296 lines
9.4 KiB
C
296 lines
9.4 KiB
C
#include "cluster_reader.h"
|
|
#include <assert.h>
|
|
|
|
size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf,
|
|
uint32_t *n_left) {
|
|
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
|
uint32_t nph = *n_left; // number of clusters in frame needs to be 4 bytes!
|
|
|
|
size_t nph_read = 0;
|
|
uint32_t nn = *n_left;
|
|
|
|
// if there are photons left from previous frame read them first
|
|
if (nph) {
|
|
if (nph > n_clusters) {
|
|
// if we have more photons left in the frame then photons to read we
|
|
// read directly the requested number
|
|
nn = n_clusters;
|
|
} else {
|
|
nn = nph;
|
|
}
|
|
nph_read += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
|
|
*n_left = nph - nn; // write back the number of photons left
|
|
}
|
|
if (nph_read < n_clusters) {
|
|
// keep on reading frames and photons until reaching n_clusters
|
|
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
|
// read number of clusters in frame
|
|
if (fread(&nph, sizeof(nph), 1, fp)) {
|
|
if (nph > (n_clusters - nph_read))
|
|
nn = n_clusters - nph_read;
|
|
else
|
|
nn = nph;
|
|
|
|
nph_read +=
|
|
fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
|
|
*n_left = nph - nn;
|
|
}
|
|
if (nph_read >= n_clusters)
|
|
break;
|
|
}
|
|
}
|
|
assert(nph_read <= n_clusters); // sanity check in debug mode
|
|
return nph_read;
|
|
}
|
|
|
|
size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
|
|
uint32_t *n_left, double *noise_map, int nx,
|
|
int ny) {
|
|
int iframe = 0;
|
|
uint32_t nph = *n_left;
|
|
|
|
uint32_t nn = *n_left;
|
|
|
|
size_t nph_read = 0;
|
|
|
|
int32_t t2max, tot1;
|
|
int32_t tot3;
|
|
Cluster *ptr = buf;
|
|
int good = 1;
|
|
double noise;
|
|
// read photons left from previous frame
|
|
// if (noise_map)
|
|
// printf("Using moise map\n");
|
|
|
|
if (nph) {
|
|
if (nph > n_clusters) {
|
|
// if we have more photons left in the frame then photons to read we
|
|
// read directly the requested number
|
|
nn = n_clusters;
|
|
} else {
|
|
nn = nph;
|
|
}
|
|
for (size_t iph = 0; iph < nn; iph++) {
|
|
// read photons 1 by 1
|
|
size_t n_read = fread((void *)(ptr), sizeof(Cluster), 1, fp);
|
|
if (n_read != 1) {
|
|
return nph_read;
|
|
}
|
|
// TODO! error handling on read
|
|
good = 1;
|
|
if (noise_map) {
|
|
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
|
|
tot1 = ptr->data[4];
|
|
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,
|
|
NULL);
|
|
noise = noise_map[ptr->y * nx + ptr->x];
|
|
if (tot1 > noise && t2max > 2 * noise && tot3 > 3 * noise) {
|
|
;
|
|
} else
|
|
good = 0;
|
|
} else {
|
|
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
|
|
good = 0;
|
|
}
|
|
}
|
|
if (good) {
|
|
ptr++;
|
|
nph_read++;
|
|
}
|
|
(*n_left)--;
|
|
if (nph_read >= n_clusters)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (nph_read < n_clusters) {
|
|
// keep on reading frames and photons until reaching n_clusters
|
|
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
|
// printf("%d\n",nph_read);
|
|
|
|
if (fread(&nph, sizeof(nph), 1, fp)) {
|
|
// printf("** %d\n",nph);
|
|
*n_left = nph;
|
|
for (size_t iph = 0; iph < nph; iph++) {
|
|
// read photons 1 by 1
|
|
size_t n_read =
|
|
fread((void *)(ptr), sizeof(Cluster), 1, fp);
|
|
if (n_read != 1) {
|
|
return nph_read;
|
|
}
|
|
good = 1;
|
|
if (noise_map) {
|
|
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
|
|
ptr->y < ny) {
|
|
tot1 = ptr->data[4];
|
|
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL,
|
|
NULL, NULL, NULL);
|
|
noise = noise_map[ptr->y * nx + ptr->x];
|
|
if (tot1 > noise && t2max > 2 * noise &&
|
|
tot3 > 3 * noise) {
|
|
;
|
|
} else
|
|
good = 0;
|
|
} else {
|
|
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
|
|
good = 0;
|
|
}
|
|
}
|
|
if (good) {
|
|
ptr++;
|
|
nph_read++;
