Clusterization and interpolation implemented in python
This commit is contained in:
@ -68,16 +68,8 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
||||
"Could not parse args.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
npy_intp dims[] = {size};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Create two numpy arrays from the passed objects, if possible numpy will
|
||||
// use the underlying buffer, otherwise it will create a copy, for example
|
||||
// if data type is different or we pass in a list. The
|
||||
@ -111,7 +103,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
||||
nx=noise_shape[0];
|
||||
ny=noise_shape[1];
|
||||
|
||||
// printf("Noise map found size %d %d %d\n",nx,ny,noise_map);
|
||||
//printf("Noise map found size %d %d %d\n",nx,ny,noise_map);
|
||||
|
||||
|
||||
} else {
|
||||
@ -120,7 +112,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
||||
nx=noise_shape[0];
|
||||
ny=0;
|
||||
noise_map = NULL;
|
||||
// printf("NO Noise map found %d %d %d %d\n",ndim_noise,nx,ny,noise_map);
|
||||
//printf("NO Noise map found %d %d %d %d\n",ndim_noise,nx,ny,noise_map);
|
||||
}
|
||||
|
||||
}
|
||||
@ -128,7 +120,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
||||
|
||||
|
||||
// Create an uninitialized numpy array
|
||||
PyObject *clusters = PyArray_SimpleNewFromDescr(ndim, dims, cluster_dt());
|
||||
PyObject *clusters = PyArray_SimpleNewFromDescr(ndim, dims, cluster_dt());
|
||||
|
||||
// Fill with zeros
|
||||
PyArray_FILLWBYTE((PyArrayObject *)clusters, 0);
|
||||
@ -142,7 +134,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
||||
if (noise_map)
|
||||
read_clusters_with_cut(self->fp, size, buf, &self->n_left,noise_map, nx, ny);
|
||||
else
|
||||
read_clusters(self->fp, size, buf, &self->n_left);
|
||||
n_read = read_clusters(self->fp, size, buf, &self->n_left);
|
||||
|
||||
if (n_read != size) {
|
||||
// resize the array to match the number of read photons
|
||||
@ -163,12 +155,133 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self, PyObject *args)
|
||||
return clusters;
|
||||
}
|
||||
|
||||
/* // clusterize method */
|
||||
/* static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self, PyObject *args) { */
|
||||
|
||||
/* const int ndim = 1; */
|
||||
|
||||
/* Py_ssize_t size = 0; */
|
||||
/* PyObject *data_obj; */
|
||||
/* if (!PyArg_ParseTuple(args, "nO", &size,&data_obj)) { */
|
||||
/* PyErr_SetString( */
|
||||
/* PyExc_TypeError, */
|
||||
/* "Could not parse args."); */
|
||||
/* return NULL; */
|
||||
/* } */
|
||||
|
||||
/* // */
|
||||
|
||||
/* // Create two numpy arrays from the passed objects, if possible numpy will */
|
||||
/* // use the underlying buffer, otherwise it will create a copy, for example */
|
||||
/* // if data type is different or we pass in a list. The */
|
||||
/* // NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory. */
|
||||
/* PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS); */
|
||||
/* int nx=0,ny=0; */
|
||||
/* int32_t *data=NULL; */
|
||||
|
||||
|
||||
/* // If parsing of a or b fails we throw an exception in Python */
|
||||
