Clusterization and interpolation implemented in python
This commit is contained in:
parent
952e30d926
commit
9b82363cef
112
examples/cluster_example.py
Normal file
112
examples/cluster_example.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
import os, sys
|
||||||
|
from pathlib import Path
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
#from creader import ClusterFileReader
|
||||||
|
import creader as cr
|
||||||
|
import clustersFunctions as cf
|
||||||
|
|
||||||
|
fname = "/mnt/myData/230914_30s_star_100um_nofi/star_"
|
||||||
|
fnameff = "/mnt/myData/230914_30s_flat_100um_nofi/flat_"
|
||||||
|
fname = "/mnt/jungfrau_data1/POLLUX20230815/clust_5Sigma/clust_mountain/Position2_500eV_W17_300V_-40deg_Xrays_d0_f22_1.clust"
|
||||||
|
xmin=161+20
|
||||||
|
xmax=xmin+40
|
||||||
|
ymin=161+20
|
||||||
|
ymax=ymin+40
|
||||||
|
emin=0
|
||||||
|
emax=30
|
||||||
|
ecutmin=8
|
||||||
|
ecutmax=12
|
||||||
|
etabins=251
|
||||||
|
csize=3
|
||||||
|
gain=150
|
||||||
|
nbins=100
|
||||||
|
indmin=1
|
||||||
|
indmax=20
|
||||||
|
|
||||||
|
|
||||||
|
fname="/mnt/moench_data/tests20231005/sample_20kV_2mA_d0_f0_0.clust"
|
||||||
|
|
||||||
|
ymin=0
|
||||||
|
ymax=400
|
||||||
|
xmin=0
|
||||||
|
xmax=400
|
||||||
|
emin=0
|
||||||
|
emax=50
|
||||||
|
ecutmin=0
|
||||||
|
ecutmax=50
|
||||||
|
gain=150
|
||||||
|
indmin=0
|
||||||
|
indmax=0
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subpix=5
|
||||||
|
|
||||||
|
|
||||||
|
im=None
|
||||||
|
intim=None
|
||||||
|
etas=None
|
||||||
|
sp=None
|
||||||
|
ietax=None
|
||||||
|
ietay=None
|
||||||
|
|
||||||
|
for i in range(indmin,indmax+1):
|
||||||
|
ff=fname
|
||||||
|
#ff=fnameff+str(i)+".clust"
|
||||||
|
print(ff)
|
||||||
|
r = cr.ClusterFileReader(ff)
|
||||||
|
im, sp, ebins, etas, etabinsx, etabinsy=cf.analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, ietax, ietay, im, sp, etas, intim,csize, gain, nbins, etabins)
|
||||||
|
print(np.sum(im))
|
||||||
|
|
||||||
|
ietax, ietay=cf.prepare_interpolation(etas)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
im=None
|
||||||
|
intim=None
|
||||||
|
etas=None
|
||||||
|
sp=None
|
||||||
|
|
||||||
|
#for i in range(1,21):
|
||||||
|
for i in range(indmin,indmax+1):
|
||||||
|
ff=fname
|
||||||
|
#ff=fname+str(i)+".clust"
|
||||||
|
print(ff)
|
||||||
|
r = cr.ClusterFileReader(ff)
|
||||||
|
im, intim, sp, ebins, etas, etabinsx, etabinsy=cf.analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, ietax, ietay, im, sp, etas, intim, csize, gain, nbins, etabins, subpix)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
imff=None
|
||||||
|
intimff=None
|
||||||
|
etasff=None
|
||||||
|
spff=None
|
||||||
|
"""
|
||||||
|
|
||||||
|
for i in range(1,21):
|
||||||
|
ff=fnameff+str(i)+".clust"
|
||||||
|
print(ff)
|
||||||
|
r = cr.ClusterFileReader(ff)
|
||||||
|
imff, intimff, spff, ebins, etasff, etabinsx, etabinsy=cf.analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax,ietax, ietay, imff, spff, etasff, intimff, csize, gain, nbins, etabins, subpix)
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.plot(ebins[:-1],sp)
|
||||||
|
#ax.set_yscale('log')
|
||||||
|
fig.show()
|
||||||
|
"""
|
||||||
|
fig1, axs1 = plt.subplots()
|
||||||
|
vv=axs1.imshow(intim/intimff,vmax=1.,origin='upper',cmap=plt.cm.jet)
|
||||||
|
fig1.colorbar(vv, ax=axs1)
|
||||||
|
fig1.show()
|
||||||
|
"""
|
||||||
|
cf.plot_colz(im)#/imff,1.1)
|
||||||
|
cf.plot_colz(intim)#/intimff,1.1)
|
||||||
|
|
||||||
|
cf.plot_colz(etas,np.max(etas))
|
||||||
|
cf.plot_colz(ietax,1.1)
|
||||||
|
cf.plot_colz(ietay,1.1)
|
157
examples/clustersFunctions.py
Normal file
157
examples/clustersFunctions.py
Normal file
@ -0,0 +1,157 @@
|
|||||||
|
import os, sys
|
||||||
|
from pathlib import Path
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
#from creader import ClusterFileReader
|
||||||
|
import creader as cr
|
||||||
|
#import clusterFunctions as cf
|
||||||
|
"""
|
||||||
|
fname = "/mnt/myData/230914_30s_star_100um_nofi/star_"
|
||||||
|
fnameff = "/mnt/myData/230914_30s_flat_100um_nofi/flat_"
|
||||||
|
|
||||||
|
xmin=161+20
|
||||||
|
xmax=xmin+40
|
||||||
|
ymin=161+20
|
||||||
|
ymax=ymin+40
|
||||||
|
emin=0
|
||||||
|
emax=30
|
||||||
|
ecutmin=8
|
||||||
|
ecutmax=12
|
||||||
|
subpix=5
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
nbins=100
|
||||||
|
hist1=np.zeros(nbins)
|
||||||
|
#hist=np.zeros(10000)
|
||||||
|
bin_edges=np.zeros(nbins+1)
|
||||||
|
|
||||||
|
gain=150
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
im=np.zeros((xmax-xmin,ymax-ymin))
|
||||||
