apply format

This commit is contained in:
froejdh_e 2023-10-27 11:34:50 +02:00
parent 03043e0bc3
commit 706b341783
6 changed files with 251 additions and 288 deletions

View File

@ -27,7 +27,6 @@ static int ClusterFileReader_init(ClusterFileReader *self, PyObject *args,
static char *kwlist[] = {"fname", "chunk", NULL}; static char *kwlist[] = {"fname", "chunk", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|n", kwlist, &fname_obj, if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|n", kwlist, &fname_obj,
&self->chunk)) { &self->chunk)) {
return -1; return -1;
@ -42,8 +41,7 @@ static int ClusterFileReader_init(ClusterFileReader *self, PyObject *args,
printf("Opening: %s\n chunk: %lu\n", fname, self->chunk); printf("Opening: %s\n chunk: %lu\n", fname, self->chunk);
#endif #endif
self->fp = fopen((const char*)fname, "rb"); self->fp = fopen((const char *)fname, "rb");
// Keep the return code to not return before releasing buffer // Keep the return code to not return before releasing buffer
int rc = 0; int rc = 0;
@ -116,14 +114,12 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
noise_map = (double *)(PyArray_DATA((PyArrayObject *)(noise_array))); noise_map = (double *)(PyArray_DATA((PyArrayObject *)(noise_array)));
/* for (int i=0; i< ndim_noise; i++) { */ /* for (int i=0; i< ndim_noise; i++) { */
/* printf("Dimension %d size %d pointer \n",i,noise_shape[i], /* printf("Dimension %d size %d pointer \n",i,noise_shape[i],
* noise_map); */ * noise_map); */
/* } */ /* } */
if (ndim_noise == 2) { if (ndim_noise == 2) {
nx = noise_shape[0]; nx = noise_shape[0];
@ -143,7 +139,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
} }
// Create an uninitialized numpy array // Create an uninitialized numpy array
PyObject *clusters = PyArray_SimpleNewFromDescr(ndim, dims, cluster_dt()); PyObject *clusters = PyArray_SimpleNewFromDescr(ndim, dims, cluster_dt());
// Fill with zeros // Fill with zeros
PyArray_FILLWBYTE((PyArrayObject *)clusters, 0); PyArray_FILLWBYTE((PyArrayObject *)clusters, 0);
@ -158,7 +154,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
n_read = read_clusters_with_cut(self->fp, size, buf, &self->n_left, n_read = read_clusters_with_cut(self->fp, size, buf, &self->n_left,
noise_map, nx, ny); noise_map, nx, ny);
else else
n_read = read_clusters(self->fp, size, buf, &self->n_left); n_read = read_clusters(self->fp, size, buf, &self->n_left);
if (n_read != size) { if (n_read != size) {
// resize the array to match the number of read photons // resize the array to match the number of read photons
@ -180,7 +176,8 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
} }
/* // clusterize method */ /* // clusterize method */
/* static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self, PyObject *args) { */ /* static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self,
* PyObject *args) { */
/* const int ndim = 1; */ /* const int ndim = 1; */
@ -195,31 +192,32 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
/* // */ /* // */
/* // Create two numpy arrays from the passed objects, if possible numpy will */ /* // Create two numpy arrays from the passed objects, if possible numpy
/* // use the underlying buffer, otherwise it will create a copy, for example */ * will */
/* // use the underlying buffer, otherwise it will create a copy, for
* example */
/* // if data type is different or we pass in a list. The */ /* // if data type is different or we pass in a list. The */
/* // NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory. */ /* // NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory. */
/* PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS); */ /* PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32,
* NPY_ARRAY_C_CONTIGUOUS); */
/* int nx=0,ny=0; */ /* int nx=0,ny=0; */
/* int32_t *data=NULL; */ /* int32_t *data=NULL; */
/* // If parsing of a or b fails we throw an exception in Python */ /* // If parsing of a or b fails we throw an exception in Python */
/* if (data_array ) { */ /* if (data_array ) { */
/* int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array)); */ /* int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array)); */
/* npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array)); */ /* npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array)); */
/* // For the C++ function call we need pointers (or another C++ type/data
/* // For the C++ function call we need pointers (or another C++ type/data */ */
/* // structure) */ /* // structure) */
/* data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array))); */ /* data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array))); */
/* /\* for (int i=0; i< ndim_noise; i++) { *\/ */ /* /\* for (int i=0; i< ndim_noise; i++) { *\/ */
/* /\* printf("Dimension %d size %d pointer \n",i,noise_shape[i], noise_map); *\/ */ /* /\* printf("Dimension %d size %d pointer \n",i,noise_shape[i],
* noise_map); *\/ */
/* /\* } *\/ */ /* /\* } *\/ */
@ -247,7 +245,8 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
/* //npy_intp dims[] = {nx}; */ /* //npy_intp dims[] = {nx}; */
/* // printf("%d %d\n",ndim,nx); */ /* // printf("%d %d\n",ndim,nx); */
/* npy_intp dims[] = {nx}; */ /* npy_intp dims[] = {nx}; */
/* PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt()); */ /* PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims,
* cluster_analysis_dt()); */
/* // printf("1\n"); */ /* // printf("1\n"); */
@ -283,28 +282,12 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
/* } */ /* } */
// List all methods in our ClusterFileReader class // List all methods in our ClusterFileReader class
static PyMethodDef ClusterFileReader_methods[] = { static PyMethodDef ClusterFileReader_methods[] = {
{"read", (PyCFunction)ClusterFileReader_read, METH_VARARGS, {"read", (PyCFunction)ClusterFileReader_read, METH_VARARGS,
"Read clusters"}, "Read clusters"},
/* {"clusterize", (PyCFunction)ClusterFileReader_clusterize, METH_VARARGS, */ /* {"clusterize", (PyCFunction)ClusterFileReader_clusterize, METH_VARARGS,
*/
/* "Analyze clusters"}, */ /* "Analyze clusters"}, */
{NULL, NULL, 0, NULL} /* Sentinel */ {NULL, NULL, 0, NULL} /* Sentinel */
}; };