/* if (data_array ) { */
|
||||
|
||||
/* int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array)); */
|
||||
/* npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array)); */
|
||||
|
||||
|
||||
/* // For the C++ function call we need pointers (or another C++ type/data */
|
||||
/* // structure) */
|
||||
|
||||
/* data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array))); */
|
||||
|
||||
|
||||
|
||||
/* /\* for (int i=0; i< ndim_noise; i++) { *\/ */
|
||||
/* /\* printf("Dimension %d size %d pointer \n",i,noise_shape[i], noise_map); *\/ */
|
||||
|
||||
/* /\* } *\/ */
|
||||
|
||||
/* if (ndim_data==2) { */
|
||||
|
||||
/* nx=data_shape[0]; */
|
||||
/* ny=data_shape[1]; */
|
||||
/* if (ny!=9) { */
|
||||
/* PyErr_SetString( */
|
||||
/* PyExc_TypeError, */
|
||||
/* "Wrong data type."); */
|
||||
/* // printf("Data found size %d %d %d\n",nx,ny,ndim); */
|
||||
/* } */
|
||||
|
||||
/* } else { */
|
||||
/* PyErr_SetString( */
|
||||
/* PyExc_TypeError, */
|
||||
/* "Wrong data type."); */
|
||||
|
||||
/* } */
|
||||
|
||||
/* } */
|
||||
|
||||
/* // Create an uninitialized numpy array */
|
||||
/* //npy_intp dims[] = {nx}; */
|
||||
/* // printf("%d %d\n",ndim,nx); */
|
||||
/* npy_intp dims[] = {nx}; */
|
||||
/* PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt()); */
|
||||
|
||||
/* // printf("1\n"); */
|
||||
|
||||
/* // Fill with zeros */
|
||||
/* PyArray_FILLWBYTE((PyArrayObject *)ca, 0); */
|
||||
|
||||
/* // printf("2\n"); */
|
||||
/* // Get a pointer to the array memory */
|
||||
/* void *buf = PyArray_DATA((PyArrayObject *)ca); */
|
||||
|
||||
/* // Call the standalone C code to read clusters from file */
|
||||
/* // Here goes the looping, removing frame numbers etc. */
|
||||
|
||||
/* // printf("3\n"); */
|
||||
/* int n_read=analyze_clusters(nx,data,buf,size); */
|
||||
/* if (n_read != nx) { */
|
||||
/* // resize the array to match the number of read photons */
|
||||
/* // this will reallocate memory */
|
||||
|
||||
/* // create a new_shape struct on the stack */
|
||||
/* PyArray_Dims new_shape; */
|
||||
|
||||
/* // reuse dims for the shape */
|
||||
/* //dims[0] = n_read; */
|
||||
/* new_shape.ptr = n_read; */
|
||||
/* new_shape.len = 1; */
|
||||
|
||||
/* // resize the array to match the number of clusters read */
|
||||
/* PyArray_Resize((PyArrayObject *)ca, &new_shape, 1, NPY_ANYORDER); */
|
||||
/* } */
|
||||
|
||||
/* return ca; */
|
||||
|
||||
/* } */
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// List all methods in our ClusterFileReader class
|
||||
static PyMethodDef ClusterFileReader_methods[] = {
|
||||
{"read", (PyCFunction)ClusterFileReader_read, METH_VARARGS,
|
||||
"Read clusters"},
|
||||
// {"clusterize", (PyCFunction)ClusterFileReader_clusterize, METH_VARARGS,
|
||||
// "Analyze clusters"},
|
||||
/* {"clusterize", (PyCFunction)ClusterFileReader_clusterize, METH_VARARGS, */
|
||||
/* "Analyze clusters"}, */
|
||||
{NULL, NULL, 0, NULL} /* Sentinel */
|
||||
};
|
||||
|
||||
|
@ -17,8 +17,8 @@ PyArray_Descr *cluster_analysis_dt() {
|
||||
import_array(); //TODO! Correct placement for this?