|
intim=np.zeros((subpix*(xmax-xmin),subpix*(ymax-ymin)))
|
||||||
|
etabins=251
|
||||||
|
etas=np.zeros((etabins,etabins))
|
||||||
|
csize=3
|
||||||
|
if csize==3:
|
||||||
|
etamin=-0.6
|
||||||
|
etamax=0.6
|
||||||
|
else:
|
||||||
|
etamin=-0.1
|
||||||
|
etamax=1.1
|
||||||
|
for i in range(1,21):
|
||||||
|
ff=fname+str(i)+".clust"
|
||||||
|
print(ff)
|
||||||
|
r = cr.ClusterFileReader(ff)
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, ietax=None, ietay=None, im=None, sp=None, etas=None, intim=None, csize=3,gain=150, nbins=100, etabins=250, subpix=5):
|
||||||
|
if csize==3:
|
||||||
|
etamin=-0.6
|
||||||
|
etamax=0.6
|
||||||
|
else:
|
||||||
|
etamin=-0.1
|
||||||
|
etamax=1.1
|
||||||
|
ttx=None
|
||||||
|
tty=None
|
||||||
|
n=0
|
||||||
|
while (cl:=r.read(100000,None)).size:
|
||||||
|
v=cr.clusterize(csize,cl['data'])
|
||||||
|
spectrum, ebins =np.histogram(v['tot'][np.where((cl['x']>=xmin) & (cl['x']<xmax) & (cl['y']>=ymin) & (cl['y']<ymax))]/gain, bins=nbins, range=[emin,emax], density=None, weights=None)
|
||||||
|
image,xedges,yedges=np.histogram2d(cl['x'][np.where((v['tot']/gain>ecutmin) & (v['tot']/gain<ecutmax))],cl['y'][np.where((v['tot']/gain>ecutmin) & (v['tot']/gain<ecutmax))],bins=[xmax-xmin,ymax-ymin],range=[[xmin,xmax-1],[ymin,ymax-1]])
|
||||||
|
eta,etabinsx,etabinsy=np.histogram2d(v['etax'][np.where((v['tot']/gain>ecutmin) & (v['tot']/gain<ecutmax) & (cl['x']>=xmin) & (cl['x']<xmax) & (cl['y']>=ymin) & (cl['y']<ymax))],v['etay'][np.where((v['tot']/gain>ecutmin) & (v['tot']/gain<ecutmax) & (cl['x']>=xmin) & (cl['x']<xmax) & (cl['y']>=ymin) & (cl['y']<ymax))],bins=[etabins,etabins],range=[[etamin,etamax],[etamin,etamax]])
|
||||||
|
if im is None:
|
||||||
|
im = image.copy()
|
||||||
|
else:
|
||||||
|
im=im+image
|
||||||
|
if sp is None:
|
||||||
|
sp = spectrum.copy()
|
||||||
|
else:
|
||||||
|
sp=sp+spectrum
|
||||||
|
if etas is None:
|
||||||
|
etas = eta.copy()
|
||||||
|
else:
|
||||||
|
etas=etas+eta
|
||||||
|
if ietax is not None and ietay is not None:
|
||||||
|
i=100
|
||||||
|
if subpix!=2:
|
||||||
|
ibx=np.searchsorted(etabinsx,v['etax'])
|
||||||
|
iby=np.searchsorted(etabinsy,v['etay'])
|
||||||
|
|
||||||
|
ibx[np.where(ibx>=etabinsx.shape[0]-1)]=etabinsx.shape[0]-2
|
||||||
|
iby[np.where(iby>=etabinsy.shape[0]-1)]=etabinsy.shape[0]-2
|
||||||
|
if csize==3:
|
||||||
|
px=cl['x']+ietax[ibx,iby]-0.5
|
||||||
|
py=cl['y']+ietay[ibx,iby]-0.5
|
||||||
|
#print("***",v['corner'][i],"\n",v['etax'][i],v['etay'][i],"\n",etabinsx[ibx[i]],etabinsy[iby[i]],"\n",ietax[ibx,iby][i],ietay[ibx,iby][i],"\n",cl['x'][i],cl['y'][i],"\n",px[i],py[i])
|
||||||
|
else:
|
||||||
|
offx=v['corner']%2
|
||||||
|
offy=(v['corner']/2).astype(int)
|
||||||
|
px=cl['x'].astype(float)+(-1+offx.astype(float))+ietax[ibx,iby]
|
||||||
|
py=cl['y'].astype(float)+(-1+offy.astype(float))+ietay[ibx,iby]
|
||||||
|
#print("***",v['corner'][i],"\n",offx[i], offy[i],"\n",v['etax'][i],v['etay'][i],"\n",etabinsx[ibx[i]],etabinsy[iby[i]],"\n",ietax[ibx,iby][i],ietay[ibx,iby][i],"\n",cl['x'][i],cl['y'][i],"\n",px[i],py[i],"\n",((-1+offx.astype(float))+ietax[ibx,iby])[i],((-1+offy.astype(float)))[i]+ietax[ibx,iby][i])
|
||||||
|
else:
|
||||||
|
offx=v['corner']%2
|
||||||
|
offy=(v['corner']/2).astype(int)
|
||||||
|
px=cl['x'].astype(float)+(0.25+0.5*offx.astype(float))
|
||||||
|
py=cl['y'].astype(float)+(0.25+0.5*offy.astype(float))
|
||||||
|
#print(v['corner'][i],offx[i], offy[i],v['etax'][i],v['etay'][i],cl['x'][i],cl['y'][i],px[i],py[i])
|
||||||
|
intimage,xedges,yedges=np.histogram2d(px[np.where((v['tot']/gain>ecutmin) & (v['tot']/gain<ecutmax))],py[np.where((v['tot']/gain>ecutmin) & (v['tot']/gain<ecutmax))],bins=[subpix*(xmax-xmin),subpix*(ymax-ymin)],range=[[xmin,xmax-1],[ymin,ymax-1]])
|
||||||
|
if intim is None:
|
||||||
|
print("new")
|
||||||
|
intim = intimage.copy()
|
||||||
|
else:
|
||||||
|
intim=intim+intimage
|
||||||
|
|
||||||
|
|
||||||
|
if ietax is None or ietay is None:
|
||||||
|
return im, sp, ebins, etas, etabinsx, etabinsy
|
||||||
|
else:
|
||||||
|
return im, intim, sp, ebins, etas, etabinsx, etabinsy
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def make_eta(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, im=None, sp=None, etas=None, csize=3, gain=150, nbins=100, etabins=250):
|
||||||
|
return analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, None, None, im, sp, etas, None, csize, gain, nbins, etabins)
|
||||||
|
|
||||||
|
def interpolate(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, ietax, ietay, im=None, sp=None, etas=None, intim=None, csize=3,gain=150, nbins=100, etabins=250):