View File

@ -48,7 +48,7 @@ static int RawFileReader_init(RawFileReader *self, PyObject *args,
printf("fname: %s\n read_header: %d detector type: %d\n", fname, printf("fname: %s\n read_header: %d detector type: %d\n", fname,
self->read_header, self->detector); self->read_header, self->detector);
#endif #endif
self->fp = fopen((const char*)fname, "rb"); self->fp = fopen((const char *)fname, "rb");
// Keep the return code to not return before releasing buffer // Keep the return code to not return before releasing buffer
int rc = 0; int rc = 0;
@ -110,12 +110,13 @@ static PyObject *RawFileReader_read(RawFileReader *self, PyObject *args) {
switch (self->detector) { switch (self->detector) {
case DT_MOENCH_03: case DT_MOENCH_03:
n_read = read_raw_m03(self->fp, n_frames, out_buf, (Header*)header_out); n_read =
read_raw_m03(self->fp, n_frames, out_buf, (Header *)header_out);
break; break;
case DT_MOENCH_04_A: case DT_MOENCH_04_A:
case DT_MOENCH_04_AD: case DT_MOENCH_04_AD:
n_read = n_read = read_raw_m04(self->fp, n_frames, out_buf, digital_out,
read_raw_m04(self->fp, n_frames, out_buf, digital_out, (Header*)header_out); (Header *)header_out);
break; break;
default: default:
break; break;
@ -136,8 +137,9 @@ static PyObject *RawFileReader_read(RawFileReader *self, PyObject *args) {
// resize the array to match the number of clusters read // resize the array to match the number of clusters read
PyArray_Resize((PyArrayObject *)frames, &new_shape, 1, NPY_ANYORDER); PyArray_Resize((PyArrayObject *)frames, &new_shape, 1, NPY_ANYORDER);
if(digital_frames){ if (digital_frames) {
PyArray_Resize((PyArrayObject *)digital_frames, &new_shape, 1, NPY_ANYORDER); PyArray_Resize((PyArrayObject *)digital_frames, &new_shape, 1,
NPY_ANYORDER);
} }
// if we also read header we need to reshape the header // if we also read header we need to reshape the header
@ -146,32 +148,29 @@ static PyObject *RawFileReader_read(RawFileReader *self, PyObject *args) {
PyArray_Resize((PyArrayObject *)header, &new_shape, 1, PyArray_Resize((PyArrayObject *)header, &new_shape, 1,
NPY_ANYORDER); NPY_ANYORDER);
} }
} }
// Build up a tuple with the return values // Build up a tuple with the return values
PyObject *ret = PyTuple_Pack(1, frames); PyObject *ret = PyTuple_Pack(1, frames);
if (self->detector == DT_MOENCH_04_AD){ if (self->detector == DT_MOENCH_04_AD) {
_PyTuple_Resize(&ret, 2); _PyTuple_Resize(&ret, 2);
PyTuple_SET_ITEM(ret, 1, digital_frames); PyTuple_SET_ITEM(ret, 1, digital_frames);
} }
if (self->read_header){ if (self->read_header) {
Py_ssize_t old_size = PyTuple_GET_SIZE(ret); Py_ssize_t old_size = PyTuple_GET_SIZE(ret);
_PyTuple_Resize(&ret, old_size+1); _PyTuple_Resize(&ret, old_size + 1);
PyTuple_SET_ITEM(ret, old_size, header); PyTuple_SET_ITEM(ret, old_size, header);
} }
// if we only have one item in the tuple lets return it instead of the tuple // if we only have one item in the tuple lets return it instead of the tuple
if(PyTuple_GET_SIZE(ret) == 1){ if (PyTuple_GET_SIZE(ret) == 1) {
Py_DECREF(ret); Py_DECREF(ret);
return frames; return frames;
}else{ } else {
Py_DECREF(frames); Py_DECREF(frames);
return ret; return ret;
} }
} }
// List all methods in our ClusterFileReader class // List all methods in our ClusterFileReader class

