added some python script examples
This commit is contained in:
parent
f2691e6f28
commit
6735f41390
@ -17,7 +17,7 @@ emax=30
|
|||||||
ecutmin=8
|
ecutmin=8
|
||||||
ecutmax=12
|
ecutmax=12
|
||||||
etabins=251
|
etabins=251
|
||||||
csize=2
|
csize=3
|
||||||
gain=150
|
gain=150
|
||||||
nbins=100
|
nbins=100
|
||||||
indmin=1
|
indmin=1
|
||||||
@ -78,6 +78,7 @@ for i in range(indmin,indmax):
|
|||||||
|
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.plot(ebins[:-1],sp)
|
ax.plot(ebins[:-1],sp)
|
||||||
|
ax.plot(ebins[:-1],spff)
|
||||||
#ax.set_yscale('log')
|
#ax.set_yscale('log')
|
||||||
fig.show()
|
fig.show()
|
||||||
"""
|
"""
|
||||||
|
@ -49,6 +49,21 @@ for i in range(1,21):
|
|||||||
print(ff)
|
print(ff)
|
||||||
r = cr.ClusterFileReader(ff)
|
r = cr.ClusterFileReader(ff)
|
||||||
"""
|
"""
|
||||||
|
def color_images(r, emin, emax, ebins, xmin, xmax, ymin, ymax, images=None, csize=3,gain=150):
|
||||||
|
n=0
|
||||||
|
while (cl:=r.read(100000,None)).size:
|
||||||
|
v=cr.clusterize(csize,cl['data'])
|
||||||
|
vv=[cl['x'],cl['y'],v['tot']/gain]
|
||||||
|
image,bins=np.histogramdd(vv, bins=[xmax-xmin,yxmax-ymin,ebins], range=[[xmin,xmax-1],[ymin,ymax-1],[emin,emax]])
|
||||||
|
|
||||||
|
if images is None:
|
||||||
|
images = image.copy()
|
||||||
|
else:
|
||||||
|
images=images+image
|
||||||
|
n+=v.shape[0]
|
||||||
|
#print(v.shape)
|
||||||
|
print("Read ",n," clusters",np.sum(images))
|
||||||
|
return images, bins
|
||||||
|
|
||||||
|
|
||||||
def analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, ietax=None, ietay=None, im=None, sp=None, etas=None, intim=None, csize=3,gain=150, nbins=100, etabins=250, subpix=5):
|
def analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, ietax=None, ietay=None, im=None, sp=None, etas=None, intim=None, csize=3,gain=150, nbins=100, etabins=250, subpix=5):
|
||||||
|
47
examples/color_imaging.py
Normal file
47
examples/color_imaging.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
import os, sys
|
||||||
|
from pathlib import Path
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
#from creader import ClusterFileReader
|
||||||
|
import creader as cr
|
||||||
|
import clustersFunctions as cf
|
||||||
|
|
||||||
|
fname = "/mnt/myData/230914_30s_star_100um_nofi/star_"
|
||||||
|
xmin=0
|
||||||
|
xmax=400
|
||||||
|
ymin=0
|
||||||
|
ymax=400
|
||||||
|
emin=0
|
||||||
|
emax=30
|
||||||
|
|
||||||
|
csize=3
|
||||||
|
gain=150
|
||||||
|
nbins=100
|
||||||
|
indmin=1
|
||||||
|
indmax=20
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
im=None
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
for i in range(indmin,indmax+1):
|
||||||
|
#ff=fname
|
||||||
|
ff=fname+str(i)+".clust"
|
||||||
|
print(ff)
|
||||||
|
r = cr.ClusterFileReader(ff)
|
||||||
|
im, bins=cf.color_images(r, emin, emax, nbins, xmin, xmax, ymin, ymax, im, csize, gain)
|
||||||
|
|
||||||
|
sp=np.sum(im,axis=(0,1))
|
||||||
|
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.plot(bins[2][:-1],sp)
|
||||||
|
##ax.set_yscale('log')
|
||||||
|
fig.show()
|
||||||
|
|
||||||
|
cu=np.sum(im[:,:,10:35],axis=2)
|
||||||
|
cf.plot_colz(cu)
|
||||||
|
|
||||||
|
mo=np.sum(im[:,:,50:70],axis=2)
|
||||||
|
cf.plot_colz(mo)
|
89
examples/readClusters.py
Normal file
89
examples/readClusters.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
import numpy as np
|
||||||
|