|
||||||
|
|
||||||
|
return analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, ietax, ietay, im, sp, etas, intim, csize, gain, nbins, etabins)
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_interpolation(eta):
|
||||||
|
ietax=np.cumsum(eta,axis=0)
|
||||||
|
ietay=np.cumsum(eta,axis=1)
|
||||||
|
netax=np.tile(ietax[-1,:],ietax.shape[0]).reshape(ietax.shape)
|
||||||
|
netax[np.where(netax==0)]=1
|
||||||
|
ietax=ietax/netax
|
||||||
|
netay=np.transpose(np.tile(ietay[:,-1],ietay.shape[1]).reshape(ietay.shape))
|
||||||
|
netax[np.where(netay==0)]=1
|
||||||
|
ietay=ietay/netay
|
||||||
|
return ietax, ietay
|
||||||
|
|
||||||
|
|
||||||
|
def interpolate_cl(etax,etay,ietax,ietay, etaxbins, etaybins):
|
||||||
|
ibx=(np.abs(etabinsx - etax)).argmin()
|
||||||
|
iby=(np.abs(etabinsy - etay)).argmin()
|
||||||
|
px=ietax[ibx,iby]
|
||||||
|
py=ietay[ibx,iby]
|
||||||
|
return px, py
|
||||||
|
|
||||||
|
|
||||||
|
def plot_colz(hist2d, vmax=-1, vmin=0):
|
||||||
|
if vmax<=0:
|
||||||
|
vmax=np.max(hist2d)
|
||||||
|
if vmin>vmax:
|
||||||
|
vmin=0
|
||||||
|
fig1, axs1 = plt.subplots()
|
||||||
|
vv=axs1.imshow(hist2d,origin='upper',cmap=plt.cm.gray,vmax=vmax,vmin=vmin, interpolation='none' )
|
||||||
|
fig1.colorbar(vv, ax=axs1)
|
||||||
|
fig1.show()
|
||||||
|
|
@ -2,6 +2,7 @@ import os, sys
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import boost_histogram as bh
|
import boost_histogram as bh
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
from creader import ClusterFileReader
|
from creader import ClusterFileReader
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -15,7 +16,7 @@ fname = "Moench_LGAD_SIM_Nov22/moenchLGAD202211/clustW17new/beam_En800eV_-40deg_
|
|||||||
r = ClusterFileReader(base/fname)
|
r = ClusterFileReader(base/fname)
|
||||||
hist1 = bh.Histogram(bh.axis.Regular(40, -2, 2**14))
|
hist1 = bh.Histogram(bh.axis.Regular(40, -2, 2**14))
|
||||||
i = 0
|
i = 0
|
||||||
while (cl:=r.read(100000)).size:
|
while (cl:=r.read(100)).size:
|
||||||
hist1.fill(cl['data'].flat)
|
hist1.fill(cl['data'].flat)
|
||||||
print(i)
|
print(i)
|
||||||
i+=1
|
i+=1
|
||||||
@ -25,4 +26,4 @@ while (cl:=r.read(100000)).size:
|
|||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.bar(hist1.axes[0].centers, hist1.values(), width=hist1.axes[0].widths)
|
ax.bar(hist1.axes[0].centers, hist1.values(), width=hist1.axes[0].widths)
|
||||||
ax.set_yscale('log')
|
ax.set_yscale('log')
|
||||||
plt.show()
|
plt.show()
|
||||||
|
@ -68,16 +68,8 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
|||||||
"Could not parse args.");
|
"Could not parse args.");
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
npy_intp dims[] = {size};
|
npy_intp dims[] = {size};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Create two numpy arrays from the passed objects, if possible numpy will
|
// Create two numpy arrays from the passed objects, if possible numpy will
|
||||||
// use the underlying buffer, otherwise it will create a copy, for example
|
// use the underlying buffer, otherwise it will create a copy, for example
|
||||||
// if data type is different or we pass in a list. The
|
// if data type is different or we pass in a list. The
|
||||||
@ -111,7 +103,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
|||||||
nx=noise_shape[0];
|
nx=noise_shape[0];
|
||||||
ny=noise_shape[1];
|
ny=noise_shape[1];
|
||||||
|
|
||||||
// printf("Noise map found size %d %d %d\n",nx,ny,noise_map);
|
//printf("Noise map found size %d %d %d\n",nx,ny,noise_map);
|
||||||
|
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
@ -120,7 +112,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
|||||||
nx=noise_shape[0];
|
nx=noise_shape[0];
|
||||||
ny=0;
|
ny=0;
|
||||||
noise_map = NULL;
|
noise_map = NULL;
|
||||||
// printf("NO Noise map found %d %d %d %d\n",ndim_noise,nx,ny,noise_map);
|
//printf("NO Noise map found %d %d %d %d\n",ndim_noise,nx,ny,noise_map);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
@ -128,7 +120,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
|||||||
|
|
||||||
|
|
||||||
// Create an uninitialized numpy array
|
// Create an uninitialized numpy array
|
||||||
PyObject *clusters = PyArray_SimpleNewFromDescr(ndim, dims, cluster_dt());
|
PyObject *clusters = PyArray_SimpleNewFromDescr(ndim, dims, cluster_dt());
|
||||||
|
|
||||||
// Fill with zeros
|
// Fill with zeros
|
||||||
PyArray_FILLWBYTE((PyArrayObject *)clusters, 0);
|
PyArray_FILLWBYTE((PyArrayObject *)clusters, 0);