|
||||
PyObject *dict;
|
||||
PyArray_Descr *dtype;
|
||||
dict = Py_BuildValue("[(s, s),(s, s),(s, s)]", "tot3", "i4", "tot2",
|
||||
"i4", "corner", "u4");
|
||||
dict = Py_BuildValue("[(s, s),(s, s),(s, s),(s,s)]", "corner", "u4","tot", "i4", "etax",
|
||||
"d", "etay","d");
|
||||
|
||||
PyArray_DescrConverter(dict, &dtype);
|
||||
Py_DECREF(dict);
|
||||
@ -42,4 +42,4 @@ PyArray_Descr *frame_header_dt() {
|
||||
PyArray_DescrConverter(dtype_dict, &dtype);
|
||||
Py_DECREF(dtype_dict);
|
||||
return dtype;
|
||||
}
|
||||
}
|
||||
|
@ -70,7 +70,7 @@ int read_clusters_with_cut(FILE *fp, int64_t n_clusters, Cluster *buf, int *n_le
|
||||
if (noise_map) {
|
||||
if (ptr->x>=0 && ptr->x<nx && ptr->y>=0 && ptr->y<ny) {
|
||||
tot1=ptr->data[4];
|
||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL, NULL);
|
||||
noise=noise_map[ptr->y*nx+ptr->x];
|
||||
if (tot1>noise && t2max>2*noise && tot3>3*noise) {
|
||||
;
|
||||
@ -106,7 +106,7 @@ int read_clusters_with_cut(FILE *fp, int64_t n_clusters, Cluster *buf, int *n_le
|
||||
if (noise_map) {
|
||||
if (ptr->x>=0 && ptr->x<nx && ptr->y>=0 && ptr->y<ny) {
|
||||
tot1=ptr->data[4];
|
||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,NULL);
|
||||
noise=noise_map[ptr->y*nx+ptr->x];
|
||||
if (tot1>noise && t2max>2*noise && tot3>3*noise) {
|
||||
;
|
||||
@ -143,28 +143,49 @@ int read_clusters_with_cut(FILE *fp, int64_t n_clusters, Cluster *buf, int *n_le
|
||||
|
||||
|
||||
|
||||
int analyze_clusters(int64_t n_clusters, Cluster *cin, ClusterAnalysis *cout) {
|
||||
int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *co, int csize) {
|
||||
|
||||
int32_t tot2[4], t2max;
|
||||
char quad;
|
||||
int32_t val, tot3;
|
||||
int32_t val, tot;
|
||||
double etax, etay;
|
||||
int nc=0;
|
||||
//printf("csize is %d\n",csize);
|
||||
int ret;
|
||||
for (int ic = 0; ic < n_clusters; ic++) {
|
||||
|
||||
|
||||
analyze_cluster(*(cin+ic), &t2max, &tot3, &quad, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
||||
|
||||
(cout + ic)->c = quad;
|
||||
(cout + ic)->tot2 = t2max;
|
||||
(cout + ic)->tot3 = tot3;
|
||||
// printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y,
|
||||
// (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3);
|
||||
switch (csize) {
|
||||
case 2:
|
||||
ret=analyze_data((cin+9*ic), &tot, NULL, &quad, &etax,&etay, NULL, NULL);
|
||||
break;
|
||||
default:
|
||||
ret=analyze_data((cin+9*ic), NULL, &tot, &quad, NULL, NULL, &etax,&etay);
|
||||
}
|
||||
if (ret==0) {
|
||||
printf("%d %d %d %f %f\n",ic,tot,quad,etax,etay);
|
||||
|
||||
}
|
||||
nc+=ret;
|
||||
//printf("%d %d %d %d\n", ic , quad , t2max , tot3);
|
||||
(co + ic)->c = quad;
|
||||
(co + ic)->tot = tot;
|
||||
(co + ic)->etax = etax;
|
||||
(co + ic)->etay = etay;
|
||||
//printf("%g %g\n",etax, etay);
|
||||
/* if (tot<=0) */
|
||||
/* printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y, */
|
||||
/* (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3); */
|
||||
}
|
||||
return n_clusters;
|
||||
return nc;
|
||||
}
|
||||
|
||||
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
||||
|
||||
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
|
||||
|
||||
int analyze_cluster(Cluster cin, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y, double *eta2Lx, double *eta2Ly, double *eta3Xx, double *eta3Xy) {
|
||||
}
|
||||
|
||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