View File

@ -1,14 +1,14 @@
#include "cluster_reader.h" #include "cluster_reader.h"
#include <assert.h> #include <assert.h>
size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf, uint32_t *n_left) { size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf,
uint32_t *n_left) {
int32_t iframe = 0; // frame number needs to be 4 bytes! int32_t iframe = 0; // frame number needs to be 4 bytes!
uint32_t nph = *n_left; // number of clusters in frame needs to be 4 bytes! uint32_t nph = *n_left; // number of clusters in frame needs to be 4 bytes!
size_t nph_read = 0; size_t nph_read = 0;
uint32_t nn = *n_left; uint32_t nn = *n_left;
// if there are photons left from previous frame read them first // if there are photons left from previous frame read them first
if (nph) { if (nph) {
if (nph > n_clusters) { if (nph > n_clusters) {
@ -19,7 +19,7 @@ size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf, uint32_t *n_left
nn = nph; nn = nph;
} }
nph_read += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp); nph_read += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
*n_left = nph - nn; //write back the number of photons left *n_left = nph - nn; // write back the number of photons left
} }
if (nph_read < n_clusters) { if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters // keep on reading frames and photons until reaching n_clusters
@ -31,7 +31,8 @@ size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf, uint32_t *n_left
else else
nn = nph; nn = nph;
nph_read += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp); nph_read +=
fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
*n_left = nph - nn; *n_left = nph - nn;
} }
if (nph_read >= n_clusters) if (nph_read >= n_clusters)
@ -43,7 +44,8 @@ size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf, uint32_t *n_left
} }
size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf, size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
uint32_t *n_left, double *noise_map, int nx, int ny) { uint32_t *n_left, double *noise_map, int nx,
int ny) {
int iframe = 0; int iframe = 0;
uint32_t nph = *n_left; uint32_t nph = *n_left;
@ -62,7 +64,7 @@ size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
if (n_read != 1) { if (n_read != 1) {
return nph_read; return nph_read;
} }
//TODO! error handling on read // TODO! error handling on read
good = 1; good = 1;
if (noise_map) { if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) { if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
@ -92,105 +94,104 @@ size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
if (nph_read < n_clusters) { if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters // keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) { while (fread(&iframe, sizeof(iframe), 1, fp)) {
//printf("%d\n",nph_read); // printf("%d\n",nph_read);
if (fread(&nph, sizeof(nph), 1, fp)) { if (fread(&nph, sizeof(nph), 1, fp)) {
//printf("** %d\n",nph); // printf("** %d\n",nph);
*n_left = nph; *n_left = nph;
for (size_t iph=0; iph<nph; iph++) { for (size_t iph = 0; iph < nph; iph++) {
// read photons 1 by 1 // read photons 1 by 1
size_t n_read = fread((void *)(ptr), sizeof(Cluster), 1, fp); size_t n_read =
if (n_read != 1) { fread((void *)(ptr), sizeof(Cluster), 1, fp);
return nph_read; if (n_read != 1) {
return nph_read;
