-(clusterSize/2); ic<(clusterSize/2)+1; ic++) {
(clusters+nph)->set_data(val[iy+ir][ix+ic],ic,ir);
}
}
good=1;
if (eMin>0 && tot<eMin) good=0;
if (eMax>0 && tot>eMax) good=0;
if (good) {
nph++;
image[iy*nx+ix]++;
}
} else {
eventMask[iy][ix]=PHOTON;
}
} else if (eventMask[iy][ix]==PEDESTAL) {
addToPedestal(data,ix,iy,cm);
}
}
}
}
nphFrame=nph;
nphTot+=nph;
//cout << nphFrame << endl;
// cout <<"**********************************"<< det->getFrameNumber(data) << " " << nphFrame << endl;
writeClusters(det->getFrameNumber(data));
return image;
};
/**<
returns the total signal in a cluster
\param size cluser size should be 1,2 or 3
\returns cluster center if size=1, sum of the maximum quadrant if size=2, total of the cluster if size=3 or anything else
*/
double getClusterTotal(int size) {
switch (size) {
case 1:
return getClusterElement(0,0);
case 2:
return quadTot;
default:
return tot;
};
};
/**<
retrurns the quadrant with maximum signal
\returns quadrant where the cluster is located */
quadrant getQuadrant() {return quad;};
/** returns value for cluster element in relative coordinates
\param ic x coordinate (center is (0,0))
\param ir y coordinate (center is (0,0))
\returns cluster element
*/
double getClusterElement(int ic, int ir=0){return clusters->get_data(ic,ir);};
/** returns event mask for the given pixel
\param ic x coordinate (center is (0,0))
\param ir y coordinate (center is (0,0))
\returns event mask enum for the given pixel
*/
eventType getEventMask(int ic, int ir=0){return eventMask[ir][ic];};
#ifdef MYROOT1
/** generates a tree and maps the branches
\param tname name for the tree
\param iFrame pointer to the frame number
\returns returns pointer to the TTree
*/
TTree *initEventTree(char *tname, int *iFrame=NULL) {
TTree* tall=new TTree(tname,tname);
if (iFrame)
tall->Branch("iFrame",iFrame,"iframe/I");
else
tall->Branch("iFrame",&(clusters->iframe),"iframe/I");
tall->Branch("x",&(clusters->x),"x/I");
tall->Branch("y",&(clusters->y),"y/I");
char tit[100];
sprintf(tit,"data[%d]/D",clusterSize*clusterSizeY);
tall->Branch("data",clusters->data,tit);
tall->Branch("pedestal",&(clusters->ped),"pedestal/D");
tall->Branch("rms",&(clusters->rms),"rms/D");
tall->Branch("tot",&(clusters->tot),"tot/D");
tall->Branch("quadTot",&(clusters->quadTot),"quadTot/D");
tall->Branch("quad",&(clusters->quad),"quad/I");
return tall;
};
#else
/** write cluster to filer
\param f file pointer
*/
void writeCluster(FILE* f){clusters->write(f);};
/**
write clusters to file
\param f file pointer
\param clusters array of clusters structures
\param nph number of clusters to be written to file
*/
static void writeClusters(FILE *f, single_photon_hit *cl, int nph, int fn=0){
/* #ifndef OLDFORMAT */
/* if (fwrite((void*)&fn, 1, sizeof(int), f)) */
/* if (fwrite((void*)&nph, 1, sizeof(int), f)) */
/* #endif */
for (int i=0; i<nph; i++) (cl+i)->write(f);
};
void writeClusters(FILE *f, int fn=0){
writeClusters(f,clusters,nphFrame, fn);
//for (int i=0; i<nphFrame; i++)
//(clusters+i)->write(f);
};
void writeClusters(int fn){
if (myFile) {
//cout << "++" << endl;
pthread_mutex_lock(fm);
// cout <<"**********************************"<< fn << " " << nphFrame << endl;
writeClusters(myFile,clusters,nphFrame, fn);
// for (int i=0; i<nphFrame; i++)
// (clusters+i)->write(myFile);
pthread_mutex_unlock(fm);
//cout << "--" << endl;
}
};
#endif
virtual void processData(char *data, int *val=NULL) {
// cout << "sp" << endl;
switch(fMode) {
case ePedestal:
//cout <<"spc add to ped " << endl;
addToPedestal(data);
break;
default:
switch (dMode) {
case eAnalog:
analogDetector<uint16_t>::processData(data,val);
break;
default:
// cout <<"spc " << endl;
getNPhotons(data,val);
}
}
iframe++;
// cout << "done" << endl;
};
int getPhFrame(){return nphFrame;};
int getPhTot(){return nphTot;};
void setEnergyRange(double emi, double ema){eMin=emi; eMax=ema;};
void getEnergyRange(double &emi, double &ema){emi=eMin; ema=eMax;};
void setMutex(pthread_mutex_t *m){fm=m;};
protected:
int nDark; /**< number of frames to be used at the beginning of the dataset to calculate pedestal without applying photon discrimination */
eventType **eventMask; /**< matrix of event type or each pixel */
double nSigma; /**< number of sigma parameter for photon discrimination */
double eMin, eMax;
int clusterSize; /**< cluster size in the x direction */
int clusterSizeY; /**< cluster size in the y direction i.e. 1 for strips, clusterSize for pixels */
// single_photon_hit *cluster; /**< single photon hit data structure */
single_photon_hit *clusters; /**< single photon hit data structure */
quadrant quad; /**< quadrant where the photon is located */
double tot; /**< sum of the 3x3 cluster */
double quadTot; /**< sum of the maximum 2x2cluster */
int nphTot;
int nphFrame;
pthread_mutex_t *fm;
};
#endif