||||
|
||||
|
||||
int ok=1;
|
||||
@ -179,25 +200,28 @@ int analyze_cluster(Cluster cin, int32_t *t2, int32_t *t3, char *quad, double *e
|
||||
// t2max=0;
|
||||
for (int ix = 0; ix < 3; ix++) {
|
||||
for (int iy = 0; iy < 3; iy++) {
|
||||
val = cin.data[iy * 3 + ix];
|
||||
val = data[iy * 3 + ix];
|
||||
// printf ("%d ",data[iy * 3 + ix]);
|
||||
tot3 += val;
|
||||
if (ix <= 1 && iy <= 1)
|
||||
tot2[0] += val;
|
||||
tot2[cBottomLeft] += val;
|
||||
if (ix >= 1 && iy <= 1)
|
||||
tot2[1] += val;
|
||||
tot2[cBottomRight] += val;
|
||||
if (ix <= 1 && iy >= 1)
|
||||
tot2[2] += val;
|
||||
tot2[cTopLeft] += val;
|
||||
if (ix >= 1 && iy >= 1)
|
||||
tot2[3] += val;
|
||||
tot2[cTopRight] += val;
|
||||
}
|
||||
// printf ("\n");
|
||||
}
|
||||
//printf ("\n");
|
||||
|
||||
|
||||
|
||||
if (t2 || quad) {
|
||||
t2max = tot2[0];
|
||||
c = cBottomLeft;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
t2max = -1000;
|
||||
c = 0;
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if (tot2[i] > t2max) {
|
||||
t2max = tot2[i];
|
||||
c = i;
|
||||
@ -210,9 +234,61 @@ int analyze_cluster(Cluster cin, int32_t *t2, int32_t *t3, char *quad, double *e
|
||||
*t2 = t2max;
|
||||
if (t3)
|
||||
*t3 = tot3;
|
||||
|
||||
|
||||
|
||||
|
||||
if (eta2x || eta2y) {
|
||||
if (eta2x )
|
||||
*eta2x=0;
|
||||
if (eta2y )
|
||||
*eta2y=0;
|
||||
switch (c) {
|
||||
case cBottomLeft:
|
||||
if (eta2x && (data[3]+data[4])!=0)
|
||||
*eta2x=(double)(data[4])/(data[3]+data[4]);
|
||||
if (eta2y && (data[1]+data[4])!=0)
|
||||
*eta2y=(double)(data[4])/(data[1]+data[4]);
|
||||
break;
|
||||
case cBottomRight:
|
||||
if (eta2x && (data[2]+data[5])!=0)
|
||||
*eta2x=(double)(data[5])/(data[4]+data[5]);
|
||||
if (eta2y && (data[1]+data[4])!=0)
|
||||
*eta2y=(double)(data[4])/(data[1]+data[4]);
|
||||
break;
|
||||
case cTopLeft:
|
||||
if (eta2x && (data[7]+data[4])!=0)
|
||||
*eta2x=(double)(data[4])/(data[3]+data[4]);
|
||||
if (eta2y && (data[7]+data[4])!=0)
|
||||
*eta2y=(double)(data[7])/(data[7]+data[4]);
|
||||
break;
|
||||
case cTopRight:
|
||||
if (eta2x && t2max!=0)
|
||||
*eta2x=(double)(data[5])/(data[5]+data[4]);
|
||||
if (eta2y && t2max!=0)
|
||||
*eta2y=(double)(data[7])/(data[7]+data[4]);
|
||||
break;
|
||||
default:
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
if (eta3x || eta3y) {
|
||||
if (eta3x && (data[3]+data[4]+data[5])!=0)
|
||||
*eta3x=(double)(-data[3]+data[3+2])/(data[3]+data[4]+data[5]);
|
||||
if (eta3y && (data[1]+data[4]+data[7])!=0)
|
||||
*eta3y=(double)(-data[1]+data[2*3+1])/(data[1]+data[4]+data[7]);
|
||||
}
|
||||
|
||||
/* if (tot3<=0) { */
|
||||
/* printf("*"); // t2max=0; */
|
||||
/* for (int ix = 0; ix < 3; ix++) { */
|
||||
/* for (int iy = 0; iy < 3; iy++) { */
|
||||
/* printf ("%d ",data[iy * 3 + ix]); */
|
||||
/* } */
|
||||
/* printf ("\n"); */
|
||||
/* } */
|
||||
/* printf ("\n"); */
|
||||
/* //return 0; */
|
||||
/* } */
|
||||
|
||||
|
||||
|
||||
return ok;
|
||||
|
@ -9,7 +9,11 @@ int read_clusters(FILE* fp, int64_t n_clusters, Cluster* buf, int *n_left);
|
||||
|
||||
int read_clusters_with_cut(FILE* fp, int64_t n_clusters, Cluster* buf, int *n_left, double *noise_map, int nx, int ny);
|
||||
|
||||
int analyze_clusters(int64_t n_clusters, Cluster* cin, ClusterAnalysis *cout);
|
||||
int analyze_clusters(int64_t n_clusters, int32_t* cin, ClusterAnalysis *cout, int csize);
