mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-12-18 11:01:27 +01:00
135 lines
3.6 KiB
Python
135 lines
3.6 KiB
Python
import pytest
|
|
import numpy as np
|
|
|
|
import aare
|
|
|
|
def test_apply_calibration_small_data():
|
|
# The raw data consists of 10 4x5 images
|
|
raw = np.zeros((10, 4, 5), dtype=np.uint16)
|
|
|
|
# We need a pedestal for each gain, so 3
|
|
pedestal = np.zeros((3, 4, 5), dtype=np.float32)
|
|
|
|
# And the same for calibration
|
|
calibration = np.ones((3, 4, 5), dtype=np.float32)
|
|
|
|
# Set the known values, probing one pixel in each gain
|
|
raw[0, 0, 0] = 100 #ADC value of 100, gain 0
|
|
pedestal[0, 0, 0] = 10
|
|
calibration[0, 0, 0] = 43.7
|
|
|
|
raw[2, 3, 3] = (1<<14) + 1000 #ADC value of 1000, gain 1
|
|
pedestal[1, 3, 3] = 500
|
|
calibration[1, 3, 3] = 2.0
|
|
|
|
raw[1,1,4] = (3<<14) + 857 #ADC value of 857, gain 2
|
|
pedestal[2,1,4] = 100
|
|
calibration[2,1,4] = 3.0
|
|
|
|
|
|
|
|
data = aare.apply_calibration(raw, pd = pedestal, cal = calibration)
|
|
|
|
|
|
# The formula that is applied is:
|
|
# calibrated = (raw - pedestal) / calibration
|
|
assert data.shape == (10, 4, 5)
|
|
assert data[0, 0, 0] == (100 - 10) / 43.7
|
|
assert data[2, 3, 3] == (1000 - 500) / 2.0
|
|
assert data[1, 1, 4] == (857 - 100) / 3.0
|
|
|
|
# Other pixels should be zero
|
|
assert data[2,2,2] == 0
|
|
assert data[0,1,1] == 0
|
|
assert data[1,3,0] == 0
|
|
|
|
|
|
@pytest.fixture
|
|
def raw_data_3x2x2():
|
|
raw = np.zeros((3, 2, 2), dtype=np.uint16)
|
|
raw[0, 0, 0] = 100
|
|
raw[1,0, 0] = 200
|
|
raw[2, 0, 0] = 300
|
|
|
|
raw[0, 0, 1] = (1<<14) + 100
|
|
raw[1, 0, 1] = (1<<14) + 200
|
|
raw[2, 0, 1] = (1<<14) + 300
|
|
|
|
raw[0, 1, 0] = (1<<14) + 37
|
|
raw[1, 1, 0] = 38
|
|
raw[2, 1, 0] = (3<<14) + 39
|
|
|
|
raw[0, 1, 1] = (3<<14) + 100
|
|
raw[1, 1, 1] = (3<<14) + 200
|
|
raw[2, 1, 1] = (3<<14) + 300
|
|
return raw
|
|
|
|
def test_calculate_pedestal(raw_data_3x2x2):
|
|
# Calculate the pedestal
|
|
pd = aare.calculate_pedestal(raw_data_3x2x2)
|
|
assert pd.shape == (3, 2, 2)
|
|
assert pd.dtype == np.float64
|
|
assert pd[0, 0, 0] == 200
|
|
assert pd[1, 0, 0] == 0
|
|
assert pd[2, 0, 0] == 0
|
|
|
|
assert pd[0, 0, 1] == 0
|
|
assert pd[1, 0, 1] == 200
|
|
assert pd[2, 0, 1] == 0
|
|
|
|
assert pd[0, 1, 0] == 38
|
|
assert pd[1, 1, 0] == 37
|
|
assert pd[2, 1, 0] == 39
|
|
|
|
assert pd[0, 1, 1] == 0
|
|
assert pd[1, 1, 1] == 0
|
|
assert pd[2, 1, 1] == 200
|
|
|
|
def test_calculate_pedestal_float(raw_data_3x2x2):
|
|
#results should be the same for float
|
|
pd2 = aare.calculate_pedestal_float(raw_data_3x2x2)
|
|
assert pd2.shape == (3, 2, 2)
|
|
assert pd2.dtype == np.float32
|
|
assert pd2[0, 0, 0] == 200
|
|
assert pd2[1, 0, 0] == 0
|
|
assert pd2[2, 0, 0] == 0
|
|
|
|
assert pd2[0, 0, 1] == 0
|
|
assert pd2[1, 0, 1] == 200
|
|
assert pd2[2, 0, 1] == 0
|
|
|
|
assert pd2[0, 1, 0] == 38
|
|
assert pd2[1, 1, 0] == 37
|
|
assert pd2[2, 1, 0] == 39
|
|
|
|
assert pd2[0, 1, 1] == 0
|
|
assert pd2[1, 1, 1] == 0
|
|
assert pd2[2, 1, 1] == 200
|
|
|
|
def test_calculate_pedestal_g0(raw_data_3x2x2):
|
|
pd = aare.calculate_pedestal_g0(raw_data_3x2x2)
|
|
assert pd.shape == (2, 2)
|
|
assert pd.dtype == np.float64
|
|
assert pd[0, 0] == 200
|
|
assert pd[1, 0] == 38
|
|
assert pd[0, 1] == 0
|
|
assert pd[1, 1] == 0
|
|
|
|
def test_calculate_pedestal_g0_float(raw_data_3x2x2):
|
|
pd = aare.calculate_pedestal_g0_float(raw_data_3x2x2)
|
|
assert pd.shape == (2, 2)
|
|
assert pd.dtype == np.float32
|
|
assert pd[0, 0] == 200
|
|
assert pd[1, 0] == 38
|
|
assert pd[0, 1] == 0
|
|
assert pd[1, 1] == 0
|
|
|
|
def test_count_switching_pixels(raw_data_3x2x2):
|
|
# Count the number of pixels that switched gain
|
|
count = aare.count_switching_pixels(raw_data_3x2x2)
|
|
assert count.shape == (2, 2)
|
|
assert count.sum() == 8
|
|
assert count[0, 0] == 0
|
|
assert count[1, 0] == 2
|
|
assert count[0, 1] == 3
|
|
assert count[1, 1] == 3 |