This repository has been archived on 2025-04-15. You can view files and clone it, but cannot push or open issues or pull requests.
python_cluster_reader/src/cluster_reader.c

296 lines
9.4 KiB
C

#include "cluster_reader.h"
#include <assert.h>
size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf,
uint32_t *n_left) {
int32_t iframe = 0; // frame number needs to be 4 bytes!
uint32_t nph = *n_left; // number of clusters in frame needs to be 4 bytes!
size_t nph_read = 0;
uint32_t nn = *n_left;
// if there are photons left from previous frame read them first
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
nph_read += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
*n_left = nph - nn; // write back the number of photons left
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
nn = n_clusters - nph_read;
else
nn = nph;
nph_read +=
fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
*n_left = nph - nn;
}
if (nph_read >= n_clusters)
break;
}
}
assert(nph_read <= n_clusters); // sanity check in debug mode
return nph_read;
}
size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
uint32_t *n_left, double *noise_map, int nx,
int ny) {
int iframe = 0;
uint32_t nph = *n_left;
uint32_t nn = *n_left;
size_t nph_read = 0;
int32_t t2max, tot1;
int32_t tot3;
Cluster *ptr = buf;
int good = 1;
double noise;
// read photons left from previous frame
// if (noise_map)
// printf("Using moise map\n");
if (nph) {
if (nph > n_clusters) {
// if we have more photons left in the frame then photons to read we
// read directly the requested number
nn = n_clusters;
} else {
nn = nph;
}
for (size_t iph = 0; iph < nn; iph++) {
// read photons 1 by 1
size_t n_read = fread((void *)(ptr), sizeof(Cluster), 1, fp);
if (n_read != 1) {
return nph_read;
}
// TODO! error handling on read
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,
NULL);
noise = noise_map[ptr->y * nx + ptr->x];
if (tot1 > noise && t2max > 2 * noise && tot3 > 3 * noise) {
;
} else
good = 0;
} else {
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(*n_left)--;
if (nph_read >= n_clusters)
break;
}
}
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
// printf("%d\n",nph_read);
if (fread(&nph, sizeof(nph), 1, fp)) {
// printf("** %d\n",nph);
*n_left = nph;
for (size_t iph = 0; iph < nph; iph++) {
// read photons 1 by 1
size_t n_read =
fread((void *)(ptr), sizeof(Cluster), 1, fp);
if (n_read != 1) {
return nph_read;
}
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL,
NULL, NULL, NULL);
noise = noise_map[ptr->y * nx + ptr->x];
if (tot1 > noise && t2max > 2 * noise &&
tot3 > 3 * noise) {
;
} else
good = 0;
} else {
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
good = 0;
}
}
if (good) {
ptr++;
nph_read++;
}
(*n_left)--;
if (nph_read >= n_clusters)
break;
}
}
if (nph_read >= n_clusters)
break;
}
}
// printf("%d\n",nph_read);
assert(nph_read <= n_clusters); // sanity check in debug mode
return nph_read;
}
int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *co,
int csize) {
char quad;
int32_t tot;
double etax, etay;
int nc = 0;
// printf("csize is %d\n",csize);
int ret;
for (int ic = 0; ic < n_clusters; ic++) {
switch (csize) {
case 2:
ret = analyze_data((cin + 9 * ic), &tot, NULL, &quad, &etax, &etay,
NULL, NULL);
break;
default:
ret = analyze_data((cin + 9 * ic), NULL, &tot, &quad, NULL, NULL,
&etax, &etay);
}
if (ret == 0) {
printf("%d %d %d %f %f\n", ic, tot, quad, etax, etay);
}
nc += ret;
// printf("%d %d %d %d\n", ic , quad , t2max , tot3);
(co + ic)->c = quad;
(co + ic)->tot = tot;
(co + ic)->etax = etax;
(co + ic)->etay = etay;
// printf("%g %g\n",etax, etay);
/* if (tot<=0) */
/* printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y, */
/* (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3); */
}
return nc;
}
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
}
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
int ok = 1;
int32_t tot2[4];
int32_t t2max = 0;
char c = 0;
int32_t val, tot3;
tot3 = 0;
for (int i = 0; i < 4; i++)
tot2[i] = 0;
for (int ix = 0; ix < 3; ix++) {
for (int iy = 0; iy < 3; iy++) {
val = data[iy * 3 + ix];
// printf ("%d ",data[iy * 3 + ix]);
tot3 += val;
if (ix <= 1 && iy <= 1)
tot2[cBottomLeft] += val;
if (ix >= 1 && iy <= 1)
tot2[cBottomRight] += val;
if (ix <= 1 && iy >= 1)
tot2[cTopLeft] += val;
if (ix >= 1 && iy >= 1)
tot2[cTopRight] += val;
}
// printf ("\n");
}
// printf ("\n");
if (t2 || quad) {
t2max = tot2[0];
c = cBottomLeft;
for (int i = 1; i < 4; i++) {
if (tot2[i] > t2max) {
t2max = tot2[i];
c = i;
}
}
if (quad)
*quad = c;
if (t2)
*t2 = t2max;
}
if (t3)
*t3 = tot3;
if (eta2x || eta2y) {
if (eta2x)
*eta2x = 0;
if (eta2y)
*eta2y = 0;
switch (c) {
case cBottomLeft:
if (eta2x && (data[3] + data[4]) != 0)
*eta2x = (double)(data[4]) / (data[3] + data[4]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = (double)(data[4]) / (data[1] + data[4]);
break;
case cBottomRight:
if (eta2x && (data[2] + data[5]) != 0)
*eta2x = (double)(data[5]) / (data[4] + data[5]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = (double)(data[4]) / (data[1] + data[4]);
break;
case cTopLeft:
if (eta2x && (data[7] + data[4]) != 0)
*eta2x = (double)(data[4]) / (data[3] + data[4]);
if (eta2y && (data[7] + data[4]) != 0)
*eta2y = (double)(data[7]) / (data[7] + data[4]);
break;
case cTopRight:
if (eta2x && t2max != 0)
*eta2x = (double)(data[5]) / (data[5] + data[4]);
if (eta2y && t2max != 0)
*eta2y = (double)(data[7]) / (data[7] + data[4]);
break;
default:;
}
}
if (eta3x || eta3y) {
if (eta3x && (data[3] + data[4] + data[5]) != 0)
*eta3x = (double)(-data[3] + data[3 + 2]) /
(data[3] + data[4] + data[5]);
if (eta3y && (data[1] + data[4] + data[7]) != 0)
*eta3y = (double)(-data[1] + data[2 * 3 + 1]) /
(data[1] + data[4] + data[7]);
}
return ok;
}