from numpy.lib import recfunctions as rfn
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import sys
|
||||||
|
|
||||||
|
#energyStep=100
|
||||||
|
energyMax=40000
|
||||||
|
energyBins=400
|
||||||
|
clusterSize=3
|
||||||
|
|
||||||
|
dtypeCluster = [('frameNr', np.int32),('coord', (np.int16,2)),('data',(np.int32,clusterSize*clusterSize))]
|
||||||
|
|
||||||
|
def read_cluster_file(filename):
|
||||||
|
fd = open(filename,'rb')
|
||||||
|
clusters = np.fromfile(fd,dtype=dtypeCluster)
|
||||||
|
fd.close
|
||||||
|
#rfn.drop_fields(clusters, 'frameNr')
|
||||||
|
uCl = rfn.structured_to_unstructured(clusters)
|
||||||
|
return uCl
|
||||||
|
|
||||||
|
def getEnergyArray(data):
|
||||||
|
off=3
|
||||||
|
enArray = np.sum(data[:,off:], axis=-1)
|
||||||
|
print(data.shape)
|
||||||
|
Q = np.empty((4,data.shape[0]))
|
||||||
|
print(Q.shape, data.shape)
|
||||||
|
Q[0,:]=data[:,off+0]+data[:,off+1]+data[:,off+3]+data[:,off+4]
|
||||||
|
Q[1,:]=data[:,off+1]+data[:,off+2]+data[:,off+4]+data[:,off+5]
|
||||||
|
Q[2,:]=data[:,off+3]+data[:,off+4]+data[:,off+6]+data[:,off+7]
|
||||||
|
Q[3,:]=data[:,off+4]+data[:,off+5]+data[:,off+7]+data[:,off+8]
|
||||||
|
print(Q)
|
||||||
|
quadArray = np.max(Q,axis=0)
|
||||||
|
return enArray,quadArray
|
||||||
|
|
||||||
|
def spectrum_roi(x,y,en,xmin,xmax,ymin,ymax):
|
||||||
|
global energyBins
|
||||||
|
global energymax
|
||||||
|
roi=np.where(np.logical_and(np.logical_and(np.logical_and(x>=xmin,x<=xmax),y>=ymin),y<=ymax))
|
||||||
|
spectrum3,xedges2=np.histogram(en[roi],bins=energyBins,range=(0,energyMax))
|
||||||
|
return spectrum3,xedges2[1:]
|
||||||
|
|
||||||
|
def image_cut(x,y,en,emin,emax):
|
||||||
|
energyCut=np.where(np.logical_and(en>=emin,en<=emax))
|
||||||
|
print(x[energyCut].shape,y[energyCut].shape)
|
||||||
|
image,xedges,yedges=np.histogram2d(x[energyCut],y[energyCut],bins=400)
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
fname="/mnt/moench_data/tomcat_fluorescence_24022020/clusters_tomo/cu_fibers_27keV_17.clust"
|
||||||
|
if len(sys.argv)>1:
|
||||||
|
fname=sys.argv[1]
|
||||||
|
|
||||||
|
cl=read_cluster_file(fname)
|
||||||
|
print("file read")
|
||||||
|
|
||||||
|
enADC,quadADC=getEnergyArray(cl)
|
||||||
|
print("energy array done",enADC,quadADC)
|
||||||
|
|
||||||
|
en=enADC*1000./150.
|
||||||
|
quad=quadADC*1000./150.
|
||||||
|
print("energy conversion done:",en,quad)
|
||||||
|
|
||||||
|
x=cl[:,1]
|
||||||
|
y=cl[:,2]
|
||||||
|
|
||||||
|
#him=get_hyperimage(x,y,cl)
|
||||||
|
#print("hyperimage done")
|
||||||
|
xmin=0
|
||||||
|
xmax=400
|
||||||
|
ymin=00
|
||||||
|
ymax=400
|
||||||
|
|
||||||
|
|
||||||
|
spectrum2,xedges1= spectrum_roi(x,y,quad,xmin,xmax,ymin,ymax)
|
||||||
|
fig2, axs2 = plt.subplots()
|
||||||
|
axs2.plot(xedges1,spectrum2,"b-")
|
||||||
|
fig2.show()
|
||||||
|
print("sp plotted")
|
||||||
|
|
||||||
|
emin=0
|
||||||
|
emax=40000
|
||||||
|
image=image_cut(x,y,quad,emin,emax)
|
||||||
|
fig, axs = plt.subplots()
|
||||||
|
v=axs.imshow(image,vmax=np.mean(image)*5*np.sqrt(np.var(image)),origin='upper',cmap=plt.cm.jet)
|
||||||
|
fig.colorbar(v, ax=axs)
|
||||||
|
fig.show()
|
||||||
|
|
||||||
|
print("To get the spectrum for a certain ROI use: sp,x=spectrum_roi(x,y,en,xmin,xmax,ymin,ymax)")
|
||||||
|
print("To the get the image with a certain energy cut use im=image_cut(x,y,en,emin,emax)")
|
Reference in New Issue
Block a user