|
||||||
@ -142,7 +134,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
|||||||
if (noise_map)
|
if (noise_map)
|
||||||
read_clusters_with_cut(self->fp, size, buf, &self->n_left,noise_map, nx, ny);
|
read_clusters_with_cut(self->fp, size, buf, &self->n_left,noise_map, nx, ny);
|
||||||
else
|
else
|
||||||
read_clusters(self->fp, size, buf, &self->n_left);
|
n_read = read_clusters(self->fp, size, buf, &self->n_left);
|
||||||
|
|
||||||
if (n_read != size) {
|
if (n_read != size) {
|
||||||
// resize the array to match the number of read photons
|
// resize the array to match the number of read photons
|
||||||
@ -163,12 +155,133 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
|||||||
return clusters;
|
return clusters;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* // clusterize method */
|
||||||
|
/* static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self, PyObject *args) { */
|
||||||
|
|
||||||
|
/* const int ndim = 1; */
|
||||||
|
|
||||||
|
/* Py_ssize_t size = 0; */
|
||||||
|
/* PyObject *data_obj; */
|
||||||
|
/* if (!PyArg_ParseTuple(args, "nO", &size,&data_obj)) { */
|
||||||
|
/* PyErr_SetString( */
|
||||||
|
/* PyExc_TypeError, */
|
||||||
|
/* "Could not parse args."); */
|
||||||
|
/* return NULL; */
|
||||||
|
/* } */
|
||||||
|
|
||||||
|
/* // */
|
||||||
|
|
||||||
|
/* // Create two numpy arrays from the passed objects, if possible numpy will */
|
||||||
|
/* // use the underlying buffer, otherwise it will create a copy, for example */
|
||||||
|
/* // if data type is different or we pass in a list. The */
|
||||||
|
/* // NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory. */
|
||||||
|
/* PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS); */
|
||||||
|
/* int nx=0,ny=0; */
|
||||||
|
/* int32_t *data=NULL; */
|
||||||
|
|
||||||
|
|
||||||
|
/* // If parsing of a or b fails we throw an exception in Python */
|
||||||
|
/* if (data_array ) { */
|
||||||
|
|
||||||
|
/* int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array)); */
|
||||||
|
/* npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array)); */
|
||||||
|
|
||||||
|
|
||||||
|
/* // For the C++ function call we need pointers (or another C++ type/data */
|
||||||
|
/* // structure) */
|
||||||
|
|
||||||
|
/* data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array))); */
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/* /\* for (int i=0; i< ndim_noise; i++) { *\/ */
|
||||||
|
/* /\* printf("Dimension %d size %d pointer \n",i,noise_shape[i], noise_map); *\/ */
|
||||||
|
|
||||||
|
/* /\* } *\/ */
|
||||||
|
|
||||||
|
/* if (ndim_data==2) { */
|
||||||
|
|
||||||
|
/* nx=data_shape[0]; */
|
||||||
|
/* ny=data_shape[1]; */
|
||||||
|
/* if (ny!=9) { */
|
||||||
|
/* PyErr_SetString( */
|
||||||
|
/* PyExc_TypeError, */
|
||||||
|
/* "Wrong data type."); */
|
||||||
|
/* // printf("Data found size %d %d %d\n",nx,ny,ndim); */
|
||||||
|
/* } */
|
||||||
|
|
||||||
|
/* } else { */
|
||||||
|
/* PyErr_SetString( */
|
||||||
|
/* PyExc_TypeError, */
|
||||||
|
/* "Wrong data type."); */
|
||||||
|
|
||||||
|
/* } */
|
||||||
|
|
||||||
|
/* } */
|
||||||
|
|
||||||
|
/* // Create an uninitialized numpy array */
|
||||||
|
/* //npy_intp dims[] = {nx}; */
|
||||||
|
/* // printf("%d %d\n",ndim,nx); */
|
||||||
|
/* npy_intp dims[] = {nx}; */
|
||||||
|
/* PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt()); */
|
||||||
|
|
||||||
|
/* // printf("1\n"); */
|
||||||
|
|
||||||
|
/* // Fill with zeros */
|
||||||
|
/* PyArray_FILLWBYTE((PyArrayObject *)ca, 0); */
|
||||||
|
|
||||||
|
/* // printf("2\n"); */
|
||||||
|
/* // Get a pointer to the array memory */
|
||||||
|
/* void *buf = PyArray_DATA((PyArrayObject *)ca); */
|
||||||
|
|
||||||
|
/* // Call the standalone C code to read clusters from file */
|
||||||
|
/* // Here goes the looping, removing frame numbers etc. */
|
||||||
|
|
||||||
|
/* // printf("3\n"); */
|
||||||
|
/* int n_read=analyze_clusters(nx,data,buf,size); */
|
||||||
|
/* if (n_read != nx) { */
|
||||||
|
/* // resize the array to match the number of read photons */
|
||||||
|
/* // this will reallocate memory */
|
||||||
|
|
||||||
|
/* // create a new_shape struct on the stack */
|
||||||
|
/* PyArray_Dims new_shape; */
|
||||||
|
|
||||||
|
/* // reuse dims for the shape */
|
||||||
|
/* //dims[0] = n_read; */
|
||||||
|
/* new_shape.ptr = n_read; */
|
||||||
|
/* new_shape.len = 1; */
|
||||||
|
|
||||||
|
/* // resize the array to match the number of clusters read */
|
||||||
|
/* PyArray_Resize((PyArrayObject *)ca, &new_shape, 1, NPY_ANYORDER); */