}
good = 1;
if (noise_map) {
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
ptr->y < ny) {
tot1 = ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL,
NULL, NULL, NULL);
noise = noise_map[ptr->y * nx + ptr->x];
if (tot1 > noise && t2max > 2 * noise &&
tot3 > 3 * noise) {
;
} else
good = 0;
} else {
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
good = 0;
}
}
if (good) {
ptr++;
nph_read++;
(*n_left)--;
}
if (nph_read >= n_clusters)
break;
}
}
if (nph_read >= n_clusters)
break;
} }
good=1;
if (noise_map) {
if (ptr->x>=0 && ptr->x<nx && ptr->y>=0 && ptr->y<ny) {
tot1=ptr->data[4];
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,NULL);
noise=noise_map[ptr->y*nx+ptr->x];
if (tot1>noise && t2max>2*noise && tot3>3*noise) {
;
} else
good=0;
} else{
printf("Bad pixel number %d %d\n",ptr->x,ptr->y);
good=0;
}
}
if (good) {
ptr++;
nph_read++;
(*n_left)--;
}
if (nph_read >= n_clusters)
break;
}
}
if (nph_read >= n_clusters)
break;
}
} }
// printf("%d\n",nph_read); // printf("%d\n",nph_read);
assert(nph_read <= n_clusters); // sanity check in debug mode assert(nph_read <= n_clusters); // sanity check in debug mode
return nph_read; return nph_read;
} }
int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *co,
int csize) {
int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *co, int csize) {
char quad; char quad;
int32_t tot; int32_t tot;
double etax, etay; double etax, etay;
int nc=0; int nc = 0;
//printf("csize is %d\n",csize); // printf("csize is %d\n",csize);
int ret; int ret;
for (int ic = 0; ic < n_clusters; ic++) { for (int ic = 0; ic < n_clusters; ic++) {
switch (csize) { switch (csize) {
case 2: case 2:
ret=analyze_data((cin+9*ic), &tot, NULL, &quad, &etax,&etay, NULL, NULL); ret = analyze_data((cin + 9 * ic), &tot, NULL, &quad, &etax, &etay,
break; NULL, NULL);
default: break;
ret=analyze_data((cin+9*ic), NULL, &tot, &quad, NULL, NULL, &etax,&etay); default:
} ret = analyze_data((cin + 9 * ic), NULL, &tot, &quad, NULL, NULL,
if (ret==0) { &etax, &etay);
printf("%d %d %d %f %f\n",ic,tot,quad,etax,etay); }
if (ret == 0) {
} printf("%d %d %d %f %f\n", ic, tot, quad, etax, etay);
nc+=ret; }
//printf("%d %d %d %d\n", ic , quad , t2max , tot3); nc += ret;
(co + ic)->c = quad; // printf("%d %d %d %d\n", ic , quad , t2max , tot3);
(co + ic)->tot = tot; (co + ic)->c = quad;
(co + ic)->etax = etax; (co + ic)->tot = tot;
(co + ic)->etay = etay; (co + ic)->etax = etax;
//printf("%g %g\n",etax, etay); (co + ic)->etay = etay;
/* if (tot<=0) */ // printf("%g %g\n",etax, etay);
/* printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y, */ /* if (tot<=0) */
/* (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3); */ /* printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y, */
/* (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3); */
} }
return nc; return nc;
} }
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y) { int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y); double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
} }
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y) { int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
int ok = 1;
int ok=1;
int32_t tot2[4]; int32_t tot2[4];
int32_t t2max=0; int32_t t2max = 0;
char c; char c;
int32_t val, tot3; int32_t val, tot3;