View File

@ -0,0 +1,263 @@
#ifndef SINGLE_PHOTON_HIT_H
#define SINGLE_PHOTON_HIT_H
#include <stdio.h>
#include <stdint.h>
typedef double double32_t;
typedef float float32_t;
typedef int int32_t;
#ifndef DEF_QUAD
#define DEF_QUAD
enum quadrant {
TOP_LEFT=0,
TOP_RIGHT=1,
BOTTOM_LEFT=2,
BOTTOM_RIGHT=3,
UNDEFINED_QUADRANT=-1
};
#endif
class single_photon_hit {
/** @short Structure for a single photon hit */
public:
/** constructor, instantiates the data array -- all class elements are public!
\param nx cluster size in x direction
\param ny cluster size in y direction (defaults to 1 for 1D detectors)
*/
single_photon_hit(int nx=3, int ny=3): dx(nx), dy(ny) {data=new int[dx*dy];};
~single_photon_hit(){delete [] data;}; /**< destructor, deletes the data array */
/** binary write to file of all elements of the structure, except size of the cluster
\param myFile file descriptor
*/
size_t write(FILE *myFile) {
//fwrite((void*)this, 1, 3*sizeof(int)+4*sizeof(double)+sizeof(quad), myFile);
// if (fwrite((void*)this, 1, sizeof(int)+2*sizeof(int16_t), myFile))
//#ifdef OLDFORMAT
if (fwrite((void*)&iframe, 1, sizeof(int), myFile)) {};
//#endif
#ifndef WRITE_QUAD
//printf("no quad ");
if (fwrite((void*)&x, 2, sizeof(int16_t), myFile))
return fwrite((void*)data, 1, dx*dy*sizeof(int), myFile);
#endif
#ifdef WRITE_QUAD
// printf("quad ");
int qq[4];
switch(quad) {
case TOP_LEFT:
qq[0]=data[3];
qq[1]=data[4];
qq[2]=data[6];
qq[3]=data[7];
x=x-1;
y=y;
break;
case TOP_RIGHT:
qq[0]=data[4];
qq[1]=data[5];
qq[2]=data[7];
qq[3]=data[8];
x=x;
y=y;
break;
case BOTTOM_LEFT:
qq[0]=data[0];
qq[1]=data[1];
qq[2]=data[3];
qq[3]=data[4];
x=x-1;
y=y-1;
break;
case BOTTOM_RIGHT:
qq[0]=data[1];
qq[1]=data[2];
qq[2]=data[4];
qq[3]=data[5];
x=x;
y=y-1;
break;
default:
;
}
if (fwrite((void*)&x, 2, sizeof(int16_t), myFile))
return fwrite((void*)qq, 1, 4*sizeof(int), myFile);
#endif
return 0;
};
/**
binary read from file of all elements of the structure, except size of the cluster. The structure is then filled with those args
\param myFile file descriptor
*/
size_t read(FILE *myFile) {
//fread((void*)this, 1, 3*sizeof(int)+4*sizeof(double)+sizeof(quad), myFile);
//#ifdef OLDFORMAT
if (fread((void*)&iframe, 1, sizeof(int), myFile)) {}
//#endif
#ifndef WRITE_QUAD
// printf( "no quad \n");
if (fread((void*)&x, 2, sizeof(int16_t), myFile))
return fread((void*)data, 1, dx*dy*sizeof(int), myFile);
#endif
#ifdef WRITE_QUAD
int qq[4];
// printf( "quad \n");
if (fread((void*)&x, 2, sizeof(int16_t), myFile))
if (fread((void*)qq, 1, 4*sizeof(int), myFile)) {
quad=TOP_RIGHT;
int mm=qq[0];
/* for (int i=1; i<4; i++) { */
/* if (qq[i]>mm) { */
/* switch (i) { */
/* case 1: */
/* quad=TOP_LEFT; */
/* break; */
/* case 2: */
/* quad=BOTTOM_RIGHT; */