|
||||||
|
/* } */
|
||||||
|
|
||||||
|
/* return ca; */
|
||||||
|
|
||||||
|
/* } */
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// List all methods in our ClusterFileReader class
|
// List all methods in our ClusterFileReader class
|
||||||
static PyMethodDef ClusterFileReader_methods[] = {
|
static PyMethodDef ClusterFileReader_methods[] = {
|
||||||
{"read", (PyCFunction)ClusterFileReader_read, METH_VARARGS,
|
{"read", (PyCFunction)ClusterFileReader_read, METH_VARARGS,
|
||||||
"Read clusters"},
|
"Read clusters"},
|
||||||
// {"clusterize", (PyCFunction)ClusterFileReader_clusterize, METH_VARARGS,
|
/* {"clusterize", (PyCFunction)ClusterFileReader_clusterize, METH_VARARGS, */
|
||||||
// "Analyze clusters"},
|
/* "Analyze clusters"}, */
|
||||||
{NULL, NULL, 0, NULL} /* Sentinel */
|
{NULL, NULL, 0, NULL} /* Sentinel */
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -17,8 +17,8 @@ PyArray_Descr *cluster_analysis_dt() {
|
|||||||
import_array(); //TODO! Correct placement for this?
|
import_array(); //TODO! Correct placement for this?
|
||||||
PyObject *dict;
|
PyObject *dict;
|
||||||
PyArray_Descr *dtype;
|
PyArray_Descr *dtype;
|
||||||
dict = Py_BuildValue("[(s, s),(s, s),(s, s)]", "tot3", "i4", "tot2",
|
dict = Py_BuildValue("[(s, s),(s, s),(s, s),(s,s)]", "corner", "u4","tot", "i4", "etax",
|
||||||
"i4", "corner", "u4");
|
"d", "etay","d");
|
||||||
|
|
||||||
PyArray_DescrConverter(dict, &dtype);
|
PyArray_DescrConverter(dict, &dtype);
|
||||||
Py_DECREF(dict);
|
Py_DECREF(dict);
|
||||||
@ -42,4 +42,4 @@ PyArray_Descr *frame_header_dt() {
|
|||||||
PyArray_DescrConverter(dtype_dict, &dtype);
|
PyArray_DescrConverter(dtype_dict, &dtype);
|
||||||
Py_DECREF(dtype_dict);
|
Py_DECREF(dtype_dict);
|
||||||
return dtype;
|
return dtype;
|
||||||
}
|
}
|
||||||
|
@ -70,7 +70,7 @@ int read_clusters_with_cut(FILE *fp, int64_t n_clusters, Cluster *buf, int *n_le
|
|||||||
if (noise_map) {
|
if (noise_map) {
|
||||||
if (ptr->x>=0 && ptr->x<nx && ptr->y>=0 && ptr->y<ny) {
|
if (ptr->x>=0 && ptr->x<nx && ptr->y>=0 && ptr->y<ny) {
|
||||||
tot1=ptr->data[4];
|
tot1=ptr->data[4];
|
||||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL, NULL);
|
||||||
noise=noise_map[ptr->y*nx+ptr->x];
|
noise=noise_map[ptr->y*nx+ptr->x];
|
||||||
if (tot1>noise && t2max>2*noise && tot3>3*noise) {
|
if (tot1>noise && t2max>2*noise && tot3>3*noise) {
|
||||||
;
|
;
|
||||||
@ -106,7 +106,7 @@ int read_clusters_with_cut(FILE *fp, int64_t n_clusters, Cluster *buf, int *n_le
|
|||||||
if (noise_map) {
|
if (noise_map) {
|
||||||
if (ptr->x>=0 && ptr->x<nx && ptr->y>=0 && ptr->y<ny) {
|
if (ptr->x>=0 && ptr->x<nx && ptr->y>=0 && ptr->y<ny) {
|
||||||
tot1=ptr->data[4];
|
tot1=ptr->data[4];
|
||||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,NULL);
|
||||||
noise=noise_map[ptr->y*nx+ptr->x];
|
noise=noise_map[ptr->y*nx+ptr->x];
|
||||||
if (tot1>noise && t2max>2*noise && tot3>3*noise) {
|
if (tot1>noise && t2max>2*noise && tot3>3*noise) {
|
||||||
;
|
;
|
||||||
@ -143,28 +143,49 @@ int read_clusters_with_cut(FILE *fp, int64_t n_clusters, Cluster *buf, int *n_le
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
int analyze_clusters(int64_t n_clusters, Cluster *cin, ClusterAnalysis *cout) {
|
int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *co, int csize) {
|
||||||
|
|
||||||
int32_t tot2[4], t2max;
|
int32_t tot2[4], t2max;
|
||||||
char quad;
|
char quad;
|
||||||
int32_t val, tot3;
|
int32_t val, tot;
|
||||||
|
double etax, etay;
|
||||||
|
int nc=0;
|
||||||
|
//printf("csize is %d\n",csize);
|
||||||
|
int ret;
|
||||||
for (int ic = 0; ic < n_clusters; ic++) {
|
for (int ic = 0; ic < n_clusters; ic++) {
|
||||||
|
|
||||||
|
switch (csize) {
|
||||||
analyze_cluster(*(cin+ic), &t2max, &tot3, &quad, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
case 2:
|
||||||
|
ret=analyze_data((cin+9*ic), &tot, NULL, &quad, &etax,&etay, NULL, NULL);
|
||||||
(cout + ic)->c = quad;
|
break;
|
||||||
(cout + ic)->tot2 = t2max;
|
default:
|
||||||
(cout + ic)->tot3 = tot3;
|
ret=analyze_data((cin+9*ic), NULL, &tot, &quad, NULL, NULL, &etax,&etay);
|
||||||
// printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y,
|
}
|
||||||
// (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3);
|
if (ret==0) {
|
||||||
|
printf("%d %d %d %f %f\n",ic,tot,quad,etax,etay);
|
||||||
|
|
||||||
|
}
|
||||||
|
nc+=ret;
|
||||||
|
//printf("%d %d %d %d\n", ic , quad , t2max , tot3);
|
||||||
|
(co + ic)->c = quad;
|
||||||
|
(co + ic)->tot = tot;
|
||||||
|
(co + ic)->etax = etax;
