added some python script examples

This commit is contained in:
bergamaschi 2024-03-21 16:36:38 +01:00
parent f2691e6f28
commit 6735f41390
4 changed files with 153 additions and 1 deletions

View File

@ -17,7 +17,7 @@ emax=30
ecutmin=8 ecutmin=8
ecutmax=12 ecutmax=12
etabins=251 etabins=251
csize=2 csize=3
gain=150 gain=150
nbins=100 nbins=100
indmin=1 indmin=1
@ -78,6 +78,7 @@ for i in range(indmin,indmax):
fig, ax = plt.subplots() fig, ax = plt.subplots()
ax.plot(ebins[:-1],sp) ax.plot(ebins[:-1],sp)
ax.plot(ebins[:-1],spff)
#ax.set_yscale('log') #ax.set_yscale('log')
fig.show() fig.show()
""" """

View File

@ -49,6 +49,21 @@ for i in range(1,21):
print(ff) print(ff)
r = cr.ClusterFileReader(ff) r = cr.ClusterFileReader(ff)
""" """
def color_images(r, emin, emax, ebins, xmin, xmax, ymin, ymax, images=None, csize=3,gain=150):
n=0
while (cl:=r.read(100000,None)).size:
v=cr.clusterize(csize,cl['data'])
vv=[cl['x'],cl['y'],v['tot']/gain]
image,bins=np.histogramdd(vv, bins=[xmax-xmin,yxmax-ymin,ebins], range=[[xmin,xmax-1],[ymin,ymax-1],[emin,emax]])
if images is None:
images = image.copy()
else:
images=images+image
n+=v.shape[0]
#print(v.shape)
print("Read ",n," clusters",np.sum(images))
return images, bins
def analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, ietax=None, ietay=None, im=None, sp=None, etas=None, intim=None, csize=3,gain=150, nbins=100, etabins=250, subpix=5): def analyze_clusters(r, emin, emax, ecutmin, ecutmax, xmin, xmax, ymin, ymax, ietax=None, ietay=None, im=None, sp=None, etas=None, intim=None, csize=3,gain=150, nbins=100, etabins=250, subpix=5):

47
examples/color_imaging.py Normal file
View File

@ -0,0 +1,47 @@
import os, sys
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
#from creader import ClusterFileReader
import creader as cr
import clustersFunctions as cf
fname = "/mnt/myData/230914_30s_star_100um_nofi/star_"
xmin=0
xmax=400
ymin=0
ymax=400
emin=0
emax=30
csize=3
gain=150
nbins=100
indmin=1
indmax=20
im=None
for i in range(indmin,indmax+1):
#ff=fname
ff=fname+str(i)+".clust"
print(ff)
r = cr.ClusterFileReader(ff)
im, bins=cf.color_images(r, emin, emax, nbins, xmin, xmax, ymin, ymax, im, csize, gain)
sp=np.sum(im,axis=(0,1))
fig, ax = plt.subplots()
ax.plot(bins[2][:-1],sp)
##ax.set_yscale('log')
fig.show()
cu=np.sum(im[:,:,10:35],axis=2)
cf.plot_colz(cu)
mo=np.sum(im[:,:,50:70],axis=2)
cf.plot_colz(mo)

89
examples/readClusters.py Normal file
View File

@ -0,0 +1,89 @@
import numpy as np
from numpy.lib import recfunctions as rfn
import matplotlib.pyplot as plt
import sys
#energyStep=100
energyMax=40000
energyBins=400
clusterSize=3
dtypeCluster = [('frameNr', np.int32),('coord', (np.int16,2)),('data',(np.int32,clusterSize*clusterSize))]
def read_cluster_file(filename):
fd = open(filename,'rb')
clusters = np.fromfile(fd,dtype=dtypeCluster)
fd.close
#rfn.drop_fields(clusters, 'frameNr')
uCl = rfn.structured_to_unstructured(clusters)
return uCl
def getEnergyArray(data):
off=3
enArray = np.sum(data[:,off:], axis=-1)
print(data.shape)
Q = np.empty((4,data.shape[0]))
print(Q.shape, data.shape)
Q[0,:]=data[:,off+0]+data[:,off+1]+data[:,off+3]+data[:,off+4]
Q[1,:]=data[:,off+1]+data[:,off+2]+data[:,off+4]+data[:,off+5]
Q[2,:]=data[:,off+3]+data[:,off+4]+data[:,off+6]+data[:,off+7]
Q[3,:]=data[:,off+4]+data[:,off+5]+data[:,off+7]+data[:,off+8]
print(Q)
quadArray = np.max(Q,axis=0)
return enArray,quadArray
def spectrum_roi(x,y,en,xmin,xmax,ymin,ymax):
global energyBins
global energymax
roi=np.where(np.logical_and(np.logical_and(np.logical_and(x>=xmin,x<=xmax),y>=ymin),y<=ymax))
spectrum3,xedges2=np.histogram(en[roi],bins=energyBins,range=(0,energyMax))
return spectrum3,xedges2[1:]
def image_cut(x,y,en,emin,emax):
energyCut=np.where(np.logical_and(en>=emin,en<=emax))
print(x[energyCut].shape,y[energyCut].shape)
image,xedges,yedges=np.histogram2d(x[energyCut],y[energyCut],bins=400)
return image
fname="/mnt/moench_data/tomcat_fluorescence_24022020/clusters_tomo/cu_fibers_27keV_17.clust"
if len(sys.argv)>1:
fname=sys.argv[1]
cl=read_cluster_file(fname)
print("file read")
enADC,quadADC=getEnergyArray(cl)
print("energy array done",enADC,quadADC)
en=enADC*1000./150.
quad=quadADC*1000./150.
print("energy conversion done:",en,quad)
x=cl[:,1]
y=cl[:,2]
#him=get_hyperimage(x,y,cl)
#print("hyperimage done")
xmin=0
xmax=400
ymin=00
ymax=400
spectrum2,xedges1= spectrum_roi(x,y,quad,xmin,xmax,ymin,ymax)
fig2, axs2 = plt.subplots()
axs2.plot(xedges1,spectrum2,"b-")
fig2.show()
print("sp plotted")
emin=0
emax=40000
image=image_cut(x,y,quad,emin,emax)
fig, axs = plt.subplots()
v=axs.imshow(image,vmax=np.mean(image)*5*np.sqrt(np.var(image)),origin='upper',cmap=plt.cm.jet)
fig.colorbar(v, ax=axs)
fig.show()
print("To get the spectrum for a certain ROI use: sp,x=spectrum_roi(x,y,en,xmin,xmax,ymin,ymax)")
print("To the get the image with a certain energy cut use im=image_cut(x,y,en,emin,emax)")