@ -199,23 +200,22 @@ int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *et
tot2[i] = 0; tot2[i] = 0;
for (int ix = 0; ix < 3; ix++) { for (int ix = 0; ix < 3; ix++) {
for (int iy = 0; iy < 3; iy++) { for (int iy = 0; iy < 3; iy++) {
val = data[iy * 3 + ix]; val = data[iy * 3 + ix];
// printf ("%d ",data[iy * 3 + ix]); // printf ("%d ",data[iy * 3 + ix]);
tot3 += val; tot3 += val;
if (ix <= 1 && iy <= 1) if (ix <= 1 && iy <= 1)
tot2[cBottomLeft] += val; tot2[cBottomLeft] += val;
if (ix >= 1 && iy <= 1) if (ix >= 1 && iy <= 1)
tot2[cBottomRight] += val; tot2[cBottomRight] += val;
if (ix <= 1 && iy >= 1) if (ix <= 1 && iy >= 1)
tot2[cTopLeft] += val; tot2[cTopLeft] += val;
if (ix >= 1 && iy >= 1) if (ix >= 1 && iy >= 1)
tot2[cTopRight] += val; tot2[cTopRight] += val;
} }
// printf ("\n"); // printf ("\n");
} }
//printf ("\n"); // printf ("\n");
if (t2 || quad) { if (t2 || quad) {
@ -228,56 +228,56 @@ int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *et
} }
} }
if (quad) if (quad)
*quad = c; *quad = c;
if (t2) if (t2)
*t2 = t2max; *t2 = t2max;
} }
if (t3) if (t3)
*t3 = tot3; *t3 = tot3;
if (eta2x || eta2y) { if (eta2x || eta2y) {
if (eta2x ) if (eta2x)
*eta2x=0; *eta2x = 0;
if (eta2y ) if (eta2y)
*eta2y=0; *eta2y = 0;
switch (c) { switch (c) {
case cBottomLeft: case cBottomLeft:
if (eta2x && (data[3]+data[4])!=0) if (eta2x && (data[3] + data[4]) != 0)
*eta2x=(double)(data[4])/(data[3]+data[4]); *eta2x = (double)(data[4]) / (data[3] + data[4]);
if (eta2y && (data[1]+data[4])!=0) if (eta2y && (data[1] + data[4]) != 0)
*eta2y=(double)(data[4])/(data[1]+data[4]); *eta2y = (double)(data[4]) / (data[1] + data[4]);
break; break;
case cBottomRight: case cBottomRight:
if (eta2x && (data[2]+data[5])!=0) if (eta2x && (data[2] + data[5]) != 0)
*eta2x=(double)(data[5])/(data[4]+data[5]); *eta2x = (double)(data[5]) / (data[4] + data[5]);
if (eta2y && (data[1]+data[4])!=0) if (eta2y && (data[1] + data[4]) != 0)
*eta2y=(double)(data[4])/(data[1]+data[4]); *eta2y = (double)(data[4]) / (data[1] + data[4]);
break; break;
case cTopLeft: case cTopLeft:
if (eta2x && (data[7]+data[4])!=0) if (eta2x && (data[7] + data[4]) != 0)
*eta2x=(double)(data[4])/(data[3]+data[4]); *eta2x = (double)(data[4]) / (data[3] + data[4]);
if (eta2y && (data[7]+data[4])!=0) if (eta2y && (data[7] + data[4]) != 0)
*eta2y=(double)(data[7])/(data[7]+data[4]); *eta2y = (double)(data[7]) / (data[7] + data[4]);
break; break;
case cTopRight: case cTopRight:
if (eta2x && t2max!=0) if (eta2x && t2max != 0)
*eta2x=(double)(data[5])/(data[5]+data[4]); *eta2x = (double)(data[5]) / (data[5] + data[4]);
if (eta2y && t2max!=0) if (eta2y && t2max != 0)
*eta2y=(double)(data[7])/(data[7]+data[4]); *eta2y = (double)(data[7]) / (data[7] + data[4]);
break; break;
default: default:;
; }
}
} }
if (eta3x || eta3y) { if (eta3x || eta3y) {
if (eta3x && (data[3]+data[4]+data[5])!=0) if (eta3x && (data[3] + data[4] + data[5]) != 0)
*eta3x=(double)(-data[3]+data[3+2])/(data[3]+data[4]+data[5]); *eta3x = (double)(-data[3] + data[3 + 2]) /
if (eta3y && (data[1]+data[4]+data[7])!=0) (data[3] + data[4] + data[5]);
*eta3y=(double)(-data[1]+data[2*3+1])/(data[1]+data[4]+data[7]); if (eta3y && (data[1] + data[4] + data[7]) != 0)
*eta3y = (double)(-data[1] + data[2 * 3 + 1]) /
(data[1] + data[4] + data[7]);
} }
return ok; return ok;
} }