|
||||||
|
(co + ic)->etay = etay;
|
||||||
|
//printf("%g %g\n",etax, etay);
|
||||||
|
/* if (tot<=0) */
|
||||||
|
/* printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y, */
|
||||||
|
/* (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3); */
|
||||||
}
|
}
|
||||||
return n_clusters;
|
return nc;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
||||||
|
|
||||||
|
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
|
||||||
|
|
||||||
int analyze_cluster(Cluster cin, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y, double *eta2Lx, double *eta2Ly, double *eta3Xx, double *eta3Xy) {
|
}
|
||||||
|
|
||||||
|
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
||||||
|
|
||||||
|
|
||||||
int ok=1;
|
int ok=1;
|
||||||
@ -179,25 +200,28 @@ int analyze_cluster(Cluster cin, int32_t *t2, int32_t *t3, char *quad, double *e
|
|||||||
// t2max=0;
|
// t2max=0;
|
||||||
for (int ix = 0; ix < 3; ix++) {
|
for (int ix = 0; ix < 3; ix++) {
|
||||||
for (int iy = 0; iy < 3; iy++) {
|
for (int iy = 0; iy < 3; iy++) {
|
||||||
val = cin.data[iy * 3 + ix];
|
val = data[iy * 3 + ix];
|
||||||
|
// printf ("%d ",data[iy * 3 + ix]);
|
||||||
tot3 += val;
|
tot3 += val;
|
||||||
if (ix <= 1 && iy <= 1)
|
if (ix <= 1 && iy <= 1)
|
||||||
tot2[0] += val;
|
tot2[cBottomLeft] += val;
|
||||||
if (ix >= 1 && iy <= 1)
|
if (ix >= 1 && iy <= 1)
|
||||||
tot2[1] += val;
|
tot2[cBottomRight] += val;
|
||||||
if (ix <= 1 && iy >= 1)
|
if (ix <= 1 && iy >= 1)
|
||||||
tot2[2] += val;
|
tot2[cTopLeft] += val;
|
||||||
if (ix >= 1 && iy >= 1)
|
if (ix >= 1 && iy >= 1)
|
||||||
tot2[3] += val;
|
tot2[cTopRight] += val;
|
||||||
}
|
}
|
||||||
|
// printf ("\n");
|
||||||
}
|
}
|
||||||
|
//printf ("\n");
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if (t2 || quad) {
|
if (t2 || quad) {
|
||||||
t2max = tot2[0];
|
t2max = -1000;
|
||||||
c = cBottomLeft;
|
c = 0;
|
||||||
for (int i = 1; i < 4; i++) {
|
for (int i = 0; i < 4; i++) {
|
||||||
if (tot2[i] > t2max) {
|
if (tot2[i] > t2max) {
|
||||||
t2max = tot2[i];
|
t2max = tot2[i];
|
||||||
c = i;
|
c = i;
|
||||||
@ -210,9 +234,61 @@ int analyze_cluster(Cluster cin, int32_t *t2, int32_t *t3, char *quad, double *e
|
|||||||
*t2 = t2max;
|
*t2 = t2max;
|
||||||
if (t3)
|
if (t3)
|
||||||
*t3 = tot3;
|
*t3 = tot3;
|
||||||
|
|
||||||
|
if (eta2x || eta2y) {
|
||||||
|
if (eta2x )
|
||||||
|
*eta2x=0;
|
||||||
|
if (eta2y )
|
||||||
|
*eta2y=0;
|
||||||
|
switch (c) {
|
||||||
|
case cBottomLeft:
|
||||||
|
if (eta2x && (data[3]+data[4])!=0)
|
||||||
|
*eta2x=(double)(data[4])/(data[3]+data[4]);
|
||||||
|
if (eta2y && (data[1]+data[4])!=0)
|
||||||
|
*eta2y=(double)(data[4])/(data[1]+data[4]);
|
||||||
|
break;
|
||||||
|
case cBottomRight:
|
||||||
|
if (eta2x && (data[2]+data[5])!=0)
|
||||||
|
*eta2x=(double)(data[5])/(data[4]+data[5]);
|
||||||
|
if (eta2y && (data[1]+data[4])!=0)
|
||||||
|
*eta2y=(double)(data[4])/(data[1]+data[4]);
|
||||||
|
break;
|
||||||
|
case cTopLeft:
|
||||||
|
if (eta2x && (data[7]+data[4])!=0)
|
||||||
|
*eta2x=(double)(data[4])/(data[3]+data[4]);
|
||||||
|
if (eta2y && (data[7]+data[4])!=0)
|
||||||
|
*eta2y=(double)(data[7])/(data[7]+data[4]);
|
||||||
|
break;
|
||||||
|
case cTopRight:
|
||||||
|
if (eta2x && t2max!=0)
|
||||||
|
*eta2x=(double)(data[5])/(data[5]+data[4]);
|
||||||
|
if (eta2y && t2max!=0)
|
||||||
|
*eta2y=(double)(data[7])/(data[7]+data[4]);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (eta3x || eta3y) {
|
||||||
|
if (eta3x && (data[3]+data[4]+data[5])!=0)
|
||||||
|
*eta3x=(double)(-data[3]+data[3+2])/(data[3]+data[4]+data[5]);
|
||||||
|
if (eta3y && (data[1]+data[4]+data[7])!=0)
|
||||||
|
*eta3y=(double)(-data[1]+data[2*3+1])/(data[1]+data[4]+data[7]);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* if (tot3<=0) { */
|
||||||
|
/* printf("*"); // t2max=0; */
|
||||||
|
/* for (int ix = 0; ix < 3; ix++) { */
|
||||||
|
/* for (int iy = 0; iy < 3; iy++) { */
|
||||||
|
/* printf ("%d ",data[iy * 3 + ix]); */
|
||||||
|
/* } */
|
||||||
|
/* printf ("\n"); */
|
||||||
|
/* } */
|
||||||
|
/* printf ("\n"); */
|
||||||
|
/* //return 0; */
|
||||||
|
/* } */
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
return ok;
|
return ok;
|
||||||
|
@ -9,7 +9,11 @@ int read_clusters(FILE* fp, int64_t n_clusters, Cluster* buf, int *n_left);
|
|||||||
|
|
||||||
int read_clusters_with_cut(FILE* fp, int64_t n_clusters, Cluster* buf, int *n_left, double *noise_map, int nx, int ny);
|
int read_clusters_with_cut(FILE* fp, int64_t n_clusters, Cluster* buf, int *n_left, double *noise_map, int nx, int ny);