|
||||
|
||||
|
||||
int analyze_cluster(Cluster cin, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y, double *eta2Lx, double *eta2Ly, double *eta3Xx, double *eta3Xy);
|
||||
|
||||
|
||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||
|
||||
int analyze_cluster(Cluster data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||
|
@ -10,14 +10,15 @@
|
||||
#include "data_types.h"
|
||||
#include "cluster_reader.h"
|
||||
|
||||
static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
/* static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
|
||||
// // Create an uninitialized numpy array
|
||||
// PyArray_Descr *dtypeIn = cluster_dt();
|
||||
// PyArray_Descr *dtypeOut = cluster_analysis_dt();
|
||||
|
||||
PyObject *cl_obj;
|
||||
if (!PyArg_ParseTuple(args, "O", &cl_obj))
|
||||
Py_ssize_t csize = 0;
|
||||
if (!PyArg_ParseTuple(args, "nO", &csize,&cl_obj))
|
||||
return NULL;
|
||||
|
||||
// Create a numpy array from the passed object, if possible numpy will
|
||||
@ -25,13 +26,13 @@ static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
// if data type is different or we pass in a list. The
|
||||
// NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory.
|
||||
// function steals a reference to the data type so no need to deallocate
|
||||
PyObject *cl_array = PyArray_FromArray(
|
||||
(PyArrayObject *)cl_obj, cluster_dt(), NPY_ARRAY_C_CONTIGUOUS);
|
||||
if (cl_array == NULL) {
|
||||
PyErr_SetString(PyExc_TypeError,
|
||||
"Could not convert first argument to numpy array.");
|
||||
return NULL;
|
||||
}
|
||||
/\* PyObject *cl_array = PyArray_FromArray( *\/
|
||||
/\* (PyArrayObject *)cl_obj, cluster_dt(), NPY_ARRAY_C_CONTIGUOUS); *\/
|
||||
/\* if (cl_array == NULL) { *\/
|
||||
/\* PyErr_SetString(PyExc_TypeError, *\/
|
||||
/\* "Could not convert first argument to numpy array."); *\/
|
||||
/\* return NULL; *\/
|
||||
/\* } *\/
|
||||
|
||||
const int ndim = PyArray_NDIM((PyArrayObject *)cl_array);
|
||||
npy_intp *dims = PyArray_SHAPE((PyArrayObject *)cl_array);
|
||||
@ -45,7 +46,7 @@ static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
// // Get a pointer to the array memory
|
||||
ClusterAnalysis *buf = PyArray_DATA((PyArrayObject *)cl_analysis);
|
||||
|
||||
int nc = analyze_clusters(size, clusters, buf);
|
||||
int nc = analyze_clusters(size, clusters, buf,csize);
|
||||
if (nc != size) {
|
||||
PyErr_SetString(PyExc_TypeError, "Parsed wrong size array!");
|
||||
}
|
||||
@ -53,6 +54,121 @@ static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
return cl_analysis;
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
|
||||
// clusterize method
|
||||
//static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self, PyObject *args) {
|
||||
static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
const int ndim = 1;
|
||||
|
||||
Py_ssize_t size = 0;
|
||||
PyObject *data_obj;
|
||||
if (!PyArg_ParseTuple(args, "nO", &size,&data_obj)) {
|
||||
PyErr_SetString(
|
||||
PyExc_TypeError,
|
||||
"Could not parse args.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//
|
||||
|
||||
// Create two numpy arrays from the passed objects, if possible numpy will
|
||||
// use the underlying buffer, otherwise it will create a copy, for example
|
||||
// if data type is different or we pass in a list. The
|
||||
// NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory.