View File

@ -3,17 +3,20 @@
#include <stdio.h> #include <stdio.h>
#include "data_types.h" #include "data_types.h"
//Pure C implementation to read a cluster file // Pure C implementation to read a cluster file
size_t read_clusters(FILE* fp, size_t n_clusters, Cluster* buf, uint32_t *n_left); size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf,
uint32_t *n_left);
size_t read_clusters_with_cut(FILE* fp, size_t n_clusters, Cluster* buf, uint32_t *n_left, double *noise_map, int nx, int ny); size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
uint32_t *n_left, double *noise_map, int nx,
int ny);
int analyze_clusters(int64_t n_clusters, int32_t* cin, ClusterAnalysis *cout, int csize); int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *cout,
int csize);
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y);

View File

@ -30,7 +30,8 @@
/\* (PyArrayObject *)cl_obj, cluster_dt(), NPY_ARRAY_C_CONTIGUOUS); *\/ /\* (PyArrayObject *)cl_obj, cluster_dt(), NPY_ARRAY_C_CONTIGUOUS); *\/
/\* if (cl_array == NULL) { *\/ /\* if (cl_array == NULL) { *\/
/\* PyErr_SetString(PyExc_TypeError, *\/ /\* PyErr_SetString(PyExc_TypeError, *\/
/\* "Could not convert first argument to numpy array."); *\/ /\* "Could not convert first argument to numpy array.");
*\/
/\* return NULL; *\/ /\* return NULL; *\/
/\* } *\/ /\* } *\/
@ -56,91 +57,82 @@
*/ */
// clusterize method // clusterize method
//static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self, PyObject *args) { // static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self,
// PyObject *args) {
static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) { static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
const int ndim = 1; const int ndim = 1;
Py_ssize_t size = 0; Py_ssize_t size = 0;
PyObject *data_obj; PyObject *data_obj;
if (!PyArg_ParseTuple(args, "nO", &size, &data_obj)) { if (!PyArg_ParseTuple(args, "nO", &size, &data_obj)) {
PyErr_SetString( PyErr_SetString(PyExc_TypeError, "Could not parse args.");
PyExc_TypeError, return NULL;
"Could not parse args."); }
return NULL;
}
// //
// Create two numpy arrays from the passed objects, if possible numpy will // Create two numpy arrays from the passed objects, if possible numpy will
// use the underlying buffer, otherwise it will create a copy, for example // use the underlying buffer, otherwise it will create a copy, for example
// if data type is different or we pass in a list. The // if data type is different or we pass in a list. The
// NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory. // NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory.
PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS); PyObject *data_array =
int nx=0,ny=0; PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS);
int32_t *data=NULL; int nx = 0, ny = 0;
int32_t *data = NULL;
// If parsing of a or b fails we throw an exception in Python // If parsing of a or b fails we throw an exception in Python
if (data_array ) { if (data_array) {
int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array)); int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array));
npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array)); npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array));
// For the C++ function call we need pointers (or another C++ type/data
// structure)
// For the C++ function call we need pointers (or another C++ type/data data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array)));
// structure)
data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array))); /* for (int i=0; i< ndim_noise; i++) { */
/* printf("Dimension %d size %d pointer \n",i,noise_shape[i],