|
||||||
|
|
||||||
int analyze_clusters(int64_t n_clusters, Cluster* cin, ClusterAnalysis *cout);
|
int analyze_clusters(int64_t n_clusters, int32_t* cin, ClusterAnalysis *cout, int csize);
|
||||||
|
|
||||||
|
|
||||||
int analyze_cluster(Cluster cin, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y, double *eta2Lx, double *eta2Ly, double *eta3Xx, double *eta3Xy);
|
|
||||||
|
|
||||||
|
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||||
|
|
||||||
|
int analyze_cluster(Cluster data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||||
|
@ -10,14 +10,15 @@
|
|||||||
#include "data_types.h"
|
#include "data_types.h"
|
||||||
#include "cluster_reader.h"
|
#include "cluster_reader.h"
|
||||||
|
|
||||||
static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
/* static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||||
|
|
||||||
// // Create an uninitialized numpy array
|
// // Create an uninitialized numpy array
|
||||||
// PyArray_Descr *dtypeIn = cluster_dt();
|
// PyArray_Descr *dtypeIn = cluster_dt();
|
||||||
// PyArray_Descr *dtypeOut = cluster_analysis_dt();
|
// PyArray_Descr *dtypeOut = cluster_analysis_dt();
|
||||||
|
|
||||||
PyObject *cl_obj;
|
PyObject *cl_obj;
|
||||||
if (!PyArg_ParseTuple(args, "O", &cl_obj))
|
Py_ssize_t csize = 0;
|
||||||
|
if (!PyArg_ParseTuple(args, "nO", &csize,&cl_obj))
|
||||||
return NULL;
|
return NULL;
|
||||||
|
|
||||||
// Create a numpy array from the passed object, if possible numpy will
|
// Create a numpy array from the passed object, if possible numpy will
|
||||||
@ -25,13 +26,13 @@ static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
|||||||
// if data type is different or we pass in a list. The
|
// if data type is different or we pass in a list. The
|
||||||
// NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory.
|
// NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory.
|
||||||
// function steals a reference to the data type so no need to deallocate
|
// function steals a reference to the data type so no need to deallocate
|
||||||
PyObject *cl_array = PyArray_FromArray(
|
/\* PyObject *cl_array = PyArray_FromArray( *\/
|
||||||
(PyArrayObject *)cl_obj, cluster_dt(), NPY_ARRAY_C_CONTIGUOUS);
|
/\* (PyArrayObject *)cl_obj, cluster_dt(), NPY_ARRAY_C_CONTIGUOUS); *\/
|
||||||
if (cl_array == NULL) {
|
/\* if (cl_array == NULL) { *\/
|
||||||
PyErr_SetString(PyExc_TypeError,
|
/\* PyErr_SetString(PyExc_TypeError, *\/
|
||||||
"Could not convert first argument to numpy array.");
|
/\* "Could not convert first argument to numpy array."); *\/
|
||||||
return NULL;
|
/\* return NULL; *\/
|
||||||
}
|
/\* } *\/
|
||||||
|
|
||||||
const int ndim = PyArray_NDIM((PyArrayObject *)cl_array);
|
const int ndim = PyArray_NDIM((PyArrayObject *)cl_array);
|
||||||
npy_intp *dims = PyArray_SHAPE((PyArrayObject *)cl_array);
|
npy_intp *dims = PyArray_SHAPE((PyArrayObject *)cl_array);
|
||||||
@ -45,7 +46,7 @@ static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
|||||||
// // Get a pointer to the array memory
|
// // Get a pointer to the array memory
|
||||||
ClusterAnalysis *buf = PyArray_DATA((PyArrayObject *)cl_analysis);
|
ClusterAnalysis *buf = PyArray_DATA((PyArrayObject *)cl_analysis);
|
||||||
|
|
||||||
int nc = analyze_clusters(size, clusters, buf);
|
int nc = analyze_clusters(size, clusters, buf,csize);
|
||||||
if (nc != size) {
|
if (nc != size) {
|
||||||
PyErr_SetString(PyExc_TypeError, "Parsed wrong size array!");
|
PyErr_SetString(PyExc_TypeError, "Parsed wrong size array!");
|
||||||
}
|
}
|
||||||
@ -53,6 +54,121 @@ static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
|||||||
return cl_analysis;
|
return cl_analysis;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
// clusterize method
|
||||||
|
//static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self, PyObject *args) {
|
||||||
|
static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||||
|
const int ndim = 1;
|
||||||
|
|
||||||
|
Py_ssize_t size = 0;
|
||||||
|
PyObject *data_obj;
|
||||||
|
if (!PyArg_ParseTuple(args, "nO", &size,&data_obj)) {
|
||||||
|
PyErr_SetString(
|
||||||
|
PyExc_TypeError,
|
||||||
|
"Could not parse args.");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
|
||||||
|
// Create two numpy arrays from the passed objects, if possible numpy will
|
||||||
|
// use the underlying buffer, otherwise it will create a copy, for example
|
||||||
|
// if data type is different or we pass in a list. The
|
||||||
|
// NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory.