|
||||
PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS);
|
||||
int nx=0,ny=0;
|
||||
int32_t *data=NULL;
|
||||
|
||||
|
||||
// If parsing of a or b fails we throw an exception in Python
|
||||
if (data_array ) {
|
||||
|
||||
int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array));
|
||||
npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array));
|
||||
|
||||
|
||||
// For the C++ function call we need pointers (or another C++ type/data
|
||||
// structure)
|
||||
|
||||
data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array)));
|
||||
|
||||
|
||||
|
||||
/* for (int i=0; i< ndim_noise; i++) { */
|
||||
/* printf("Dimension %d size %d pointer \n",i,noise_shape[i], noise_map); */
|
||||
|
||||
/* } */
|
||||
|
||||
if (ndim_data==2) {
|
||||
|
||||
nx=data_shape[0];
|
||||
ny=data_shape[1];
|
||||
if (ny!=9) {
|
||||
PyErr_SetString(
|
||||
PyExc_TypeError,
|
||||
"Wrong data type.");
|
||||
// printf("Data found size %d %d %d\n",nx,ny,ndim);
|
||||
}
|
||||
|
||||
} else {
|
||||
PyErr_SetString(
|
||||
PyExc_TypeError,
|
||||
"Wrong data type.");
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Create an uninitialized numpy array
|
||||
//npy_intp dims[] = {nx};
|
||||
// printf("%d %d\n",ndim,nx);
|
||||
npy_intp dims[] = {nx};
|
||||
PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt());
|
||||
|
||||
//printf("1\n");
|
||||
|
||||
// Fill with zeros
|
||||
PyArray_FILLWBYTE((PyArrayObject *)ca, 0);
|
||||
|
||||
//printf("2\n");
|
||||
// Get a pointer to the array memory
|
||||
void *buf = PyArray_DATA((PyArrayObject *)ca);
|
||||
|
||||
// Call the standalone C code to read clusters from file
|
||||
// Here goes the looping, removing frame numbers etc.
|
||||
|
||||
//printf("3\n");
|
||||
int nc=analyze_clusters(nx,data,buf,size);
|
||||
|
||||
// printf("aa %d %d\n",n_read, nx);
|
||||
/* if (nc != nx) { */
|
||||
/* // resize the array to match the number of read photons */
|
||||
/* // this will reallocate memory */
|
||||
|
||||
/* // create a new_shape struct on the stack */
|
||||
/* PyArray_Dims new_shape; */
|
||||
|
||||
/* // reuse dims for the shape */
|
||||
/* //dims[0] = n_read; */
|
||||
/* new_shape.ptr = n_read; */
|
||||
/* new_shape.len = 1; */
|
||||
|
||||
/* // resize the array to match the number of clusters read */
|
||||
/* PyArray_Resize((PyArrayObject *)ca, &new_shape, 1, NPY_ANYORDER); */
|
||||
/* } */
|
||||
if (nc != nx) {
|
||||
printf("%d %d\n",nx,nc);
|
||||
PyErr_SetString(PyExc_TypeError, "Parsed wrong size array!");
|
||||
}
|
||||
Py_DECREF(data_array);
|
||||
return ca;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
static PyObject *get_cluster_dt(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
if (!PyArg_ParseTuple(args, ""))
|
||||
return NULL;
|
||||
|
@ -29,9 +29,10 @@ typedef enum {
|
||||
} pixel;
|
||||
|
||||
typedef struct {
|
||||
int32_t tot2;
|
||||
int32_t tot3;
|
||||
uint32_t c;
|
||||
int32_t tot;
|
||||
double etax;
|
||||
double etay;
|
||||
} ClusterAnalysis;
|
||||
|
||||
enum Decoder { MOENCH_03 = 3 };
|
||||
|
Reference in New Issue
Block a user