/* break; */
/* case 3: */
/* quad=BOTTOM_LEFT; */
/* break; */
/* default: */
/* ; */
/* } */
/* } */
/* } */
/* switch(quad) { */
/* case TOP_LEFT: */
/* data[0]=0; */
/* data[1]=0; */
/* data[2]=0; */
/* data[3]=qq[0]; */
/* data[4]=qq[1]; */
/* data[5]=0; */
/* data[6]=qq[2]; */
/* data[7]=qq[3]; */
/* data[8]=0; */
/* x=x+1; */
/* y=y; */
/* break; */
/* case TOP_RIGHT: */
data[0]=0;
data[1]=0;
data[2]=0;
data[3]=0;
data[4]=qq[0];
data[5]=qq[1];
data[6]=0;
data[7]=qq[2];
data[8]=qq[3];
x=x;
y=y;
/* break; */
/* case BOTTOM_LEFT: */
/* data[0]=qq[0]; */
/* data[1]=qq[1]; */
/* data[2]=0; */
/* data[3]=qq[2]; */
/* data[4]=qq[3]; */
/* data[5]=0; */
/* data[6]=0; */
/* data[7]=0; */
/* data[8]=0; */
/* x=x+1; */
/* y=y+1; */
/* break; */
/* case BOTTOM_RIGHT: */
/* data[0]=0; */
/* data[1]=qq[0]; */
/* data[2]=qq[1]; */
/* data[3]=0; */
/* data[4]=qq[2]; */
/* data[5]=qq[3]; */
/* data[6]=0; */
/* data[7]=0; */
/* data[8]=0; */
/* x=x; */
/* y=y+1; */
/* break; */
/* default: */
/* ; */
/* } */
return 1;
}
#endif
return 0;
};
void print() {
int ix, iy;
for (int iy=0; iy<dy; iy++) {
for (int ix=0; ix<dx; ix++) {
printf("%d \t",data[ix+iy*dx]);
}
printf("\n");
}
}
/**
assign the value to the element of the cluster matrix, with relative coordinates where the center of the cluster is (0,0)
\param v value to be set
\param ix coordinate x within the cluster (center is (0,0))
\param iy coordinate y within the cluster (center is (0,0))
*/
void set_data(double v, int ix, int iy=0){data[(iy+dy/2)*dx+ix+dx/2]=v;};
void set_cluster_size(int nx, int ny) {if (nx>0) dx=nx; if (ny>0) dy=ny; delete [] data; data=new int[dx*dy];};
void get_cluster_size(int &nx, int &ny) {nx=dx; ny=dy;};
void get_pixel(int &x1, int &y1) {x1=x; y1=y;};
/**
gets the value to the element of the cluster matrix, with relative coordinates where the center of the cluster is (0,0)
\param ix coordinate x within the cluster (center is (0,0))
\param iy coordinate y within the cluster (center is (0,0))
\returns value of the cluster element
*/
double get_data(int ix, int iy=0){return data[(iy+dy/2)*dx+ix+dx/2];};
int *get_cluster() {return data;};
int iframe; /**< frame number */
int16_t x; /**< x-coordinate of the center of hit */
int16_t y; /**< x-coordinate of the center of hit */
double rms; /**< noise of central pixel l -- at some point it can be removed*/
double ped; /**< pedestal of the central pixel -- at some point it can be removed*/
double tot; /**< sum of the 3x3 cluster */
quadrant quad; /**< quadrant where the photon is located */
double quadTot; /**< sum of the maximum 2x2cluster */
int dx; /**< size of data cluster in x */
int dy; /**< size of data cluster in y */
int *data; /**< pointer to data */
};
#endif

