Files
aare/include/aare/Cluster.hpp

237 lines
9.3 KiB
C++

/************************************************
* @file Cluster.hpp
* @short definition of cluster, where CoordType (x,y) give
* the cluster center coordinates and data the actual cluster data
* cluster size is given as template parameters
***********************************************/
#pragma once
#include "logger.hpp"
#include <algorithm>
#include <array>
#include <cstdint>
#include <numeric>
#include <type_traits>
namespace aare {
// requires clause c++20 maybe update
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
struct Cluster {
static_assert(std::is_arithmetic_v<T>, "T needs to be an arithmetic type");
static_assert(std::is_integral_v<CoordType>,
"CoordType needs to be an integral type");
static_assert(ClusterSizeX > 0 && ClusterSizeY > 0,
"Cluster sizes must be bigger than zero");
CoordType x;
CoordType y;
std::array<T, ClusterSizeX * ClusterSizeY> data;
static constexpr uint8_t cluster_size_x = ClusterSizeX;
static constexpr uint8_t cluster_size_y = ClusterSizeY;
using value_type = T;
using coord_type = CoordType;
T sum() const { return std::accumulate(data.begin(), data.end(), T{}); }
std::pair<T, int> max_sum_2x2() const {
if constexpr (cluster_size_x == 3 && cluster_size_y == 3) {
std::array<T, 4> sum_2x2_subclusters;
sum_2x2_subclusters[0] = data[0] + data[1] + data[3] + data[4];
sum_2x2_subclusters[1] = data[1] + data[2] + data[4] + data[5];
sum_2x2_subclusters[2] = data[3] + data[4] + data[6] + data[7];
sum_2x2_subclusters[3] = data[4] + data[5] + data[7] + data[8];
int index = std::max_element(sum_2x2_subclusters.begin(),
sum_2x2_subclusters.end()) -
sum_2x2_subclusters.begin();
return std::make_pair(sum_2x2_subclusters[index], index);
} else if constexpr (cluster_size_x == 2 && cluster_size_y == 2) {
return std::make_pair(data[0] + data[1] + data[2] + data[3], 0);
} else {
constexpr size_t num_2x2_subclusters =
(ClusterSizeX - 1) * (ClusterSizeY - 1);
std::array<T, num_2x2_subclusters> sum_2x2_subcluster;
for (size_t i = 0; i < ClusterSizeY - 1; ++i) {
for (size_t j = 0; j < ClusterSizeX - 1; ++j)
sum_2x2_subcluster[i * (ClusterSizeX - 1) + j] =
data[i * ClusterSizeX + j] +
data[i * ClusterSizeX + j + 1] +
data[(i + 1) * ClusterSizeX + j] +
data[(i + 1) * ClusterSizeX + j + 1];
}
int index = std::max_element(sum_2x2_subcluster.begin(),
sum_2x2_subcluster.end()) -
sum_2x2_subcluster.begin();
return std::make_pair(sum_2x2_subcluster[index], index);
}
}
};
/**
* @brief Reduce a cluster to a 2x2 cluster by selecting the 2x2 block with the
* highest sum.
* @param c Cluster to reduce
* @return Cluster<T, 2, 2, uint16_t> reduced cluster
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
Cluster<T, 2, 2, CoordType>
reduce_to_2x2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &c) {
static_assert(ClusterSizeX >= 2 && ClusterSizeY >= 2,
"Cluster sizes must be at least 2x2 for reduction to 2x2");
Cluster<T, 2, 2, CoordType> result;
auto [sum, index] = c.max_sum_2x2();
int16_t cluster_center_index =
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
int16_t index_bottom_left_max_2x2_subcluster =
(int(index / (ClusterSizeX - 1))) * ClusterSizeX +
index % (ClusterSizeX - 1);
result.x =
c.x + (index_bottom_left_max_2x2_subcluster - cluster_center_index) %
ClusterSizeX;
result.y =
c.y - (index_bottom_left_max_2x2_subcluster - cluster_center_index) /
ClusterSizeX;
result.data = {
c.data[index_bottom_left_max_2x2_subcluster],
c.data[index_bottom_left_max_2x2_subcluster + 1],
c.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX],
c.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX + 1]};
return result;
}
template <typename T>