|
||||||
|
PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS);
|
||||||
|
int nx=0,ny=0;
|
||||||
|
int32_t *data=NULL;
|
||||||
|
|
||||||
|
|
||||||
|
// If parsing of a or b fails we throw an exception in Python
|
||||||
|
if (data_array ) {
|
||||||
|
|
||||||
|
int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array));
|
||||||
|
npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array));
|
||||||
|
|
||||||
|
|
||||||
|
// For the C++ function call we need pointers (or another C++ type/data
|
||||||
|
// structure)
|
||||||
|
|
||||||
|
data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array)));
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/* for (int i=0; i< ndim_noise; i++) { */
|
||||||
|
/* printf("Dimension %d size %d pointer \n",i,noise_shape[i], noise_map); */
|
||||||
|
|
||||||
|
/* } */
|
||||||
|
|
||||||
|
if (ndim_data==2) {
|
||||||
|
|
||||||
|
nx=data_shape[0];
|
||||||
|
ny=data_shape[1];
|
||||||
|
if (ny!=9) {
|
||||||
|
PyErr_SetString(
|
||||||
|
PyExc_TypeError,
|
||||||
|
"Wrong data type.");
|
||||||
|
// printf("Data found size %d %d %d\n",nx,ny,ndim);
|
||||||
|
}
|
||||||
|
|
||||||
|
} else {
|
||||||
|
PyErr_SetString(
|
||||||
|
PyExc_TypeError,
|
||||||
|
"Wrong data type.");
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create an uninitialized numpy array
|
||||||
|
//npy_intp dims[] = {nx};
|
||||||
|
// printf("%d %d\n",ndim,nx);
|
||||||
|
npy_intp dims[] = {nx};
|
||||||
|
PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt());
|
||||||
|
|
||||||
|
//printf("1\n");
|
||||||
|
|
||||||
|
// Fill with zeros
|
||||||
|
PyArray_FILLWBYTE((PyArrayObject *)ca, 0);
|
||||||
|
|
||||||
|
//printf("2\n");
|
||||||
|
// Get a pointer to the array memory
|
||||||
|
void *buf = PyArray_DATA((PyArrayObject *)ca);
|
||||||
|
|
||||||
|
// Call the standalone C code to read clusters from file
|
||||||
|
// Here goes the looping, removing frame numbers etc.
|
||||||
|
|
||||||
|
//printf("3\n");
|
||||||
|
int nc=analyze_clusters(nx,data,buf,size);
|
||||||
|
|
||||||
|
// printf("aa %d %d\n",n_read, nx);
|
||||||
|
/* if (nc != nx) { */
|
||||||
|
/* // resize the array to match the number of read photons */
|
||||||
|
/* // this will reallocate memory */
|
||||||
|
|
||||||
|
/* // create a new_shape struct on the stack */
|
||||||
|
/* PyArray_Dims new_shape; */
|
||||||
|
|
||||||
|
/* // reuse dims for the shape */
|
||||||
|
/* //dims[0] = n_read; */
|
||||||
|
/* new_shape.ptr = n_read; */
|
||||||
|
/* new_shape.len = 1; */
|
||||||
|
|
||||||
|
/* // resize the array to match the number of clusters read */
|
||||||
|
/* PyArray_Resize((PyArrayObject *)ca, &new_shape, 1, NPY_ANYORDER); */
|
||||||
|
/* } */
|
||||||
|
if (nc != nx) {
|
||||||
|
printf("%d %d\n",nx,nc);
|
||||||
|
PyErr_SetString(PyExc_TypeError, "Parsed wrong size array!");
|
||||||
|
}
|
||||||
|
Py_DECREF(data_array);
|
||||||
|
return ca;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
static PyObject *get_cluster_dt(PyObject *Py_UNUSED(self), PyObject *args) {
|
static PyObject *get_cluster_dt(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||||
if (!PyArg_ParseTuple(args, ""))
|
if (!PyArg_ParseTuple(args, ""))
|
||||||
return NULL;
|
return NULL;
|
||||||
|
@ -29,9 +29,10 @@ typedef enum {
|
|||||||
} pixel;
|
} pixel;
|
||||||
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
int32_t tot2;
|
|
||||||
int32_t tot3;
|
|
||||||
uint32_t c;
|
uint32_t c;
|
||||||
|
int32_t tot;
|
||||||
|
double etax;
|
||||||
|
double etay;
|
||||||
} ClusterAnalysis;
|
} ClusterAnalysis;
|
||||||
|
|
||||||
enum Decoder { MOENCH_03 = 3 };
|
enum Decoder { MOENCH_03 = 3 };
|
||||||
|
Reference in New Issue
Block a user