* noise_map); */
/* } */
if (ndim_data == 2) {
/* for (int i=0; i< ndim_noise; i++) { */ nx = data_shape[0];
/* printf("Dimension %d size %d pointer \n",i,noise_shape[i], noise_map); */ ny = data_shape[1];
if (ny != 9) {
/* } */ PyErr_SetString(PyExc_TypeError, "Wrong data type.");
// printf("Data found size %d %d %d\n",nx,ny,ndim);
if (ndim_data==2) { }
nx=data_shape[0];
ny=data_shape[1];
if (ny!=9) {
PyErr_SetString(
PyExc_TypeError,
"Wrong data type.");
// printf("Data found size %d %d %d\n",nx,ny,ndim);
}
} else {
PyErr_SetString(
PyExc_TypeError,
"Wrong data type.");
}
} else {
PyErr_SetString(PyExc_TypeError, "Wrong data type.");
}
} }
// Create an uninitialized numpy array // Create an uninitialized numpy array
//npy_intp dims[] = {nx}; // npy_intp dims[] = {nx};
// printf("%d %d\n",ndim,nx); // printf("%d %d\n",ndim,nx);
npy_intp dims[] = {nx}; npy_intp dims[] = {nx};
PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt()); PyObject *ca =
PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt());
//printf("1\n"); // printf("1\n");
// Fill with zeros // Fill with zeros
PyArray_FILLWBYTE((PyArrayObject *)ca, 0); PyArray_FILLWBYTE((PyArrayObject *)ca, 0);
//printf("2\n"); // printf("2\n");
// Get a pointer to the array memory // Get a pointer to the array memory
void *buf = PyArray_DATA((PyArrayObject *)ca); void *buf = PyArray_DATA((PyArrayObject *)ca);
// Call the standalone C code to read clusters from file // Call the standalone C code to read clusters from file
// Here goes the looping, removing frame numbers etc. // Here goes the looping, removing frame numbers etc.
//printf("3\n"); // printf("3\n");
int nc=analyze_clusters(nx,data,buf,size); int nc = analyze_clusters(nx, data, buf, size);
// printf("aa %d %d\n",n_read, nx); // printf("aa %d %d\n",n_read, nx);
/* if (nc != nx) { */ /* if (nc != nx) { */
@ -159,16 +151,13 @@ static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
/* PyArray_Resize((PyArrayObject *)ca, &new_shape, 1, NPY_ANYORDER); */ /* PyArray_Resize((PyArrayObject *)ca, &new_shape, 1, NPY_ANYORDER); */
/* } */ /* } */
if (nc != nx) { if (nc != nx) {
printf("%d %d\n",nx,nc); printf("%d %d\n", nx, nc);
PyErr_SetString(PyExc_TypeError, "Parsed wrong size array!"); PyErr_SetString(PyExc_TypeError, "Parsed wrong size array!");
} }
Py_DECREF(data_array); Py_DECREF(data_array);
return ca; return ca;
} }
static PyObject *get_cluster_dt(PyObject *Py_UNUSED(self), PyObject *args) { static PyObject *get_cluster_dt(PyObject *Py_UNUSED(self), PyObject *args) {
if (!PyArg_ParseTuple(args, "")) if (!PyArg_ParseTuple(args, ""))
return NULL; return NULL;

View File

@ -1,27 +1,16 @@
#pragma once #pragma once
#include "data_types.h"
#include <stdbool.h> #include <stdbool.h>
#include <stdint.h> #include <stdint.h>
#include <stdio.h> #include <stdio.h>
#include "data_types.h"
int64_t read_raw_m03( int64_t read_raw_m03(FILE *fp, int64_t n_frames, char *frame_out,
FILE *fp, Header *header_out);
int64_t n_frames,
char* frame_out,
Header* header_out
);
int64_t read_raw_m04( int64_t read_raw_m04(FILE *fp, int64_t n_frames, char *frame_out,
FILE *fp, char *digital_out, Header *header_out);
int64_t n_frames,
char* frame_out,
char* digital_out,
Header* header_out
);
void decode_moench03(const uint16_t *buf, uint16_t *out_buf); void decode_moench03(const uint16_t *buf, uint16_t *out_buf);
void decode_moench04(const uint16_t *analog_data, void decode_moench04(const uint16_t *analog_data, const uint64_t *digital_data,
const uint64_t *digital_data, uint16_t *analog_frame, uint8_t *digital_frame);
uint16_t *analog_frame,
uint8_t *digital_frame);