Cluster<T, 3, 3, uint16_t>
reduce_5x5_to_3x3(const Cluster<T, 5, 5, uint16_t> &c) {
Cluster<T, 3, 3, uint16_t> result;
// Reduce the 5x5 cluster to a 3x3 cluster by selecting the 3x3 block with
// the highest sum
std::array<T, 9> sum_3x3_subclusters;
// Write out the sums in the hope that the compiler can optimize this
sum_3x3_subclusters[0] = c.data[0] + c.data[1] + c.data[2] + c.data[5] +
c.data[6] + c.data[7] + c.data[10] + c.data[11] +
c.data[12];
sum_3x3_subclusters[1] = c.data[1] + c.data[2] + c.data[3] + c.data[6] +
c.data[7] + c.data[8] + c.data[11] + c.data[12] +
c.data[13];
sum_3x3_subclusters[2] = c.data[2] + c.data[3] + c.data[4] + c.data[7] +
c.data[8] + c.data[9] + c.data[12] + c.data[13] +
c.data[14];
sum_3x3_subclusters[3] = c.data[5] + c.data[6] + c.data[7] + c.data[10] +
c.data[11] + c.data[12] + c.data[15] + c.data[16] +
c.data[17];
sum_3x3_subclusters[4] = c.data[6] + c.data[7] + c.data[8] + c.data[11] +
c.data[12] + c.data[13] + c.data[16] + c.data[17] +
c.data[18];
sum_3x3_subclusters[5] = c.data[7] + c.data[8] + c.data[9] + c.data[12] +
c.data[13] + c.data[14] + c.data[17] + c.data[18] +
c.data[19];
sum_3x3_subclusters[6] = c.data[10] + c.data[11] + c.data[12] + c.data[15] +
c.data[16] + c.data[17] + c.data[20] + c.data[21] +
c.data[22];
sum_3x3_subclusters[7] = c.data[11] + c.data[12] + c.data[13] + c.data[16] +
c.data[17] + c.data[18] + c.data[21] + c.data[22] +
c.data[23];
sum_3x3_subclusters[8] = c.data[12] + c.data[13] + c.data[14] + c.data[17] +
c.data[18] + c.data[19] + c.data[22] + c.data[23] +
c.data[24];
auto index = std::max_element(sum_3x3_subclusters.begin(),
sum_3x3_subclusters.end()) -
sum_3x3_subclusters.begin();
switch (index) {
case 0:
result.x = c.x - 1;
result.y = c.y + 1;
result.data = {c.data[0], c.data[1], c.data[2], c.data[5], c.data[6],
c.data[7], c.data[10], c.data[11], c.data[12]};
break;
case 1:
result.x = c.x;
result.y = c.y + 1;
result.data = {c.data[1], c.data[2], c.data[3], c.data[6], c.data[7],
c.data[8], c.data[11], c.data[12], c.data[13]};
break;
case 2:
result.x = c.x + 1;
result.y = c.y + 1;
result.data = {c.data[2], c.data[3], c.data[4], c.data[7], c.data[8],
c.data[9], c.data[12], c.data[13], c.data[14]};
break;
case 3:
result.x = c.x - 1;
result.y = c.y;
result.data = {c.data[5], c.data[6], c.data[7],
c.data[10], c.data[11], c.data[12],
c.data[15], c.data[16], c.data[17]};
break;
case 4:
result.x = c.x + 1;
result.y = c.y;
result.data = {c.data[6], c.data[7], c.data[8],
c.data[11], c.data[12], c.data[13],
c.data[16], c.data[17], c.data[18]};
break;
case 5:
result.x = c.x + 1;
result.y = c.y;
result.data = {c.data[7], c.data[8], c.data[9],
c.data[12], c.data[13], c.data[14],
c.data[17], c.data[18], c.data[19]};
break;
case 6:
result.x = c.x + 1;
result.y = c.y - 1;
result.data = {c.data[10], c.data[11], c.data[12],
c.data[15], c.data[16], c.data[17],
c.data[20], c.data[21], c.data[22]};
break;
case 7:
result.x = c.x + 1;
result.y = c.y - 1;
result.data = {c.data[11], c.data[12], c.data[13],
c.data[16], c.data[17], c.data[18],
c.data[21], c.data[22], c.data[23]};
break;
case 8:
result.x = c.x + 1;
result.y = c.y - 1;
result.data = {c.data[12], c.data[13], c.data[14],
c.data[17], c.data[18], c.data[19],
c.data[22], c.data[23], c.data[24]};
break;
}
// do some stuff
return result;
}
// Type Traits for is_cluster_type
template <typename T>
struct is_cluster : std::false_type {}; // Default case: Not a Cluster
template <typename T, uint8_t X, uint8_t Y, typename CoordType>
struct is_cluster<Cluster<T, X, Y, CoordType>> : std::true_type {}; // Cluster
template <typename T> constexpr bool is_cluster_v = is_cluster<T>::value;
} // namespace aare