mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-17 01:37:13 +02:00
129 lines
4.5 KiB
C++
129 lines
4.5 KiB
C++
|
|
#include "aare/CtbRawFile.hpp"
|
|
#include "aare/File.hpp"
|
|
#include "aare/Frame.hpp"
|
|
#include "aare/RawFile.hpp"
|
|
#include "aare/RawMasterFile.hpp"
|
|
#include "aare/RawSubFile.hpp"
|
|
|
|
#include "aare/decode.hpp"
|
|
#include "aare/defs.hpp"
|
|
// #include "aare/fClusterFileV2.hpp"
|
|
|
|
#include "np_helper.hpp"
|
|
|
|
#include <cstdint>
|
|
#include <filesystem>
|
|
#include <pybind11/iostream.h>
|
|
#include <pybind11/numpy.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
#include <pybind11/stl/filesystem.h>
|
|
#include <string>
|
|
|
|
namespace py = pybind11;
|
|
using namespace ::aare;
|
|
|
|
void define_ctb_raw_file_io_bindings(py::module &m) {
|
|
|
|
m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
|
|
if (input.ndim() != 2) {
|
|
throw std::runtime_error(
|
|
"Only 2D arrays are supported at this moment");
|
|
}
|
|
|
|
// Create a 2D output array with the same shape as the input
|
|
std::vector<ssize_t> shape{input.shape(0),
|
|
input.shape(1) /
|
|
static_cast<ssize_t>(bits_per_byte)};
|
|
py::array_t<uint16_t> output(shape);
|
|
|
|
// Create a view of the input and output arrays
|
|
NDView<uint64_t, 2> input_view(
|
|
reinterpret_cast<uint64_t *>(input.mutable_data()),
|
|
{output.shape(0), output.shape(1)});
|
|
NDView<uint16_t, 2> output_view(output.mutable_data(),
|
|
{output.shape(0), output.shape(1)});
|
|
|
|
adc_sar_05_decode64to16(input_view, output_view);
|
|
|
|
return output;
|
|
});
|
|
|
|
m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
|
|
if (input.ndim() != 2) {
|
|
throw std::runtime_error(
|
|
"Only 2D arrays are supported at this moment");
|
|
}
|
|
|
|
// Create a 2D output array with the same shape as the input
|
|
std::vector<ssize_t> shape{input.shape(0),
|
|
input.shape(1) /
|
|
static_cast<ssize_t>(bits_per_byte)};
|
|
py::array_t<uint16_t> output(shape);
|
|
|
|
// Create a view of the input and output arrays
|
|
NDView<uint64_t, 2> input_view(
|
|
reinterpret_cast<uint64_t *>(input.mutable_data()),
|
|
{output.shape(0), output.shape(1)});
|
|
NDView<uint16_t, 2> output_view(output.mutable_data(),
|
|
{output.shape(0), output.shape(1)});
|
|
|
|
adc_sar_04_decode64to16(input_view, output_view);
|
|
|
|
return output;
|
|
});
|
|
|
|
m.def("apply_custom_weights",
|
|
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast>
|
|
&input,
|
|
py::array_t<double, py::array::c_style | py::array::forcecast>
|
|
&weights) {
|
|
// Create new array with same shape as the input array
|
|
// (uninitialized values)
|
|
py::buffer_info buf = input.request();
|
|
py::array_t<double> output(buf.shape);
|
|
|
|
// Use NDViews to call into the C++ library
|
|
auto weights_view = make_view_1d(weights);
|
|
NDView<uint16_t, 1> input_view(input.mutable_data(),
|
|
{input.size()});
|
|
NDView<double, 1> output_view(output.mutable_data(),
|
|
{output.size()});
|
|
|
|
apply_custom_weights(input_view, output_view, weights_view);
|
|
return output;
|
|
});
|
|
|
|
py::class_<CtbRawFile>(m, "CtbRawFile")
|
|
.def(py::init<const std::filesystem::path &>())
|
|
.def("read_frame",
|
|
[](CtbRawFile &self) {
|
|
size_t image_size = self.image_size_in_bytes();
|
|
py::array image;
|
|
std::vector<ssize_t> shape;
|
|
shape.reserve(2);
|
|
shape.push_back(1);
|
|
shape.push_back(image_size);
|
|
|
|
py::array_t<DetectorHeader> header(1);
|
|
|
|
// always read bytes
|
|
image = py::array_t<uint8_t>(shape);
|
|
|
|
self.read_into(
|
|
reinterpret_cast<std::byte *>(image.mutable_data()),
|
|
header.mutable_data());
|
|
|
|
return py::make_tuple(header, image);
|
|
})
|
|
.def("seek", &CtbRawFile::seek)
|
|
.def("tell", &CtbRawFile::tell)
|
|
.def("master", &CtbRawFile::master)
|
|
|
|
.def_property_readonly("image_size_in_bytes",
|
|
&CtbRawFile::image_size_in_bytes)
|
|
|
|
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
|
|
}
|