View File

@ -0,0 +1,77 @@
#ifndef MY_TIFF_IO_H
#include "tiffIO.h"
#endif
#include<iostream>
using namespace std;
// #undef cbf_failnez
// #define cbf_failnez(x) \
// { \
// int err; \
// err = (x); \
// if (err) { \
// fprintf(stderr,"\nCBFlib fatal error %x \n",err); \
// exit(-1); \
// } \
// }
void *WriteToTiff(float * imgData, const char * imgname, int nrow, int ncol){
int sampleperpixel=1;
// unsigned char * buff=NULL;
tsize_t linebytes;
// cout << "--" <<endl;
TIFF * tif = TIFFOpen(imgname,"w");
if (tif) {
TIFFSetField(tif,TIFFTAG_IMAGEWIDTH,ncol);
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, nrow);
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL,sampleperpixel);
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_BOTLEFT);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
linebytes = sampleperpixel*ncol;
TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, TIFFDefaultStripSize(tif, ncol*sampleperpixel));
for(int irow=0; irow<nrow; irow++){
TIFFWriteScanline(tif,&imgData[irow*ncol],irow,0);
}
TIFFClose(tif);
} else
cout << "could not open file " << imgname << " for writing " << endl;
return NULL;
};
float *ReadFromTiff( const char * imgname, uint32 &nrow, uint32 &ncol){
// unsigned char * buff=NULL;
TIFF * tif = TIFFOpen(imgname,"r");
if (tif){
uint32 bps;
uint32 sampleperpixel=1;
tsize_t linebytes;
uint32 imagelength;
TIFFGetField(tif,TIFFTAG_IMAGEWIDTH,&ncol);
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &nrow);
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL,sampleperpixel);
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, &bps);
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &imagelength);
float * imgData=new float[ncol*nrow];
linebytes = sampleperpixel*ncol;
// TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, TIFFDefaultStripSize(tif, ncol*sampleperpixel));
for(int irow=0; irow<nrow; irow++){
//tiffreadscanline(tif, buf, row);
TIFFReadScanline(tif,&imgData[irow*ncol],irow);
}
TIFFClose(tif);
return imgData;
} else
cout << "could not open file " << imgname << " for reading " << endl;
return NULL;
};

View File

@ -0,0 +1,36 @@
#ifndef MY_TIFF_IO_H
#define MY_TIFF_IO_H
#include <vector>
#include <string>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <stdio.h>
#include <fstream>
/*****************************************************************************/
//
//CBFlib must be installed to use this program
//
/*****************************************************************************/
#include "tiffio.h"
#undef cbf_failnez
#define cbf_failnez(x) \
{ \
int err; \
err = (x); \
if (err) { \
fprintf(stderr,"\nCBFlib fatal error %x \n",err); \
exit(-1); \
} \
}
void *WriteToTiff(float * imgData, const char * imgname, int nrow, int ncol);
float *ReadFromTiff( const char * imgname, uint32 &nrow, uint32 &ncol);
#endif

30
this_build_bin_path.sh Executable file
View File

@ -0,0 +1,30 @@
#echo $#
#if [ $# = 0 ]; then
# f=$0
#else
# f=$1
#fi
#echo $f
if [ "x${BASH_ARGV[0]}" = "x" ]; then
#if [ "x$f" = "x" ]; then
if [ ! -f this_build_bin_path.sh ]; then
f=$0
#thispath=$(dirname ${BASH_ARGV[0]})
thispath=$(dirname $f)
p=$(cd ${thispath};pwd);
THIS_PATH="$p/build/bin/"
# echo "ERROR: must cd where/this/package/is before calling this_path.sh"
# echo "Try sourcing it"
else
THIS_PATH="$PWD/build/bin/";
fi
else
#thispath=$(dirname ${BASH_ARGV[0]})
thispath=${BASH_ARGV[0]}
#thispath=$(dirname $f)
THIS_PATH=$(cd ${thispath};pwd);
fi
echo $THIS_PATH
export PATH=$THIS_PATH:$PATH
export LD_LIBRARY_PATH=$THIS_PATH:$LD_LIBRARY_PATH