|
|
}
|
|
(*n_left)--;
|
|
if (nph_read >= n_clusters)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (nph_read >= n_clusters)
|
|
break;
|
|
}
|
|
}
|
|
// printf("%d\n",nph_read);
|
|
assert(nph_read <= n_clusters); // sanity check in debug mode
|
|
return nph_read;
|
|
}
|
|
|
|
int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *co,
|
|
int csize) {
|
|
char quad;
|
|
int32_t tot;
|
|
double etax, etay;
|
|
int nc = 0;
|
|
// printf("csize is %d\n",csize);
|
|
int ret;
|
|
for (int ic = 0; ic < n_clusters; ic++) {
|
|
switch (csize) {
|
|
case 2:
|
|
ret = analyze_data((cin + 9 * ic), &tot, NULL, &quad, &etax, &etay,
|
|
NULL, NULL);
|
|
break;
|
|
default:
|
|
ret = analyze_data((cin + 9 * ic), NULL, &tot, &quad, NULL, NULL,
|
|
&etax, &etay);
|
|
}
|
|
if (ret == 0) {
|
|
printf("%d %d %d %f %f\n", ic, tot, quad, etax, etay);
|
|
}
|
|
nc += ret;
|
|
// printf("%d %d %d %d\n", ic , quad , t2max , tot3);
|
|
(co + ic)->c = quad;
|
|
(co + ic)->tot = tot;
|
|
(co + ic)->etax = etax;
|
|
(co + ic)->etay = etay;
|
|
// printf("%g %g\n",etax, etay);
|
|
/* if (tot<=0) */
|
|
/* printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y, */
|
|
/* (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3); */
|
|
}
|
|
return nc;
|
|
}
|
|
|
|
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
|
|
double *eta2x, double *eta2y, double *eta3x,
|
|
double *eta3y) {
|
|
|
|
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
|
|
}
|
|
|
|
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
|
|
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
|
|
|
int ok = 1;
|
|
|
|
int32_t tot2[4];
|
|
int32_t t2max = 0;
|
|
char c = 0;
|
|
int32_t val, tot3;
|
|
|
|
tot3 = 0;
|
|
for (int i = 0; i < 4; i++)
|
|
tot2[i] = 0;
|
|
|
|
for (int ix = 0; ix < 3; ix++) {
|
|
for (int iy = 0; iy < 3; iy++) {
|
|
val = data[iy * 3 + ix];
|
|
// printf ("%d ",data[iy * 3 + ix]);
|
|
tot3 += val;
|
|
if (ix <= 1 && iy <= 1)
|
|
tot2[cBottomLeft] += val;
|
|
if (ix >= 1 && iy <= 1)
|
|
tot2[cBottomRight] += val;
|
|
if (ix <= 1 && iy >= 1)
|
|
tot2[cTopLeft] += val;
|
|
if (ix >= 1 && iy >= 1)
|
|
tot2[cTopRight] += val;
|
|
}
|
|
// printf ("\n");
|
|
}
|
|
// printf ("\n");
|
|
|
|
if (t2 || quad) {
|
|
|
|
t2max = tot2[0];
|
|
c = cBottomLeft;
|
|
for (int i = 1; i < 4; i++) {
|
|
if (tot2[i] > t2max) {
|
|
t2max = tot2[i];
|
|
c = i;
|
|
}
|
|
}
|
|
|
|
if (quad)
|
|
*quad = c;
|
|
if (t2)
|
|
*t2 = t2max;
|
|
}
|
|
if (t3)
|
|
*t3 = tot3;
|
|
|
|
if (eta2x || eta2y) {
|
|
if (eta2x)
|
|
*eta2x = 0;
|
|
if (eta2y)
|
|
*eta2y = 0;
|
|
switch (c) {
|
|
case cBottomLeft:
|
|
if (eta2x && (data[3] + data[4]) != 0)
|
|
*eta2x = (double)(data[4]) / (data[3] + data[4]);
|
|
if (eta2y && (data[1] + data[4]) != 0)
|
|
*eta2y = (double)(data[4]) / (data[1] + data[4]);
|
|
break;
|
|
case cBottomRight:
|
|
if (eta2x && (data[2] + data[5]) != 0)
|
|
*eta2x = (double)(data[5]) / (data[4] + data[5]);
|
|
if (eta2y && (data[1] + data[4]) != 0)
|
|
*eta2y = (double)(data[4]) / (data[1] + data[4]);
|
|
break;
|
|
case cTopLeft:
|
|
if (eta2x && (data[7] + data[4]) != 0)
|
|
*eta2x = (double)(data[4]) / (data[3] + data[4]);
|
|
if (eta2y && (data[7] + data[4]) != 0)
|
|
*eta2y = (double)(data[7]) / (data[7] + data[4]);
|
|
break;
|
|
case cTopRight:
|
|
if (eta2x && t2max != 0)
|
|
*eta2x = (double)(data[5]) / (data[5] + data[4]);
|
|
if (eta2y && t2max != 0)
|
|
*eta2y = (double)(data[7]) / (data[7] + data[4]);
|
|
break;
|
|
default:;
|
|
}
|
|
}
|
|
|
|
if (eta3x || eta3y) {
|
|
if (eta3x && (data[3] + data[4] + data[5]) != 0)
|
|
*eta3x = (double)(-data[3] + data[3 + 2]) /
|
|
(data[3] + data[4] + data[5]);
|
|
if (eta3y && (data[1] + data[4] + data[7]) != 0)
|
|
*eta3y = (double)(-data[1] + data[2 * 3 + 1]) /
|
|
(data[1] + data[4] + data[7]);
|
|
}
|
|
|
|
return ok;
|
|
}
|